
ar
X

iv
:2

50
5.

16
13

7v
1

 [
cs

.C
R

]
 2

2
M

ay
 2

02
5

1

Outsourcing SAT-based Verification Computations

in Network Security
Qi Duan

Carnegie Mellon University

Ehab Al-Shaer

Carnegie Mellon University

Abstract—The emergence of cloud computing gives huge im-
pact on large computations. Cloud computing platforms offer
servers with large computation power to be available for cus-
tomers. These servers can be used efficiently to solve problems
that are complex by nature, for example, satisfiability (SAT)
problems. Many practical problems can be converted to SAT,
for example, circuit verification and network configuration anal-
ysis. However, outsourcing SAT instances to the servers may
cause data leakage that can jeopardize system’s security. Before
outsourcing the SAT instance, one needs to hide the input
information. One way to preserve privacy and hide information is
to randomize the SAT instance before outsourcing. In this paper,
we present multiple novel methods to randomize SAT instances.
We present a novel method to randomize the SAT instance, a
variable randomization method to randomize the solution set, and
methods to randomize Mincost SAT and MAX3SAT instances.
Our analysis and evaluation show the correctness and feasibility
of these randomization methods. The scalability and generality
of our methods make it applicable for real world problems.

I. INTRODUCTION

A. Motivation

Cloud computing allows consumers and businesses to use

applications and store large amount of data in cloud servers

across the internet. It allows for much more efficient comput-

ing by centralizing storage, computational power and band-

width. It is convenient to outsource expensive computational

tasks to cloud servers.

The main problem that makes users reluctant to outsource

their computation is privacy preserving. Outsourcing computa-

tion may leak sensitive data that can put user’s security on risk.

Therefore, a user needs to ensure that the data is secured before

outsourcing. One way to solve the problem is to randomize

the problem before outsourcing. However, one needs to make

sure that the randomization can be done efficiently and the

randomized problem should not make the randmoized problem

much harder than the original problem.

There are existing researches for privacy preserving data

mining [33], [11], [3] and privacy preserving Linear Pro-

gramming (LP) outsourcing [34]. However, Outsourcing the

Satisfiability (SAT) problem is also very important. SAT is

one of the most fundamental problems in computer science

and it has broad applications. For example, SAT has important

applications in circuit verification, software verification, task

scheduling, etc [24]. SAT outsourcing is also very different

from LP outsourcing. LP can be solved in polynomial time

and the algorithms of LP are mature and well known. One

needs to outsource LP only if one has a very large instance.

The hardness of LP comes from the size of the problem while

the hardness of SAT is intrinsic in the problem itself, not only

in the size of the problem. Hence the customers have strong

motivation to outsource SAT and the economic incentive

for providing competitive SAT solvers is obvious. SAT is

especially important in network configuration verification and

planning. The complexity of network configuration verification

and planning increases dramatically when the size of the

network and the number of configuration rules increase. It

is reasonable for system administrators to outsource com-

plicated network configuration verification and planning in

the format of SAT. However, the SAT problems arising from

network configuration and planning contain the configuration

information that the system administrators do not want to

leak. The solutions to the SAT problems may also contain

the vulnerabilities or other sensitive system information. In

this case security is the first concern to outsource SAT based

configuration verification and planning. In some applications,

multiple enterprise networks may need to carry out some

computational tasks collaboratively. They need to verify that

the individual configurations will work for the collaborative

tasks. However, every individual network is owned by a

separate owner, and the owners may only want to reveal the

interface information but not the internal information of their

networks. In this case the individual networks may randomize

the configuration information and send the randomized con-

figuration to a third party to verify the overall configuration

satisfies some global constraints.

In our proposed approach, the steps for SAT outsourcing

are as follows

1) The user randomizes the SAT instance that he/she wants

to outsource, using the randomization tool and sends it

to the service provider.

2) The service provider uses his/her algorithm to solve

the randomized instance and returns the solution. If the

instance has no solution (unsatisfiable) or the provider

fails to solve it in some amount of time, the provider

should provide the proof for the unsatisfiability or the

proof that it really did the claimed amount of work.

3) The user derandomizes the returned solution using the

derandomization tool and obtains the true solution to the

original problem.

4) The user will validate the solution returned by the

http://arxiv.org/abs/2505.16137v1

2

service provider.

We should have an algorithm to randomize SAT instances

with the following requirements: first, both the original and

randomized instance must have the same satisfiability. Second,

any solution of the randomized instance can be efficiently con-

verted to the corresponding solution of the original instance.

Third, it should be computational hard for the service provider

to retrieve the original instance from the randomized instance.

For the SAT instances arising from configuration verification

and planning, the user may only need to hide some of the

statistic information of the original instance, then we can relax

this requirement that it is computational hard for the service

provider to retrieve these statistic properties. Fourth, in some

cases the user may also need to randomize the relationship

among the solutions of the original instance. In this case we

require that it is computational hard for the service provider to

figure out the relationship among the solutions of the original

instance from the solutions of the randomized instance except

the number of solutions. For example, if the original instance

has two solutions (0, 0) and (1, 1), then the two solutions of

the randomized instance should not be complement to each

other.

These requirements will assure privacy preservation for

the outsourced randomized SAT instances and it will also

encourage users to outsource their SAT instances and benefit

from third party facilities.

The main objective of this project is to provide the ran-

domization/derandomization tool for the client who want to

outsource SAT-based verification. We provide multiple ran-

domization algorithms and the user can choose an appropriate

The most straightforward method to randomize the SAT

instance is to permute the index of the variables or flip

the true/false of the appearance of the variables. It is not

trivial for the provider to differentiate two isomorphic SAT

instances since it is not known if there exists a polynomial

time algorithm for graph isomorphism [29]. However, merely

permute the index of the variables or flip the variables’

truth/false appearance cannot change the relationships among

the solutions and the statistic properties of the instance. The

work in [15] is a general privacy-preserving obfuscation for

outsourcing SAT formulas but its performance is not shown for

network security related problems such as firewall analytics.

It can also be shown that there is much space for im-

provement for current SAT solvers. Even a relatively small

instance with thousands of variables may be beyond the ability

of the best SAT solvers today. Table I shows the time to

solve a random instance with n variables and m clauses with

zChaff [1] SAT solver. We can see that the time to solve a

3SAT instance increases dramatically when So we can see

that current SAT solvers are not efficient enough for many

applications. There is enough motivation for users to outsource

SAT based computation, and for the cloud service providers

to develop competent SAT solvers or applications that contain

SAT solvers.

Our contributions in this paper come in presenting several

methods to randomize SAT instances as follows: first, a

method to randomize some statistical properties of a SAT

instance by noise injection. Second, a method to randomize

the whole structure of a SAT instance. Third, a method

to randomize a solution set. Fourth, methods to randomize

Mincost SAT and MAX3SAT. We also study an important

practical example of outsourcing SAT based configuration

verification, that is firewall equivalence verification. To the

best of our knowledge, this is the first work to investigate

privacy preserving in SAT outsourcing.

The rest of the paper is organized as follows. Section II dis-

cusses the computation model, adversary model and require-

ments for SAT outsourcing. Section III describes the methods

to randomize SAT instances before outsourcing. Section IV

presents the case study of firewall equivalence verification.

Section V shows the evaluation results. Section VI presents

the related works. Section VII discusses the legal implications

of SAT outsourcing and section VIII concludes the paper and

presents directions for future work.

II. COMPUTATIONAL MODEL, ADVERSARY MODEL AND

REQUIREMENTS FOR SAT OUTSOURCING

A. Computational Model

In the computation model of SAT outsourcing, there are

two participants. The first participant is the user, who wants

to outsource his/her SAT problem. The second participant is

the cloud service provider. The steps of SAT outsourcing are

as follows:

1) The user randomizes the SAT instance that he/she wants

to outsource and sends it to the service provider.

2) The service provider uses his/her algorithm to solve the

randomized instance and returns the solution.

3) The user derandomizes the returned solution and obtains

the solution to the original problem.

B. Adversary Model

In our discussion of this paper, we consider three types of

service providers:

• Honest providers. Honest providers always report the

answer from an honest execution of their SAT algorithm.

• Lazy providers. Lazy providers may report “fail” for an

instance without executing their SAT algorithm. Since the

user also needs to pay for the provider if the user cannot

present evidence for cheating behavior of the provider,

the provider can benefit from lying.

• Malicious providers. A malicious provider may have two

kinds of malicious behaviors. He may try to figure out

the original instance from the randomized instance or

he may also report “unsatisfiable” even if the instance

is satisfiable. To do this, the malicious provider may

provide a wrong unsatisfiable core for the user, or cheat

in replying the user’s questions about the instance during

the interactive or non-interactive proof procedure for the

unsatisfiability of the instance. The malicious provider

may use the solution of the SAT instance to launch attacks

or provide the solution to third parties.

One needs to detect malicious providers and lazy providers

for outsourcing SAT instances. We should have an algorithm

to randomize SAT instances with the following requirements:

3

n m Time to solve (s) n m Time to solve (s)

200 900 0.91 400 1500 < 0.01

300 1200 < 0.01 400 1600 1.39

300 1250 0.12 400 1650 1414

300 1300 395 400 1700 16337

TABLE I
TIME TO SOLVE THE 3SAT INSTANCE

first, both the original and the randomized instance must have

the same satisfiability. Second, any solution to the randomized

instance can be efficiently converted the a corresponding

solution to the original instance. Third, it should be computa-

tionally hard for the service provider to retrieve the original

instance from the randomized instance. For the SAT instances

arising from configuration analysis and verification, the user

may only need to hide some of the statistical information of

the original instance, then we can relax this requirement that

it is computationally hard for the service provider to retrieve

these statistical properties. Fourth, in some cases the user may

also need to randomize the relationship among the solutions

of the original instance. In this case we require that it is

computationally hard for the service provider to figure out

the relationship among the solutions of the original instance

from the solutions of the randomized instance except the

number of solutions. For example, if the original instance has

two solutions (0, 0) and (1, 1), then the two solutions of the

randomized instance should not be complement to each other.

The above requirements will assure privacy preservation

for the outsourced randomized SAT instances and it will also

encourage users to outsource their SAT instances and benefit

from third party facilities.

C. Classification of Outsourcing Security

Informally, we say that a user or client C securely out-

sources some work to cloud service provider S, and (C, S)
is an outsource-secure implementation of a cryptographic

algorithm Alg if (1) C and S implement Alg, such that

Alg = CS and (2) S cannot learn the sensitive information

about the input and output of the computation.

In the following, we introduce the formal definitions for

secure outsourcing. We adapt the definition from [10], with

some modifications.

Theorem 1: Full Outsourcing-Security Let Alg be an

algorithm with outsource input/output. A pair of algorithms

(C, S) is said to be an outsource-secure implementation of

Alg if: 1. Correctness: CS is a correct implementation of Alg.

2. Security: For all probabilistic polynomial-time adversaries

A = (E, S′), where E is the adversarial environment that

submits adversarially chosen inputs to Alg, there exist prob-

abilistic expected polynomial-time simulators (S1, S2) such

that the random variables obtained from the view of the

input/output of Alg and the view from the execution of the

simulators are computationally indistinguishable.

Note that this is the strongest form of security, which means

the adversary can learn nothing from the input/output of the

algorithm.

If the client only cares about the privacy of the original

instance but not the the privacy of the solution, the definition

can be modified to be that the view from the input of the

algorithm is computationally indistinguishable from the view

of any other input which has the same set of solutions.

Theorem 2: (Instance-privacy Outsourcing) A pair of al-

gorithms (C, S) is said to be an instance-privacy outsourcing

of Alg if (1) CS is a correct implementation of Alg and (2)

∀ inputs x is computationally indistinguishable from the view

of any other input x′ which has the same set of solutions as

x.

III. RANDOMIZING SAT INSTANCES

In this section we present methods that can be used to

randomize SAT instances and prepare them for outsourcing.

A. Permutation of Variables and Negation Flipping

The most straightforward method to randomize a SAT in-

stance is to permute the index of the variables or flip true/false

values of the variables. It is not trivial for the provider to

differentiate between two isomorphic SAT instances; since it

is not known if there exists a polynomial time algorithm for

graph isomorphism [29]. However, merely permuting the index

of the variables or flip the variables’ true/false values cannot

change the relationships among the solutions and the statistical

properties of the instance.

B. Matrix Multiplication Randomization

The noise injection method for SAT randomization can only

hide some of the statistical properties of the original instance.

If we want to completely randomize all information of the

original instance except the solution set, we can use a more

complicated method called matrix multiplication randomiza-

tion. The method has significant overhead. If the requirement

of privacy preservation is high, the user may choose this

method.

Here we only consider 3SAT problem, since every SAT

instance can be easily converted to a 3SAT instance.

The following discussion shows how to convert a 3SAT

instance into a matrix form and how to randomize the gen-

erated matrix. We can first convert the 3SAT instance to an

equation array of 0/1 linear constraints. Inequalities can be

converted to equalities by adding dummy variables. After this

procedure we can multiply a random 0/1 matrix in both sides

of the equation array and now the problem is converted to

a 0/1 linear constraint satisfaction problem. Any solution to

the new linear integer programming instance will be a valid

solution for the original SAT instance.

4

The detailed steps are as follows:

1) Convert to equation: For every variable xi in the original

3SAT, create a corresponding variable yi in the created

0/1 linear constraint satisfaction instance. For every

clause in the 3SAT instance, convert it to an equation

with two dummy variables. Suppose the original clause

is x′
i1 ∨ x′

i2 ∨ x′
i3, where x′

ij may be variable xij or its

negation form xij , (1 ≤ j ≤ 3), then we convert it to

the following equation:

y′i1 + y′i2 + y′i3 + yd1 + yd2 = 3. (1)

Here y′ij is yij if x′
ij is xij , and is (1 − yij) if x′

ij is

xij (1 ≤ j ≤ 3). There are the two dummy variables

yd1 and yd2 for the clause. Now we get the equation set

AX = B where A is an m by n + 2m matrix. Here

m is number of clauses, n is number of variables in the

original 3SAT instance.

2) Random matrix multiplication: Generate a random m by

m 0/1 matrix R with full rank, and multiply R to both

sides of equation array. Now we have RAX = RB.

Note that here RA is still a m by n+ 2m matrix, RB
is a m by 1 matrix.

3) Outsource the problem: Send this equation array to the

service provider, and ask it to solve the equation array

as a 0/1 linear constraint satisfaction problem.

The following example shows the details of converting

a 3SAT instance to a matrix representation. Consider the

following 3SAT instance:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

We need to add 4 dummy variables x4, x5, x6, x7, two for

each clause. The converted 0/1 linear constraint satisfaction

instance is:

x1 + x2 + x3 + x4 + x5 = 3

−x1 + x2 − x3 + x6 + x7 = 1.

We can see that any solution of the original 3SAT instance can

also be converted to a solution for the new 0/1 linear constraint

satisfaction instance if we set the Boolean true value to the

integer value 1 and the Boolean false value to the integer value

0, and set the values of the dummy variables as follows:

• If the clause is satisfied by all three of the literals, set the

two dummy variables correspond to the clause to 0.

• If the clause is satisfied by exactly two of the three of the

literals, set one of the two dummy variables correspond

to the clause to 0, another one to 1.

• If the clause is satisfied by exactly one of the three of

the literals, set both dummy variables correspond to the

clause to 1.

Next we prove that any solution to the original 3SAT

instance can be converted to a solution to the new problem.

Conversely, any solution to the new problem instance can also

be converted to a solution to the original problem.

Theorem 1: Any solution to the randomized 0/1 linear

constraint satisfaction instance can be converted to a solution

in the original SAT instance if we set the integer value 1 to

Boolean true and 0 to false. Any solution of the original SAT

instance also corresponds to a solution in the randomized 0/1

linear constraint satisfaction instance.

Proof: For any solution to the original instance, the

assignment of the variables will satisfy any clause. That means

for a clause (xi1∨xi2∨xi3), one of the xij (1 ≤ j ≤ 3) must

be true. If k (1 ≤ k ≤ 3) variables in the clause are satisfied,

we can set 3 − k dummy variables correspond to the clause

to be 1 in Equation 1. This means that we have a solution for

equation set AX = B, consequently, we also have a solution

for equation set RAX = RB. On the other hand, any solution

for RAX = RB is also a solution for AX = B because R is

invertible. Then for every clause, one of the y′ij (1 ≤ j ≤ 3)

in Equation 1 must be one, which means the corresponding

clause in the original SAT instance can be satisfied.

Theorem 2: The randomized matrix RA can be any matrix

that satisfies the same column vector linear relationship as

that of matrix A. This means the outsourcing method keeps

the instance privacy.

Proof: After adding the dummy variables, A will have

rank m. So the number of linear independent column vectors

in A is m. If we take the m by m matrix A1 that contains the

m linear independent column vectors of A, then for any full

rank m by m matrix A2, we can choose matrix R = A2A
−1

1 .

Now we can see that RA will contain all column vectors of A2.

Other columns of RA will be linear combination of column

vectors of A2. This shows that the randomized matrix RA
can be any matrix that satisfies the same column vector linear

relationship as that of matrix A.

The properties of this technique are: first, the transforma-

tion can be done efficiently. Here we need only the matrix

multiplication in the transformation. Second, the old problem

and the new problem have similar hardness in theory. Since

any solution to the new problem is also a solution to the

old instance, many existing search based algorithms that

work for SAT will also work for the 0/1 linear constraint

satisfaction problem. Third, this technique provides a complete

randomization of the structure of the original instance. The

choice of R can be arbitrary, so there is no way to recover the

original instance without knowing R.

C. Solution Set Randomization

The randomization method in the previous section converts

the original SAT instance to a randomized instance with the

same solution set. In some scenarios, one may require to

randomize the solution set of the SAT instance. Here we

consider a method to randomize the solution set of the original

SAT.

Suppose there are n variables x1, . . . , xn in the original

SAT instance. We set X = [x1, . . . , xn]
T . We can generate a

random full rank n by n 0/1 matrix R, and define new variable

vector

Y = [y1, . . . , yn]
T = RX.

Note that matrix multiplication is done in finite field F2.

Now we have X = R−1Y , which means that every xi (1 ≤
i ≤ n) is the exclusive or of some of yis. For every clause

xi1 ∨ xi2 ∨ xi3, we can replace xij (1 ≤ j ≤ 3) with the

5

corresponding yis, and convert the new Boolean formula to

standard 3CNF formula. As an example, suppose xi1 = y1 ⊕
y2, xi2 = y3 ⊕ y4, xi3 = y5 ⊕ y6, then xi1 ∨ xi2 ∨ xi3 is

equivalent to

(y1 ∧ y2) ∨ (y1 ∧ y2) ∨ (y3 ∧ y4)

∨(y3 ∧ y4) ∨ (y5 ∧ y6) ∨ (y5 ∧ y6),

which can be converted the following CNF

(
∨

1≤i≤6

zi)
∧





∧

1≤i≤6

Zi



 ,

where

Zi = (zi ∨ yi) ∧ (zi ∨ yi+1) ∧ (zi ∨ yi ∨ yi+1)

when i = 1, 3, 5, and

Zi = (zi ∨ yi) ∧ (zi ∨ yi−1) ∧ (zi ∨ yi ∨ yi−1)

when i = 2, 4, 6.

Here zi (1 ≤ i ≤ 6) are dummy variables.

For variables that are exclusive or of more than two old

variables, we can also add dummy variables to convert it to

3CNF. For example, xi = y1 ⊕ y2 ⊕ y3 can be converted to

xi = (z ∨ y1 ∨ y2) ∧ (z ∨ y1 ∨ y2)

∧(z ∨ y1 ∨ y2) ∧ (z ∨ y1 ∨ y2)

∧(z ∨ y3) ∧ (y3 ∨ z),

where z is a dummy variable.

In this way we can convert the SAT instance to a new SAT

instance, and the solutions to the old instance can be recovered

from the solutions to the new instance by X = R−1Y . The

relationship among the solutions in the original SAT instance

will be randomized. The shortcoming of this approach is that

the number of clauses in the new instance will increase with a

factor of the number of variables. To reduce the complexity, we

can use a sparse matrix R in the randomization. If the number

of non-zero entries in R is linear in n, then the number of

clauses will be linear in n. After one randomizes the solution

set, one can use the noise injection method or the matrix

multiplication method to randomize the instance.

D. Randomizing Mincost SAT

Mincost SAT [27] is an important variant of SAT. We can

use the noise injection or the matrix multiplication method

to randomize any Mincost SAT instance since the cost of a

solution for the randomized instance is also the cost of the

corresponding solution for the original instance. Since the user

needs to set the cost of all dummy variables to be 0, he/she

may reveal the dummy variables when the cost function is

provided to the service provider. To deal with this situation,

we can convert the cost function to a Boolean circuit with

variables in the original SAT instance. Suppose in the original

instance there are n variables x1, . . . , xn, and the cost function

is

C = c1x1 + c2x2 + . . .+ cnxn,

where ci (1 ≤ i ≤ n) is the cost of variable xi and xi takes

0/1 values. The Boolean circuit C1 have O(nβ) gates, O(nβ)
variables, and β output bits b1, . . . , bβ , where β is the number

of bits in the representation of ci values and b1 is the most

significant bit.

We can convert C1 to a CNF C2 and generate a CNF C3

which combines C2 with the original CNF, and set the new

cost function to be

C′ = 2βb1 + 2β−1b2 + . . .+ bβ. (2)

Now we can randomize C3 and the provider cannot distinguish

the dummy variables and non-dummy variables anymore.

E. Randomizing MAX3SAT

In this section we present a method to randomize

MAX3SAT instances. For every clause xi1 ∨ xi2 ∨ xi3 in the

original SAT instance, the user can create a new variable yi
and the following formulas

yi ⇔ (xi1 ∨ xi2 ∨ xi3), 1 ≤ i ≤ m, (3)

where m is the number of clauses. Next the user can

combine all these formulas together with the original CNF to

get a new Boolean formula C1, and convert C1 to an equivalent

CNF C2. The objective of the original instance becomes

Maximize y1 + y2 + . . .+ yn,

where yi (1 ≤ i ≤ n) takes 0/1 values.

Now the user can convert the original problem to a new

Mincost SAT problem. The CNF in the new problem is C2,

and the new objective function is:

Minimize −y1 − y2 − . . .− yn.

The user can also use the noise injection or the matrix

multiplication method to randomize the CNF and use the

method in Sec. III-D to hide the dummy variables.

F. Verification of the Correctness of the Result

For any SAT instance, the provider may return three types

of results. The first type of results is one or multiple correct

solutions. The second is “unsatisfiable” with the related unsat-

isfiable core (or proof of the unsatisfiable core), and the third

is “fail”; this happens when the provider cannot determine

the satisfiability of the instance in a specified amount of

time. When the provider returns one or multiple solutions,

the user can verify the results easily. The latter two cases are

difficult to verify. In computational theory, it is believed that

the complexity class Co–NP is unlikely to be in class NP .

So one cannot provide a polynomial time verifiable proof for

unsatisfiable SAT instances. For some instances, the user can

guarantee that the instance is satisfiable. For example, if the

user want to outsource integer factoring or discrete logorithm

by converting the problems to SAT, he/she knows that some

solution must exist, and the conversion is simple (to convert

factoring to SAT, one just needs to convert the multiplication

circuit to SAT, which can be done in O(n2) time, where n is

the number of bits of the integer. Discrete logorithm can also

be converted to SAT efficiently). For these SAT instances, the

service provider cannot cheat with the result “unsatisfiable”.

6

It is also unlikely to design practical interactive or non-

interactive proofs for unsatisfiable SAT instances. By Shamir’s

theorem [30], any problem in PSPACE can be verified with

interactive proofs in polynomial time. However, the proof of

Shamir’s theorem works only from a theoretical perspective

because it assumes that the prover has infinite computational

power, which is not practical for existing service providers.

The existing techniques used to defeat service provider cheat-

ing cannot be applied for verification of unsatisfiable SAT

instances. The method presented in [16] uses Merkle hash

tree commitment for computation verification [25], [26], and

the work in [22] combines some pre-computed results with

the computation workload to detect lazy providers. Both

of them can only check the cheating behavior in a non-

negligible portion of all possible computation branches, but

in the verification of unsatisfiable SAT instances one needs to

verify the correctness of every possible computation branch.

In the case that the provider reports “fail” and the user

wants to verify that the provider has really spent the claimed

amount of time on the problem, the provider can build the

Merkle hash tree for the computational procedure (such as the

searched branches) and use the similar method in [16] to verify

the correctness of the tree. The verification takes O(logn′)
time in communication and O(logn′) computation overhead

for the user where n′ is the size of the tree. One problem with

this approach is that the user may obtain the details of the

algorithm from the verification procedure, and the algorithm

may be the secret of the provider.

For some unsatisfiable SAT instances the provider may

find the unsatisfiable core [21]. The provider can send back

this core along with the proof of the core to the user and

the user can verify the correctness of the core. However the

verification of the core may be beyond the computational

power of the user. In this case, the customer can outsource

different randomized versions of the core to several other

service providers. If all these providers answers “unsatisfiable”

or “fail” for the unsatisfiable core, the user accepts the result.

As long as one provider returns a solution for the unsatisfiable

core, the first provider is caught with cheating and will lose

credibility.

To avoid the case when the SAT is solvable but the provider

simply report “fail”, one can also send different randomized

versions of the original to different service providers. If one

of the provider can find one satisfiable assignment for it, then

the user can show the solution to other providers that reported

“fail”. This solution can be easily verified. In this case, the

user will only need to pay the full charge for the provider

that reports a valid solution. If none of the providers report

a valid solution, it means the instance is really hard, and the

user will pay full charge to all providers. The providers receive

different randomized versions of the problem, so they cannot

collude since they cannot determine whether they receive the

same original instance or not. A provider may still succeed in

cheating in the case that the problem happens to be hard and

nobody else can solve it. But if the provider is caught with

laziness or incompetency in solving the problem, he may lose

his credibility and future users. The providers have enough

motive to work “hard” to solve problems since it may get

more compensation than to be “lazy”.

G. Outsourcing Multi-party SAT-based Computation

In applications that multiple partners jointly execute some

tasks, the multiple partners need to verify that the config-

urations of their networks are correct for the joint taks.

However, the partners may only want to reveal the interface

information (the inferface between the partner’s network and

other partners), and they may not want to reveal their internal

configuration information. In this case one must find a way to

carry out secure multi-party computation. Existing protocols

for secure multi-party computation are too expensive and not

practical for real application.

Suppose there are n partners and the configuration proper-

ties that need to be verified can be represented as a Boolean

formula

P = f(B11, B1u1
, . . . , Bn1, Bnun

)

where Bi1, . . . , Biui
are the Boolean formulas that only

involve the configuration of network of partners i.
We can use the following procedures to randomize formula

P before outsourcing the verification task:

• Every partner i convert Bi1, . . . , Biui
to CNFs and ran-

domize them to B′
i1, . . . , B

′
iui

.

• Every partner i sends B′
i1, . . . , B

′
iui

to a third party or a

representative selected among them.

• The partners agree with a public key using some key

generation protocols and send the key to the third party

or the representative.

• The third party or the representative generates a random

matrix using the key as the seed and randomize P using

the random matrix.

• The third party or the representative sends randomized

formula P ′ to the cloud service providers.

Note that the individual configuration information related

to every partner is randomized at the first step of the above

procedure.

IV. CASE STUDY: FIREWALL EQUIVALENCE CHECKING

Firewalls are the most important network access control de-

vices that control the traversal of packets across the boundaries

of a secured network based on. A firewall policy is a list of

ordered filtering rules that define the actions performed on

matching packets. A rule is composed of filtering fields (also

called header tuples) such as protocol type, source IP address,

destination IP address, source port and destination port, and an

action field. Each rule field could be a single value or range of

values. Filtering actions are either to accept, which passes the

packet into or from the secure network, or to deny, which

causes the packet to be discarded. The packet is accepted

or denied by a specific rule if the packet header information

matches all the fields of this rule. Otherwise, the following rule

is examined and the process is repeated until a matching rule

is found or the default policy action is performed. The filtering

rules may not be disjoint, thereby packets may match one or

more rules in the firewall policy. In this case, these rules are

7

src IP src port dest IP dest port

10.11.12.* 100 10.14.15.* 80

152.15.10.* 99 152.15.*.* 80

TABLE II
THE ORIGINAL RULES

src IP src port dest IP dest port

23.170.55.* 471 23.76.142.* 2313

163.201.97.* 15717 163.201.*.* 2313

TABLE III
THE RANDOMIZED RULES

said to be dependent or overlapping and their relative ordering

must be preserved for the firewall policy to operate correctly.

If two firewalls have large rule sets and the network admin-

istrator want to verify if they are equivalent, then he/she may

outsource the verification task to some service provider.

The most straightforward method is to use random mapping

to randomize configuration policy rules for outsourcing. For

every blocks in the IP, one can generate a mapping from 0-255

to 0-255. For the port numbers, one can also have a mapping

from 0-25535 to 0-25535. Note that the mapping should be

preserved for all rules. For example, consider a firewall policy

with two rules shown in Table II. Based on the mapping shown

below, the randomized rules is shown in Table III.

Suppose for IP block 1, the random mapping is:

10 ↔ 23, 152 ↔ 163, 100↔ 41

For IP block 2, the random mapping is:

11 ↔ 170, 14 ↔ 76, 15 ↔ 201

For IP block 3, the random mapping is:

12 ↔ 55, 15 ↔ 142, 10↔ 97

For port number, the random mapping is:

100 ↔ 471, 99↔ 15717, 80↔ 2313

To randomize the rules in this way, the IP and port numbers

are hidden and the semantics of the rules can be maintained.

However the service provider can still get the entropy infor-

mation. For example, if port 80 appears frequently in the rules,

the mapped number will also appear frequently. The service

provider may deduce the mapping from the statistics of the

field values of rules. So we can see that this kind of naive

randomization method is not enough work for user privacy.

We need to seek more sophisticated approach for this problem.

We can use the SAT randomization methods in § III to

randomize the firewall rule sets. To do this, we need to

represent a firewall as a Boolean formula F .

Suppose a firewall contains u rules r1, r2, . . . , ru, we can

denote the Boolean formula corresponding ri as Ai (1 ≤
i ≤ u). For every single rule in the firewall, we need 16

bits to represent source port and destination port, 32 bits to

represent source and destination address. In total we need 96

bits b1, b2, . . . , b96. If the action of the rule ri is accept, then

the rule can be represented as

Ai ⇔ (bi1 ∧ bi2 ∧ . . . ∧ bik), (4)

where the bits bi1 . . . bik are the corresponding bits of the

field in the rule. Here k is the number of bits needed to

represent a single rule, which is 96 in this case.

If the action of the rule is deny, then the rule can be

represented as

Ai ⇔ (bi1 ∨ bi2 ∨ . . . ∨ bik). (5)

If rule ri is independent from all other rules, then we can

add it into F as

F = F ∨ Ai

if the action of ri is accept, and

F = F ∧ Ai

if the action of ri is deny. All independent rules can be added

in this way.

Next we consider the remaining rules. Without of loss of

generality, we assume the remaining set of rules is R′ =
{r1, r2, . . . , r

′
u} (u′ ≤ u), and the Boolean representation of

a single rule ri (1 ≤ i ≤ u′) in R′ is A′
i.

Now the Boolean formula that represents those dependent

rules can be represented as

F ′ = A′
1 ∨ (A′

1 ∧ A′
2) ∨ . . . ∨ (

∧

1≤i≤u′−1

A′
i ∧ A′

u′). (6)

The whole firewall can be represented as F ∨ F ′.

Suppose the Boolean formulas that represent two firewalls

are F1 and F2, the non-equivalence of the two firewalls is

equivalent to the satisfiability of the formula

(F1 ∨ F2) ∧ (F1 ∨ F2).

We can convert this formula to the standard CNF repre-

sentation [27]. The number of variables and clauses in the

standard CNF formula is linear in the size of the original

formula. In the worst case, the total number of variables

in the CNF representation of the firewall equivalence is at

most O(u2 + ku) and the total number of clauses is also

O(u2 + ku). To randomize the resulting 3CNF, we can use

the randomization methods in Sec. III.

V. EVALUATION

We randomly generated SAT instances to evaluate the

outsourcing techniques. Every literal in every clause of the

SAT instance is chosen uniformly from the set of variables.

All evaluations are done in a computer with dual core 1.6G

Pentium IV processor. We used the zChaff [1] SAT solver to

solve SAT instances and Yices [2] to solve 0/1 linear constraint

satisfaction instances. Yices is an SMT (Satisfiability Modulo

Theories) [13] solver which can be used to solve constraint

satisfaction problems in many diverse areas.

Feasibility of Matrix Multiplication Method (satisfiable

instances): Table IV shows the time to randomize the original

3SAT instance, the time to solve the original 3SAT instance

by zChaff and Yices, and the time to solve the randomized

3SAT instance by Yices. m and n are the number of clauses

and variables, respectively. In all the 3SAT instances in this

table, we have m/n = 3 or m/n = 4, where the instances

with m/n = 4 is harder than the instances with m/n = 3

8

because m/n = 4 is more close the phase transition value

of 3SAT [19]. First we note the performance of Yices is

much worse than zChaff for SAT instances. This is because

Yices is not designed for SAT, and it uses a more complicated

data structure than zChaff. However we believe this can be

improved in future SMT solvers (to directly use existing

efficient SAT algorithms when the instance is a pure CNF

formula). The time to solve the randomized instance with

Yices is also much larger than the time to solve the original

instance in Yices. This is because the randomization procedure

introduces a large number of dummy variables and every

variable may appear in every linear constraint. Though the

price for randomization is significant, the matrix multiplication

randomization method can still be applied within practical

limits to the cases when the user want absolute privacy for

the original instances. Yices and other existing linear integer

programming tools are not designed specifically to solve 0/1

linear constraint satisfaction problems. We believe that there

is much room to improve the efficiency to solve 0/1 linear

constraint satisfaction problems in the future.

VI. RELATED WORKS

The first research for secure outsourcing expensive com-

putations was Yao’s garbled circuits [36]. Gentry’s work on

Fully Homomorphic Encryption (FHE) [20] showed that it is

possible to achieve secure computation outsourcing in theory.

Gennaro et al. [18] presented a work to outsource computa-

tions to untrusted workers. A fully-homomorphic encryption

scheme is used to maintain client’s input/outpt privacy. Atallah

et al. in [6] and [5] explored a list of work in outsourcing

computations. In [6], a protocol is designed for outsourcing

secure sequence comparison using homomorphic encryption

techniques. A secure protocol for outsourcing matrix mul-

tiplication was presented in [5] using secret sharing. The

wor in [23], [35], [32] provide the survey for cryptographic

obfuscation and secure outsourced computation. Garg et al.

[17] studies candidate indistinguishability obfuscation and

functional encryption for all circuits. The work in [12] imple-

ments a non-trivial program obfuscation based on polynomial

rings.

The work in [8] prosents an efficient protocol for privacy-

preserving evaluation of diagnostic programs, represented as

binary decision trees or branching programs. The main purpose

of the protocol is to maintain the privacy of both the user

data and the server’s diagnostic program. The protocol needs

expensive homomorphic encryption and garbled circuits, so it

cannot be applied in complicated SAT solving.

The work in [10] presents a novel secure outsourcing algo-

rithm for exponentiation modular a prime. The randomization

methods presented in [34] are secure and practical methods to

randomize LP instances. Works in [11], [3] investigate tech-

niques for privacy preserving data mining. These approaches

only apply to problems with known computation procedures.

The work in [37] presents a SARLock scheme to enhance the

circuit lock schemes. However, Shamsi et al. in [31] introduce

an new version of the SAT attack to defeat the anti-SAT obfus-

cation schemes such as SARlock. The work in [28] proposes

an approach to preserve input and output privacy based on

CNF obfuscation, and presents obfuscation algorithm and its

corresponding solution. However, the obfuscated formula can

be attacked as demonstrated in [14]. T. Dimitriou presents

CENSOR, a privacy-preserving obfuscation for outsourcing

SAT formulas in [15]. At the core of the CENSOR framework

lies a mechanism that transforms any formula to a random one

with the same number of satisfying assignments.

Many network configuration verification and planning prob-

lems can be converted to SAT. Bera et al. [7] presented a

framework that formulates a QSAT (satisfiability of quantified

boolean formula) based decision problem to verify whether the

access control implementation conforms to the global policy

both in presence and absence of the hidden access paths.

ConfigChecker [4] models the entire network using binary

decision diagrams (BDDs) [9], which are compressed form

of SAT.

VII. LEGAL IMPLICATIONS FOR SAT OUTSOURCING

There are some legal issues for SAT outsourcing. The

purpose of the work in this paper is to provide privacy for the

customers who want to outsource SAT problems. This may

open the door for outsourcing criminal activities and make

the tracking of criminal activities difficult. For example, a

customer can easily convert the integer factorization problem

to SAT by converting the integer multiplication circuit to

a CNF formula. Then the customer can randomize it and

outsource the SAT solving problem to cloud servers. Though

it is unknown for the performance of solving integer factoring

through SAT transformation, future progress in SAT may

provide feasible solutions. The computation related to integer

factoring can be directly used for criminal activities, and the

cloud servers do not know that they are providing service for

these activities since the original problems can be randomized.

It is also very likely that some cloud servers choose not to

publicize efficient algorithms for SAT since good algorithms

are profitable. Thus it is difficult for authorities to track the

service provided by cloud servers and the SAT instances

submitted by customers for criminal investigation. We believe

that these issues will be important research topics for cloud

computing.

VIII. CONCLUSION

Outsourcing computations to cloud servers becomes a ne-

cessity due to inherit complexity for most of real world prob-

lems. SAT outsourcing is important due to broad applications

of SAT. Privacy preserving and information hiding of the orig-

inal problem can be achieved by randomizing SAT instances.

In this paper we discussed the importance of SAT outsourcing

and how it can be used to randomize computational problems.

We have presented a method to randomize the whole structure

of the SAT instance, a method to randomize solution set,

and methods to randomize Mincost SAT and MAX3SAT.

The evaluation of the presented methods shows that overhead

coming from SAT randomization is within the practical limits

and it is applicable as shown in the case study. For future

work, we plan to (1) investigate if there exists any other better

9

n m Randomization time Time for original(zChaff) Time for original(Yices) Time for randomized(Yices)

100 300 0.27 < 0.01 < 0.01 1.67

100 400 0.8 < 0.01 < 0.01 2.33

300 1000 19.74 < 0.01 0.02 14.20

300 1200 34.04 1.71 21.36 8391.28

500 1500 70.15 < 0.01 0.03 31.35

1000 3000 597.43 < 0.01 0.06 92.78

TABLE IV
MATRIX MULTIPLICATION OVERHEAD AND COST TO SOLVE SATISFIABLE INSTANCES (SECONDS)

randomization method, (2) investigate the practicality of our

approach on other applications, and (3) develop an interactive

platform for SAT outsourcing.

REFERENCES

[1] http://www.princeton.edu/∼chaff/zchaff.html.
[2] Yices: An smt solver. http://yices.csl.sri.com.
[3] R. Agrawal and R. Srikant. Privacy preserving data mining. In

Proceedings of the ACM SIGMOD Conference on Management of Data,
pages 439–450, Dallas, TX, May 2000.

[4] Ehab Al-Shaer, Will Marrero, and Adle El-Atawy. Network configura-
tion in a box: Towards end-to-end verification of network reachability
and security. In IEEE International Conference of Network Protocols
(ICNP’2009), Oct. 2009.

[5] Mikhail J. Atallah and Keith B. Frikken. Securely outsourcing linear
algebra computations. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security, ASIACCS ’10,
pages 48–59, New York, NY, USA, 2010. ACM.

[6] Mikhail J. Atallah and Jiangtao Li. Secure outsourcing of sequence
comparisons. Int. J. Inf. Secur., 4(4):277–287, October 2005.

[7] P. Bera, S. K. Ghosh, and Pallab Dasgupta. Formal verification of
security policy implementations in enterprise networks. In Proceedings

of the 5th International Conference on Information Systems Security,
ICISS ’09, pages 117–131, Berlin, Heidelberg, 2009. Springer-Verlag.

[8] Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and Emmett
Witchel. Privacy-preserving remote diagnostics. In Proceedings of the

14th ACM conference on Computer and communications security, CCS
’07, pages 498–507, New York, NY, USA, 2007. ACM.

[9] R. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[10] Xiaofeng Chen, Jin Li, Jianfeng Ma, Qiang Tang, and Wenjing Lou.
New algorithms for secure outsourcing of modular exponentiations. In
ESORICS 2012, pages 541–556, 2012.

[11] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Zhu. Tools for
privacy preserving distributed data mining. ACM SIGKDD Explorations,
4(2), 2003.

[12] David Bruce Cousins, Giovanni Di Crescenzo, Kamil Doruk Gür, Kevin
King, Yuriy Polyakov, Kurt Rohloff, Gerard W. Ryan, and Erkay Savas.
Implementing conjunction obfuscation under entropic ring lwe. In 2018

IEEE Symposium on Security and Privacy (SP), pages 354–371, 2018.
[13] Martin Davis and Hilary Putnam. A computing procedure for quantifi-

cation theory. J. ACM, 7:201–215, July 1960.
[14] Tassos Dimitriou. Attack on a scheme for obfuscating and outsourcing

sat computations to the cloud. In ICETE, 2019.
[15] Tassos Dimitriou and Khazam Alhamdan. Censor: Privacy-preserving

obfuscation for outsourcing sat formulas. Cryptology ePrint Archive,
Paper 2022/672, 2022. https://eprint.iacr.org/2022/672.

[16] Wenliang Du, Jing Jia, Manish Mangal, and Mummoorthy Murugesan.
Uncheatable grid computing. In In 24th IEEE International Conference
on Distributed Computing Systems, pages 4–11, 2004.

[17] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit
Sahai, and Brent Waters. Candidate indistinguishability obfuscation
and functional encryption for all circuits. SIAM Journal on Computing,
45(3):882–929, 2016.

[18] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive
verifiable computing: outsourcing computation to untrusted workers. In
Proceedings of the 30th annual conference on Advances in cryptology,
CRYPTO’10, pages 465–482, Berlin, Heidelberg, 2010. Springer-Verlag.

[19] Ian P. Gent and Toby Walsh. The sat phase transition. In the 11th
European Conference on Artificial Intelligence, pages 105–109. John
Wiley & Sons, 1994.

[20] Craig Gentry. Fully homomorphic encryption using ideal lattices.
In Proceedings of the 41st annual ACM symposium on Theory of

computing, STOC ’09, pages 169–178, New York, NY, USA, 2009.
ACM.

[21] Evgueni Goldberg and Yakov Novikov. Verification of proofs of
unsatisfiability for cnf formulas. In Proceedings of the conference on

Design, Automation and Test in Europe - Volume 1, DATE ’03, pages
10886–, Washington, DC, USA, 2003. IEEE Computer Society.

[22] Philippe Golle and Ilya Mironov. Uncheatable distributed computations.
In Proceedings of the 2001 Conference on Topics in Cryptology: The

Cryptographer’s Track at RSA, CT-RSA 2001, pages 425–440, London,
UK, UK, 2001. Springer-Verlag.

[23] M. Horvath and L. Buttyan. Cryptographic Obfuscation: A Survey.
Springer, 2020.

[24] J. Marques-Silva. Practical applications of boolean satisfiability. In
9th International Workshop on Discrete Event Systems, 2008. WODES

2008., pages 74–80, May, 2008.
[25] Ralph C. Merkle. A certified digital signature. In Proc. Crypto’89, pages

218–238, 1989.
[26] Ralph C. Merkle. Protocols for public key cryptosystems. In Proceed-

ings of the IEEE Symposium on Research in Security and Privacy, pages
122–134, April 1980.

[27] Christos Papadimitriou. Computational Complexity. Addison Wesley,
1993.

[28] Ying Qin, ShengYu Shen, and Yan Jia. Structure-aware cnf obfuscation
for privacy-preserving sat solving. In 2014 Twelfth ACM/IEEE Con-
ference on Formal Methods and Models for Codesign (MEMOCODE),
pages 84–93, 2014.

[29] Uwe Schöning. Graph isomorphism is in the low hierarchy. J. Comput.
Syst. Sci., 37(3):312–323, Dec 1988.

[30] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, Oct 1992.
[31] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z. Pan,

and Yier Jin. Appsat: Approximately deobfuscating integrated circuits.
In 2017 IEEE International Symposium on Hardware Oriented Security

and Trust (HOST), pages 95–100, 2017.
[32] Zihao Shan, Kui Ren, Marina Blanton, and Cong Wang. Practical secure

computation outsourcing: A survey. ACM Comput. Surv., 51(2), feb
2018.

[33] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin, and
Y. Theodoridis. State-of-the-art in privacy preserving data mining. ACM
SIGMOD Record, 3(1):50–57, March 2004.

[34] Cong Wang, Kui Ren, and Jia Wang. Secure and practical outsourcing
of linear programming in cloud computing. In INFOCOM 2011, pages
820–828. IEEE, 2011.

[35] Yang Yang, Xindi Huang, Ximeng Liu, Hongju Cheng, Jian Weng,
Xiangyang Luo, and Victor Chang. A comprehensive survey on secure
outsourced computation and its applications. IEEE Access, 7:159426–
159465, 2019.

[36] Andrew Chi-Chih Yao. Protocols for secure computations (extended
abstract). In FOCS ’82, pages 160–164. IEEE Computer Society, 1982.

[37] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan J V Rajendran,
and Ozgur Sinanoglu. Sarlock: Sat attack resistant logic locking. In
2016 IEEE International Symposium on Hardware Oriented Security

and Trust (HOST), pages 236–241, 2016.

http://www.princeton.edu/~chaff/zchaff.html
http://yices.csl.sri.com
https://eprint.iacr.org/2022/672

	Introduction
	Motivation

	Computational Model, Adversary Model and Requirements for SAT Outsourcing
	Computational Model
	Adversary Model
	Classification of Outsourcing Security

	Randomizing SAT Instances
	Permutation of Variables and Negation Flipping
	Matrix Multiplication Randomization
	Solution Set Randomization
	Randomizing Mincost SAT
	Randomizing MAX3SAT
	Verification of the Correctness of the Result
	Outsourcing Multi-party SAT-based Computation

	Case Study: Firewall Equivalence Checking
	Evaluation
	Related Works
	Legal Implications for SAT outsourcing
	Conclusion
	References

