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Steganography is the technique for transmitting a secret message by employing subterfuge to conceal it in

innocent-looking data, rather than by overt security measures as in cryptography. Typically, non-degenerate

quantum error-correcting codes (QECCs) are used as the cover medium, with the stego message disguised as

noise. As in cryptography, a large number of bits or ebits are pre-shared, in this case mainly in order to ensure

the innocence effect. In this work we develop three steganographic protocols: first, a scheme based on catalytic

quantum codes to minimize initial pre-shared resources; second, a scheme incorporating prior entanglement into

QECCs in the form of possibly degenerate entanglement-assisted QECCs; third, a scheme that uses the phase

bit of a pre-shared ebit, combined with QECCs.

I. INTRODUCTION

Steganography is a technique to hide data within innocent-

looking cover media [1]. For example, the secret information

may be embedded in the cover provided by an audio signal

[2], with the view to exploiting the large size, high data trans-

mission rate and redundancy provided by this type of signal.

In the traditional setting, steganography can be motivated by

considering Alice and Bob, who have been imprisoned in two

geographically separated cells of a penitentiary. The prison

warden (Eve) allows them to communicate by swapping mes-

sages through a courier loyal to the warden. Under the cir-

cumstance, they exchange secret messages steganographically

without rousing the warden’s suspicion. Quantum steganog-

raphy is a technique that enhances classical steganography by

leveraging quantum information theoretic principles such as

superposition, no-cloning and entanglement [3, 4]. Three ba-

sic requirements for steganography are imperceptibility, secu-

rity and capacity [5]. This contrasts steganography from cryp-

tography, which lacks the imperceptibility requirement [6].

Nevertheless, Sanguinetti et al. [7] point out that both stegano-

graphic and cryptographic protocols have a basic, identical re-

quirement: a random key as long as the message. Moreover, a

quantum cryptographic cover can be employed for steganog-

raphy [8].

The first quantum protocol for steganography was proposed

by Gea-Banacloche, who used a code word of a quantum error

correcting code (QECC) as cover message, and an error syn-

drome as the secret message [9]. However the protocol lacked

the innocence effect, as the error statistics would reflect the

secret message rather than a natural noisy channel. For en-

suring the innocence, Shaw and Brun use pre-shared bits to

hide the secret information as (deliberately applied) typical

errors of a depolarizing channel [10]. Building on this idea,

a stego-protocol that exploits Eve’s partial knowledge of the

channel was proposed in Ref. [11]. Refs. [12] and [13] pro-

pose quantum stego-protocols using pre-shared entanglement
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instead of pre-shared bits, with the encoding process exploit-

ing QECC or Brown states, respectively, to combat against

quantum noise.

More recently, quantum image steganography protocols

have been proposed that extend steganography to quantum

data hiding protocols based on image steganographic meth-

ods [14–16]. A proposal due to Abd El Latif et al. [17] ex-

ploits quantum walk for steganographic image transfer. Joshi

et al. [18] present a scheme for steganographic communica-

tion based on encoding the secret bit in the position and mo-

mentum quadratures of coherent-states. In [19], the authors

propose a quantum stego-protocol based on a Mach-Zehnder

setup, where the secret is encoded using a particle’s entan-

glement, while the cover data is encoded into its polariza-

tion. Quantum steganography can be applied over quantum

networks [20], and furthermore machine-learning can be used

to optimize data embedding strategies in quantum steganog-

raphy [21].

In this manuscript, we study various directions for im-

proving or simplifying the resource consumption in quantum

steganography. In current stego-protocols that employ pre-

shared entanglement, there is a requirement for a large number

of ebits at the start of the protocol. First, after presenting pre-

liminaries briefly (Section II), we propose a protocol that em-

ploys catalytic QECC to minimize the initial requirement for

ebits (Section III). Moreover, in protocols that use pre-shared

entanglement, the encoding (via QECC, Brown state etc.) re-

quired for noise resilience is independent of the pre-shared

state. Here we study how these two processes can be com-

bined by the use of entanglement assisted QECC (EAQECC),

where we additionally consider the role of quantum degener-

acy of errors (Section IV). Finally, we elucidate the mathe-

matical structure of the Mihara protocol [12], in specific by

presenting a stego-protocol that exploits the phase bit of the

pre-shared ebit, rather than the parity bit, as done there (Sec-

tion V). We present our conclusions and discussions in the

final section (Section VI).

II. PRELIMINARIES
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a. EAQECC An EAQECC uses pre-shared entangle-

ment to improve the noise resistance of a QECC. Given

ebits
(

|φ+〉⊗e
AB

)

between the two communicating parties, an

EAQECC can be constructed from any linear classical code

by relaxing the constraint of dual containing classical code,

which is necessary for the construction of a stabilizer QECC

[22, 23], defined by a set of commuting stabilizer generators.

More generally, quadratic constraints are imposed on the clas-

sical code to obtain a quantum code of qubits or qudits. These

constraints take the form of dual containment (in the case of

stabilizer or CSS codes) or symplectic self-orthogonality (in

the case of general qudit stabilizer codes), and ensure that the

resulting error correcting code enforces commuting relation-

ship among the stabilizers.

In the case of an [[n, k, d; e]] EAQECC, the stabilizer group

over the n qubits can be non-abelian, thus allowing us to

relax the above quadratic constraints on the classical lin-

ear codes. Here Alice encrypts the k-qubit state |ψ〉 in n-

qubits, and appending the e extra Pauli operators, the stabi-

lizers are rendered commuting. During encoding, Alice ap-

pends a ≡ n − k − e ancillas before an encryption opera-

tion (UA ⊗ IB) on her n particles to produce the encoded state

(UA ⊗ IB) |ψ〉 ⊗ |0〉a ⊗ |φ+〉⊗e
AB [24].

b. Catalytic QECC In the context of quantum commu-

nication using EAQECC, Alice consumes pre-shared ebits

prepared in the state |Φ+〉. Assume that they have small num-

ber of pre-shared ebits but she has the resource of locally

available ebits. To compensate for the loss of ebits during

communication, Alice includes e halves of the local ebits into

the state |ψ〉 to be encoded, thus k ≥ e. After her transmis-

sion of the encoded register to Bob, and his decoding, the

entangled state |Φ+〉⊗e will be established as the pre-shared

entanglement for the next cycle. This technique of construct-

ing catalytic QECC can also be applied to standard QECCs

encoding entangled states. [25, 26].

c. Degenerate QECC Degeneracy of errors is the phe-

nomenon whereby distinct error operators from the cor-

rectable set E of errors act on a quantum code to send it to

the same erroneous state [27]. By way of example, consider

the 3 qubit code:

|w = 0L〉 =
1
√

2
(|000〉 + |111〉)

|w = 1L〉 =
1
√

2
(|010〉 + |101〉 . (1)

The code space spanned by |0L〉 and |1L〉 is driven to the same

erroneous subspace by the operators Z1 and Z3.

III. PROTOCOL USING CATALYTIC QECC

A pre-shared resource is required in quantum steganogra-

phy for producing the innocence effect, in the form of bits [10]

or ebits [12]. This entails the consumption of this resource

during each usage of the stego protocol. In the case of ebits,

the resource being costly, a catalytic QECC can be useful in

recycling the consumed ebits. Our following protocol em-

ploys a dense-coding like scheme, in which entanglement is

replenished after each round by using a QECC of sufficiently

large rate and an initial stock of local entanglement.

1. Alice and Bob pre-share an ebit |Φ+〉AB, and agree on

a [[n, k, d; 0]] QECC, with k ≥ 2. (More generally, if

secret rate is ks, then k = 2ks.) Further, Alice prepares

a local ebit |Φ+〉l1,l2 .

2. Alice decides on two bits– the cover message w, and

the secret bit b, and employs dense coding to prepare

the Bell state |η(w, b)〉AB ≡ (|0,w〉 + (−1)b |1,w〉)AB.

3. Alice then encodes one half of her local ebit and her

entangled qubits, i.e., the first two particles in the state

|Φ+〉l1,l2 |η(w, b)〉AB = |0, 0〉l1,A |0,w〉l2,B +
(−1)b |0, 1〉l1,A |0,w〉l2,B + |1, 0〉l1,A |1,w〉l2,B +
(−1)b |1, 1〉l1,A |1,w〉l2,B

obtaining

|(0, 0)L〉l1,A |0,w〉l2,B + (−1)b |(0, 1)L〉l1 ,A |0,w〉l2,B +
|(1, 0)L〉l1,A |1,w〉l2,B + (−1)b |(1, 1)L〉l1 ,A |1,w〉l2,B (2)

4. She transmits her particles to Bob over a noisy chan-

nel. After performing the necessary quantum error cor-

rection using her and his particles jointly, and decod-

ing the resultant state, he obtains |Φ+〉l1,l2 |η(w, b)〉A,B ,
where particles A, B, l1 are now with Bob.

5. On the particles A, B Bob applies a CNOT with the con-

trol on B followed by a Hadamard on B. This results in

the transformation

|η(w, b)〉 −→ |w〉 |b〉 .

6. The state |Φ+〉l1,l2 will serve as shared ebit of the next

round.

The catalytic aspect, which is the replenishment of the entan-

glement consumed, ensures that the initial pre-shared ebit suf-

fices to transmit any number of secret qubits, over subsequent

rounds.

Note that because we employ a dense-coding protocol, Al-

ice is restricted to transmitting a classical cover message and

classical secret message. This rules out that the protocol as

it is can be used for transmitting a quantum secret with a

quantum cover message. Quite generally, this follows from

the idea that even with pre-shared entanglement, Alice cannot

transmit two qubits by sending one physical qubit. Even so,

this doesn’t rule out a probabilistic protocol for transmitting a

qubit secret embedded in a qubit cover medium. We describe

one below.

Consider an arbitrary single qubit state cos(α) |b = 0〉 +
sin(α)eiβ |b = 1〉 as a secret, as well as an arbitrary cover mes-

sage cos(µ) |w = 0〉 + sin(µ)eiν |w = 1〉. Alice by means of her
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local operations must prepare the state

|η(b,w)〉 = cos(µ)
(

cos(α) |Φ+〉 + sin(α)eiβ |Φ−〉
)

+ sin(µ)eiν
(

cos(α) |Ψ+〉 + sin(α)eiβ |Ψ−〉
)

. (3)

To do so, Alice prepares the secret state and cover message in

qubit ancillas, and applies a C-phase and C-not gate with the

former and the latter as the respective control qubits, while the

target qubit is her half of the entanglement shared with Bob.

This yields:

(

cos(µ) |0〉 + sin(µ)eiν |1〉
)(

cos(α) |0〉 + sin(α)eiβ |1〉
)

|Φ+〉
→ |η(b,w)〉 .

Measuring the first two registers in the diagonal (XX) basis,

she produces the required state |η(b,w)〉 with probability 1
4
,

conditioned on obtaining |+,+〉. It is assumed that Alice can

publicly communicate to Bob the instance of successful en-

coding, without arousing Eve’s suspicion.

For large n, we can use the asymptotic quantum Gilbert-

Varshamov bound to estimate the allowed stego code rate.

This bound asserts that given n and code distance δ ≡ d/n,

then there exist good codes, i.e., a code with rate R = k
n
≥

1 − 2H2(δ) − 2δ log2 3. Noting that k = 2ks, the asymptotic

secrecy rate for our catalytic stego protocol is

Rs ≥
1

2
− H2(δ) − δ log2 3, (4)

where Rs ≡ ks

n
.

IV. USING DEGENERATE EAQECC

We now propose a stego protocol which, like that in Refs.

[9, 10], employs channel noise in order to encode the mes-

sage. We assume that Alice and Bob in fact use a noiseless

channel, and simulate noise for the purpose of steganographic

communication. In [10], the messages are camouflaged using

twirling and pre-shared bits. In the present protocol (which

we shall call scheme Q), we will instead employ pre-shared

entanglement of an EAQECC for this purpose, together with

code degeneracy.

Suppose the set of errors that Alice (resp., Bob) can apply to

her (resp., his) qubits is denoted EA ≡ {eA} (resp., EB ≡ {eB}).
Importantly, Alice’s errors must be correctable and character-

istic of the channel noise that Eve expects. The combination

of the two legitimate parties’ errors need not be correctable

but must satisfy:

eBeA ∈ S ∪ (EA − I) ◦ N(S), (5)

where N(S) denotes the normalizer of the stabilizer S. The

basic idea here is that Alice encodes her messages via errors,

which Bob decodes by syndrome measurement. In the event

of being challenged by Eve, Bob applies an element randomly

drawn from set EB. The effectiveness of the method is clari-

fied by the following theorem.

Theorem 1. In protocol Q, Bob can eliminate Alice’s mes-

saging by his local application of errors, provided Eq. (5) is

satisfied. To achieve innocence (asymptotically), the entropy

in Alice’s alphabet must be sufficiently low.

Proof. To begin with, Alice encodes her cover message |ψ〉A
into an EA code logical state |ψL〉AB. Suppose her secret bit

corresponds to error eA ∈ EA. She prepares the state eA |ψL〉AB

and transmits her qubits to Bob. As eA is correctable, Bob

obtains the secret message (normal mode). However, if Eve

challenges the duo (challenge mode), Bob surrenders his qubit

after applying to his qubits a random error eB sampled over set

EB by a probability distribution P . Two possibilities arise:

eBeA ∈ S: The two errors neutralize by virtue of degeneracy

of eA and eB. Eve interprets this as a possible action of

the expected channel noise.

eBeA ∈ (EA − I) ◦ N(S): The logical state is rotated within

the code space up to an allowed error. Eve interprets

this as a possible action of the expected channel noise

on a rotated state1.

Bob’s action corresponds to a trace-preserving completely

positive (TPCP) map and thus doesn’t decrease the entropy of

Alice’s secret message. Let p j be the probability with which

Alice applies error e
( j)

A
. Alice’s encoding action represents the

quantum map |ΨL〉 −→ ρA ≡
∑

j p je
( j)

A
|ΨL〉〈ΨL|e( j)†

A
. Since

the applied errors are correctable, each of them takes the en-

coded state to an orthogonal state. Thus the von Neumann

entropy S (ρA) = H({p j}), where H(·) denotes the Shannon bi-

nary entropy. Bob’s action is a similar TPCP map, given by

ρA −→ ρB ≡
∑

j q je
( j)

B
ρAe

( j)†

B
. We then have

S (ρB) = S

(

∑

j

q je
( j)

B
ρAe

( j)†

B

)

≥
∑

j

q jS (e
( j)

B
ρAe

( j)†

B
)

=
∑

j

q jS (ρA) = S (ρA)

= H({p j}), (6)

where the inequality in the first line follows from the con-

cavity of the entropy function S , and the subsequent equality

follows from the unitary invariance of Shannon entropy. (The

derivation essentially expresses the positivity of the Holevo

quantity.) The non-increase of entropy under Bob’s action

implies that only if the entropy of Alice’s message is suffi-

ciently low, then Bob can tune the probability distribution of

his choices such that he simulates the statistics of the noisy

channel expected by Eve. �

We give below a simple example to illustrate the basic idea

behind Theorem 1. Suppose Eve expects Alice’s communica-

tion to be subject to a dephasing channel E ≡ (1 − r)I + rZ
(0 ≤ r ≤ 1), and Alice and Bob know this.

1 In the second possibility above, the reason that we exclude the case I◦N(S)

is that the weight of an arbitrary error e satisfies |e| ≤ ⌊ d−1
2 ⌋. Thus |eAeB| ≤

d − 1, whereas any logical operator OL is such that |OL | ≥ d.
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The duo replace the channel with a noiseless one, and use

[[6, 1, 3; 3]] EAQECC constructed from [[9, 1, 3]] Shor code,

represented by the stabilizer generator set

S = {s1 = Z1Z2, s2 = Z2Z3, s3 = Z4Z5, s4 = Z5Z6, s5 = Z7Z8,

s6 = Z8Z9, s7 = X1X2X3X4X5X6, s8 = X4X5X6X7X8X9}.
(7)

A cover message w = 0, 1 corresponds to the codewords, re-

spectively:

|0L〉 =
1
√

2
(|000〉 + |111〉)(|000〉 + |111〉)(|000〉 + |111〉)

|1L〉 =
1
√

2
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉), (8)

where the qubits 3, 6 and 9 (represented by the bold letter) are

with Bob, while the other six with Alice. The stego channel

allows a 2-bit communication. To encode secret messages,

Alice applies her errors according to the following convention

Bit value Error applied Degenerate counterpart

00 I I

01 Z1, Z2 Z3

10 Z4, Z5 Z6

11 Z7, Z8 Z9

Thus EA = {I, Z1, Z2, Z4, Z5, Z6, Z7}. In the event of Eve’s

challenge, Bob randomly applies error from the set EB =

{I, Z3, Z6, Z9}.
To encode the secret message b = 10 into the cover mes-

sage w = 0, the stego message used can be Z4 |0L〉. In the

challenge mode, to erase or randomize the secret message,

Bob randomly applies one of I, Z3, Z6, Z9 on his qubits before

surrendering his three qubits to Eve. If Bob applies Z6, which

acts on the block as Z4, then the errors cancel by virtue of

degeneracy, noting that Z6Z4 lies in the stabilizer S. On the

other hand, he could also apply Z3 or Z9, which lie in a differ-

ent block than Z4. Suppose without loss of generality, it is the

latter:

Z9Z4 |0L〉 = (Z1)2Z9Z4 |0L〉 = Z1XL |0L〉 = Z1 |1L〉 (9)

Thus, Eve interprets the state as a Z1 error on the code word

|1L〉.
Let Alice encode the bits 00, 01, 10 and 11 with probability

p00, p01, p10 and p11 respectively. Suppose during this trans-

mission Eve suspects and challenges them to surrender their

qubits. To randomize the secret encoded message, Bob be-

fore surrendering randomly applies I, Z3, Z6 or Z9 operators

on his entangled qubits with probability q00, q01, q10 and q11

respectively. Suppose that the resulting probabilities are de-

noted r00, r01, r10 and r11. It is readily shown that







































r00

r01

r10

r11







































=







































q00 q01 q10 q11

q01 q00 q11 q10

q10 q11 q00 q01

q11 q10 q01 q00













































































p00

p01

p10

p11







































. (10)

By Eq. (6), we have

H({r j}) = −
11
∑

j=00

r j log2(r j) ≥ H({p j}) = −
11
∑

j=00

p j log2(p j).

(11)

In other words, Bob cannot lower the randomness in the errors

in Alice’s message. Thus Alice’s message should start with

sufficiently low entropy such that after Bob’s randomization,

the {rk} matches Eve’s expected error behavior of the channel.

V. STEGANOGRAPHY USING PHASE BIT OF EBIT

In the stego protocol of Ref. [12], the parity bit of a pre-

shared EPR pair is used for transmitting the secret bit, remi-

niscent of partial dense coding. The encoding employs parts

of a quantum code rather than the full code. Yet parity er-

rors can be corrected by applying the parity check matrix of

the underlying classical code, to each ket in the superposition.

The receiver corrects the phase flip error later, after making

the parity-error corrected state separable. In our method we

use the phase bit instead of the parity bit for the purpose. In

this case, directly adapting Mihara’s idea isn’t possible, be-

cause the underlying classical code cannot correct phase er-

rors, and converting the phase errors to bit-flip errors by ap-

plying Hadamards to all qubits won’t work because the state

with Bob is not separable. Thus, we need to make suitable

modifications, as described below.

A linear [[n, k, d]] QECC can be defined by m = n− k stabi-

lizer generators. Let |wL〉 (0 ≤ w ≤ 2k − 1) denote a codeword

of this QECC, and q ≡ ⌊ d−1
2
⌋ + 1. Let G be the group consist-

ing of all computational basis states in the support of |0L〉 and

L0 (⊆ G) be the subgroup defined as follows

L0 = {v ∈ G | ~q · v = 0}, (12)

where ~q is a n-bit vector of Hamming weight |~q| = q. Apply-

ing Lagrange theorem, we find that the integer l ≡ |G||L0 | ∈ {1, 2}.
We choose ~q such that l = 2. Further define coset L1 ≡ G−L0.

Note that ∀v∈L1
~q · v = 1.

We express |0L〉 as the superposition:

|0L〉 =
1
√

2

(

|L0〉 + |L1〉
)

, (13)

where

|L0〉 =
√

2
(
∑

v∈L0

|v〉 〈v|0L〉
)

,

|L1〉 =
√

2
(
∑

v∈L1

|v〉 〈v|0L〉
)

. (14)

Analogous to Eq. (13), we can define such superpositions for

all codewords:

|wL〉 =
1

2

(

|L(w)

0
〉 + |L(w)

1
〉
)

, (15)

since in each case, L
(w)

0
∪ L

(w)

1
is a coset of G. Note that in our

notation L
(0)

j
= L j for j ∈ {0, 1}.
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Alice and Bob share an entangled state

|Φ+〉 = 1
√

2

(

|0, 0〉 + |1, 1〉
)

AB
. (16)

For encoding secret bit b ∈ {0, 1}, she applies the local unitary

Zb
1

to her qubit to produce the state:

Zb
1 |Φ+〉 =

1
√

2

(

|0, 0〉 + (−1)b |1, 1〉
)

AB
. (17)

She encodes her entangled qubit to create the following state :

|Υ(w, b)〉 ≡ 1
√

2

(

|L(w)

0
, 0〉 + (−1)b |L(w)

1
, 1〉

)

AB
. (18)

She dispatches her qubits to Bob. During transit, her n qubits

may pick up an arbitrary error E of weight up to ⌊ d−1
2
⌋. Bob

receives the erroneous state:

E |Υ(w, b)〉 = E
1
√

2

(

|L(w)

0
, 0〉 + (−1)b |L(w)

1
, 1〉

)

AB
. (19)

In general, Bob won’t be able to measure the error syndrome,

because the code fragments |L(w)

j
〉 ( j ∈ {0, 1}) are entangled

with Bob’s qubit. Error correction will thus require an indirect

method.

We define the Hamming support hq(P) of an n-qubit Pauli

operator P as the set of Pauli operators that appear in P at the

coordinates where q̂ has 1. For example, given q̂ = (1, 0, 0, 1),

we have q̂[IXYX] = {I1, X4} and q̂[ZXIZ] = {Z1, Z4}. Now,

the set of stabilizer generators are of two types:

Non-flipping: A stabilizer generator S NF such that hq(S NF)

contains an even number of operators X and Y. It is

easy to show that they have the symmetry property:

S NF |L(w)

j
〉 = |L(w)

j
〉 ( j ∈ {0, 1}). (20)

In other words, the stabilizers S NF are equivalent to an

identity operation in the subspace S(w) spanned by the

vectors |L(w)

0
〉 and |L(w)

1
〉.

Flipping: A stabilizer generator S F is such that hq(S F) con-

tains an odd number of operators X or Y. It is easy to

show that they have the flipping property:

S F |L(w)

j
〉 = |L(w)

j
〉 ( j ∈ {0, 1}), (21)

where the overline represents the complementation op-

eration 0 = 1 and 1 = 0. In other words, the stabilizers

S F are equivalent to a NOT operation in the subspace

S
(w).

The syndrome corresponding to a non-flipping stabilizer

generators can be obtained in the standard way, by ignoring

the entanglement. Given stabilizer S NF with corresponding

syndrome sNF, we find

(S NF ⊗ I)(E ⊗ I) |Υ(w, b)〉

= (S NFE ⊗ I) 1
√

2

(

|L(w)

0
, 0〉 + (−1)b |L(w)

1
, 1〉

)

AB

= (−1)sNF(E ⊗ I) 1
√

2

(

|L(w)

0
, 0〉 + (−1)b |L(w)

1
, 1〉

)

AB
,

(22)

where sNF(∈ {0, 1}).
However, the state in Eq. (18) is not an eigenstate of any

(S F ⊗ I). Thus, error correction must proceed in another way.

To this end, we observe that the stego-state is an eigenstate of

the product of any two distinct flipping stabilizer generators,

for

(S ′FS FE ⊗ I) |Υ(w, b)〉AB

= (S ′FS FE ⊗ I) 1
√

2

(

|L(w)

0
, 0〉 + (−1)b |L(w)

1
, 1〉

)

AB

= (−1)s′
F
+sF (E ⊗ I) 1

√
2

(

|L(w)

0
, 0〉 + (−1)b |L(w)

1
, 1〉

)

AB

where sF, s
′

F
∈ {0, 1}. Bob extracts the syndrome value s′

F
+ sF.

Proceeding thus pairwise, he can obtain
(

ϕ
2

)

sums, where ϕ is

the number of flipping stabilizers. Provided this isn’t smaller

than ϕ, i.e.,

(

ϕ

2

)

≥ ϕ,

we have enough sums to simultaneously solve for the ϕ eigen-

values of the flipping stabilizer generators.

From the error syndromes he can identify E and correct

it to obtain the original state Eq. (18). To this end, we re-

quire to identify the sublogical operations, i.e., encoded oper-

ations for the subspace spanned by {|L0〉 , |L1〉}. Denote by qi

(1 ≤ i ≤ n) the bits constituting vector ~q. Then the encoded

Z operator in the subspace spanned by |L0〉 and |L1〉, denoted

Z, is given by
⊗n

i=1
Zqi , with the identity Z0 = I. For exam-

ple, given ~q = 010011, we have Z = Z2Z5Z6. This ensures

that Z |L0〉 = |L0〉, Z |L1〉 = − |L1〉. Recollecting that the flip-

ping and non-flipping stabilizers behave, respectively, like the

encoded identity I and X in the subspace S(w), we find that

[Z, S NF] = 0 and {Z, S F} = 0.

Now Bob applies Controlled-S F to the stego-state in Eq.

(18), with the transmitted qubits as target and his entangled

qubit as control:

|Υ(w, b)〉AB

C−S F−−−−→ |L(w)

0
〉
(

|0〉 + (−1)b |1〉
)

(23)

Measuring his qubit in the X basis, he extracts the secret

message b. Finally, application of the sublogical Hadamard

H ≡ 1√
2
(S F + Z) to the transmitted qubits restores the cover

message

|L(w)

0
〉 H−→ 1

√
2

(|L(w)

0
〉 + |L(w)

1
〉)

. We remark that by virtue of linearity, the secret can be a

quantum state α |b = 0〉 + β |b = 1〉, |α|2 + |β|2 = 1, in which

case the initial entangled state will be α |Φ+〉 + β |Φ−〉 in Eq.

(17). Similarly, the cover message can also be a superposition
∑

w cw |w〉 (
∑

w |cw|2 = 1).

Below we present an example of this protocol using the 5-

qubit code. Consider the [[n = 5, k = 1, d = 3]] QECC code
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for steganographic communication defined by the stabilizer

generators S 1 = XZZXI, S 2 = XIXZZ, S 3 = IXZZX, S 4 =

ZXIXZ. For the cover message w ∈ {0, 1}, we use the encoded

cover message state |wL〉 =
∏4

i=1(I⊗5 + S i) |w〉⊗5 [28]. For the

cover message w = 0, the logical state is

|0L〉 =
1

4

(

|00000〉 + |10010〉 + |01001〉 + |10100〉

+ |01010〉 − |11011〉 − |00110〉 − |11000〉
− |11101〉 − |00011〉 − |11110〉 − |01111〉

− |10001〉 − |01100〉 − |10111〉 + |00101〉
)

. (24)

We choose ~q = (0, 0, 0, 1, 1). In the manner of Eqs. (13) and

(14), we have

|0L〉 =
1
√

2

(

|L0〉 + |L1〉
)

, (25)

where

|L0〉 =
1

2
√

2

(

|00000〉 + |10100〉 − |11011〉 − |11000〉

− |00011〉 − |01111〉 − |01100〉 − |10111〉
)

,

|L1〉 =
1

2
√

2

(

|10010〉 + |01001〉 + |01010〉 − |00110〉

− |11101〉 − |11110〉 − |10001〉 + |00101〉
)

. (26)

Beforehand, sender Alice and receiver Bob pre-share the Bell

state |Φ+〉. Alice encodes the secret message b as in Eq. (17).

She then encodes her particle in the manner of Eq. (18),

|Υ(0, b)〉AB ≡ 1√
2

(

|L0〉 |0〉 + (−1)b |L1〉 |1〉
)

AB
. She transmits

her 5 qubits to Bob through the noisy channel and Bob re-

ceives the erroneous state as given in Eq. (19) E |Υ(w, b)〉,
with E being an arbitrary single-qubit error. We assume that

his entangled particle is error-free, an assumption justified be-

cause his qubit hasn’t been transmitted across the channel.

Here S 1, S 3 and S 4 are the flipping stabilizers, while S 2

is the only non-flipping stabilizer. Upon receiving Alice’s

qubits, Bob implements the following protocol:

(1) For the non-flipping stabilizer, Bob can extract the syn-

drome by direct measurement of the stabilizer on the first 5

qubits.

S 2E |Υ(0, b)〉AB = S 2E(|L0〉 |0〉 + (−1)b |L1〉 |1〉)
= (−1)s2 ES 2(|L0〉 |0〉 + (−1)b |L1〉 |1〉)
= (−1)s2 E |Υ(0, b)〉AB . (27)

(2) For the flipping stabilizers, Bob extracts the the pairwise

sums of syndromes by joint measurement of pairs of stabiliz-

ers. For example

S 4S 3E |Υ(0, b)〉AB = S 4S 3E(|L0〉 |0〉 + (−1)b |L1〉 |1〉)AB

= (−1)s3S 4ES 3(|L0〉 |0〉 + (−1)b |L1〉 |1〉)AB

= (−1)s3S 4E(|L1〉 |0〉 + (−1)b |L0〉 |1〉)AB,

= (−1)s3+s4 ES 4(|L1〉 |0〉 + (−1)b |L0〉 |1〉)AB

= (−1)s3+s4 E |Υ(0, b)〉AB . (28)

By measuring S 3S 4, Bob obtains the sum of syndromes, or

s3 + s4.

(3) By simultaneously solving the syndrome sums s3 +

s4, s1+ s3, s1+ s4, Bob extracts the individual s j’s, and thereby

determines and corrects error E.

(4) He applies a controlled-S F as in Eq. (23):

|Υ(0, b)〉AB

CNOT−−−−→ |L0〉
1
√

2
(|0〉 + (−1)b |1〉), (29)

and determines b by measuring his qubit in the X basis.

(5) In order to make the cover message available, the

sublogical Hadamard H = 1√
2

(

S 1 + Z4Z5

)

is applied to the

code qubits, which effects the transformation

|L0〉
H−→ 1
√

2

(|L0〉 + |L1〉
) ≡ |0L〉 .

Note that Z4Z5 is the sublogical Z operator, and any other flip-

ping stabilizer could be used in place of S 1.

VI. CONCLUSIONS AND DISCUSSIONS

Quantum steganography implements a quantum version of

classical steganography, providing corresponding advantages

in security, appearance of innocence, and capacity. To enforce

innocence, quantum steganography typically uses pre-shared

correlated bits or entanglement. In this article, we presented

three steganographic protocols that apply this pre-shared re-

source in diverse ways: first, a scheme to optimize prior ebits

by means of a catalytic QECC; second, a scheme that uses

possibly degenerate EAQECCs in place of QECCs and pre-

shared ebits; third, a scheme that uses the phase bit (instead of

the parity bit à la Mihara [12]) of a pre-shared ebit, combined

with QECCs.

We indicate a few possible future directions here. Quan-

tum cryptography is typically a two-step process, involving

establishing shared correlation first before secure transmis-

sion. On the other hand, the cryptography variant of quan-

tum secure direct communication uses a one-step process of

direct message transmission [29, 30]. In line with this, we

may consider the question of design of a protocol for “direct

steganography”, where the innocent appearance can be pro-

duced without pre-shared ebits or bits. Furthermore, quan-

tum cryptography and steganography typically require equal

resources [7], and moreover stego messages can be embedded

within a cryptogram [8]. This prompts the question of whether

any cryptographic protocol can, with minimal additional re-

sources, be turned into a stego protocol. Finally, one direc-

tion worth considering in terms of practical implementation in

quantum steganography is whether the use of QECCs can be

replaced by that of decoherence free subspace (DFS) [31] and

continuous-variable codes such as Gottesman-Kitaev-Preskill

(GKP) code [32].
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