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Abstract

Agentic Al systems, which build on Large Language Models (LLMs) and interact
with tools and memory, have rapidly advanced in capability and scope. Yet, since
LLMs have been shown to struggle in multilingual settings, typically resulting
in lower performance and reduced safety, agentic systems risk inheriting these
limitations. This raises concerns about the global accessibility of such systems,
as users interacting in languages other than English may encounter unreliable or
security-critical agent behavior. Despite growing interest in evaluating agentic Al,
existing benchmarks focus exclusively on English, leaving multilingual settings
unexplored. To address this gap, we propose MAPS, a multilingual benchmark
suite designed to evaluate agentic Al systems across diverse languages and tasks.
MAPS builds on four widely used agentic benchmarks — GAIA (real-world tasks),
SWE-bench (code generation), MATH (mathematical reasoning), and the Agent Se-
curity Benchmark (security). We translate each dataset into ten diverse languages,
resulting in 805 unique tasks and 8,855 total language-specific instances. Our
benchmark suite enables a systematic analysis of how multilingual contexts affect
agent performance and robustness. Empirically, we observe consistent degradation
in both performance and security when transitioning from English to other lan-
guages, with severity varying by task and correlating with the amount of translated
input. Building on these findings, we provide actionable recommendations to guide
agentic Al systems development and assessment under multilingual settings. This
work establishes a standardized evaluation framework, encouraging future research
towards equitable, reliable, and globally accessible agentic Al. MAPS benchmark
suite is publicly available. 1]

1 Introduction

LLM-based agentic Al systems combine multi-step reasoning with external tools and memory to
solve open-ended tasks such as code generation, web navigation, planning, and transactional services
like booking and ordering [[Acharya et al.,2025]]. By doing so, they extend to complex, real-world
problems beyond standard LLM benchmarks. Since such real-world applications serve speakers of
diverse languages, maintaining consistent reliability in every language becomes critical. However,
since agentic behavior is grounded in LLMs, which often perform inconsistently across languages
[Deng et al., 2023 Wang et al.| [2023]], agents may inherit these multilingual limitations as well,
affecting their functionality and trustworthiness. This presents a barrier to equitable access, as
non-English users may face degraded responses, incorrect tool actions, or unsafe behaviors—failures
that can lead to actual harm in the real world, including erroneous transactions, data corruption, and
other security vulnerabilities [Zhang et al., [2024]].
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To assess emerging agentic systems, various benchmarks have been proposed to evaluate agent
performance across a range of tasks [Mialon et al., 2023 |Jimenez et al., 2023 |Chang et al., {2024,
Xu et al.l 2024]]. However, these benchmarks remain English-only. In contrast to multilingual LLM
benchmarks [Dang et al., 2024} Shi et al.| 2022] |Goyal et al.,[2022]], no equivalent exists for agentic
Al tasks—-creating a blind spot in our understanding of cross-language performance, safety, and
security.

In this paper, we address this gap. We hypothesize that

multilingual settings will reveal performance and security

gaps in agentic systems that are not captured by the ex-
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Suite for Performance and Security. MAPS is based on o
four established agentic benchmarks: GAIA (real-world oo }- .
tasks) [Mialon et al.,[2023]], SWE-bench (code generation) " codegenersten [ | 8
[Jimenez et al., [2023]], MATH (mathematical reasoning) - &
[Hendrycks et al.| 2021]], and the Agent Security Bench- Trotrow Fdo o At 3
mark (security) [Zhang et al| [2024]. These benchmarks P ] o russionJ-4 \(_reasoning 3
are extended to ten typologically diverse languages be- gEEE

yond English?} by employing a hybrid machine and LLM- L - -

Lo spanish |-

based translation approach Ki and Carpuat [2024] with

extended verification and enhancements. In total, MAPS Figure 1: MAPS benchmark suite eval-
includes 805 unique tasks, each available in 11 language | 4tes LLM-based agents across 11 lan-
versions—including the original English and 10 translated
variants—for a total of 8,855 instances. An overview of
the benchmark structure is shown in Figure [I]

guages and 4 agentic benchmarks cover-
ing performance and security.

To demonstrate the use of MAPS and test our hypothesis,

we selected a leading open-source agent associated with each of the four original benchmarks and
applied it to the corresponding multilingual extension. We observed notable declines in both task
performance and security when moving from English to other languages, with the severity of these
drops varying by task type and correlating with the proportion of non-English input, suggesting
that multilingual performance interventions should be targeted based on input composition and task
sensitivity. Beyond overall degradation, our findings reveal that multilingual inputs can amplify
agentic vulnerabilities in safety-critical tasks, highlighting the need for multilingual risk assessment.
These results empirically support our hypothesis and demonstrate the utility of MAPS as a tool for
systematic, multilingual evaluation of agentic Al systems.

The primary contributions of this paper are threefold:
* To the best of our knowledge, we introduce the first multilingual benchmark suite for agentic

Al extending four widely used benchmarks into ten typologically diverse languages for
systematic performance and security assessment.

* The efficacy and quality of the proposed benchmark are demonstrated through a large-scale
evaluation of leading agents as well as human expert verification.

* We present the first quantifiable analysis and evidence that multilingual settings reveal
critical performance, safety, and security gaps in agentic systems, along with actionable
recommendations for improving their development.

2 Background and Related Work

2.1 Agentic AI Benchmarks

With the rapid advancement of LLM-based agents, a diverse suite of benchmarks has been developed
to assess their autonomy, tool use, planning, and memory integration [[Yao et al., 2024 [Xu et al.,
2024, |Yehudai et al., 2025]. We organized these suites along three primary dimensions.

ZMAPS offers evaluation in the following ten languages: German, Spanish, Portuguese (Brazil), Japanese,
Russian, Italian, Arabic, Hebrew, Korean, and Hindi.



Evaluation objective: performance-oriented benchmarks measure task completion, multi-step rea-
soning, and correct tool invocation (e.g., AgentBoard [Chang et al.,2024]]), whereas security-focused
suites probe robustness to adversarial inputs, jailbreaks, and unsafe behaviors (e.g., AgentHarm
[Andriushchenko et al.,[2024]]). Agentic task scope: full-agentic evaluations present only problem
statements and expected outcomes, requiring end-to-end planning and execution (e.g., GAIA [Mialon
et al., [2023])), while semi-agentic frameworks supply scaffolding, such as code templates or mock
APIs, to isolate the LLM’s reasoning and tool-selection core (e.g., AppWorld [Trivedi et al.| [2024]].
Design and evaluation characteristics: most benchmarks span a limited set of domains (three to five
use cases), typically including real-world information retrieval and navigation (e.g., AssistantBench
[Yoran et al., |2024])), code generation (e.g., SWE-Bench [Jimenez et al., |2023|])), reasoning and
planning (e.g., MATH [Hendrycks et al., 2021]], Travel Planner [Xie et al., |2024]), and security
scenarios (e.g., Agent Security Benchmark [Zhang et al. [2024]]). They use fixed task counts and
predefined difficulty tiers, and to enable reliable, objective measurement despite agents’ open-ended
capabilities, they often restrict tasks to closed-form problems with definitive ground truth, allowing
clear determination of success or failure [Jimenez et al., 2023| Mialon et al., 2023]]. A detailed
comparison of benchmark design choices, task types, and evaluation properties is provided in the
supplementary materials.

While multilingual LLM benchmarks such as XTREME [Hu et al., [2020], FLORES [Goyal et al.
2022]], and SIB-200 [[Adelani et al.l2023]] have enabled broad cross-lingual evaluation, they do not
assess interactive decision-making, tool use, or task execution, which are core elements of agentic
systems. As a result, existing multilingual benchmarks fall short of capturing the complexities and
vulnerabilities that arise when agents operate in non-English settings. This leaves non-English users
exposed to agentic failures in their native languages and underscores the need for fully agentic
benchmarks that include performance and security evaluation, high data fidelity, and comprehensive
multilingual assessment - gaps that our benchmark is specifically designed to address.

2.2 Multilingual Benchmarks and Multilingual Limitations of General-Purpose LLMs

Recent studies show that pre-trained LLMs often struggle with non-English input, especially in
languages with limited training resources or those typologically distant from English. Multilingual
benchmarks such as XTREME [Hu et al.| 2020]] and XGLUE[Liang et al., [2020] report consistent
accuracy drops when moving from English to languages such as Swahili or Nepali. These gaps reflect
an imbalance in pretraining corpora, where English accounts for over 90% of the data, as well as
challenges in tokenizing morphologically rich languages and the scarcity of fine-tuning data in many
languages [Jhal 2024]. Notably, even large models (e.g., GPT-4, Llama 405B) face a “cross-lingual
knowledge barrier” on MMLU [Hendrycks et al.l 2020]] and on Safety tasks [Grattafiori et al., [2024],
showing that scale alone does not resolve multilingual performance deficits [Chua et al., 2024].

Building on these performance gaps, LLMs also face robustness and security challenges in multi-
lingual contexts. Since most alignment and red-teaming efforts have been English-centric, models
are more prone to generate toxic or policy-violating outputs when processing non-English prompts
[Deng et al.l 2023 [Wang et al., 2023 |Aakanksha et al., |2024]. Furthermore, hallucination rates
increase and confidence calibration degrades outside English, causing models to produce fluent, yet
unreliable or potentially harmful content in undersupported languages [Xue et al.;,|2024]. Although
security interventions, such as multilingual alignment, have been shown to be effective in reducing
harmful output between languages, they often incur a measurable cost in downstream performance or
increased latency [Aakanksha et al., 2024]].

Given that agentic Al systems are based directly on these LLMs, we hypothesize that they inherit the
same language-dependent performance and security limitations. As these agents carry out real-world
tasks such as executing code, querying external tools, or navigating web environments, any inherited
shortcomings can lead to severe consequences. Yet, to our knowledge, no systematic evaluation has
probed how these vulnerabilities manifest within agentic systems. To address this gap, we introduce
MAPS, our multilingual agentic benchmark suite in Section 3]

3 MAPS: Multilingual Agentic AI Benchmark Suite

To support multilingual evaluation of agentic systems, we construct a benchmark suite by extending
established English-language datasets into multiple languages. This process requires careful dataset
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Figure 2: Overview of our multi-stage translation pipeline for agentic benchmark construction.
We start with machine translation for structural alignment, followed by LLM-based verification and
enhancement. This approach is adapted from Ki and Carpuat [2024] but extended with task-specific
prompting and fallback mechanisms tailored to the requirements of agentic Al evaluation.

selection, translation procedures that preserve semantic and structural integrity, and mechanisms for
ensuring evaluation consistency. The following subsections detail our methodology for translation,
benchmark construction, and dataset composition.

3.1 Translation Pipeline

Reliable multilingual evaluation of agentic Al systems hinges on translating task instructions with
both semantic and structural cross-language fidelity. Neural MT excels at preserving format and
structure, but struggles in low-resource or specialized domains [Koehn and Knowles, [2017, |/Aharoni
et al., 2019]. Translation via instructed LLMs offers broader high-level capabilities at the cost of
occasional hallucinations and semantic drift [Hendy et al.l 2023} [Yan et al., [2024]. To balance
these trade-offs, hybrid pipelines were suggested by |Ki and Carpuat| [2024]], Mohammed| [2025]],
combining format-preserving MT with LLM-based refinement. For MAPS, we extend |K1 and Carpuat
[2024]: First, Ki and Carpuat| [2024] was not designed with our benchmarks in mind, thus significant
per-benchmark prompting had to be done. Second, we added automated quality checks, fallbacks,
and expert verification to ensure the cross-language fidelity needed for agentic benchmarks (Fig. [2).

Formally, let us express our translation pipeline as a function 7' : S x £ — T, where s € Sis a
task-instruction instance in source-language (English), L, € L is the target language, and ¢t € 7T is the
resulting translated output. The pipeline begins with machine translation (MT) to establish a structural
foundation: Denote M (s, L;), the MT function, implemented as a high-quality, off-the-shelf NMT
system. Its output provides a structurally faithful baseline for subsequent steps.

Next, we apply a verification step using an LLM to assess whether the translation adequately preserves
the source meaning. This is modeled as a binary function A(s, M(s, L;), Ly) — 0,1, where the
LLM compares the original and translated texts to detect major semantic errors or omissions.

Based on verification outcomes, the pipeline follows one of two distinct paths. If (A = 0), indicating
machine translation failure, the pipeline employs direct LLM translation: Denote ®@girect(s, L+) the
output of an LLM prompted to directly translate s to language L, (without using the MT output). If
(A = 1) indicating acceptable machine translation, an LLM enhances the translation while preserving
its basic structure: Denote Pephancement (S, M (s, L), L) as the output of an LLM, guided to refine
and improve the MT output while maintaining structural consistency.

To ensure semantic integrity, we apply a second binary check: (s, Pepnancement) — 0, 1. This integrity
check detects common LLM failure modes, such as hallucinations, omissions, misinterpretations
(e.g., answering instead of translating), and semantic drift. If this verification fails, we revert to the
original machine translation (which passed the initial verification test).

The added conditional steps form a robust decision framework: If machine translation is rejected,
we use a direct LLM translation; if accepted but enhancement fails integrity verification, we fall
back to the machine translation; Otherwise, we use the enhanced translation. This structure ensures
graceful degradation, favoring conservative outputs when refinement is unreliable. Formally, the final
translation is given by:
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To ensure the reliability of this pipeline across languages and task types, we conducted human
verification on a representative subset of translations. Evaluation design and results are detailed in
Subsection [3.3] with additional implementation details in the Supplementary Material.

3.2 Dataset Selection and Composition

Dataset Selection. To support robust multilingual evaluation across agentic capabilities, we construct
MAPS benchmark suite based on established agentic AI benchmarks. Those were selected based on
four criteria: (1) strong adoption and recognition within the research community, including prior use
in agentic evaluation; (2) clearly defined, closed-form answers to enable controlled evaluation; (3)
sufficient difficulty to challenge current open-source agents without saturating performance; and (4)
practical solvability, ensuring that multilingual degradation can be meaningfully measured. Based
on these criteria, we selected four datasets spanning real-world reasoning, software engineering,
mathematical problem solving, and security assessment.

GAIA. GAIA [Mialon et al} 2023 is a benchmark designed to evaluate agents’ performance on real-
world assistant tasks. It includes curated questions that require multi-step reasoning and autonomous
use of tools such as web browsers, code interpreters, or document analyzers. Each question has a
single correct answer, and responses are evaluated by an exact match to a reference output.

SWE-bench. SWE-bench [Jimenez et al., |2023] is a software engineering benchmark constructed
from real GitHub issues and associated pull requests across popular Python repositories. Each task
presents a bug report and a codebase snapshot, and requires the agent to evaluate whether a proposed
patch correctly resolves the issue. We adopt the verified subse% in which agents are tasked with
validating a patch rather than generating one.

MATH. The MATH dataset [Hendrycks et al.,|2021]] includes high-school level mathematical problems
across seven topics, including algebra, geometry, and calculus. Tasks are structured to require
symbolic manipulation and multi-step reasoning. Agent responses are evaluated by exact match
against a reference solution.

Agent Security Benchmark (ASB). ASB benchmark [Zhang et al.| 2024] provides a structured evalua-
tion of agent robustness against adversarial threats, including prompt injections, memory poisoning,
and tool misuse. Agents interact with injected prompts or environments, and evaluation is based on
whether safety policies are violated, measured by attack success rate and refusal rate.

Data Composition. The metadata below summarizes the multilingual extension, including language
coverage, scale, and pre-processing.

Translated Languages. We selected the following ten typologically and geographically diverse
languages: German, Spanish, Portuguese (Brazil), Japanese, Russian, Italian, Arabic, Hebrew,
Korean, and Hindi. This selection enables the evaluation of agent performance across a wide range of
scripts, linguistic structures, and regional user populations.

Dataset Handling. To preserve the integrity and utility of the original datasets, we applied only
minimal and targeted modifications. Across all datasets, we appended translations without modifying
or removing any original metadata (such as task type, difficulty level, tools available, etc). Domain-
specific syntax—such as equations in MATH, code snippets in SWE-bench, and adversarial prompts
in ASB—was preserved exactly, maintaining the original task structure and technical fidelity. For
MATH and SWE-bench, which were not originally designed for agentic evaluation, we further applied
selective filtering to retain only the most challenging tasks based on the task difficulty field. This
follows common practice in prior work to align non-agentic datasets with agentic evaluation settings
[Wu et al., [2023]], by ensuring meaningful evaluation of agent behavior while avoiding trivial cases.

*https://openai.com/index/introducing-swe-bench-verified/
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Data Volume. To balance performance and security evaluation, our benchmark comprises 805 tasks:
405 from performance-oriented datasets (GAIA, SWE-bench, MATH) and 400 from the Agent
Security Benchmark. We selected 165 tasks from GAIA (full validation set), 140 high-difficulty tasks
from MATH (20 per topic across 7 topics), and 100 hard and medium tasks from SWE-bench. The
remaining 400 tasks include all security-relevant prompts from ASB. Each task was translated into
10 target languages, and combined with the original English version, this results in a total of 8, 855
multilingual tasks across 11 languages.

To validate the benchmark’s utility and examine multilingual effects, we applied a leading agent to
each dataset. Full details and performance results are reported in Section 4]

3.3 Translation Implementation and Verification

Translation Implementation Details. We implemented the hybrid translation pipeline described in
Section [3.T]using a combination of commercial and open-source tools. For machine translation, we
used the Google Translate NMT APIE], selected for its support across all ten target languages. To
preserve task fidelity, structural elements (e.g., equations, variables, code) that MT systems often
mistranslate were temporarily masked and restored after translation. For LLM-based refinement and
quality control, we used Cohere Command A and GPT-40, both multilingual models executed with
deterministic decoding (temperature set to zero) to ensure output consistency. System prompts were
crafted individually for each task to accommodate domain-specific structures (e.g., code snippets,
equations, web URLSs), ensuring that the models preserved both intent and format. The code is
available E] and representative examples of these prompts are provided in the Supplementary Material.

Human Verification Protocol. To assess translation quality, we manually verified a representative
sample of 2, 000 translations, covering 25% of the benchmark, proportionally sampled across datasets
and languages. Each item was rated by a bilingual annotator fluent in English and the target language
on a 175 Likert scale across three criteria: adequacy (semantic fidelity), fluency (grammatical and
stylistic naturalness), and formatting accuracy (preservation of LaTeX, code, etc.). A fourth metric,
answerability, measured whether the translation preserved intent well enough for the annotator to
confidently answer the question as if it were in English. Annotator instructions are provided in
the Supplementary Material. To validate the reliability of the verification process, we embedded
“honeypot” samples with intentional errors; annotators reliably flagged these cases, confirming
attentiveness and quality control.

Evaluation results confirm high translation quality across the benchmark, with an answerability rate
of 94.4%, corresponding to a total error rate of 5.6%. Translations also received average scores
of 4.47 for adequacy, 4.60 for fluency, and 4.75 for formatting accuracy (on a 1-5 Likert scale),
supporting the benchmark’s preservation of semantic fidelity, linguistic naturalness, and structural
integrity. Full per-language results and analysis are included in the Supplementary Material. To
support high-precision use cases, we also release a “Veriﬁed’ﬂ subset of the benchmark, consisting of
190 translations per language that passed human review across all four datasets.

4 Experiments
We now demonstrate MAPS utility through multilingual evaluation of leading open-source agents.

4.1 Experimental Settings

Agent Assignment per Dataset. To demonstrate the utility of our benchmark, we evaluate open-
source agents on each dataset and assess their performance and robustness under multilingual settings.
While a unified agent would offer a more broad coverage and controlled evaluation, current systems
lack the generalization needed to perform well across diverse tasks [Gioacchini et al., 2024, Chang
et al.,[2024]]. To isolate the effect of language variation, we retain each agent’s original configuration,
including tools, prompts, and system settings, without any modification.

*https://cloud.google.com/translate/docs/advanced/translating-text-v3#
translating_input_strings
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Figure 3: Performance of open-source agents across languages on four agentic benchmarks: GAIA,
SWE-bench, MATH, and ASB. Each bar represents the agent’s accuracy (or attack success rate in
ASB) for a given language, with English shown as the baseline. Error bars indicate std across three
runs. Performance differences reflect each agent’s degradation or resilience in multilingual settings.

For GAIA, we used the OpenDeepResearch agent [von Platen et al.| 2024]], which integrates retrieval,
web browsing, and tool use to support real-world reasoning. For MATH, we adopted MathChat
2024]], a zero-shot agent combining multi-turn reasoning with Python execution and the
Wolfram Alpha tool. For SWE-bench, we applied SWE-agent [Yang et al}[2024b]], which enables
autonomous software reasoning through repository navigation, file editing, and test execution. For
ASB, we built on the authors’ existing infrastructure and evaluated the original ten-agent system
against both direct and indirect prompt injection attacks across a variety of tasks and languages. Each
agent was executed using the LLM backbone reported in its original implementation, all of which are
considered multilingual models. Specifically, OpenDeepResearch used GPT o1, MATHChat used
GPT-4, SWE-bench used GPT-4.1, and ASB used Qwen?2. Full configuration details, including model
versions and API providers, are provided in the Supplementary Materials.

Experiment Protocol. For each benchmark, the agent was evaluated three times in each of the 11
target languages, yielding a total of 33 runs per dataset. We report the mean and standard deviation
over these runs. We used the original English task definitions and their translations, without modifying
or translating internal agent logic and processing flows like system prompts or tools.

Metrics. We adopt the original evaluation metrics from each benchmark to ensure consistency with
prior agent evaluations. For MathChat (Math), we report answer accuracy. For OpenDeepResearch
(GAIA), we report the percentage of answers matching either the English or translated reference. For
SWE-agent (SWE-bench), we report the percentage of resolved instances, defined as the percentage
of submitted patches that successfully resolve the coding issue. For the ASB agent, we report the
attack success rate (ASR), a standard metric in the security domain that represents the percentage of
attacks that bypass the safety mechanisms. Additionally, we introduce a new metric: Multilingual
Effect, which quantifies the performance or security gap between English and the average of all other
languages. Given an evaluation metric M, the Multilingual effect is defined as follows:

1 n
Multilingual Effect = =~ Mg, — Men 2
" i=1 /
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Figure 4: a) Multilingual effect as a function of the proportion of translated language tokens in input
prompts. Each point represents a benchmark-agent pair, with the multilingual effect computed as
the average relative degradation in performance or security across non-English languages. The trend
suggests a correlation between input translation extent and multilingual vulnerability. b) Relative
performance differences from English for each language, broken down by dataset. Negative values
indicate a drop in performance compared to English, while positive values (notably in ASB) represent
increased vulnerability. The trend highlights how multilingual effects vary by language and task type.

Where M.,, denotes the performance in English, n is the number of non-English languages in the
dataset (in our case n = 10), and M,,g, represents the performance in the i-th non-English language.

4.2 Results

Figure [3| presents the performance of open-source agents across all four benchmarks in English and
the ten target languages. In GAIA and ASB, we observe clear performance and security drops: non-
English languages consistently underperformed compared to English, with reductions of up to 16%
(GAIA) and arise in vulnerability by up to 17% in ASB. Notably, SWE-bench and MATH exhibit
only minor variation across languages, with most scores clustering around the English baseline.

These results reveal important differences in how multilingual degradation manifests across task
types. Although all tasks require complex reasoning, some are more constrained than others. For
instance, SWE-bench is limited to well-structured Python patches designed to fix specific test cases.
As aresult, the reliance on natural language explanations is reduced, with greater emphasis placed on
strict Pythonic syntax and code correctness. On the other hand, GAIA focuses on solving real-world
tasks with much more flexibility. Thus, the importance of the natural language problem statement
is significantly higher. Additionally, in benchmarks like MATH and SWE-bench, the opportunity
for translation is inherently limited, as a large portion of the input consists of mathematical notation
or source code, thus naturally reducing the multilinguality effect. To understand this variation,
we examine a potential driver: the proportion of localized, target-language-oriented input in each
benchmark in each benchmark’s input.

Interestingly, we observe that Japanese yields the lowest ASR (attack success rate) in the ASB bench-
mark, indicating the highest robustness to adversarial inputs. This result can be partially attributed to
the fact that the ASB agent was implemented using the Qwen2 model [Yang et al.l [2024d], which is
known for its strong alignment for Japanese language tasks. Qwen2 has consistently demonstrated
strong performance in Japanese-specific LLM benchmarks and leaderboardsﬂ suggesting that align-
ment and fine-tuning in a particular language can significantly enhance resilience against multilingual
adversarial prompts. This reinforces the importance of language-specific alignment training in the
development of robust and secure agentic systems.

Figure [ examines the relationship between prompt composition and multilingual performance. Part
(a) shows a correlation between the percentage of non-English tokens in the input and the average
performance gap (relative to English) across all four datasets. Benchmarks with higher proportions

https://rinnakk.github.io/research/benchmarks/Im/index.html



of localized, target-language-oriented input, such as GAIA and ASB, exhibit greater degradation,
whereas SWE-bench, with predominantly English input (e.g., code), shows higher preservation.

From part (b), we can see that there is no clear correlation between multilingual security robustness
(ASB) and multilingual performance degradation. This disconnect is especially clear in real-world,
language-heavy tasks like GAIA, where performance drops sharply, while structured tasks like SWE-
bench and MATH remain largely unaffected. This highlights that multilingual security alignment
does not directly track with multilingual task accuracy, notably in language-rich agentic tasks.

5 Discussion

This section presents practical recommendations for multilingual agent deployment and directions
for advancing the benchmark in future work.

5.1 Guidelines for Multilingual Evaluation and Risk Assessment

Language-Aware Deployment Guidelines. Before deploying an Al agent in a multilingual setting,
analyze the linguistic composition of its expected input, particularly the balance between structured
elements (e.g., code, formal queries) and localized natural language. Inputs with a high proportion of
non-English content, especially those involving less formalized or more natural language, tend to
increase the risk of performance and safety degradation. We therefore recommend that for any such
case, developers should conduct a Multilingual Benchmark Assessment using a diverse, language-
sensitive evaluation suite, such as ours, for Al agents operating across languages. This helps reveal
hidden vulnerabilities and promotes reliable real-world behavior in multilingual conditions.

Prioritize Multilingual Adaptation by Task Type. Our findings suggest that the need for multilin-
gual adaptation in agentic systems should be guided by task type. For structured tasks with minimal
linguistic variability, such as coding, cross-lingual transfer can often be achieved with minimal
adjustment. However, for complex, real-world tasks or safety-critical decisions (e.g., GAIA, ASB),
multilingual robustness remains limited, and thus, dedicated multilingual alignment and adaptation
are essential. MAPS offers a practical framework to identify where multilingual adaptation is needed,
helping prioritize resource allocation for post-training based on task-specific language sensitivity.

Multilingual Inputs Amplify Agentic Security Vulnerabilities. Our evaluation on ASB revealed
that multilingual adversarial inputs can bypass agent safety mechanisms with minimal sophistication.
Direct translations of English jailbreak prompts—without any adaptation or obfuscation—were
sufficient to induce policy-violating behavior in multiple languages. This highlights a critical risk:
even simple adversarial prompts become significantly more effective when the input is localized,
and are often sufficient to exploit security vulnerabilities in Al agents. Developers of safety-critical
agentic systems should treat multilingual robustness as a core security concern and include translated
prompts in safety evaluations using benchmarks like ours.

5.2 Benchmark Limitation

While MAPS represents the first multilingual suite for evaluating agentic Al systems, there are natural
opportunities for future expansion. The current release includes four datasets, one agent per dataset,
and ten target languages, offering a strong foundation for assessing multilingual robustness. Extending
coverage to additional domains such as healthcare or legal reasoning, as well as incorporating multiple
agents and extremely low-resource languages (e.g., Amharic or Uyghur), would further enhance
the benchmark’s scope and relevance. Nonetheless, the current suite already surfaces clear trends
in performance and security degradation across languages, offering valuable insights for guiding
multilingual deployment. We view this work as a meaningful starting point and invite the community
to build on our open-source release to advance more inclusive and resilient agentic Al systems.

6 Conclusions

We introduce the first multilingual benchmark suite for evaluating agentic Al systems, addressing
a critical gap in assessing language-specific performance and safety limitations. By adapting and



localizing four widely used agentic benchmarks—GAIA, SWE-bench, MATH, and ASB—into ten
diverse languages, our suite enables the analysis of agent behavior under multilingual conditions.

Constructed through a hybrid translation pipeline and human verification, the benchmark ensures
high linguistic fidelity and structural consistency. Experimental results reveal consistent degradation
in both performance and robustness when agents operate in non-English settings, particularly in tasks
involving natural language reasoning and safety-critical behavior.

These findings underscore the importance of language-aware evaluation and targeted multilingual
adaptation, especially for real-world agentic deployments. We view this benchmark as a practical and
extensible foundation for building more inclusive, resilient, and globally reliable agentic Al systems,
and we invite the community to build upon it.
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