
ar
X

iv
:2

50
5.

16
20

5v
1

 [
cs

.C
R

]
 2

2
M

ay
 2

02
5

VIVID: A Novel Approach to Remediation
Prioritization in Static Application Security Testing

(SAST)
Naeem Budhwani

Accenture
Montreal, Canada

naeem.budhwani@gmail.com

Mohammad Faghani
Accenture

Toronto, Canada
mrfaghani@gmail.com

Hayden Richard
Accenture

Nashville, USA
haydenrichard411@gmail.com

Abstract—Static Application Security Testing (SAST) enables
organizations to detect vulnerabilities in code early; however,
major SAST platforms do not include visual aids and present
little insight on correlations between tainted data chains. We
propose VIVID - Vulnerability Information Via Data flow - a
novel method to extract and consume SAST insights, which is
to graph the application’s vulnerability data flows (VDFs) and
carry out graph theory analysis on the resulting VDF directed
graph. Nine metrics were assessed to evaluate their effectiveness
in analyzing the VDF graphs of deliberately insecure web
applications. These metrics include 3 centrality metrics, 2 struc-
tural metrics, PageRank, in-degree, out-degree, and cross-clique
connectivity. We present simulations that find that out-degree,
betweenness centrality, in-eigenvector centrality, and cross-clique
connectivity were found to be associated with files exhibiting
high vulnerability traffic, making them refactoring candidates
where input sanitization may have been missed. Meanwhile, out-
eigenvector centrality, PageRank, and in-degree were found to
be associated with nodes enabling vulnerability flow and sinks,
but not necessarily where input validation should be placed.
This is a novel method to automatically provide development
teams an evidence-based prioritized list of files to embed security
controls into, informed by vulnerability propagation patterns in
the application architecture.

Index Terms—SAST, vulnerability data flow, vulnerability
remediation, graph theory, taint analysis

I. INTRODUCTION

Eight of the top ten data breaches of 2023 were related to ap-
plication attack surfaces [1]. This demands robust application-
layer countermeasures, including active Static Application
Security Testing (SAST) scanning. SAST performs analyses
[2] including:

1) Data flow analysis: Follows the path of the data flow
2) Control flow analysis: Compares the application control

flow on execution with known-secure code flow patterns
3) Structural analysis: Examines language-specific code

structures for inconsistencies with best practices
4) Semantic analysis: Performs a simple search looking for

known-insecure strings in the code base
5) Configuration analysis: Checks application configura-

tion files against security best practices
Our research focuses on (1) and (2), as these techniques

lend themselves readily to graphical visualization. We begin

by noticing that SAST tools identify data flow paths (e.g.,
function calls) where tainted data passes through without
security controls (e.g., input validation and sanitization). At
present, flow data can be gathered from the UI of some
major SAST platforms and is used by development teams to
remediate vulnerabilities [3]. The potential for aggregating this
data across vulnerabilities and running analytics on it remains
untapped and is overlooked due to the cumbersome length
of individual VDF data, which is typically excluded from
standard reports [4].

Our research involves gathering and graphing tainted data
paths, which will be referred to as vulnerability data flows
(VDFs). We define a VDF as the propagation of an untrusted
value from a source collection point in code to a destination
or intermediate destination in code. When VDFs are graphed,
nodes in the resulting graph signify files through which tainted
data passes, while graph edges refer to flowing tainted data.
This tainted data is directional and the resulting graph is a
directed graph (digraph), which means analysis can be carried
out to identify features like feedback loops, temporal sequence,
and flow imbalance.

The graph serves two productive uses:

1) Rapid consumption: Rather than looking at VDFs for
each vulnerability in isolation from each other through
a SAST user interface, the graph reveals nodes shared by
multiple vulnerabilities. As a result, the files contributing
most to the vulnerability of the application will be
identified. Sections of the applications that are most
vulnerable will also be able to be identified.

2) Generating insights using graph theory: The graph of
VDFs lends itself readily to measurement taking. We
evaluate a variety of measurements in this paper, in-
cluding centrality and other graph theory metrics, to
determine their significance in an application security
context.

The contribution of this research is the demonstration that
the application of graph theory on application security results,
specifically a constructed VDF graph, is meaningful for de-
velopment teams looking to prioritize remediation.

https://arxiv.org/abs/2505.16205v1

This paper focuses on analyzing the VDF graph to optimize
vulnerability reduction while minimizing the number of code
commits. We test this experimentally by using graph theory
metrics to identify files (i.e. graph nodes) involved in a
maximum number of tainted data flows (i.e. paths in the graph)
to retrieve a prioritized list of remediation and refactoring
candidates. The remainder of this paper discusses existing
work in the area and our contribution, followed by a discussion
of our simulation set-up, results, and follow-on work. We
demonstrate the insight that graph theory metrics can provide
development teams so they can leverage vulnerability propa-
gation patterns in application architectures when prioritizing
tasks.

II. RELATED WORKS

While a study of the utility of graph theory metrics on VDF
graphs has not been conducted to the best of our knowledge,
there are a variety of approaches to analyze vulnerability data
flows. Static taint analysis is one such approach and which
tracks taints at the variable-level in code [5]. Much static
taint analysis literature proposes domain-specific tools and
methodologies such as Tripp et al.’s TAJ for Java [6] and Arzt
et al.’s Flowdroid for Android [7], with the latter constructing
a Taint Value Graph (TVG). Some modern approaches to taint
analysis employ deep learning, with work including Niu et al’s
approach for IoT [8] and Chow et al.’s Fluffy [9] on top of
GitHub’s CodeQL analysis framework [10].

Data flow analysis is another avenue to analyze vulnerability
data flows. Treating programmatic data flows using formal
theory was expounded by F.E. Allen and J. Cocke from the
IBM Thomas J. Watson Research Center [11] in 1976. This
paper laid out formal definitions for nodes and edges of data
flow graphs. Researchers from the University of Colorado
Boulder then built on IBM’s work in the same year to
perform anomaly calculations on the data flow graph [12].
The body of literature continues to treat data flow graphs as
directed and accessible by graph theory. With the advent of
SAST, Checkmarx has published work on hierarchical data-
flow graphs [13] in 2023.

Moreover, some work has commented on the time-
consuming nature of SAST output consumption and proposed
visualizations via an interactive dashboard [14]. This visu-
alization data draws from commits rather than data flows.
Meanwhile, there has been a body of research establishing the
usefulness of stack trace data to estimate the attack surface
[15] and to locate files responsible for specific vulnerabilities
[16].

The area of software vulnerability assessment and prioriti-
zation has also been the subject of many surveys and reviews,
including by Khan et al. (rule-based methods) [17], Kritikos
et al. (static analysis) [18], Dissanayake et al. (socio-technical
aspects) [19], and Le et al. (meta-survey) [20]. These sur-
veys show studies of data-driven techniques (including multi-
layer perceptron, random forest, and linear SVM) to analyze
data sources including ExploitDB [21], NVD [22], dark web

forums and markets [23], and other open-source repositories
[24], [25].

This paper contributes to the body of knowledge by of-
fering graph theory analysis methods for vulnerability data
flow graphs, with the aim of prioritizing vulnerable files to
remediate and to generate intuitive visualizations.

III. SOLUTION DESIGN AND IMPLEMENTATION DETAILS

VDFs are obtained with a SAST tool. VDFs are then taken
from a Veracode API. The user can run VIVID locally on
their machine after putting in the Veracode API key. Veracode
expects VDF data in X format. VIVID can be used with
existing SAST tools. VIVID is a collection of scripts that can
be executed over a command line interface.

IV. EXPERIMENT SETUP

When choosing metrics to analyze the VDF graph, it was
appealing to include both local metrics such as degree and
global metrics such as centrality metrics. This would allow
insights into both direct and indirect relationships and vulner-
ability flow within the application architecture.

Nine metrics were chosen for analysis. These include 3
centrality metrics, 2 graph structural metrics, in-degree, out-
degree, PageRank, and cross-clique connectivity. Refer to
Table 1 for a comprehensive list of these metrics and their
relevance in an application security context.

WebGoat (version 2023.8) and VeraDemo (version 2.1.1)
were chosen as the application targets, both of which are
deliberately insecure Java applications. The former is main-
tained by OWASP while the latter is maintained by Veracode,
making them common targets for application security testing.
Vulnerability data flows were then pulled from the API of
a major SAST platform, from which the VDF graph was
constructed.

After constructing the graph using Gephi [26] and GraphVis
[27], an R script was developed and used to analyze the graphs
against the 9 chosen metrics. Results and analysis discussion
for each metric are presented below.

The VeraDemo VDF graph is presented in Figure 1.
The VDF graph of WebGoat is shown below. The graph

includes many vulnerability islands in the architecture, im-
plying that most vulnerabilities are not data-flow related or
that the data flow is restricted to a single file. It is also
seen that the large blue node in the middle corresponds to
WebGoatUser.java, which contains constructors and serves up
information such as the user role, username, or password on
request.

A manual analysis was conducted on WebGoat code, finding
that WebGoatUser employs a Model-View-Controller (MVC)
architecture where any data validation is typically done as
soon as the data is received, which is in the controller file.
In other words, the file flagged as vulnerable by the SAST
tool may not necessarily be the file where security controls
such as validation or sanitization should be introduced.

To measure the success of the metrics in analyzing the VDF
graph, we recall our objective to pinpoint files through which

Degree

22 4.754.75 7.57.5 1010 1313

Degree

44 9.59.5 1515 2121 2626

0 13 26 39 52 64 77

Betweenness NodesNodes

0 26 52 77 103 129

Betweenness LinksLinks

Fig. 1: VDF visualization of VeraDemo

Degree

11 2.252.25 3.53.5 4.754.75 66
0 8.4 17 25 34 42

Betweenness NodesNodes

Degree

33 55 77 99 11110 15 30 45 60 75

Betweenness LinksLinks

Fig. 2: VDF graph for WebGoat v2023.8

tainted data frequently traverses, enabling development teams
to prioritize the integration of input validation, sanitization,
and other security metrics. In so doing, we enumerated a list
of 5 files of interest in WebGoat and VeraDemo from a manual
code review and measure the success of the metrics in terms
of the measure’s capture of these files of interest.

All scripts are included in the referenced GitHub repository
for reproduction.

V. RESULTS AND DISCUSSION

Simulations on 2 deliberately insecure web applications
were run and whose results are shown in the below radar
graphs, where metrics are shown around the circumference
of the graph. The graph shows how each of the 5 files of
interest were ranked by the respective metric, where higher-
ranked files are closer to the centre of the graph.

Figure 3 shows the WebGoat results, where in-degree and
PageRank fail to capture several files of interest and out-
eigencentrality captured some files of interest in their top-
ranked files. Cross-clique connectivity, betweenness centrality,
out-eigencentrality, and in-eigencentrality captured all files of
interest in their top 5 rankings.

Fig. 3: Simulation results for WebGoat

Results from the VeraDemo simulation are shown in Figure
4. The results here echo WebGoat results in that PageRank
fails to capture key of interest and that out-eigencentrality
captures only some files of interest in its top 10. Note that
the axis is re-scaled for VeraDemo to account for a larger
number of nodes in the VDF graph.

A. Betweenness Centrality

Betweenness centrality is commonly used in network anal-
ysis. While existing tools like Sonargraph validate the entire

Measure Definition Significance in an Application Security Context
Out- and In-
Eigenvector
Centrality vi =

1

λ

N∑
j=1

Aijvj

denotes the out-eigenvector centrality of file i, where Aij

indicates a tainted data path from file i to file j, and λ quantifies
the maximum potential ”traffic” or exerted influence in tainted
data path network Aji is used for in-eigenvector centrality.

Identifies files that propagate vulnerability chains and contribute to
the impact magnitude of vulnerability spread. Pathways of nodes with
high eigenvector centrality provide a clear picture of the predominant
pathways of influence across the network. Development teams may
choose to prioritize the remediation of vulnerabilities for which
data passes through files with high eigenvector centralities whose
compromise would entail a significant blast radius.

Substructure
Entropy H(v) = −

∑
u∈V

p(u|v) log p(u|v)

where p(u|v) is the probability of tainted data flowing from file
v to file u.

Unusual occurrence, suggesting the relative level of refactoring effort
required to remediate vulnerabilities.

Modularity
Q =

1

2|E|
∑
vw

[
Avw −

deg(v)deg(w)

2|E|

]
δ(cv , cw)

where |E| is the number of tainted data paths and δ being the
Kronecker delta function, checking membership.

Number of communities, indicating clustered vulnerabilities or inter-
related security issues.

Betweenness
Centrality CB(v) =

∑
s ̸=v ̸=t

σst(v)

σst

where σst is total number of shortest tainted paths from file s
to file t and σst(v) denotes paths through file v.

Identifies bridges and bottlenecks in the application flow where
vulnerabilities can have a higher spread or likelihood. A file with
high betweenness centrality indicates that it is frequently encountered
during the most efficient (shortest) routes that tainted data might take
as it propagates through the system.

PageRank
PR(u) =

1− d

N
+ d

∑
v∈Bu

PR(v)

L(v)

with d as damping (˜0.85), N total files, Bu files sending tainted
data to file u, and L(v) files receiving tainted data from file v.

Identifies common sinks in vulnerability data flows. Optionally,
PageRank weights may be assigned from the vulnerability’s severity.

In-Degree
D−(v) = |(u, v) | (u, v) ∈ E|

where u and v are files and E is the edge set.

Identifies functionally critical application areas where input valida-
tion is imperative. These include I/O interfaces, centralized databases,
API endpoints, shared utilities, middleware, caches, inter-process
buffers, and temp storage. High in-degree indicates essential roles,
numerous interactions, and potential failure points.

Out-Degree
D+(v) = |(v, u) | (v, u) ∈ E|

where u and v are files and E is the edge set.

Identifies vulnerablity disseminators. These include I/O outputs,
database queries, API responses, library usages, middleware dis-
patches, cache updates, inter-process signals, and temp transfers.
High out-degree suggests broad impacts, multiple dependencies, and
influence spread.

Cross-Clique
Connectivity

X(v) is the number of cliques to which node v belongs. Identifies highly cross-connected nodes, showing a tight coupling
of vulnerabilities and node involvement in numerous vulnerability
clusters.

TABLE I: Description of graph theory metrics in an application security setting

application architecture by constructing module dependency
graphs and cyclicity graphs [28], there are no tools to model
application vulnerabilities in the context of application archi-
tecture.

Armed with the concept of bridges in its mathematical
definition, using betweenness centrality directly aligns with
the stated objective of identifying files where tainted data
frequently passes through. By focusing remediation on these
nodes which correspond to bridges or chokepoints, develop-
ment teams can address a disproportionately larger number of
vulnerabilities, minimizing code commits while maximizing
vulnerability reduction.

In the simulation of WebGoat, betweenness centrality deter-
mined the WebGoatUser.java to be the node with the highest
betweenness centrality of 21. This node is seen in the centre
of the graph, shown in Figure 3. Its surrounding nodes at
betweenness centrality 16, 12, and 9. All remaining nodes have
a betweenness centrality of 0.

The analysis shows that the WebGoatUser.java, which is
the node with the highest degree (6) in the graph, is called
and so accessible to its neighboring nodes. Placing a generic
input validation function here would be a quick win as the
function can be called by all its neighboring nodes and so
the fix would mitigate many vulnerabilities. The simulation
on VeraDemo confirms that betweenness centrality identifies
high-value targets for input validation.

Simulation results for VeraDemo seen in 4 show that the
BlabController.java has the highest betweenness centrality.
Identifying a controller as a remediation target in an MVC ap-
plication is a good sign. Interestingly, BlabController.java had
the highest betweenness centrality whereas all other centrality
metrics ranked UserController.java as the highest in their
respective measure. This suggests that betweenness centrality
provides key information on vulnerability remediation targets
differentiated from other centrality metrics and which should
be taken into account in a weighted formula that outputs a

Fig. 4: Simulation results for VeraDemo

prioritized list of files to remediate.

B. Eigenvector Centrality

In the realm of networks, some nodes are not influential
merely because they have many connections; they are influ-
ential because they connect to other influential nodes. The
idea behind eigenvector centrality is to quantify this recursive
notion of influence.

Nodes or sections of the VDF graph with high eigenvector
centrality scores would be flagged as high-risk due to their po-
tential cascading impact on the larger system. As a result, this
may lead to an automatic generation of refactoring candidates.

Results on the WebGoat VDF show that 12 nodes have a
non-zero out-eigenvector centrality. UserService.java has the
highest out-eigenvector centrality (that is, of value 1), while
the RegistrationController.java has an out-eigenvector central-
ity of 0.79. In-eigenvector centrality captures files including
UserForm.java and ProfileUploadRetrieval.java in its top 5
rankings which are useful places to add in input validation.

In-eigencentrality out-performs out-eigencentrality for the
VeraDemo simulation as the former picks up on 4 controller
files in its top 5 rankings. Recalling that controllers are
files of interest to insert security controls, this metric should
be weighted higher when developing a formula to prioritize
refactoring and insertion of security controls.

C. Modurality and Substructure Entropy

A modularity analysis was also carried out to visually
represent clusters within the VDF graph. The cluster walktrap
was used as a modularity measure since it is appropriate for
directed graphs.

ToolsController.java

UserController.java

BlabController.java

RemoveAccountCommand.java

ListenCommand.java

IgnoreCommand.java

UserFactory.java

User.java

Constants.java

Utils.java

ResetController.java

tools.jsp

register.jsp

register−finish.jsp

profile.jsp

Blabber.java

login.jsp

feed.jsp

Blab.java

blabbers.jsp

blab.jsp

Comment.java

HomeController.java

Fig. 5: Modurality plot for WebGoat v2023.8

Figure 3 shows the modularity plot of WebGoat. The large
section of entropy 2.2 can be seen in the red background while
the section of entropy 1 and 2 nodes can be seen on its upper
left. The remainder of the nodes were not of sufficient degree
to be included in the plot.

To be useful for development teams in prioritizing segments
of the application, entropy calculations can be made on each
of these vulnerability islands found in VDF graph.

Substructure entropy can be used for this purpose and offers
immediate use cases for identifying refactoring candidates and
third-party security contexts. It is a measure that captures
the unpredictability or randomness of substructures within the
VDF graph.

A higher entropy value suggests a diverse vulnerability
propagation pattern, whereas a lower value might indicate
recurring vulnerability patterns. This entropy measure provides
a lens through which we can better understand the intricacy
and patterns of vulnerabilities in applications. We enumerate
two use cases for this measure:

1. Identifying refactoring candidates: Acquirers can lever-
age substructure entropy on the VDF graph to quantify and
compare the refactoring effort required in different regions of
the application code. Segments of the target software asset’s
code showing higher entropy in their VDF graph merit special
attention, as they emerge as prime candidates for refactoring.

Sections of target software asset code with high substructure
entropy represent potential risks and liabilities associated with
the target’s software asset. This is because these high-entropy
code sections hinder the software’s security maintainability
and security resilience.

2. Third-party dependencies & External dependencies: 96%
of codebases surveyed contain open-source software, accord-
ing to Synopsys’ 2023 Report on Open Source Security and
Risk Analysis. More jarring is that 76% of code by volume was
open-source [29]. Software assets not only integrate but largely
lie on top of third-party libraries and dependencies. Given

the complexity of how first-party (1P) and third-party (3P)
code intermingle and are tightly woven, upgrading outdated
3P software may require refactoring efforts. So, estimating
the size of refactoring efforts involving 3P is of interest to
development teams and the business.

At the time of writing, the authors were not able to find a
tool that quantifies refactoring efforts involved in upgrading
3P libraries and packages to a secure version. Our suggested
approach for this is to create a vulnerability data flow (VDF)
graph on application code and rank software sections based
on their entropy. Sections with higher entropy scores would
need more intensive refactoring efforts.

When calculating substructure entropy using the R script
provided in the GitHub repository, analysis minimizes noise
by excluding nodes of degree two which are self-connections
(loop) and not connected to any other node. In the case of
WebGoat, there are 2 connected segments of entropy 2.2 and
1, which house 12 nodes and 2 nodes respectively. Similarly
in VeraDemo, the substructure entropy analysis identifies 2
vulnerability islands, housing 2 and 19 nodes. The entropy
analysis reveals an entropy of 2.47 for the 19-node segment.

Our analysis finds that these entropy values should be
normalized so the segment’s entropy can be interpreted as
low, moderate, high, or very high. As such, we divide the
found entropy by the maximum entropy given the degrees in
the segment. The upper bounds for low, moderate, and high
entropy were set as 0.25, 0.5, and 0.75 respectively.

The entropy values support the case that a higher remedia-
tion effort is needed for the 2.2 entropy section of 12 nodes.
Moreover, the separation of the 2 substructures in WebGoat
are a result of them being located in different folder paths.

D. Cross-Clique Connectivity

Cross-clique connectivity measures the propagation of in-
formation or disease in a graph [30], making it well-suited to
VDF graph analysis. The cross-clique connectivity R package
was used. This measure performed very well in the WebGoat
simulation, as it captured 5 out of 5 (100%) files of interest.
Cross-clique connectivity’s performance for VeraDemo was
similar to the other centrality metrics, indicating a consensus
on the key files of interest.

E. In-Degree and Out-Degree

In and out-degree inform the extent of the in-flow and
out-flow of tainted data flow respectively. Calculating files
with the highest out-degree is equivalent to finding the list
of files outputting the highest volumes of tainted data. This
is important for developers to know where to place security
controls including input validation.

In regards to the performance of the out-degree measure
shown in Figures 3 and 4, out-degree alone was able to capture
3 of 5 (60%) major files of interest and was out-performed by
centrality metrics such as cross-clique centrality which have a
built-in understanding of influence in the larger graph.

In-degree ranked only 2 of 5 (40%) files of interest in its top
5 for WebGoat; however, it is a useful indicator of common

sinks across multiple tainted data flow chains. Developers can
insert post-operation checks or data integrity checks in files
showing high in-degree. Nodes of high in-degree values should
be provided as informational findings for development teams
to insert these checks.

In-degree and out-degree performed identically for Ver-
aDemo where the former ranked 2 of 5 (40%) files of interest
in its top 5 while the latter captured (60%) in its top 5.

VI. CONCLUSION

Our paper demonstrates the fruitfulness of applying graph
theory metrics to the VDF graph of an application. By harness-
ing vulnerability data flows (VDFs) and graphing them, we
offer already data-saturated security departments an intuitive
method to visualize application architecture.

We have shown that metrics including centrality metrics
like cross-clique centrality can be applied out-of-the-box to
VDF graphs, offering insight into prioritizing vulnerability
remediations. Further, prioritization lists can then be generated
automatically with further informational findings generated by
in-degree file rankings.

Moreover, we clarified how centrality metrics and other
metrics shed light on vulnerability contexts. Namely, the
metrics capture the interplay between vulnerabilities, as well as
propagation patterns of tainted data, flagging specific files for
attention. From this, we infer that remediation across a small
subset of files can significantly curtail vulnerability spread.
Based on our results, we advocate for development teams to
hone in on files marked by high scores in these metrics when
planning remediation priorities.

A. Limitations & Future Work

Minimizing the number of code commits needed to max-
imize vulnerability reduction is but one of many avenues of
analysis opened up by the use of graph theory on VDF graphs.
A promising area of future work we are exploring is a points-
based system, taking into account vulnerability severity. For
example, higher points (i.e. priority) would be given to files
where remediating one vulnerability (e.g., directory traversal)
would mitigate multiple vulnerabilities, like command injec-
tion and XSS.

There also exists potential in evaluating additional metrics
and identifying synergies between metrics with the goal of
developing an index or combination of weighted centrality
metrics. To this end, node colouring or overlay can be used to
infuse criticality data into the graph and make the weighted
formula of prioritized files to remediate sensitive to vulnera-
bility criticality.

In the way of experiential learning, we have included in
our GitHub repository a script enabling transformed VDF data
to be viewed in a Virtual Reality (VR) simulation, allowing
analysts to explore and interact with static vulnerability data
in immersive environments.

Looking forward, the vulnerability graph may be more
granular, where each node is a function within a file rather
than the file itself. This would allow the developer to be

suggested a specific function where to put a input validator
and sanitizer. A consideration on this approach is that many
SAST vulnerabilities do not have a network effect; that is, they
are contained within the same file, such as an insecure cipher
suite vulnerability.

A noticeable gap exists in prioritizing remediation based on
vulnerability severity. We look to examine the effectiveness
of graph theory on graphs where weights correspond vulner-
ability severity and seek to publish our results in a follow-up
study.

REFERENCES

[1] CrowdStrike, “State of Application Security Report,” 2024. [On-
line]. Available: https://go.crowdstrike.com/rs/281-OBQ-266/images/
report-2024-state-of-app-security-report.pdf?version=0.

[2] A. Bychkov, Artem. (2022). Know Your Tools: Quirks And Flaws,
Integrating SAST Into Your Pipeline [Online]. Available: https://sec4dev.
io/assets/uploads/slides/sec4dev2021 Know-your-Tools.pdf.

[3] M. Rao, ”Why SAST tools aren’t glorified GREP,” Synopsys. Accessed:
March 3, 2024. [Online]. Available: https://www.synopsys.com/content/
dam/synopsys/sig-assets/ebooks/are-sast-tools-glorified-grep.pdf.

[4] J. Yang, L. Tan, J. Peyton and K. A Duer, ”Towards Better Utilizing
Static Application Security Testing,” 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), Montreal, QC, Canada, 2019, pp. 51-60, doi:
10.1109/ICSE-SEIP.2019.00014.

[5] M. Velez. Foundations of Software Engineering - Taint Analy-
sis [Online]. Available: https://www.cs.cmu.edu/∼ckaestne/15313/2018/
20181023-taint-analysis.pdf.

[6] T. Omar, M. Pistoia, S.J. Fink, M. Sridharan, O. Weisman, ”TAJ:
effective taint analysis of web applications,” ACM Sigplan Notices., vol.
44, no. 6, pp. 87-97, Jun. 2009.

[7] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le
Traon, D. Octeau, P. McDaniel, ”Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps,”
ACM Sigplan Notices., vol. 49, no. 6, pp. 259-269, Jun. 2014.

[8] W. Niu, X. Zhang, X. Du, L. Zhao, R. Cao, and M. Guizani, “A
deep learning based static taint analysis approach for IoT software
vulnerability location,” Measurement, vol. 152, p. 107139, Feb. 2020,
doi: 10.1016/j.measurement.2019.107139.

[9] Y. W. Chow, M. Schäfer, and M. Pradel, “Beware of the Unexpected:
Bimodal Taint Analysis,” in Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2023, pp.
211-222, doi: 10.1145/3597926.3598050.

[10] GitHub. ”CodeQL.” GitHub.com https://codeql.github.com/ (accessed
Dec. 12, 2023).

[11] F. E. Allen and J. Cocke, “A program data flow analysis procedure,”
Communications of the ACM, vol. 19, no. 3, p. 137, Mar. 1976. doi:
10.1145/360018.360025.

[12] L. D. Fosdick and L. J. Osterweil, “Data Flow Analysis in Software
Reliability,” ACM Computing Surveys, vol. 8, no. 3, pp. 305–330, Sep.
1976, doi: 10.1145/356674.356676.

[13] J. Pereira, V. Vieira, A. Simoes, ”Hierarchical Data-Flow Graphs,”
12th Symposium on Languages, Applications and Technologies (SLATE
2023), Aug. 2023, doi: 10.4230/OASIcs.SLATE.2023.11.

[14] A. Schreiber, T. Sonnekalb and L. v. Kurnatowski, ”Towards Visual
Analytics Dashboards for Provenance-driven Static Application Se-
curity Testing,” 2021 IEEE Symposium on Visualization for Cyber
Security (VizSec), New Orleans, LA, USA, 2021, pp. 42-46, doi:
10.1109/VizSec53666.2021.00010.

[15] C. Theisen and L. Williams, “Stack traces reveal attack surfaces,”
Elsevier eBooks, pp. 73–76, Jan. 2016, doi: 10.1016/b978-0-12-804206-
9.00014-3.

[16] A. Iyer and L. M. Liebrock, ”Vulnerability scanning for buffer overflow,”
International Conference on Information Technology: Coding and Com-
puting, 2004. Proceedings. ITCC 2004., Las Vegas, NV, USA, 2004, pp.
116-117 Vol.2, doi: 10.1109/ITCC.2004.1286600.

[17] S. A. Khan and S. Parkinson, “Review into State of the Art of Vulner-
ability Assessment using Artificial Intelligence,” Guide to Vulnerability
Analysis for Computer Networks and Systems, pp. 3–32, Oct. 2018, doi:
https://doi.org/10.1007/978-3-319-92624-7 1.

[18] K. Kritikos, K. Magoutis, M. Papoutsakis, and S. Ioannidis, “A
survey on vulnerability assessment tools and databases for cloud-
based web applications,” Array, vol. 3–4, p. 100011, Sep. 2019, doi:
10.1016/j.array.2019.100011.

[19] N. Dissanayake, A. Jayatilaka, M. Zahedi, and M. A. Babar,
“Software security patch management—A systematic literature re-
view of challenges, approaches, tools and practices,” Information
and Software Technology, vol. 144, p. 106771, Dec. 2021, doi:
10.1016/j.infsof.2021.106771.

[20] T. H. M. Le, H. Chen, and M. A. Babar, “A Survey on Data-driven
Software Vulnerability Assessment and Prioritization,” ACM Computing
Surveys, Apr. 2022, doi: 10.1145/3529757.

[21] N. Bhatt, A. Anand, and V.S.S. Yadavalli, ”Exploitability prediction of
software vulnerabilities,” Quality and Reliability Engineering Interna-
tional, vol. 37, no. 2, pp. 648–663, Sep. 2020, doi: 10.1002/qre.2754.

[22] B. L. Bullough, A. K. Yanchenko, C. Smith, and J. R. Zipkin, “Pre-
dicting Exploitation of Disclosed Software Vulnerabilities Using Open-
source Data,” Proceedings of the 3rd ACM on International Work-
shop on Security And Privacy Analytics, pp. 45-53, Mar. 2017, doi:
10.1145/3041008.3041009.

[23] M. Almukaynizi, E. Nunes, K. Dharaiya, M. Senguttuvan, J. Shakarian
and P. Shakarian, ”Proactive identification of exploits in the wild through
vulnerability mentions online,” 2017 International Conference on Cyber
Conflict (CyCon U.S.), Washington, DC, USA, 2017, pp. 82-88, doi:
10.1109/CYCONUS.2017.8167501.

[24] C. Xiao, A. Sarabi, Y. Liu, B. Li, M. Liu, and T. Dumitras, ”From
patching delays to infection symptoms: Using risk profiles for an early
discovery of vulnerabilities exploited in the wild,” in 27th USENIX
Security Symposium, Aug. 2018, pp. 903-918.

[25] Y. Jiang, Y. Atif, ”An approach to discover and assess vulnerability
severity automatically in cyber-physical systems,” in 13th International
Conference on Security of Information and Networks, Nov. 2020, pp.
1-8.

[26] Gephi. (2023), M. Bastian, E.R. Ibañez, M. Jacomy, C. Bartosiak, S.
Heymann, J. Bilcke, P. McSweeney, A. Panisson, J. Subtil, H. Suzuki,
M. Skurla, A. Patriarca, Accessed January 2023. [Online]. Available:
https://gephi.github.io/.

[27] R.A. Rossi, N.K. Ahmed, ”The network data repository with interactive
graph analytics and visualization,” in Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, Jan. 2015, pp. 4292-4293.

[28] Hello2morrow. Sonargraph Manual. Accessed Sept. 2023. [Online]
Available: https://eclipse.hello2morrow.com/doc/standalone/content/
index.html.

[29] Synopsys. ”Synopsys’ 2023 Report on Open Source Security and Risk
Analysis,” Synopsys, 2023. Accessed: Oct. 2023. [Online]. Available:
https://go.snyk.io/state-of-open-source-security-report-2023.html.

[30] M. R. Faghani and U. T. Nguyen, ”A Study of XSS Worm Propaga-
tion and Detection Mechanisms in Online Social Networks,” in IEEE
Transactions on Information Forensics and Security, vol. 8, no. 11, pp.
1815-1826, Nov. 2013, doi: 10.1109/TIFS.2013.2280884.

https://go.crowdstrike.com/rs/281-OBQ-266/images/report-2024-state-of-app-security-report.pdf?version=0
https://go.crowdstrike.com/rs/281-OBQ-266/images/report-2024-state-of-app-security-report.pdf?version=0
https://sec4dev.io/assets/uploads/slides/sec4dev2021_Know-your-Tools.pdf
https://sec4dev.io/assets/uploads/slides/sec4dev2021_Know-your-Tools.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/ebooks/are-sast-tools-glorified-grep.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/ebooks/are-sast-tools-glorified-grep.pdf
https://www.cs.cmu.edu/~ckaestne/15313/2018/20181023-taint-analysis.pdf
https://www.cs.cmu.edu/~ckaestne/15313/2018/20181023-taint-analysis.pdf
https://codeql.github.com/
https://doi.org/10.1007/978-3-319-92624-7_1
https://gephi.github.io/
https://eclipse.hello2morrow.com/doc/standalone/content/index.html
https://eclipse.hello2morrow.com/doc/standalone/content/index.html
https://go.snyk.io/state-of-open-source-security-report-2023.html

	Introduction
	Related Works
	Solution Design and Implementation Details
	Experiment Setup
	Results and Discussion
	Betweenness Centrality
	Eigenvector Centrality
	Modurality and Substructure Entropy
	Cross-Clique Connectivity
	In-Degree and Out-Degree

	Conclusion
	Limitations & Future Work

	References

