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Abstract—Payment channel networks are an approach to
improve the scalability of blockchain-based cryptocurrencies.
The Lightning Network is a payment channel network built for
Bitcoin that is already used in practice. Because the Lightning
Network is used for transfer of financial value, its security
in the presence of adversarial participants should be verified.
The Lightning protocol’s complexity makes it hard to assess
whether the protocol is secure. To enable computer-aided security
verification of Lightning, we formalize the protocol in TLA+

and formally specify the security property that honest users
are guaranteed to retrieve their correct balance. While model
checking provides a fully automated verification of the security
property, the state space of the protocol’s specification is so
large that model checking becomes unfeasible. We make model
checking the Lightning Network possible using two refinement
steps that we verify using proofs. In a first step, we prove that the
model of time used in the protocol can be abstracted using ideas
from the research of timed automata. In a second step, we prove
that it suffices to model check the protocol for single payment
channels and the protocol for multi-hop payments separately.
These refinements reduce the state space sufficiently to allow for
model checking Lightning with models with payments over up to
four hops and two concurrent payments. These results indicate
that the current specification of Lightning is secure.

I. INTRODUCTION

Blockchain-based cryptocurrencies do not scale well with
respect to their transaction throughput. One approach to im-
prove said scalability are Payment Channel Networks – a
second layer on top of a blockchain that processes pay-
ments without writing a transaction for each payment to the
blockchain. A payment channel between two users is opened
by publishing one transaction on the underlying blockchain.
Once a payment channel is open, it allows for performing an
unlimited number of payments between its two users without
writing to the blockchain. Finally, a payment channel is closed
by publishing a second transaction on the blockchain. In a pay-
ment channel network, the participating users are connected
by payment channels and can perform multi-hop payments
using a path between a payment’s sender and recipient over a
set of payment channels. The first proposed payment channel
network is the Lightning Network [1] built on Bitcoin [2] as
the underlying layer. The Lightning Network is already used
in practice and experiences a rising adoption [3].

Our goal is to verify that Lightning, the Lightning Network’s
protocol, is secure, i.e., an honest user finally retrieves on
the blockchain the user’s correct balance in the payment
channel even if other users do not cooperate or are actively

malicious. A critical part in a payment channel protocol is
the closing of a payment channel: The balance that a user
finally retrieves is determined by the transactions that are
written to the blockchain during the closing of the payment
channel. A user can only be guaranteed to retrieve the user’s
balance from the payment channel if the user is able to close
the payment channel without cooperation of the other party.
Lightning ensures that a user can close a payment channel
independently of the other party by asserting that a user always
has a valid closing transaction that could be published on
the blockchain. After a payment has been performed in a
payment channel, previously valid closing transactions become
outdated but these transactions could still be published on
the blockchain. To disincentivize a dishonest user Alice from
publishing an outdated closing transaction, the other user, Bob,
receives revocation secrets when the closing transaction is
outdated. These revocation secrets enable Bob to punish Alice
by retrieving not only his assets but also the assets of Alice if
Alice would publish an outdated closing transaction.

The revocation mechanism as well as Lightning’s reliance
on time and the number of involved parties make it difficult to
assess whether Lightning actually fulfills the security property.
Such an assessment might be facilitated by computer-aided
methods. In particular, model checking can automatically
verify that a protocol fulfills a property and provide a coun-
terexample if the checked property does not hold for the
protocol under investigation. Lightning is defined by an official
specification [4] that describes all aspects of the protocol and
partially the intuition behind the protocol. The specification
is not directly usable for a security analysis because the
specification contains many implementation details and is
not formalized. To enable the use of model checking for
Lightning, we contribute a specification of Lightning in the
formal language TLA+ [5], [6] that formalizes all protocol
steps and messages that users send during opening, updating,
and closing a payment channel as well as for multi-hop
payments. In particular, the specification models the revocation
mechanism including how users exchange revocation secrets,
build closing transactions, and find and react to outdated clos-
ing transactions. We chose TLA+ because, as a general pur-
pose language, TLA+ allows for specifying arbitrary protocols
and because there are tools supporting different verification
methods, e.g. random state space exploration (simulation),
explicit-state model checking [7], symbolic model checking
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[8], and theorem proving [9]. We also contribute a specification
of the security property of a payment channel network by
defining a secure payment system in TLA+. The security
property formally defines the intuitive property that all honest
users have received their correct balances when the protocol
terminates. Our security model allows parties of the protocol to
become adversarial which means in our model that they omit
sending messages or publishing transactions that are required
to be sent by the protocol or that they publish transactions on
the blockchain other than specified by the protocol. Limitations
of our adversary model are that an adversarial user does not
send arbitrary messages and that adversarial users do not
exchange information.

However, the state space of the specification of Lightning
is so large that model checking is unfeasible. We make model
checking the Lightning Network possible using two refinement
steps that we verify by proofs. In a first step, we prove that
the model of time used in the protocol can be abstracted using
ideas from the research of timed automata [10]. In a second
step, we prove that it suffices to model check the protocol
for single payment channels and the protocol for multi-hop
payments separately. These refinements reduce the state space
sufficiently to allow for model checking Lightning with the
explicit-state model checker TLC [7]. We use TLC to fully
explore the state space of models with payments over up
to four hops and with two concurrent payments. To check
the models also for larger scenarios as well as the whole
stepwise refinement, we use simulation which is a lightweight
alternative to model checking in which not the complete
state space but only random behaviors are explored. While
our approach does not give comprehensive formal correctness
guarantees, it gives confidence that the current specification
of Lightning is secure. We leave writing a complete formal
proof and verifying all refinements using a theorem prover for
future work.

We describe Lightning in more detail and give an in-
troduction to TLA+ in Section II. Related work follows in
Section III. Our approaches for the specification of Lightning
and for the specification of the security property are presented
in in Section IV and Section V. In Section VI, we explain
our approach for verifying that Lightning fulfills the security
property and sketch the ideas behind each abstraction step.
We present the results of model checking in Section VII and
discuss limitations of our approach and ideas for future work
in Section VIII. Section IX concludes the paper.

II. FUNDAMENTALS

In this section, we introduce Lightning and TLA+. We do
not present all the details of Lightning that are part of our
TLA+ formalization, but aim to give an overview of the main
ideas of Lightning that contribute to the protocol’s complexity.

A. Payment Channels: Single-Hop Payments

A payment channel is a protocol between two users that
enables these two users to deposit coins into the payment
channel during opening, to perform payments between the

two users by updating the payment channel, and to retrieve
their final funds by closing the payment channel. The protocol
has to guarantee that its users can close the channel at every
point in the execution of the protocol to retrieve their current
balance, independently of the cooperation of the other user.
Even with an actively malicious channel partner, the protocol
has to ensure that an honest user cannot lose funds as long
as the user actively monitors the underlying blockchain and
reacts to malicious closing attempts.

A payment channel is opened in Lightning by creating a
funding transaction.1 The funding transaction has an input
spending an output from the funding user (funder)2 and
the funding transaction has a multi-signature output that is
spendable only by the two users in the channel together. Just
publishing the funding transaction on the blockchain would
create a dependence of the funder on the other user for
spending the funding transaction’s output as the funding trans-
action’s output can only be spent by the two users together. To
prevent such a dependence, an initial commitment transaction
that spends the funding transaction’s output is created by the
two users and the non-funding user sends their signature for
the initial commitment transaction to the funder who only
publishes the funding transaction after receiving this signature.
Commitment transactions are the ‘main vehicle’ of Lightning.
They are cryptographically signed by both parties and encode
the state of the payment channel and can be executed on the
underlying blockchain. A commitment transaction has at least
two outputs: For each user, there is one output that has an
amount that corresponds to the user’s current balance and
is redeemable only by this user. In the initial commitment
transaction, all funds are spendable by the funder.3

For a payment from one user to the other user in the channel,
an HTLC (Hash Timelocked Contract) is added to the channel.
An HTLC is a contract that encodes the agreement that the
recipient receives a specified amount if the recipient proves
knowledge of a preimage to a specified hash before a specified
time has passed. The process to make a payment is as follows:
The recipient of the payment draws a random value x and
calculates the hash value y “ H px q using a cryptographic
hash function H . The recipient sends y to the sender of the
payment. The sender of the payment adds an HTLC to the
channel by including into a new commitment transaction a
dedicated output which the receiver of the payment can spend
by providing a preimage of y . The amount of coins that are
part of the HTLC are deducted from the payment’s sender’s
output in the new commitment transaction. After the HTLC
is committed to the payment channel, the recipient of the
payment fulfills the HTLC by sending the preimage x to
the sender of the payment. Then, the channel is updated by

1See BOLT 2 and BOLT 3 [4].
2Until recently, Lightning supported only single-funded channels, i.e. only

one user deposits coins into the channel during opening. Our work, therefore,
considers only single-funded channels (see Section VIII).

3This is a simplification; Lightning’s specification allows the funder to send
a small amount to the non-funding user already in the initial commitment
transaction (see [4, push_msat]).
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creating a new commitment transaction without the HTLC
output to remove the HTLC and, in the new commitment
transaction, the HTLC’s amount is added to the recipient’s
balance. If the recipient does not fulfill the HTLC before the
timelock, the HTLC is also removed but the HTLC’s amount
is added back to sender’s balance.

To update the channel for adding or removing an HTLC, the
sender of the payment creates a new commitment transaction
and sends a signature for this new commitment transaction
to the payment’s recipient. Now, the recipient has two valid
commitment transactions, i.e., the current and the new com-
mitment transaction, both signed by the payment’s sender.
As a malicious user might publish an outdated commitment
transaction, outdated commitment transactions need to be
revocable. As a signature to a commitment transaction can-
not be undone, Lightning uses an approach that relies on
incentives: A user can be punished for publishing an outdated
commitment transaction. For each commitment transaction,
there exists a revocation key pair. With knowledge of the
private revocation key, one user can spend all outputs of
the commitment transaction that the user’s counterpart in the
channel has published. During an update of a channel, both
users send each other their signature for the new commitment
transaction and reply by sending the private revocation key for
the then outdated commitment transaction. As the users do not
have the private revocation key for the current commitment
transaction of their counterpart, they cannot punish each other
for correct behavior like publishing the current commitment
transaction. For the security of the protocol, it is crucial
that each user has the private revocation keys for revoking
outdated commitment transactions and that the other user in
the channel does not have the private revocation key for the
latest commitment transaction.

B. Payment Channel Networks: Multi-Hop Payments

If two users do not have a common payment channel
but they are connected over a path of payment channels
of other users, they can make multi-hop payments between
each other. Intermediate users forward the payment over their
channels and might receive a small fee for their service.
To prevent intermediaries from stealing or loosing coins,
it must be guaranteed for a multi-hop payment that each
intermediary receives an incoming payment on one channel if
and only if the intermediary forwards the payment on another
channel. Also, the sender should send the payment to an
intermediary if and only if the recipient receives the payment
from an intermediary. Lightning uses HTLCs for multi-hop
payments to achieve these security properties. As in a single-
hop payment, the recipient of a payment draws a random
value x , calculates the hash value y “ H px q, and sends y
to the sender of the payment. The sender of the payment
creates an HTLC with the first intermediary using y as the
hash condition for the HTLC. The intermediary creates an
HTLC with the next hop and each intermediary repeats this
process until the last intermediary creates an HTLC with the
recipient of the payment. The recipient fulfills the HTLC by

sending x to the last intermediary. By fulfilling the HTLC, the
payment’s recipient receives the payment’s amount from the
last intermediary. Again, each intermediary forwards the secret
value x fulfilling the HTLCs along the route until the sender
receives x and pays the first intermediary. The timelocks of
the HTLCs are chosen in a descending order from the sender
to the recipient, so that each intermediary has enough time to
fulfill the incoming HTLC from the previous hop if the next
hop fulfills the outgoing HTLC.

C. TLA+

We specify Lightning and the security property in TLA+.
The Temporal Logic of Actions (TLA) [5] is a temporal logic
to reason about properties of a system. The language TLA+ is
based on TLA and used to formalize the behavior of a system.
Using the explicit-state model checker TLC [7], the symbolic
model checker Apalache [8], or a theorem prover (see TLAPS
[9]), invariants and properties can be verified. TLA+ has been
used repeatedly to reason about the properties of systems
and protocols (see [11], [12]). We chose TLA+ because, as
a general purpose language, TLA+ allows for specifying arbi-
trary protocols although abstractions are required for modeling
cryptographic primitives (see Section IV) and because there
are tools supporting different verification methods.

In TLA+, the state of a system is described by a set of
variables v . Formally, a state is an assignment of values
to variables. The state space of a system is the set of all
possible states. A behavior is a sequence of states. A system is
described by defining the set of valid behaviors of the system.
A step s Ñ t is a pair of successive states s and t in a
behavior. An action is a function that takes a step and assigns
a boolean value to it. If an action A assigns TRUE to a step
s Ñ t , we say that the step s Ñ t is an A step or a step of A
and use the notation s

A
ÝÑ t . An action is enabled in a state s

if there exists an A step starting at state s .
The definition of a system in TLA+ is the set of all valid

behaviors of the system. A system is described inductively
by a set of initial states and an action that determines valid
steps of the system. The set of initial states is defined as the
set of states for which a formula with the name Init is valid.
The formula Init has at least one conjunct for each variable
of the state that describes the valid values of the variable in
the initial state. The action with the name Next determines
which steps are allowed for the system to change its state. By
starting in an initial state and performing steps allowed by the
action Next , the behaviors of the system can be generated. A
system with variables v is represented as a formula Spec “
Init ^2rNextsv where 2 is the always operator of temporal
logic and rNextsv means Next or a stuttering step in which all
variables v are unchanged. An additional conjunct may be a
fairness condition WFv pAq that asserts that an A step is taken
if the action A is enabled continuously. The Next action is
typically a disjunct of multiple subactions that define different
ways for the system’s state to be updated. An action A is
described as a conjunction of multiple conjuncts that describe
the state in which the action A is enabled and the new state
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that is reached by an A step. Primed variables (e.g., v 1) are
used to describe the values of the variables in the new state and
unprimed variables (e.g., v ) describe the values of the variables
in the current state. The subactions of Next can be grouped
into modules. In the TLA+ formalization of Lightning, we
use modules to structure the specification by grouping related
functionality in a module. Each module can be instantiated
multiple times, parameterized with different sets of variables.
We use such instantiations in the formalization to instantiate
a module once for each user and channel.

The variables of a system can be internal or external.
Internal variables cannot be seen by an external observer. From
the outside, what a system does is described by the external
variables. In TLA+, it can be expressed that one system
implements another system. A specification S1 implements
(or, equally, refines) specification S2, if all external variables
of specification S1 are also external variables of specification
S2 and the way how the external variables of specification
S1 are changed in a behavior of specification S1 also fulfills
specification S2. Internally, the two specifications might work
very differently and have different sets of internal variables. If
specification S1 implements S2, we use the notation S1 ñ S2.

To show that specification S1 implements S2, we specify
a mapping from the state space of specification S1 to the
state space of S2. With a slight formal incorrectness, we also
say that behaviors are mapped by the mapping whereby we
mean that a behavior σ1 of specification S1 is mapped to a
behavior σ2 of specification S2 by applying the mapping to
all states in σ1. The mapping is a refinement mapping if it
maps every behavior σ1 of specification S1 to a behavior σ2

of specification S2 so that the values of the external variables
in both behaviors are equal and σ2 is a valid behavior of
specification S2. If there exists a refinement mapping from
specification S1 to specification S2, then specification S1
implements specification S2 [13].

D. Explicit Real-Time Specifications

Lightning depends on time to decide whether an HTLC’s
timelock has passed or not. Thus, a specification of Lightning
needs to be a real-time specification that models time. While
there are languages especially for modeling real-time systems
(e.g., KRONOS [14], UPPAAL [15]), we use TLA+, a general
purpose language. Real-time systems can be modeled in TLA+

using explicit real-time specifications [16] that we define
as follows. An explicit real-time specification has a set of
variables for clocks that model the value of time. There must
be at least one clock; however, there might also be multiple
clocks. Because time is defined in Lightning by the height of
the blockchain, we restrict all clocks to have discrete values.
Progress of time is modeled by an AdvanceTime action (also
called Tick in the literature) that advances each clock by the
same non-negative integer value and leaves all other variables
unchanged. An explicit real-time specification is similar to

the model of a timed automaton4 [10]. In Section VI-A, we
apply research results from the area of timed automata to the
Lightning specification.

III. RELATED WORK

Aspects of Bitcoin and Lightning were formally analyzed in
previous work. Andrychowicz et al. [17] modeled Bitcoin con-
tracts as timed automata and verified them using the UPPAAL
model checker [15]. Setzer [18] modeled Bitcoin transactions
in Agda [19]. Boyd et al. [20] created a model of a blockchain
in Tamarin and analyzed Hash Timelocked Contracts, a prim-
itive that is used by Lightning. Hüttel and Staroveški [21],
[22] formalized four subprotocols of Lightning and analyzed
these protocols using ProVerif for secrecy and authenticity
properties. These works on Lightning are complementary to
the problem definition in Section I as they show lower level
properties of subprotocols but not the security of the combined
protocol. Rain et al. [23], [24] formalized two subprotocols
of Lightning and analyzed these protocols mechanically for
game-theoretic security. Their work is complementary to the
problem definition above as their formalization of the protocol
assumes that an honest party actually can punish a dishonest
party. This assumption is a property that we aim to prove.

The security of Lightning was analyzed before by Kiayias
and Thyfronitis Litos [25]. Compared to our formalization, the
protocol definition of [25] considers more details about the
cryptographic aspects. They specified an ideal functionality of
Lightning which is a detailed description of how the parties
in a payment channel network behave. Compared to our defi-
nition of the security property, the complexity and the length
of this ideal functionality make it hard to assess whether the
ideal functionality corresponds to a user’s intuitive expectation
of security. They used the UC framework [26] to prove that
Lightning securely implements this ideal functionality even in
the presence of arbitrary behaving adversaries. While working
on our TLA+ formalization of Lightning, we found two subtle
flaws in the formalization of [25] of Lightning that render the
formalized protocol insecure. However, we believe that these
flaws can be corrected and that Lightning fulfills the ideal
functionality formalized in [25]. The first flaw concerns an
incomplete description of how a user reacts to maliciously
published outdated transactions. The second flaw is more
subtle and concerns how the data in an input is linked to
the spending methods of an output that is spent by this
input. A detailed description of the flaws can be found in
Appendix A. While we found the first flaw by comparison
of our formalization to the formalization in the paper, we
found the second flaw only by model checking when we
had a similar flaw in a draft of our formalization. While
the specific flaws can be fixed with low effort, it is difficult
and tedious to manually find such flaws in a proof. Using
our approach of model checking instead, such issues can be
revealed automatically.

4One difference is that timed automata are typically defined with real
numbered values for clocks while the time in Lightning is the height of the
blockchain which is always an integer.
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Weintraub et al. [27] analyzed the messages exchanged
during a single-hop transaction in Lightning. They inferred
properties from the official Lightning specification and found
by model checking an ambiguity in the official specification.
This shows the need for an unambiguous formal specification
of Lightning. Further, Weintraub et al. present an attack that
relies on honest parties not following the Lightning protocol.
Specifically, they assume that parties consider a payment
processed before the payment is actually processed and that,
in case of a network partition, the channel parties agree out-
of-band on the outcome of a payment instead of closing the
channel on the blockchain after a reasonable timeout. In this
work, we assume that honest parties follow the protocol. We
specify explicitly at what point a payment can securely be
considered processed (see Section IV) and check that from
this point on an honest party is guaranteed to receive the
payment. Moreover, our work is a step towards a formal and
unambiguous official specification of Lightning.

Recently, Fabiański et al. [28] formally verified a simplified
variant of Lightning in Why3. They also formalized the infor-
mal security property that honest users do not loose money.
In contrast to our approach of defining the security property
by defining the behavior of a secure system, they use a game-
based definition which is more complex. While we assume
an adversary with limited capabilities, they formally verified
that the formalized protocol is secure even in the presence of
arbitrary behavior. Their work shows that a formal verification
of even a variant of Lightning considering only single payment
channels without HTLCs is a challenging effort. Their work
as well as our work could be used as starting point for a
formal verification of a more complete model of the Lightning
protocol.

IV. FORMALIZATION OF LIGHTNING

To be able to use model checking for Lightning, we need
to formalize it first, because there exists only an informal
official specification. In this section, we explain important
aspects of our TLA+ formalization of Lightning to show the
assumptions and the abstraction layer of the formalization.
The complete TLA+ formalization is available on Github5.
A detailed presentation of the official specification and our
formalization can be found in Appendix B.

The TLA+ formalization specifies a system with an arbitrary
number of users. The behavior of a user is specified as in
the official specification [4] with some simplifications that
we detail below. The key task of Lightning is to ensure
that each user can spend the right transaction output at the
right time. Therefore, our model of Lightning focuses on
the protocol logic in which users exchange data to build
transactions, publish transactions, and observe transactions on
the blockchain. To keep the complexity at a manageable level,
we do not model fees and we abstract cryptographic primitives
like signatures and hash functions.

5https://github.com/kit-dsn/lightning-tla

To ensure that our TLA+ formalization of Lightning cap-
tures the behavior of Lightning as closely as possible, the
TLA+ formalization follows the structure of the official spec-
ification. We make use of the same identifiers for messages
as in the official specification, and the states of HTLCs in the
formalization can be mapped to those used in Core Lightning6,
an implementation of Lightning.

Lightning uses primitives such as signatures and hash func-
tions that are not directly available in TLA+. For the formal-
ization, we make the perfect cryptography assumption that the
adversary cannot break cryptographic primitives, and we use a
symbolic representation of cryptographic keys and signatures
as done in previous work (e.g., [17], [29]). We abstract these
primitives by focusing on their relevant properties that are
used in Lightning. For example, Lightning is based on the
assumption that a hash function is deterministic and easy to
evaluate given the preimage but cannot be reverted given a
hash value and that two different inputs to a hash function
result in two different outputs. In the TLA+ formalization,
the preimages that are used for multi-hop payments are not
randomly generated but are deterministically assigned based
on the id of the associated payment. We model the hash value
of a preimage to be equal to the preimage itself and distinguish
hashes and preimages by the names of the variables in which
a preimage or hash value is stored. In Bitcoin, transaction
identifiers are defined as a hash over the transaction. In the
formalization, we model transaction identifiers by drawing a
new unique value for each transaction when the transaction is
created and including that identifier in the transaction.

The TLA+ formalization contains a model of the blockchain
and all transaction types used in Lightning defining the con-
ditions how each transaction output can be spent. We model
publishing a transaction on the blockchain by a single step that
happens instantly, i.e., we assume that users have blockchain
connectivity and we make the simplifying assumption that
each transaction to be published is included in the next block
being created. For the communication between users, we
model that messages are delivered reliably and in order but
can be arbitrarily delayed.

In Lightning, the height of the blockchain is used as logical
time that is relevant for the timeout of HTLCs. We refer to
the height of the blockchain as time, which is formalized as
a variable that is advanced by arbitrary integer steps. Thus,
the specification is an explicit real-time specification (see
Section II-D). Some actions in the protocol are urgent (see
[30]) meaning that they need to happen before a certain point
in time, e.g., a user has to fulfill a HTLC before the HTLC’s
timeout. We model this by letting each user specify deadlines
and not letting time advance beyond a deadline until a step is
taken that removes the deadline.

As required by the security model of Lightning, the formal-
ization models that users can be adversarial. In principle, there
are four types of adversarial behavior: (1) Omitting sending a

6https://github.com/ElementsProject/lightning/blob/master/common/htlc
state.h
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message to another user. (2) Omitting publishing a transaction
on the blockchain. (3) Sending a message to another user with
arbitrary content. (4) Publishing transactions on the blockchain
other than specified by the protocol. The adversary model
for the TLA+ formalization allows the adversary to omit
sending messages (1) or publishing transactions (2). Also, the
adversary is allowed to create and publish certain transactions
other than specified by the protocol (4). Transactions published
by an adversary are only relevant if they spend an output of
a transaction that is related to the payment channel. In the
formalization, an action models that the adversary publishes
transactions in two ways: First, by finding all outputs that are
spendable for the adversary and publishing a new transaction
that spends the output to an output that is owned by the adver-
sary. Second, by signing and publishing a transaction that the
adversary has already received the other user’s signature for
(e.g., an outdated commitment transaction). We do not model
that the adversary sends messages with arbitrary content (3)
because this would significantly increase the specification’s
complexity. In practice, the effect of the adversary sending
messages with arbitrary content is limited because users verify
every message they receive. Messages that have an invalid
payload or that are received at an invalid point in the protocol
execution are ignored. To check the verification of messages,
we explicitly model the verification of every received message
and the message’s payload, e.g., the verification of signatures
and preimages.

We model that any user in the specification can become
adversarial. However, a limitation of our adversary model is
that we do not allow information exchange between adversarial
users which would model a single adversarial entity control-
ling multiple users. This restriction simplifies the verification
of the specification and we consider it future work to extend
the specification with a broader adversary model.

V. SECURITY PROPERTY

Our goal is to model check the security of Lightning.
Our notion of security is captured by the following informal
definition. We define a user as being honest if the user behaves
as required by the specification of Lightning.

Definition 1 (informal security). An honest user will finally
get paid out at least the user’s correct balance.

To make this definition precise, we formalize the security
property. One approach to define security are low-level invari-
ants and properties such as ‘a user’s balance is always positive’
or ‘if a user has received the preimage for an outgoing HTLC,
the associated incoming HTLC of the user will be fulfilled’.
While formalizing the specification of Lightning, we regularly
used such properties to check the draft of the specification for
flaws. However, it is hard to tell for such properties whether
they are actually required for the protocol to be secure. Also,
it is hard to tell whether these low-level properties imply what
a user intuitively expects as a security property.

The informal definition implicitly concerns four variables:
1. Whether a user is honest. The security property only applies

MODULE IdealPaymentNetwork
VARIABLES BlockchainBalances, ChannelBalances,

Payments, Honest
CONSTANTS UserIds, InitialPayments, Numbers

IdealUserpuserq
∆
“ INSTANCE IdealUser WITH

UserId Ð user ,
ChannelBalance Ð ChannelBalancesruser s,
BlockchainBalance Ð BlockchainBalancesruser s,
Payments Ð Paymentsruser s,
Honest Ð Honestruser s

IdealPayments
∆
“ INSTANCE IdealPayments

Spec
∆
“

^ @ user P UserIds : IdealUserpuserq !Spec
^ IdealPayments !Spec

Fig. 1. Formal definition of the security property as an idealized payment
network. The module IdealPaymentNetwork specifies that each user behaves
as specified by the module IdealUser (see Fig. 2) and that the users’ views
on which payments have been processed are consistent as specified in the
module IdealPayments (see Fig. 3).

to a user who follows the protocol. 2. A user’s balance in a
channel which defines the correct balance that a user expects
to have. This balance is affected by the payments that are
sent and received. 3. A user’s view on the status of the user’s
payments, i.e., whether a payment has been sent or received.
4. A user’s balance on the blockchain which are the funds that
a user can directly access. The amount that a user is finally
paid out is added to this balance. To formalize the informal
definition, we use TLA+ to define how these four variables are
allowed to change.

We formalize the security property of Lightning by defining
the behavior of a secure payment system. The full specification
of the security property is shown in Figs. 1 to 3. The secu-
rity property has four variables Honest, ChannelBalances,
Payments, BlockchainBalances matching the variables de-
scribed above. The security property describes which changes
of these variables are allowed. The definition of the security
property is divided into three modules. The module IdealUser
(see Fig. 2) defines four actions Deposit, Pay, and Withdraw
that describe how the variables of single user can change.
The module IdealPayments (see Fig. 3) ensures that the users’
views on which payments have been processed are consistent.
The module IdealPaymentNetwork (see Fig. 1) connects the
two other modules by defining that for all users in the payment
network the specification of the module IdealUser must hold
and that the specification of the module IdealPayments must
hold.

Initially, the variables are initialized (see Fig. 2) so that
each user has a channel balance of zero, an integer balance on
the blockchain, and a set of payments that the user wants to
send or receive. The variable Honest specifies for each user
whether the user is honest or dishonest.

The action Deposit describes a deposit by defining that a
user’s blockchain balance may decrease by a certain amount
and the user’s channel balance increases by the same amount.
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MODULE IdealUser
EXTENDS Integers, SumAmounts
VARIABLES BlockchainBalance, ChannelBalance,

Payments, Honest
CONSTANTS UserIds, UserId , InitialPayments, Numbers
ASSUME Numbers Ď Int

Init
∆
“

^ BlockchainBalance P Numbers
^ ChannelBalance “ 0
^ Payments “ tpmt P InitialPayments :

_ pmt .sender “ UserId
_ pmt .receiver “ UserIdu

^ Payments P SUBSET ramount : Numbers, id : Numbers,
sender : UserIds, receiver : UserIds,
state : t“NEW”, “ABORTED”, “PROCESSED”us

^ Honest P tTRUE, FALSEu

Deposit
∆
“

^ D amount P 1 . . BlockchainBalance :
^ BlockchainBalance 1

“ BlockchainBalance ´ amount
^ ChannelBalance 1

“ ChannelBalance ` amount
^ ChannelBalance 1

P Numbers
^ UNCHANGED xPayments, Honesty

Pay
∆
“

^ DP P SUBSET tpmt P Payments : pmt .state “ “NEW”u :
D r P rP Ñ t“ABORTED”, “PROCESSED”us :

^ Payments 1
“ pPayments zPq

Y trp EXCEPT ! .state “ r rpss : p P Pu

^ LET PP
∆
“ tp P P : r rps “ “PROCESSED”u

rBal
∆
“ SumAmountsptp P PP :

p.receiver “ UserIduq

sBal
∆
“ SumAmountsptp P PP :

p.sender “ UserIduq

IN ^ ChannelBalance ´ sBal ě 0
^ ChannelBalance 1

“ ChannelBalance
` rBal ´ sBal

^ ChannelBalance 1
ě 0

^ UNCHANGED xHonest , BlockchainBalancey

Withdraw
∆
“

^ BlockchainBalance 1
P Numbers

^ BlockchainBalance 1
ě BlockchainBalance

^ D amount P 0 . . ChannelBalance :
^ ChannelBalance 1

“ ChannelBalance ´ amount
^ Honest ùñ BlockchainBalance 1

ě

BlockchainBalance ` amount
^ UNCHANGED xPayments, Honesty

Next
∆
“ Deposit _ Pay _ Withdraw

vars
∆
“ xBlockchainBalance, ChannelBalance,

Payments, Honesty
Spec

∆
“

^ Init
^ 2rNextsvars
^ WFvarspChannelBalance ą 0 ^ Honest ^ Withdrawq

Fig. 2. Part of the security property that defines how a user’s variables are
allowed to change. The action Deposit specifies how a user deposits funds
into the channel. Pay specifies that payments are either processed or aborted
and the channel balance is updated accordingly. Withdraw specifies that
the channel balance is withdrawn to the blockchain. The fairness condition
ensures that a user will withdraw if the user’s channel balance is positive.

MODULE IdealPayments

EXTENDS Integers
VARIABLE Payments
CONSTANTS UserIds, Numbers

Init
∆
“

^ @ user P UserIds :
Paymentsruser s P SUBSET ramount : Numbers,

sender : UserIds, receiver : UserIds, id : Numbers,
state : t“NEW”, “ABORTED”, “PROCESSED”us

Pay
∆
“

^ @ user P UserIds :
_ UNCHANGED Paymentsruser s

_ DP P SUBSET tp P Paymentsruser s :
p.state “ “NEW”u :

^ D r P rP Ñ t“ABORTED”, “PROCESSED”us :
^ @ p P P :

pr rps “ “PROCESSED” ^ p.sender “ userq

ùñ D rp P Payments 1
rp.receiver s :

^ rp.id “ p.id
^ rp.state “ “PROCESSED”

^ Paymentsruser s
1

“ pPaymentsruser s zPq

Y trp EXCEPT ! .state “ r rpss : p P Pu

Spec
∆
“ Init ^ 2rPaysPayments

Fig. 3. Part of the security property that defines that the sender of a payment
may only see the payment as processed if the receiver of the payment sees
the payment as processed.

The action Withdraw describes a full withdraw by defining
that a user’s channel balance may be set to 0 and, for an
honest user, the user’s blockchain balance must increase by at
least the user’s channel balance. For dishonest users, it is only
guaranteed that a dishonest user’s blockchain balance does not
decrease. The action Pay of the module IdealUser describes
the execution of a set of payments by defining that the
sending users’ channel balances are decreased by the amounts
of sent payments and the receiving user’s channel balances
are increased by the respective amounts. Payments can be
aborted keeping channel balances unchanged. Intuitively, one
expects from a secure payment network that the sender of a
payment sees the payment as sent (and the payment’s balance
deducted from the user’s channel balance) only if the receiver
of the payment sees the payment as received. This condition
is enforced by the action Pay in the module IdealPayments
which defines that a payment can only be sent if the receiver
of the payment has already received the payment or receives
the payment in the same step. Further, the module IdealUser
defines a fairness condition ensuring that the system does not
terminate before all users have been paid out.

In the next section, we describe how we verify that Light-
ning implements the security property as defined above. In our
formalization of Lightning, the BlockchainBalances variable
is refined as the sum of unspent transaction outputs on the
blockchain that a user can exclusively spend. In the view
of each user, the state of a payment changes from NEW
to PROCESSED when the corresponding HTLC is fulfilled.
Because we verify that using Lightning with this definition of a
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processed payment fulfills the security property, we also clarify
how Lightning can securely be used: Honest users who sell
a product in exchange for a payment can securely deliver the
product once they have fulfilled the corresponding incoming
HTLC and do not need to wait for the fulfilled HTLC to be
removed from the channel.

Because our specification of the protocol allows for ad-
versarial behavior, the result that the protocol specification
implements the secure payment system means that no modeled
adversarial behavior can break the security property, i.e., the
countermeasures implemented in the protocol are sufficient.

VI. MODEL CHECKING THE SECURITY OF LIGHTNING

In this section, we give an overview of how we make
it possible to model check that the TLA+ specification of
Lightning (see Section IV) fulfills the security property (see
Section V). To this end, we construct a stepwise refinement
from the specification of Lightning to the security property.
The structure of this stepwise refinement is graphically shown
in Fig. 4.

Our goal is to model check that the TLA+ formalization of
Lightning fulfills the security property, i.e., that specification
pI q implements specification pV q. The idea of the stepwise
refinement is to use multiple abstractions to show that, transi-
tively, the specification of Lightning implements the security
property. The structure of our approach as well as of this
section is as follows. Focusing on the first abstraction 1
in Section VI-A, we prove that specification pI q implements
specification pII q in which the progress of time is modeled
more efficiently. In Section VI-B, we abstract from the details
of the payment channel protocol by defining specification
pIII q in which channels are updated in idealized steps (see 2 ).
We prove the abstraction 2 by showing that each individual
channel in specification pII q refines a channel in specification
pIII q. These individual channels are modeled in specifications
pIIaq and pIIIaq and we check the refinement 2a between
these specifications by model checking. In Section VI-C, after
another abstraction 3 to optimize the modeling of time, we
use model checking to check (see 4 ) that specification pIV q
implements the security property defined in specification pV q.
In this section, we present the ideas behind the proofs and
briefly sketch the proofs. The full proofs can be found in
Appendices C to G.

A. Improved Model of Time

The protocol as specified in specification pI q is too complex
even for model checking because of the large number of
possible states of the protocol. One reason for the huge state
space is the modeling of time. In Lightning, time is defined by
the height of the blockchain. There are many states that only
differ by their value of time and are equivalent in the sense that
they have the same futures. For example, consider a state s in
which the value of time is 1 and there exists a single HTLC
with a timelock of 10. Consider a state s 1 that is equal to
state s except that the value of time in state s 1 is 2. Further,
assume that the only conditions in the specification that depend

on the value of time are conditions that verify whether an
HTLC’s timelock has passed. Then, the same future states
can be reached from states s and s 1 because, for a condition
whether the HTLC’s timelock has passed, it does not matter
whether the value of time is 1 or 2. Consequently, it suffices to
consider only one of the states s and s 1 during model checking.
This equivalence of the states s and s 1 is captured by the
following definition of bisimilarity [31] for explicit real-time
specifications as defined in Section II-D.

Definition 2 (Bisimilarity). A bisimulation is a binary relation
R over states so that for all ps, s 1q P R it holds that:

1) If s A
ÝÑ t for some state t and an action A, then s 1 A

ÝÑ t 1

for some state t 1 and pt , t 1q P R.
2) If s 1 A

ÝÑ t 1 for some state t 1 and an action A, then s
A
ÝÑ t

for some state t and pt , t 1q P R.

If ps, s 1q P R, we say that the states s and s 1 are bisimilar.

Intuitively, two states s and s 1 are bisimilar if for every step
that is possible from state s there exists a matching step of
the same action starting at state s 1 and the reached states are
bisimilar. As we defined the AdvanceTime action of an explicit
real-time specification so that it increases the clocks by any
non-negative integer value, an AdvanceTime step from state
s to state t might be matched by an AdvanceTime step from
state s 1 to state t 1 that increases time by a different value.
In the area of timed automata [10], this notion of bisimilarity
defined above is usually referred to as untimed bisimilarity
[32] or time-abstracting bisimilarity [33].

Prior work (e.g. [10], [33]) has proposed to improve model
checking of timed automata by exploiting this type of bisim-
ilarity. The idea behind the optimization is to group all states
that are bisimilar in an equivalence class, referred to as a zone.
A zone graph is constructed by connecting zone z1 to zone
z2 if zone z1 contains a state from which a step to a state of
zone z2 exists. During model checking, it suffices to explore
the zone graph instead of the possibly much larger original
state graph. In practice, the zone graph can be explored by
considering only one representative state of each zone during
model checking. E.g., we define AdvanceTime for exploring
the zone graph to advance to the next zone by advancing the
value of time to the lowest time of the states in the next zone.

In a simplified specification of the Lightning protocol with-
out on-chain transactions, the only time-dependent conditions
would check whether the timelock of an HTLC has passed.
Thus, states with time values on the same side of all HTLCs’
timelocks would be in the same zone. In a scenario with two
HTLCs, states that are equal except for the value of time could
be grouped into three zones depending on whether a state’s
value of time is below, between, or higher than both HTLCs’
timelocks (see Fig. 5a). In Lightning however, transactions
can be published with outputs carrying a relative timelock
that allows the output to be spent only a certain time after
the transaction has been published. Imagine a scenario with
two HTLCs with the timelocks t1 and t2 and one unpublished
transaction tx that has a relative timelock r . A state in this
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Fig. 4. Structure of the stepwise refinement to show that the Lightning protocol pI q refines the security property pV q. Specification pI q is presented in
Section IV, specification pV q in Section V, and the intermediate specifications in Section VI. The correctness of each step is either proven or model checked.
Additionally, we check the refinement steps as well as the whole stepwise refinement using simulation, i.e., non-exhaustive model checking (see Section VII).
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Fig. 5. Zones in which bisimilar states are grouped in a scenario a) with two
HTLCs with timelocks t1 and t2 and b) with two HTLCs and an unpublished
transaction tx with an output that has a relative timelock r .

scenario will be in one of five zones (see Fig. 5b) because
zones have to be split to distinguish different futures: If the
value of time in the state is below t1 then it has to be
distinguished whether the time is below t1´ r or above t1´ r
because, if the transaction tx is published before t1´ r , there
will be a future state in which the transaction tx is spendable
before time t1. However, if the transaction tx is published
after t1 ´ r there will be a future state in which the HTLC
with the timelock t1 has timed out and the transaction tx
cannot be spent yet. This example shows that, to distinguish
in which order the relative timelocks of transaction outputs
and the absolute timelocks of HTLCs are reached, a higher
number of zones is required. The number of zones in the

specification of Lightning is even higher than indicated in
the simplified example above because, if multiple transactions
with relative timelocked outputs can be published, the order of
how these transaction outputs become spendable needs to be
encoded in the zone graph, too. We developed a refinement
mapping that maps bisimilar states to the representatives of
their respective zones. Using this mapping, the state space
is reduced. However, we found this reduction still not to be
sufficient to allow for efficient model checking.

A source of complexity for the time-optimized specification
is that the zone graph as described above encodes information
about the order of how future timelocks are reached. However,
Lightning does not depend on the order of how relative
timelocked outputs become spendable. Therefore, we can
further simplify the zone graph used by the time-optimized
specification in the following way: The subsequent zones of
each zone are the zones in which the time has reached the
next HTLC timelock or the age of a transaction has reached the
relative timelock of one of the transaction’s outputs. For better
comprehensibility of the specification, we model time using
multiple clocks in the specification: One variable represents
the absolute value of time and, for each published transaction,
a new clock is created that models the age of a transaction.
When a transaction is published, a new transaction clock
is started that runs with the same speed as the clock for
the absolute value of time. Consequently, the AdvanceTime
action is defined in the time-optimized specification pII q as
follows: Time advances to the next point in time at which a
new zone for the time clock starts (i.e., HTLC timelock) or the
transaction age clock of a transaction (or multiple transactions)
advances to the next point in time at which a new zone for
this transaction age clock starts (i.e., the relative timelock of
one of the transaction’s outputs).

With this change in the time-optimized specification, the
state space is reduced to a greater extent than with approaches
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building the zone graph as the bisimulation quotient automaton
(see [31], [33]). These approaches from prior work have the
property that the zone graph is bisimilar to the original spec-
ification which means that for every behavior in the original
specification there exists a behavior in the zone graph and vice
versa. With our simplification of the zone graph, the time-
optimized specification becomes more abstract and allows for
behaviors that are not possible in the original specification.
For example, a relative timelocked output of a transaction tx2
might be spendable before a relative timelocked output of a
transaction tx1 although transaction tx1 was published before
transaction tx2. For the stepwise refinement, we only need
that the original specification implements the time-optimized
specification or, in other words, that the original specification
is similar to the time-optimized specification, i.e., that for
every behavior in the original specification there exists a
behavior in the time-optimized specification.

We prove that the original specification pI q refines the time-
optimized specification pII q by defining a refinement mapping
1 from specification pI q to specification pII q and proving

the correctness of this refinement mapping. The proof can be
found in the appendix. In Appendix C we introduce notation
and generalized approach for time optimization of explicit
real-time specifications in TLA+. We prove the generalized
time optimization in Appendix D. In Appendix E we prove
that the optimization can be applied to specification pI q. The
refinement mapping 1 maps a state s to a state sR that is
the zone representative of the respective zone by setting each
clock in state sR to the lowest value that the clock can have
in the respective zone. In the example of Fig. 5b, a state in
Zone 2a would be mapped to a state where the value of time
is set to t1. The idea of the proof is to show that each step
of specification pI q starting in state s is mapped to a step
of specification pII q starting in state sR. An AdvanceTime
step starting in state s is either a step within the same zone
or a step that advances to a new zone. A step that stays in
the same zone is mapped to a stuttering step in specification
pII q. A step that advances to a new zone is mapped to a step
in specification pII q from sR to a next zone representative.
Further, we prove for each non-AdvanceTime action in the
specification that all steps that are possible from state s are
possible from all states that are in the same zone as state s .

B. Abstraction of Protocol Steps in Payment Channels

Having applied the time optimization, the state space of
specification pII q is still too large to be explored by model
checking. Therefore, we further reduce the state space by
consolidating effects of multiple protocol steps in idealized
steps. We implement this approach in specification pIII q. We
prove that specification pII q implements specification pIII q
if the protocol for a single payment channel implements the
specification of an idealized channel. Thus, this abstraction
step separates model checking that multi-hop payments using
idealized channels refine the security property from model
checking that the protocol for a single payment channel
implements the specification of an idealized channel.

High-level spec

Distributed protocol

Implementation

Ordered Execution

Actual Execution

H0

P0

I0

AR AP AS AS

I1 I2 I3

BR BP BP BS AR AP AS

P1 P2 P3

H1 H2

AR AP BR AS BP AS AR BP AP BS AS

AR AP AS BR AS BP BP AR BS AP AS

Step of 

Host A

Step of 

Host B

Step of 

Host A

refinement

refinement

Fig. 6. Overview of the IronFleet methodology. The upper half shows the
refinement steps from an implementation to a high-level specification. Each
state (I0 to I3) in a behavior of the implementation is mapped to a state of the
distributed protocol (P0 to P3) which is mapped to a state of the high-level
specification (H0 to H2). The lower half shows how the low-level steps that
each implementation step consists of are reordered. Each low-level step is
abbreviated where the first letter indicates the host (A or B) and the second
letter what the step does. An implementation step consists of low-level steps
that receive messages (R), perform processing (P), or send a message (S).
While the steps of multiple hosts can be interleaved in an actual execution,
IronFleet ensures that the steps can be reordered to an ordered execution in
which contiguous low-level steps match implementation steps. Figure from
[34, Figures 3 and 7] (redacted).

The idealized channel specification omits some protocol
details like messages that are exchanged between the parties,
blockchain transactions, etc. Instead, the idealized channel
specification specifies mainly how the states of HTLCs are
updated as these are required for modeling multi-hop pay-
ments. For example, when opening a payment channel, the
protocol specifies how messages are exchanged between the
two parties; however, in the idealized channel specification,
opening is modelled as a single step. Specifying the ideal-
ized channel represents a challenge: On the one hand, the
specification must allow all behaviors that are possible in the
protocol. This includes behaviors in which one or both users
are dishonest and, for example, an HTLC is timed out although
the HTLC has previously been fulfilled. On the other hand,
while the specification may principally allow behaviors that
are not possible in the protocol, the specification must not
allow behaviors that are not possible in the protocol if these
behaviors violate the security property.

A related idea has been used by Hawblitzel et al. [34], [35]
for the IronFleet methodology to verify distributed systems.
In the following, we present ideas used by IronFleet and
explain how our approach relates to these ideas. Given an
implementation for a distributed system written in Dafny
[36] and a high-level specification, IronFleet is a method
to automatically create a machine-checked proof that the
implementation meets the high-level specification. IronFleet
separates a distributed system into three layers: The high-
level specification, a distributed protocol specification, and
the implementation (see Fig. 6). IronFleet proves that the
implementation refines the high-level specification by prov-
ing that the implementation refines the distributed protocol
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specification and that the distributed protocol specification
refines the high-level specification. The high-level specifica-
tion specifies a centralized state machine that describes the
expected externally visible behavior of a distributed system.
The distributed protocol specification defines a distributed state
machine that runs on each host of the distributed system.
To keep the distributed protocol specification simple, the
specification is abstract, e.g., it uses unbounded integers and
unbounded sequences, and it is assumed that each step is an
atomic step in which messages are read from the network, the
state is updated and messages are sent to the network. The
implementation layer is defined by imperative code that runs
on each host.

To prove that the implementation of the distributed system
refines the distributed protocol specification, Hawblitzel et al.
first prove that the implementation for a single host refines
the state machine specified by the distributed protocol specifi-
cation. Because the distributed protocol specification requires
atomic steps where a single atomic step consists of receiving
a message, updating the host’s state, and sending a message,
Hawblitzel et al. assume for this proof that each host step in
the implementation is also such an atomic step. In an actual
execution, such implementation steps are not guaranteed to
be atomic and the low-level steps of implementation steps
of different hosts might be interleaved. IronFleet uses an
informal reduction argument to demonstrate that, for every
actual execution, there exists an equivalent execution in which
the low-level steps of each host’s implementation step are
contiguous as in the atomic step. The reduction argument of
Hawblitzel et al. is based on the insight that a reordering of
events is valid if after reordering ‘(1) each host receives the
same packets in the same order, (2) packet send ordering is
preserved, (3) packets are never received before they are sent,
and (4) the ordering of operations on any individual host is
preserved’ [34, Section 3.6]. An example for such a reordering
is shown in Fig. 6. In the following, we refer to these four
rules as IronFleet reordering rules. Using the proof that the
implementation for a single host refines the state machine
specified by the distributed protocol specification, Hawblitzel
et al. prove that a distributed system composed of multiple host
implementations refines the distributed protocol of multiple
hosts [34, Section 3.5].

The general approach of IronFleet is similar to our approach
as our stepwise refinement from the security property pV q
to a detailed protocol specification pI q corresponds to the
layered proof of Ironfleet from a high-level specification to
an implementation. The distributed protocol layer in IronFleet
corresponds to our intermediate specification pIII q in which
we abstract from protocol details. In a distributed system
as considered by IronFleet, each implementation host step
consists of multiple lower-level steps that are independent of
other hosts and hosts communicate by exchanging messages
over the network. In Lightning, payment channels are updated
by multiple protocol steps that are independent of steps in
other payment channels. Although it might seem counter-
intuitive at first sight, we identify payment channels (and not

users) with hosts in the IronFleet methodology. A payment
channel is a two party protocol that does not ‘communicate’
with other channels by exchanging messages but two payment
channels affect each other by accessing the same shared
variables if there is a user who participates in both payment
channels. Therefore, we identify shared variables of users who
participate in multiple payment channels with the network in
the IronFleet methodology.

We explain how we use the reduction and refinement ideas
to abstract specification pII q at an example: Figure 7 shows
a simplified excerpt from a behavior in which a channel B
is opened, time is advanced, and a channel A is updated.
In the idealized channel specification pIII q, these steps are
only three steps (see right side of Fig. 7). In the protocol,
the abstract steps for opening and updating a channel take
multiple protocol steps which might be interleaved in an
actual execution (see left side of Fig. 7). We developed a
refinement mapping 2 that maps protocol states to states
of the idealized channel specification by implicitly applying
two transformations: Steps are reordered to get contiguous
steps in a channel and the resulting batches of contiguous
steps are replaced by idealized channel steps. We check the
correctness of the refinement mapping using model checking
(see Section VII).

In the following, we explain the ideas behind the construc-
tion of the refinement mapping 2 that maps the protocol to
idealized channels. By definition of the protocol specification,
each step in the protocol is a step in one of the payment
channels or a step that advances time. In the second and
third column, Fig. 7 shows how each protocol step is seen
by each of the two channels in the example. A protocol step
of channel A is seen by channel A as the respective protocol
step. Depending on whether this protocol step has an effect on
other channels, the step might be seen by another channel B as
either a stuttering step (i.e., a step that leaves all variables of
the channel unchanged) or as step that changes some variables
of channel B. We refer to the later steps as environment steps
because, from the perspective of channel B, the variables of
the channel B are changed not by the channel itself but by
the channel’s environment. A step that advances time is an
environment step in all channels. For the reordering of steps,
our refinement mapping considers the IronFleet reordering
rules. However, as these rules are formulated for a message
passing model, they need to be adjusted for our shared variable
model. The first rule ‘each host receives the same packets in
the same order’ can be rephrased as ‘all environment steps are
in the same order’. The third rule ‘packets are never received
before they are sent’ is not necessary because each step that
changes a variable used by multiple channels is simultaneously
both a sending step from the perspective of the channel
performing the step and a receiving step from the perspective
of an inactive channel whose variables are changed by the step.
The second rule ‘packet send ordering is preserved’ and the
fourth rule ‘the ordering of operations on any individual host is
preserved’ can be rephrased as ‘all protocol steps of a channel
are in the same order’. Consequences of these reordering rules
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Fig. 7. In the protocol specification pII q, steps for opening and updating two channels might be interleaved (left column). The refinement mapping 2 from
specification pII q to pIII q abstracts such interleaved steps to idealized steps (right column). Thereby, the specification’s complexity is significantly reduced.
The second and third columns show how each protocol step is categorized for both channels as either a step in this channel (green), an environment step
(orange) that is a step of time or another channel but has an effect on the channel, or a stuttering step (gray) that has no effect on the channel. Following the
reordering rules, these steps can be reordered so that in each channel multiple steps are contiguous. These contiguous steps are replaced by an abstract step
of an action of the idealized channel specification pIII q (right column). Note that a reordering is shown also in Fig. 6 but the representation here is rotated.

are that, from the perspective of one channel, a stuttering step
can be swapped with any other step and that a protocol step
and an environment step can be swapped unless the protocol
step affects another channel, i.e., the step is an environment
step in another channel. The reordering strategy used by our
refinement mapping is that environment steps are swapped to
happen before protocol steps until a protocol step is reached
that ends a batch of protocol steps that is replaced by a single
idealized channel step.

To verify the correctness of the refinement mapping, we use
model checking and a proof (see Appendix F). Comparable to
the proof of the IronFleet methodology [34], we first check
for a single payment channel that the protocol specification
implements the idealized channel specification with a sin-
gle channel. We define specifications pIIaq and pIIIaq that
describe the behavior of only a single payment channel but
include a module that mocks the channel’s environment, i.e.
the module specifies the effects of environment steps that
other channels can have on the specified channel. Due to the
environment mocking module, specifications pIIaq and pIIIaq
describe all the steps the specified payment channel can take
when the payment channel is part of a system with other
payment channels. We prove that the environment module
mocks all possible steps by other channels in Appendix F2. We
specified a complex refinement mapping 2a from specification
pIIaq to specification pIIIaq for the reordering and abstraction
of protocol steps to idealized channel steps. We checked the re-
finement mapping 2a using model checking (see Section VII).
We prove the refinement mapping 2 in the following way:
We define a refinement mapping 2 from specification pII q
to specification pIII q that uses the refinement mapping 2a to
map each individual channel from the protocol to an idealized
channel. We prove that by mapping each state of specification
pII q with the refinement mapping 2 to a state of specification
pIII q, each step of specification pII q is mapped to a state of
specification pIII q.

C. Refinement of Security Property

To facilitate the refinement mapping 2 from specification
pII q to specification pIII q, specification pIII q is defined as a
real-time specification in which time can advance by arbitrary
integer numbers instead of using the improved model of
time. To allow for an efficient model checking, we apply
the same optimization for time as used above by defining
specification pIV q where bisimilar states are grouped in a zone
(see Section VI-A). By a proof (see Appendix G) analogously
to the proof of Section VI-A, specification pIII q implements
specification pIV q and, by transitivity, specification pI q im-
plements specification pIV q.

Finally, we can show that specification pIV q using idealized
channels implements the idealized functionality defined in
specification pV q. We check this refinement by defining a
refinement mapping 4 and checking the refinement mapping
using model checking (see Section VII). The definition of the
refinement mapping 4 is straightforward because all variables
of specification pV q are also variables of specification pIV q.

In the following section, we present our results of model
checking. While the refinements introduced above significantly
reduce the state space to explore, still only small finite models
can be checked completely. To the extent that we could verify
the refinements by model checking, we conclude from the
refinement steps described above that specification pI q imple-
ments specification pV q, i.e. the specification of Lightning is
an implementation of an idealized functionality for a payment
network and fulfills the security property.

VII. RESULTS OF MODEL CHECKING

We check the refinement mappings 2a and 4 using model
checking. Additionally, we check our manual proof steps 1 ,
2 and 3 and the whole stepwise refinement by simulation.

To model check the refinement mapping 2a from spec-
ification pIIaq to specification pIIIaq, we use the explicit
state model checker TLC that explores all reachable states,
calculates the refinement mapping on these states and verifies
that the mapped states and steps fulfill specification pIIIaq.
Specification pIIaq models two users and a payment channel
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TABLE I
MODEL CHECKING OF REFINEMENT MAPPING 2A FROM SPECIFICATION

pIIaq TO SPECIFICATION pIIIaq

ID Model # States Runtime
C1 Payment from user A to user B „ 105 „ 3 min
C2 Payment from user A over B to C „ 105 „ 11 min
C3 Payment from user C over A and B to D „ 105 „ 11 min
C4 Two payments: Payment from user A to B

and payment from user B over A to C
„ 107 „ 9 h

C5 Two concurrent payments from user A to
B

„ 109 „ 1 mo

and is parameterized by the information about the context
of this payment channel, i.e., the other users in the payment
channel network, and the payments to be processed. As there
are infinitely many possible ways to parameterize specification
pIIaq, we only check a small selection of models that we
deem representative. We model check five different models
that are listed in Table I. To give an impression, the table
also shows the magnitude of the number of distinct states that
were explored and the time used by TLC (measured on a
server with 40 physical cores). In each model, the execution
starts with two users (A and B) prepared to open a payment
channel and TLC explores all possible behaviors of the two
users to open the channel, communicate with mocked users
where applicable, process payments, and close the channel.
Each checked behavior ends with the channel being closed and
the two users having their funds paid out on the blockchain.
The simplest model listed in Table I is a payment from user
A who funded to channel to the other user. Models C2 and
C3 are models in which the channel between users A and B is
an intermediate hop on a payment that includes mocked users.
Model C4 models two payments: A payment from user A to
user B and a payment that user B sends to user C over user A
as an intermediate. There are many more states to explore in
model C4 as for the previous models as the two payments can
partially interleave: User B has received the payment from A
to B by fulfilling the corresponding HTLC. While the fulfilled
HTLC is removed, User B can already send the payment to
user C. Model C5 models two payment from user A to user
B which is an even larger model as the two payments can
interleave from the beginning. By taking about a month to
model check, this model is at the limits of what we can model
check in reasonable time. The main factor for this long runtime
are states in which both users are dishonest. Starting from such
states, many more behaviors are possible than from states in
which at least one user is honest.

The models that we model check to verify the refinement
mapping 4 from specification pIV q to specification pV q are
listed in Table II. In all models except the last one, we model
three users (A, B, and C) and two payment channels: one
channel between user A and user B and the other between
user B and user C. In the last model, we model four users (A
to D) and three payment channels so that a payment from user
A to user D is possible. In all these models, we model check

TABLE II
MODEL CHECKING OF REFINEMENT MAPPING 4 FROM SPECIFICATION

pIV q TO SECURE PAYMENT SYSTEM pV q

Model # States Runtime
Payment from user A over B to user C „ 105 „ 1 min
Two payments: Payment from user A over B to
C and payment from user C over B to A

„ 107 „ 45 min

Two concurrent payments: Payment from user A
over B to C and payment from user A to B

„ 107 „ 1 h

Three payments: Payment from user A over B to
C, payment from user B to A, and payment from
user B to C

„ 108 „ 13 h

Payment from user A over B and C to user D „ 108 „ 12 h

actual multi-hop payments and thereby verify that Lightning
implements specification pV q, the idealized functionality of a
payment network.

Using TLC to explore the whole state space of larger
models than the models we have just described becomes
impractical. However, we can partially verify larger models
by using TLC’s simulation mode in which the model checker
starts in an initial state and chooses each next state randomly.
Recent work has shown that using simulation as a ‘lightweight’
verification where more rigorous methods are not practical can
be successful at finding critical flaws [37]. Using simulation,
we verify the abstractions 2a and 4 for larger models. We
use also simulation to verify our structured proofs for the
abstractions 1 , 2 , and 4 as well as to verify the whole
proof that specification pI q refines the secure payment system
in specification pV q.

VIII. DISCUSSION

In this section, we review our approach and discuss limita-
tions and future work.

A. Choice of Formalization Language and Tools

Protocol verifiers such as Tamarin [38] and ProVerif [39]
have successfully been used for unbounded verification of a
number of security protocols [40]. These verifiers could also
be used to model aspects of Lightning and reason about the
protocol’s properties without the limitations of finite model
checking. These tools support modeling cryptographic prim-
itives and allow for stronger adversary models. However, it
is challenging to model natural numbers with addition and
subtraction of variables (see [41, page 35] and [42, page
18]) which is required for modeling blockchain transactions
with amounts as in our TLA+ specification. The generality of
TLA+ allowed us to model all relevant aspects of Lightning.
However, we had to abstract cryptographic primitives (see
Section IV).

A benefit of TLA+ is that TLA+ does not restrict the way
properties are proven, whether manually, using an explicit-
state [7] or a symbolic model checker [8], or a tool for
automated reasoning [9]. We used the explicit-state model
checker TLC. The automated model checking process and
the generation of counterexamples facilitated our process of
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defining the intermediate specification pIII q and the complex
refinement mapping from specification pII q to specification
pIII q. Because we used model checking, we could only verify
the security for a number of four users. Theoretically, there
might be attacks that only apply when there are more than
four users; these attacks would not be discovered by our
approach. A further consequence of the choice for model
checking was that we had to restrict the adversary model to
restrict the messages that an adversary can send. However, the
TLA+ specification could also be verified using unbounded
verification with a theorem prover [9]. Currently, writing such
a proof seems to be too effortful. However, it will be facilitated
by future advancements in assistance and automation for
theorem proving.

B. Limitations and Future Work

While our work is a step towards a complete formal
verification of Lightning, there are limitations not just with
respect to the verification methodology as discussed above but
also with respect to the model of the protocol. To formalize
Lightning, we left out aspects that are not required for security.
E.g., the fees that the sender of a payment pays to intermediate
hops, key rotation and onion-routing for increased privacy, and
route finding for multi-hop payments. Also, the model of the
blockchain could be augmented by considering reorganizations
and delays for transaction inclusion. Further, we assume that
all parties participating in the protocol are known from the
beginning and that channels are opened and then closed. We
do not model that channels are reopened and that new parties
join the network.

Our adversary model restricts the capabilities of an adver-
sary by disallowing the sending of messages with arbitrary
content and the exchange of information between adversarial
users. While we had to make these restrictions to keep the
specification’s state space at a manageable level, follow up
work could find optimizations that allow for making the
adversary stronger.

While this work was in progress, the official Lightning
specification was extended to allow for dual-funding of chan-
nels, i.e. both parties may deposit coins into a channel during
opening (see [43, Channel Establishment v2]). The method we
presented in this work can be used to formalize and analyze
the security of this advancement as well.

The property that we model checked in this paper focuses
on security. Future work could also include other properties in
the idealized functionality and adapt the proof. For example,
it could be shown that, assuming honest and cooperating users
and timely delivery of messages, payments are guaranteed to
succeed.

C. Known Attacks on Lightning

While we prove that Lightning is secure, prior work has
identified several attacks on the assumptions of Lightning and
properties that are not included in our security definition.
Several works discuss griefing [44]–[47] and other denial-of-
service attacks [48] in which no funds are stolen but the regular

operation is disturbed. In the wormhole attack [49], [50], an
attacker reroutes a payment and receives the fees intended for
other intermediate hops, however, the actual amount of the
payment is unconcerned. Extending the TLA+ formalization of
Lightning with fees would allow for modeling the wormhole
attack. Because fees would also needed to be considered in
the security property, this change would make the security
property more complicated and, thus, we decided to leave
modeling of fees out of scope for this paper. Further, there
are attacks on privacy [51]–[58] which is a property that is
not included in the security definition used in this work. Other
works [59]–[62] discuss the violation of the assumption that
users can timely publish a transaction on the blockchain. In
practice, security flaws are also based on implementations not
following the specification, e.g., by missing verification checks
[63].

D. Evaluation of Protocol Modifications

Besides proving that the formalization of Lightning fulfills
the security property, the TLA+ formalization of Lightning
can also be used to test proposed modifications of Lightning.
To quickly find flaws, it suffices often to model check only
a subset of the specification (e.g., only a single channel)
and verify just lower-level invariants and temporal properties.
While such an approach cannot prove that a modification of
Lightning is secure, it can accelerate protocol development
by providing a short feedback loop to developers. To evaluate
this idea, we introduced flaws by adapting the formalization of
Lightning and verified that the introduced flaws are detected
by model checking. As an example, we tested whether the, so
called, second-stage transactions for HTLCs can be removed
by including the conditions of the outputs of HTLC second-
stage transactions directly in a commitment transaction’s out-
puts. Verification with the model checker showed within a
few minutes that this makes the protocol insecure and, thus,
Lightning cannot be simplified in this way.

E. Connecting the Specification to an Implementation

There exist multiple implementations of Lightning that are
actively used. While the TLA+ specification of Lightning is
not an executable implementation, it can be used to validate
the correctness of existing implementations. Cirstea et al. [64]
have recently shown a lightweight way to connect implemen-
tations in imperative languages to a TLA+ specification. Their
approach is to collect traces of program executions and to
use TLC to check these traces against traces described by the
corresponding TLA+ specification. Transferring their approach
to Lightning, is an opportunity for follow up work.

IX. CONCLUSION

We have formalized Lightning and a secure payment system
that captures the security property of Lightning in TLA+.
Using stepwise refinement, we were able to model check small
models which showed that Lightning implements the secure
secure payment system. Therefore, the formalization can serve
as a starting point for future work towards a formally verified
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reference implementation of Lightning in TLA+. Furthermore,
the approach could also be used to enable specifications
of other protocols to be model checked. In particular, the
abstraction of the model of time can be generalized as well
as the general approach of separating model checking of local
behavior and behavior in a network. Thus, our approach can
be a valuable tool to analyze new versions of Lightning or
similar protocols. We hope that this approach contributes to
making future protocols for payment channel networks and
related protocols more secure.
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[28] G. Fabiański, R. Stefański, and O. S. T. Litos, “A Formally
Verified Lightning Network,” Apr. 2025. [Online]. Available: https:
//fc25.ifca.ai/preproceedings/63.pdf

[29] C. Boyd, K. Gjøsteen, and S. Wu, “A Blockchain Model in Tamarin
and Formal Analysis of Hash Time Lock Contract,” 2020.

[30] S. Bornot, J. Sifakis, and S. Tripakis, “Modeling Urgency in Timed Sys-
tems,” in Compositionality: The Significant Difference, W.-P. de Roever,
H. Langmaack, and A. Pnueli, Eds. Berlin, Heidelberg: Springer, 1998,
pp. 103–129.

[31] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
Apr. 2008.

[32] R. Alur, C. Courcoubetis, and T. A. Henzinger, “The Observational
Power of Clocks,” in CONCUR ’94: Concurrency Theory, B. Jonsson
and J. Parrow, Eds. Berlin, Heidelberg: Springer, 1994, pp. 162–177.

[33] S. Tripakis and S. Yovine, “Analysis of Timed Systems Using Time-
Abstracting Bisimulations,” Formal Methods in System Design, vol. 18,
no. 1, pp. 25–68, Jan. 2001.

[34] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. Setty, and B. Zill, “IronFleet: proving practical distributed
systems correct,” in Proceedings of the 25th Symposium on Operating
Systems Principles, ser. SOSP ’15. New York, NY, USA: Association
for Computing Machinery, Oct. 2015, pp. 1–17.

[35] ——, “IronFleet: proving safety and liveness of practical distributed
systems,” Commun. ACM, vol. 60, no. 7, pp. 83–92, Jun. 2017.

[36] K. R. M. Leino, “Dafny: An Automatic Program Verifier for Functional
Correctness,” in Logic for Programming, Artificial Intelligence, and
Reasoning, E. M. Clarke and A. Voronkov, Eds. Berlin, Heidelberg:
Springer, 2010, pp. 348–370.

[37] H. Howard, M. A. Kuppe, E. Ashton, A. Chamayou, and N. Crooks,
“Smart Casual Verification of the Confidential Consortium Framework,”
Oct. 2024, arXiv:2406.17455 [cs].

[38] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN
Prover for the Symbolic Analysis of Security Protocols,” in Computer
Aided Verification, N. Sharygina and H. Veith, Eds. Berlin, Heidelberg:
Springer, 2013, pp. 696–701.

[39] B. Blanchet, “Modeling and Verifying Security Protocols with the
Applied Pi Calculus and ProVerif,” Foundations and Trends in Privacy
and Security, vol. 1, no. 1-2, pp. 1–135, Oct. 2016.

[40] D. Basin, C. Cremers, J. Dreier, and R. Sasse, “Tamarin: Verification
of Large-Scale, Real-World, Cryptographic Protocols,” IEEE Security &
Privacy, vol. 20, no. 3, pp. 24–32, May 2022.

15



[41] T. T. Team, Tamarin-Prover Manual, 2024. [Online]. Available:
https://tamarin-prover.com/manual/master/tex/tamarin-manual.pdf

[42] B. Blanchet, “The Security Protocol Verifier ProVerif and its Horn
Clause Resolution Algorithm,” Electronic Proceedings in Theoretical
Computer Science, vol. 373, pp. 14–22, Nov. 2022, arXiv:2211.12227
[cs].

[43] Various. (2024) BOLT 2: Peer Protocol for Channel Management.
[Online]. Available: https://github.com/lightning/bolts/blob/master/
02-peer-protocol.md
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APPENDIX

A. On the Formalization of [25]

While working on the formalization of Lightning in TLA+,
we found the following two flaws in the formalization of [25].
While these flaws render the formalized protocol insecure, they
are easy to fix and it seems that the security proof could work
for the corrected protocol. The following references to figures
and page numbers refer to the paper’s version on ePrint [65,
version 20220217:205237].

The first flaw concerns the punishment of the publication
of an outdated commitment transaction for which the protocol
is specified in Fig. 37, lines 21-25 (page 64). A problem
arises, for example, in the following situation: Before the
current time, user Alice has sent an outgoing HTLC to
user Bob. The HTLC was committed and has been fulfilled.
Now, the HTLC’s absolute timelock has passed. Now, Alice
has an outdated commitment transaction that commits the
HTLC and Alice has Bob’s signature on the HTLC timeout
transaction corresponding to that HTLC. Alice is malicious
and publishes this outdated commitment transaction together
with the HTLC timeout transaction which is valid because
the HTLC’s absolute timelock has passed. Bob runs the
protocol specified in Fig. 37 and arrives at line 22. In line
22, a revocation transaction is created whose inputs spend
all outputs of the outdated commitment transaction. In the
situation described, such a revocation transaction cannot be
valid because the HTLC output in the outdated commitment
transaction is already spent. Instead of an input referencing
the outdated commitment transaction’s HTLC output, the
revocation transaction must have an input that references the
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output of the HTLC timeout transaction. While the protocol as
formalized in Fig. 37 is incorrect, the security proof on page
90 does not mention the case that a second-stage (timeout or
success) HTLC transaction might have been published for an
outdated commitment transaction and, thus, the protocol seems
to be correct. While the protocol can be corrected by adding
a specification of how such cases are handled, it is difficult to
detect such flaws by inspecting the proof manually.

For a scenario that shows the impact of the second
flaw, assume that in the payment channel between users
Alice and Bob there is currently an unfulfilled HTLC
for a payment from Alice to Bob. The HTLC’s absolute
timelock passes and the HTLC times out. Bob unilater-
ally closes the payment channel by publishing the latest
commitment transaction. The commitment transaction con-
tains an output for the HTLC with the spending method
ptrev,n`1_ppthtlc,n`1, CltvExpiry absoluteq_ppthtlc,n`1^

phhtlc,n`1, on preimage of hq (see Fig. 40, line 8) where
pt are public keys for which Alice has the private key, ph
are public keys for which Bob has the private key, and
CltvExpiry is the HTLC’s absolute timelock. Now, Alice
could spend the output of the commitment transaction corre-
sponding to the HTLC by creating a transaction with an in-
put that uses the disjunct ppthtlc,n`1, CltvExpiry absoluteq
because the absolute timelock has passed. Bob holds the
HTLC success transaction that was signed by Alice with the
private key corresponding to pthtlc,n`1 (Fig. 43, line 13).
If Bob has the preimage for the HTLC, Bob can add the
preimage to the HTLC success transaction and can spend
the HTLC’s output in the commitment transaction using the
disjunct ppthtlc,n`1 ^ phhtlc,n`1, on preimage of hq of the
spending method. However, the HTLC success transaction is
also valid without the preimage as it fulfills the conditions
of the disjunct ppthtlc,n`1, CltvExpiry absoluteq because the
HTLC’s absolute timelock has passed. Because Bob published
his latest commitment transaction, Alice cannot revoke the
transaction and this would result in Bob receiving the amount
of the HTLC without releasing (or even without having) the
preimage. One way to correct this problem is to use the
possibility that the transaction model of the paper [65, Section
12] allows an output to specify a list of spending conditions
and an input spending this output to reference a specific
spending condition. The correction would be to transform the
disjunction in Fig. 40, line 8 into a list of spending methods
and add the corresponding indices to the inputs in Fig. 43,
line 13. Another way is taken by the Lightning Network’s
specification which uses in the output’s spending method
for a timeout the operator CHECKLOCKTIMEVERIFY that
verifies that a spending transaction has a certain timelock set
(locktime). As Bob’s HTLC success transaction has the
locktime set to 0, the success transaction cannot fulfill this
spending method. We found this flaw by model checking when
we had a similar flaw in a draft of our formalization. We fixed
the flaw in our formalization by modeling the locktime field
for transactions and adding a validity condition modeling the
operator CHECKLOCKTIMEVERIFY.

B. Lightning and Formalization

In this section, we present Lightning according to the official
specification [4] and describe what aspects we consider for the
formalization and which aspects we leave out of scope. We
also explain how we model the protocol in TLA+. We start
by explaining how Lightning implements multi-hop payments
in Appendix B1. Later, we explain how payment channels
are opened, updated, and closed. We give an overview of the
TLA+ formalization of Lightning in Appendix B2. We present
the basic ideas behind the protocol’s formalization in TLA+

at the example of multi-hop payments in Appendix B3. This
includes an explanation how sending and receiving messages
and the state of an HTLC is modeled. In this section, we also
discuss how random values, hash functions, transactions, and
signatures are modeled. Because TLA+ does not offer a native
way to model cryptographic primitives such as hash functions
and signatures, we model those primitives in an abstract way.
In the real world, Lightning relies on security properties of
these primitives, e.g., that it is practically impossible to find
a preimage to a given hash value or that it is practically
impossible to create a valid signature for a public key without
knowing the associated private key. In the formalization,
we assume that these security properties of the primitives
hold, e.g. that an adversary is not capable of reverting a
cryptographic hash function. Therefore, we can model the
primitives via abstractions.

1) Multi-Hop Payments: This section explains how Light-
ning implements multi-hop payments. If a user wants to
receive a payment, the user creates an invoice and sends it
to the user who wants to send the payment. The invoice (see
Table III) contains a payment hash for which the receiver
knows the preimage and a payment secret. Further, the invoice
contains additional data to describe the purpose of the payment
for example. This additional data is not included in the TLA+

formalization because it is not required for the security of
the protocol. The model of an invoice used in the TLA+

formalization contains just the hash and the payment secret.
After the payment’s sender has received the invoice, the

sender extracts the payment hash and the payment secret.
The payment’s sender chooses a route through the Lightning
Network, i.e. a list of users that are connected through payment
channels and whose last hop is the payment’s receiver. For this
paper, we leave route finding out of scope and assume that the
sender receives the route as external input.

The payment’s sender sends an ‘update add htlc’ message
(see Table IV) to the first hop on the path. The ‘update add -
htlc’ message contains an id for the HTLC and the HTLC’s
amount, hash, and timelock. Further, the message contains an
‘onion routing packet’ that contains the information who the
next hop is and an encrypted package for the next hop with the
information what the hop after the next hop is and so on. The
next hop receives the ‘update add htlc’ message and verifies
that the amount and timelock are in expected ranges and that
the onion routing packet can be decrypted. If a verification
fails, the channel is closed. The principle that the channel is
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closed when a verification fails, is used throughout Lightning.
If the hop receiving the ‘update add htlc’ message is not
the payment’s receiver but an intermediate hop: When the
incoming HTLC for the payment is ‘irrevocably committed’,
the intermediate hop sends an ‘update add htlc’ message to
the next hop on the route. An HTLC is irrevocably committed
for a user A if user A has received the other user’s signature
on the commitment transaction containing the HTLC and has
received the secrets required for revocation for all transactions
that do not contain the HTLC and were signed by user A.
The forwarding of the ‘update add htlc’ message is repeated
until the payment’s receiver receives the ‘update add htlc’
message. If the hop receiving the ‘update add htlc’ message
is the payment’s receiver, the receiver sends the payment’s
preimage in an ‘update fulfill htlc’ message (see Table V) to
the previous hop. In the TLA+ formalization, the ‘update -
fulfill htlc’ message contains only the preimage because the
associated HTLC can be found by hashing the preimage and
looking up the HTLC by its hash value. If the hop receiving
the ‘update fulfill htlc’ message is not the payment’s sender,
the hop forwards the payment’s preimage in an ‘update ful-
fill htlc’ message to the previous hop. The forwarding of the
‘update fulfill htlc’ message is repeated until the payment’s
sender receives the ‘update fulfill htlc’ message. If the hop
receiving the ‘update fulfill htlc’ message is the payment’s
sender, the payment has been successfully performed.

If an incoming HTLC that is committed times out, a user
sends an ‘update fail htlc’ message (see Table VI) to the pre-
vious hop. While the message contains fields for the reason of
failure in Lightning, the TLA+ formalization contains only the
id of the failed HTLC because learning the reason for failure is
relevant for debugging but not for the protocol’s functionality
or security. If the hop receiving the ‘update fail htlc’ message
is not the payment’s sender: When the removal of the hop’s
outgoing HTLC is irrecoverably committed or the appropriate
HTLC timeout transaction is confirmed on-chain, the hop
sends an ‘update fail htlc’ message to the previous hop. The
forwarding of the ‘update fail htlc’ message is repeated until
the payment’s sender receives the ‘update fail htlc’ message.
If the hop receiving the ‘update fail htlc’ message is the
payment’s sender: When the removal of the hop’s outgoing
HTLC is irrecoverably committed or the appropriate HTLC
timeout transaction is confirmed on-chain, the payment is
finally cancelled.

2) Formalization Overview: We formalize Lightning in
TLA+. The formalization describes all possible actions how
a user of the payment channel initiates transactions or reacts
to messages or events. In its structure, the formalization of the
protocol specification follows the informal specification of the
Lightning Network [4]. The formalization abstracts, however,
multiple implementation details and parts that are not part of
the main functionality such as fees and error messages.

We formalize Lightning in an event-based specification.
In this manner, the protocol can be implemented and this
approach allows for validating that the protocol is secure for
every possible order of events.

TABLE III
FIELDS OF A LIGHTNING ‘INVOICE’.

Variable Description Formalization
timestamp Unix Timestamp Not required.
p Payment hash ‘hash’ field of invoice
s Payment secret ‘paymentSecret’ field of in-

voice
d Description of purpose of

payment
Not required.

m Additional metadata Not required.
n Public key of the payment’s

receiver.
Not required.

h Description of purpose of
payment

Not required.

x Expiry time Not required.
c Minimal delta between

HTLC timelocks for last
HTLC

Not required because for-
malized as a constant de-
fault value.

f Fallback on-chain Bitcoin
address

Not required.

r Routing information Not required.
9 Feature bits Not required.
signature Signature of above fields Not included. We instead

assume that the receiver can
verify the integrity of the
invoice.

TABLE IV
FIELDS OF ‘UPDATE ADD HTLC’ MESSAGE.

Variable Description Formalization
channel id ID of the channel

derived from funding
transaction

Not required.

id ID of the HTLC ‘id’ field of HTLC
amount msat Amount of HTLC in

millisatoshi
‘amount’ field of
HTLC

payment hash Hash of HTLC ‘hash’ field of HTLC
cltv expiry Timelock of HTLC ‘absTimelock’ field of

HTLC
onion routing packet Data for forwarding

to next hop including
encrypted payload for
next hop.

‘dataForNextHop’
field of HTLC

TABLE V
FIELDS OF ‘UPDATE FULFILL HTLC’ MESSAGE.

Variable Description Formalization
channel id ID of the channel

derived from funding
transaction

Not required.

id ID of the HTLC Not required.
payment preimage Preimage for HTLC ‘preimage’ field

18



TABLE VI
FIELDS OF ‘UPDATE FAIL HTLC’ MESSAGE.

Variable Description Formalization
channel id ID of the channel derived

from funding transaction
Not required.

id ID of the HTLC ‘id’ field of HTLC
len Length of the reason field Not required.
reason Reason why HTLC failed Not required because the

only modeled reason is
timeout.

The TLA+ specification of the protocol consists of three
modules: Two modules concern the specification of actions
that a user performs for the execution of the payment chan-
nel protocol: The module HTLCUser specifies the actions
concerning HTLCs for multi-hop payments, e.g., sending an
invoice, creating an HTLC, fulfilling an HTLC. The module
PaymentChannelUser specifies how the payment channel is
created, how the payment channel is updated when a new
HTLC is added or a fulfilled HTLC is persisted, how the
payment channel is closed, how an adversarial user can cheat
by publishing transactions on the blockchain, and how an
honest user punishes a cheating user. For example, the module
PaymentChannelUser includes actions for creating and sending
a signature of a new commitment transaction to the other
user, processing messages from the other user, or publishing
a commitment transaction on the blockchain to close the
channel. The third module is LedgerTime, the clock that
increases the current time. Time is measured in Lightning
by the block count of the Bitcoin blockchain. Thus, it is
represented as an integer number and increased in integer
steps. The specification puts these three modules together by
instantiating the LedgerTime module, the HTLCUser module,
and the PaymentChannelUser module. While the action of the
LedgerTime module is a global action to advance time, the
actions of the HTLCUser module and the PaymentChannel-
User modules are parameterized by a user and, if applicable,
a channel and the other user in the channel. Formally, the
TLA+ specification is defined by a set of initial states and a
Next action that describes possible steps that can lead from
one state to a new state.

The TLA+ formalization models a system that is comprised
of the users of a payment channel network and the payment
channels between them. A state of the modeled system is
defined by the variables that are shown in Table VII. Some of
these variables describe aspects of the system in general and
some model variables of a specific user of which some are for
a specific payment channel of that user. The meaning and use
of these variables are explained in the following sections.

The TLA+ formalization expects as external input the three
constants NameForUserID, a sequence of modeled users,
uInitialPayments, a set of payments to be sent by user u , and
uInitialBalance, the initial balance of user u . Each record in
uInitialPayments describes a payment by an id, an amount, a
point in time until the payment should be processed, and a path

from the sender to the recipient. In the initial state, the variable
uNewPayments is initialized to the value of uInitialPayments
for a user u and to each payment record fields are added
for storing values later, e.g., for the hash associated with
the payment or a boolean value whether an invoice for this
payment has been requested.

3) Formalization of Multi-Hop Payments: The actions of a
user as described in Appendix B1 are specified as actions of
the HTLCUser module. The actions in the HTLCUser module
are the actions of one specific user u for a specific channel c
and are parameterized by the id of channel c, the id of user
u , and the id of the other user in channel c.

The action ‘RequestInvoice’ of the module HTLCUser is
enabled if there is a payment for the user u in uNewPayments
and no invoice has been requested for this payment. The
action chooses such a payment, sends a message of type
‘RequestInvoice’ to the payment’s recipient and updates the
payment to store that an invoice has been requested for this
payment. Sending of a message is modeled by appending
a record to a global variable ‘Messages’. The ‘Messages’
variable contains a list of all messages that are in transit. The
appended message has a field that describes the message’s
type, a field that states the message’s sender, and a field
that states the message’s recipient and additional fields for
payloads. The payload for a ‘RequestInvoice’ message is the
payment id for which an invoice is requested.

The action ‘GenerateAndSendPaymentHash’ of the module
HTLCUser models the reception of a ‘RequestInvoice’ mes-
sage and the reply of sending an invoice to the sender of
the ‘RequestInvoice’ message. The reception of a message is
modeled by a condition that inspects the records in ‘Messages’
that have a recipient that equals the user u . If the first message
that is sent to the user u has the type ‘RequestInvoice’, then the
action ‘GenerateAndSendPaymentHash’ is enabled. The action
has to draw random values for the preimage and the payment
secret. TLA+ does not offer a native way to model randomly
drawn values. In Lightning, the values for the preimage and
the payment secret should be unpredictable and hard to guess
for an adversary. In the TLA+ formalization, it suffices to
model the adversary in a way that the adversary cannot
guess the preimage and the payment secret. Random values
drawn in Lightning for the preimage and the payment secret
are most likely unique, i.e. drawing these values a second
time randomly will most likely lead to different values. This
uniqueness property of drawing random values is modeled
in the following way in the TLA+ formalization: A random
preimage and payment secret are deterministically derived
from the payment’s id for which the preimage is used by
adding constants to the payment’s id. Because the ids of
payments are unique, this approach ensures that the preimages
and payment secrets are unique as well. In Lightning, the
receiver of a payment sends as part of the invoice the hash of
the preimage to the payment’s sender. However, in TLA+ there
is no native way to calculate the hash value of a variable. The
reason why Lightning uses a hash function is that it should be
simple to check whether a preimage and a hash correspond
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TABLE VII
VARIABLES THAT ARE PART OF THE STATE OF THE TLA+

FORMALIZATION.

Variable Description
Global variables
LedgerTime Models the current time as an integer

value representing the current height of
the blockchain.

Messages Set of messages of which each user can
process messages that are sent to the user.

LedgerTx Models the blockchain as the set of all
published transactions.

TxAge Models the age of published transactions,
i.e. how many blocks have been created
since the transaction was published.

Variables for user u:
uPayments Set of payments of user u for which

user u is either sender or recipient.
Each payment has a status that indicates
whether the payment is new, processed,
or aborted.

uExtBalance External balance of user u . External
refers to the balance on the blockchain,
i.e. outside the payment channel network.

uChannelBalance Balance of user u inside the payment
channel network. This equals the sum of
the user’s balance in all payment chan-
nels.

uHonest Specifies whether the user u is honest.
The value is initially set to either true or
false and does not change.

uNewPayments Set of records for payments that the user
u wants to send. The module HTLC-
User processes these payments by cre-
ating HTLC records that are added to
variable Vars.

uPreimageInventory Set of the preimages that the user u
knows.

uLatePreimages Preimages that have been received after
the associated HTLC has timed out.

uPaymentSecretForPreimage Function that maps for each incoming
payment for which an invoice has been
sent the preimage to the payment secret.

Variables for channel c:
cMessages Sequence of messages sent between two

users of a channel. Each user can process
the first message that is sent to the user.

cUsedTransactionIds Helper variable that stores all ids that
have already been used for creating trans-
actions. This set helps to ensure that each
new transaction id is unique.

Variables for user u of each channel c:
c, uBalance Integer that indicates the current balance

of the user u in channel c.
c, uState Protocol state the user u is in in the

channel c. This implies what messages
the user u expects to receive next.

c, uVars Record with variables of the user u in
the channel c. Most importantly Vars
contains the fields ‘IncomingHTLCs’ and
‘OutgoingHTLCs’ that store sets that
contain a record for each incoming resp.
outgoing HTLC.

c, uDetailVars Contains variables that are only used in-
side the module PaymentChannelUser.

c, uInventory Contains keys and a set of transactions
that the user u can sign and, if the
transaction is valid after signing, publish
on the blockchain.

to each other but it should be impossible to calculate the
preimage given its hash value. As we can restrict the adversary
in the specification to not calculate preimages from hashes,
we use a simple approach to model a hash function: We use
the Identity function as hash function, i.e. the hash value of
a preimage equals the preimage. With this approach, it is
trivial to check whether a hash corresponds to a preimage.
The distinction whether a given value is a preimage or a
hash, depends on the variable that a value is stored in. The
formalization is carefully written so that a value of a hash is
never written to a variable that contains a preimage. However,
writing a hash value given the knowledge of a preimage is
possible as this models the execution of the hash function.
The action ‘GenerateAndSendPaymentHash’ sends a message
modeling the invoice that contains the hash value and the
payment secret to the sender. Further, the preimage and the
payment secret are stored in the variables uPreimageInventory
and uPaymentSecretForPreimage respectively.

The request for an invoice can also be ignored without
further changes. This is modeled by the action ‘IgnoreIn-
voiceRequest’.

The reception of the invoice by the payment’s sender is
modeled by the action ‘ReceivePaymentHash’. The payment’s
sender stores the hash value and the payment secret in the
record that describes the respective payment and calculates
the onion package that is sent with the payment along the
route. The onion package contains for each hop a value that
determines the next hop, the absolute timelock for the HTLC
to use with the next hop and an onion package for the next
hop. For the last hop, the onion package contains the payment
secret and the payment’s amount.

If the payment channel c is open and ready to operate,
the payment channel c’s state stored in the variable c, uState
of user u is ‘rev-keys-exchanged’. The action ‘AddAndSend-
OutgoingHTLC’ sends an ‘update add htlc’ message if the
channel is ready and there is a payment that fulfills the
following conditions: The action is enabled for user u if the
user u is the payment’s sender or if the payment’s incoming
HTLC has been irrevocably committed (see Appendix B1).
The hash for the payment must be known and the payment’s
timelock must be in the future. The next hop for this payment
must be the other user of the payment channel c. An HTLC
with the same hash must not already exist. The current balance
of user u in the channel c must be at least the payment’s
amount. The effects of the action are that the payment is
removed from the uNewPayments variable, the HTLC is added
to the c, uVars variable, and the ‘update add htlc’ message
is sent. This message is sent with relation to channel c. We
use the cMessages variable to model the messages exchanged
between two users of a channel c. Thus, the ‘update add htlc’
message is stored in cMessages.

The reception of the ‘update add htlc’ message is modeled
by the action ‘ReceiveUpdateAddHTLC’. This action creates
a new payment record in the user’s uNewPayments variable if
the payment is to be forwarded and, otherwise, verifies that the
payment secret is correct and that the HTLC has the correct
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amount.
If an incoming HTLC is irrevocably committed and the

user u is the payment’s receiver, the user u can fulfill the
incoming HTLC. Whether an HTLC is irrevocably committed,
is encoded in the state of the HTLC: The state of an HTLC
is initially set to NEW when the HTLC is created in the ‘Ad-
dAndSendOutgoingHTLC’ action or the ‘ReceiveUpdateAd-
dHTLC’ action (see Fig. 8). Once the HTLC is irrevocably
committed, an action of the PaymentChannelUser module sets
the HTLC’s state to COMMITTED. If an HTLC is fulfilled, the
HTLC’s state is advanced to FULFILLED. Once the HTLC is
irrevocably removed, an action of the PaymentChannelUser
module sets the HTLC’s state to PERSISTED. If an HTLC is
failed, the HTLC’s state is updated to OFF-TIMEDOUT. Once
the HTLC is irrevocably removed, an action of the Payment-
ChannelUser module sets the HTLC’s state to TIMEDOUT. To
fulfill the HTLC, a user sends an ‘update fulfill htlc’ message
to the other user in the payment channel. The sending of the
‘update fulfill htlc’ message is modeled by the ‘SendHTL-
CPreimage’ action. The formalization models that an HTLC
can be fulfilled even after the HTLC’s timeout during a grace
period of a fixed length. The length of the grace period, i.e., the
number of blocks to wait after an HTLC’s timeout, is defined
by the constant G which we set to 3 by default. Adding a grace
period is suggested by the official Lightning specification but
not required. We included the grace period in the formalization
because the grace period creates an interesting situation that
is relevant for the protocol’s security because during the grace
period the HTLC can be timed out as well as fulfilled. If an
HTLC is fulfilled after its timeout, the hash of the HTLC
is stored in the field ‘FulfilledAfterTimeoutHTLCs’ of the
variable c, uVars.

The action ‘ReceiveHTLCPreimage’ models the reception
of an ‘update fulfill htlc’ message. If the preimage is received
after the HTLC’s timeout and the grace period have passed,
the payment might still be successful but it can also be aborted
because the preimage reached the user too late. The fact that
the HTLC’s preimage was received late is stored by adding
the preimage to the set stored in the variable uLatePreimages.

Failing an HTLC is modeled by the action ‘SendHTLCFail’.
This action sends a ‘update fail htlc’ message and updates
the failed HTLC’s state to OFF-TIMEDOUT. The action ‘Re-
ceiveHTLCFail’ receives the ‘update fail htlc’ message and
updates the state of the receiver accordingly.

4) Keys and Funding-, Commitment- and HTLC-
Transactions: In this section, we present the keys that
are used in Lightning and what they are used for. To reduce
the risk of being tracked by third parties, each user in
Lightning has a set of private and public keys of which
each key is used for one specific purpose. Further, keys
are rotated with every commitment transaction to prevent
leaking information to a third party that gets to know multiple
commitment transactions. As our analysis focuses on the
security property that users finally receive their correct
balance and not on privacy leaks, we model these keys by a
single key pair per user.

(inexistent)

NEW

H!AddAndSendOutgoingHTLC /
H!ReceiveUpdateAddHTLC

SENT-COMMIT

(if outgoing)
PC!SendSignedCommitment

RECV-COMMIT

(if incoming)
PC!ReceiveSignedCommitment

SENT-COMMIT

COMMITTED

PC!ReceiveRevocationKey

PENDING-COMMIT

PC!ReceiveRevocationKey

PENDING-COMMIT

PC!SendSignedCommitment

RECV-COMMIT

PC!ReceiveSignedCommitment

PC!RevokeAndAck

PC!RevokeAndAck

FULFILLED

H!SendHTLCPreimage /
H!ReceiveHTLCPreimage

OFF-TIMEDOUT

H!SendHTLCFail /
H!ReceiveHTLCFail

RECV-REMOVE

(if outgoing)
PC!ReceiveSigned-

Commitment

SENT-REMOVE

(if incoming)
PC!SendSigned-

Commitment

RECV-REMOVE

PERSISTED

(if fulfilled)
PC!RevokeAndAck

TIMEDOUT

(if timedout)
PC!RevokeAndAck

PENDING-REMOVE

PC!RevokeAndAck

PENDING-REMOVE

PC!ReceiveSignedCommitment

SENT-REMOVE

PC!SendSignedCommitment

PC!ReceiveRevocationKey

(if fulfilled)
PC!Receive-

RevocationKey

(if timedout)
PC!Receive-

RevocationKey

(if outgoing)
PC!ReceiveSigned-

Commitment

(if incoming)
PC!SendSigned-

Commitment

Fig. 8. Flow chart of HTLC states. The actions with the prefix H! are actions
of the HTLCUser module (see Appendices B1 and B3); those prefixed with
PC! are actions of the PaymentChannelUser module (see Appendices B9,
B11 and B13). Outgoing HTLCs follow the path printed in green; incoming
HTLCs follow the path printed in blue.

5) Keys and Key Derivation: Lightning makes use of mul-
tiple keys to build transactions. Here, we explain these keys
as they are used in Lightning. For the formalization, we use a
simplified model that we will present below. Each user has the
following set of keys according to the Lightning specification.
From one user’s perspective, the user’s own keys are prefixed
by ‘local’ and the other user’s keys are prefixed by ‘remote’.

‚ funding pubkey: A user’s public key that is used to lock
the output of the funding transaction. The appropriate
private keys of both users are required to create a signed
commitment transaction.

‚ localpubkey (remotepubkey): Public key used to lock an
output that is spendable by the user (other user) in the
commitment transactions created by the other user (user).

‚ local delayedpubkey (remote delayedpubkey): Public
key used to lock an output that is spendable by the user
(other user) in the commitment transactions created by
the user (other user).

‚ local htlcpubkey (remote htlcpubkey): Public key used
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to lock an output that is spendable by the user (other
user) in HTLC transactions.

‚ revocationpubkey: Public key used to lock an output that
is spendable when the transaction should be revoked.

Most keys are rotated with every commitment transaction
so that third parties (e.g., watchtowers) cannot link multiple
commitment transactions to the same channel. To simplify
the key management, the different public keys are derived
from a basepoint per type of key and a point per trans-
action (see Fig. 9 a). For each of the keys prefixed by
local or remote, there is a basepoint for which the secret
is kept by the local party. The keys (local/remote)pubkey,
(local/remote) delayedpubkey, (local/remote) htlcpubkey are
derived from the from the per commitment point and from
the (local/remote) payment basepoint, (local/remote) htlc -
basepoint, (local/remote) delayed payment basepoint respec-
tively. The private keys are derived from appropriate basepoint
secrets and the per commitment point (see Fig. 9 b). The revo-
cationpubkey is derived from the local user’s revocation base-
point and from the remote user’s per commitment point (see
Fig. 9 c). The associated private key, called revocationprivkey,
can be derived from the local user’s revocation basepoint se-
cret and the remote user’s per commitment secret. The idea
behind this is that both users can derive the revocationpubkey
but initially no user can derive the revocationprivkey. However,
the per commitment secret can be shared so that the local user
can derive the revocationprivkey to spend outputs of published
outdated commitment transactions. However, as all other keys
that are derived using the per commitment secret depend on
an additional basepoint secret, the local user cannot derive
other private keys of the remote user. The funding pubkey is
a regular key pair.

6) Formalization of Keys: To keep the specification simple,
we model the funding pubkey and the various keys that are
derived from a basepoint of a user and the user’s per commit-
ment point as the same key pair. What is left are the revocation
public keys that are derived from the revocation basepoint
of one user and the other user’s per commitment point.
These key pairs need to be rotated with every commitment
transaction because the users exchange the secrets required to
derive the private keys. For modeling asymmetric key pairs,
we use a similar approach as for modeling preimages and
hashes: We use the same value for the private and the public
key and distinguish between them by the name of the variable
that assumes a value. This user key which models all user
specific key pairs used in Lightning is modeled as a symbolic
value per user. We model revocation keys by a record that
contains a symbolic value that specifies the creator of the key
and and a numerical index value that is incremented for each
new commitment transaction which models the rotation of
the per commitment point. With this approach, the revocation
keys can be rotated by modifying the index of the key but
they are still regular key pairs. We model the construction
that the revocation keys are derived from secrets of both users
by changing the conditions in transaction outputs where a
revocation key is required: A condition in the output of a

pubkey

revocationpubkey

revocation_basepoint

basepoint per_commitment_point

privkey

basepoint_secret

per_commitment_point

revocationprivkey

remote 

per_commitment_secret

basepoint

remote 

per_commitment_point

revocation_basepoint_secret

a)

b)

c)

Fig. 9. Derivation of keys in Lightning. Each box shows a key or piece
of information that is required to derive a key. From the perspective of a
user u , the boxes filled blue are pieces of information that only the user
u has. The boxes filled green are pieces of information that only the other
user has. The boxes filled white are pieces of information that are shared
between both users. The color of the boxes’ borders indicates the user that
generates a piece of information. A black border indicates that both users can
derive a piece of information. Arrows represent the relation ‘is required to
derive’. Rectangular boxes are pieces of information that are constant during
the lifetime of the protocol. Ellipses represent pieces of information that are
rotated with every commitment transaction. The remote per commitment -
secret and the revocationprivkey are special because the revocationprivkey
cannot be generated by neither party until the remote per commitment secret
is shared which enables the user u to generate the revocationprivkey.

transaction that requires a signature of the revocation key de-
rived from user A’s per commitment point and from user B’s
revocation basepoint is modeled as a condition that requires
a signature of user A’s revocation key and user B’s user key.
This model leads to the following difference in transaction
construction between Lightning and the formalization: In
Lightning, a transaction that can be published by user A
is revocable with a signature that corresponds to the public
revocation key derived from user B’s revocation basepoint
and the respective per commitment point of user A. In the
formalization, a transaction that can be published by user A
is revocable with a signature that corresponds to the public
revocation key of user A and the public user key of user
B. Both approaches have the same effect: Only user B can
revoke a transaction published by user A and user B can revoke
the transaction only after having received a secret from user
A. The message exchange differs in the following way: In
Lightning, user A sends the per commitment point to user B
so that user B can derive the public revocation key. In the
formalization, user A sends the public revocation key to user
B. When revoking a transaction in Lightning, user A sends the
A’s per commitment secret to user B. In the formalization,
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TABLE VIII
COMPARISON OF KEYS IN LIGHTNING AND THE TLA+ FORMALIZATION.

Lightning Formalization
funding pubkey, localpubkey, lo-
cal delayedpubkey, local htlcpub-
key

User key modeled by one symbolic
value per user.

funding privkey, localprivkey,
local delayedprivkey,
local htlcprivkey

Modeled by the same symbolic
value as the public key.

payment basepoint, delayed pay-
ment basepoint, htlc basepoint
and associated secrets

Not required because user key is a
symbolic value instead being cal-
culated.

revocationpubkey Modeled as record that contains a
base and an index. The base spec-
ifies by a symbolic value the user
that created the key. The index is a
number that can be incremented to
create a new key.

revocation basepoint, revocation -
basepoint secret

Corresponds to the base of the re-
vocation key.

per commitment point, per com-
mitment secret

Corresponds to the index of the
revocation key.

user A revokes a transaction by sending the private revocation
key to user B. Table VIII gives an overview of the keys used
in Lightning and the corresponding formalization.

7) Transactions: The funding transaction contains an out-
put whose amount equals the capacity of the payment channel
and which can be spent using signatures for both users’
funding pubkey.

The commitment transaction has one input that references
the funding transaction’s output. Thus, the commitment trans-
action must be signed by signatures for both users’ fund-
ing pubkey. The outputs of a commitment transaction are as
follows:

‚ to local: The first output contains the funds of the party
who can publish this commitment transaction. The output
can be spent using a signature by local delayedprivkey
after a timeout of length to self delay or it can be spent
using revocationprivkey.

‚ to remote: The output that contains funds for the remote
party can be spent using remoteprivkey.

‚ Outgoing HTLCs: For each outgoing HTLC, there exists
an output that can be spent either using the revoca-
tionprivkey or using remote htlcprivkey and either using
local htlcprivkey or by providing the HTLC’s preimage.

‚ Incoming HTLCs: For each incoming HTLC, there ex-
ists an output that can be spent either using revoca-
tionprivkey or using remote htlcprivkey and either the
HTLC’s preimage and local htlcprivkey or after the
HTLC’s timeout.

HTLC Transactions: The HTLC success transaction has
a locktime value of 0 which means that it is immediately
valid. The HTLC timeout transaction has a locktime value of
cltv expiry (the HTLC’s timeout), i.e. it is valid only after the
point in time specified by the HTLC’s timeout. An HTLC’s
transaction input references the respective HTLC output of
a commitment transaction. The HTLC transaction must be

signed using remote htlcprivkey and local htlcprivkey. For an
HTLC success transaction, the input must contain the HTLC’s
preimage. The output of both HTLC transactions is spendable
either by the revocationprivkey or after to self delay using
local delayedprivkey.

8) Formalization of Transactions: The formalization of
transactions follows the UTXO (unspent transaction output)
model of Bitcoin: A transaction is a record that contains a
set of inputs, a set of outputs and additional data like the
transaction’s id, and an optional absolute timelock. An output
of a transaction is a record that contains an id, an amount, and
a set of conditions of which one needs to be fulfilled to spend
the output. A condition consists of a type, a set of keys, an op-
tional hash value, an absolute timelock and a relative timelock.
The condition can be one of the symbolic values SingleSig-
nature, AllSignatures, SingleSigHashLock, AllSigHashLock.
SingleSignature specifies that this output can only be spent
by a transaction signed using one of the keys stored in the
condition. AllSignatures specifies that a spending transaction
must be signed using all of the keys stored in the condition.
The types with the suffix ‘HashLock’ specify the additional
constraint that a spending transaction must provide a preimage
to the hash value specified in the condition. Additionally, a
spending transaction must specify timelocks that have values
set to a value that is greater than or equal to the values
specified in the condition. The absolute timelock enforces
that a spending transaction is only valid if the transaction
is published at a point in time that is greater than or equal
to the value of the absolute timelock. The relative timelock
has the same effect but the transaction must be published at
a point in time at which the age of the transaction that the
output is contained in is greater than or equal to the relative
timelock. An input of a transaction consists of a reference to
an output that is being spent by this input, a relative timelock,
and witness data which contains of a set of signatures and
an optional preimage. Transactions in Bitcoin have ids which
are calculated by hashing a transaction. For our model, we
require the property that each transaction has a unique id. We
model transaction ids by choosing for each transaction an id
as an arbitrary integer number that has not yet been used as a
transaction id. The variable cUsedTransactionIds stores a set
of all transaction ids drawn to ensure that each new transaction
id is unique. To reduce the number of possible states of the
formalization, we specify a unique range of integer numbers
for each channel c. In the constant AvailableTransactionIds,
for each channel c this set of numbers is stored from which
transaction ids created by PaymentChannelUser for channel c
can be drawn.

Lightning requires users to exchange signatures on trans-
actions. Because TLA+ does not provide a native way to
model signatures, we use an approach that meets the following
requirements for signatures: A signature must be bound to the
transaction that is signed by the signature so that a user is
able to check whether a signature was created for a specific
transaction or not. The validity of a signature can be checked
using the corresponding public key. However, a signature
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must only be creatable using the corresponding private key.
To model these requirements in a simple way, we model
signatures of transactions by using the whole transaction with
the signing key added to the inputs of the transaction. This
makes it simple to exchange signed transactions by exchanging
the whole transaction and it is trivial to verify the validity
of a signature by comparing the signature to the respective
public key. A caveat here is that when in Lightning only
a signature is exchanged (e.g., in the ‘funding signed’ and
‘commitment signed’ messages), both users must be able to
create the respective transaction by themselves. To ensure that
both users have all the information necessary to create the
transactions in the formalization, we model the reception of
a message that contains a signed transaction by comparing
the received message to a record that contains the expected
transaction built from locally available information.

We model the blockchain as a set of transactions. The
variable LedgerTx is a set that contains the transactions that
have been published on the blockchain. For all transactions
that are added to LedgerTx, an entry in TxAge is added that
models the time since the transaction was included in the
blockchain. If a transaction is published, the transaction’s entry
in TxAge is initialized to 0. When time is increased, all entries
in TxAge are increased by the same time difference.

9) Opening a Payment Channel: To open a payment chan-
nel, the funder of the payment channel sends an open channel
message to the user to whom the channel should be opened.
The open channel message contains several fields for the
parameterization of the channel that we ignore for the TLA+

formalization (see Table IX). If the receiver wants the channel
to be opened, the receiver replies with an ‘accept channel’
message (see Table X) in which the receiver sends their
parameters for the channel to the funder. This includes the
basepoints for the keys and the first commitment point to
derive the public keys for the first commitment transaction.
With this information, the funder creates the funding transac-
tion and the first commitment transaction. The funder sends
the ‘funding created’ message (see Table XI) that contains
the funder’s signature of the first commitment transaction
and the id of the funding transaction which is required for
creating commitment transactions. The other user receives the
‘funding created’ message, validates and stores the signature.
The other user creates the version of the first commitment
transaction that the funder can publish and sends a signature
for the first commitment transaction to the funder in the
‘funding signed’ message (see Table XII). Having verified
and stored the signature of the first commitment transaction,
the funder publishes the funding transaction. After both users
have noted that the funding transaction was published and
confirmed on the blockchain, both users send each other a
‘channel ready’ message which indicates that the channel
can now be used to process payments. The ‘channel ready’
message (see Table XIII) contains the second per commit-
ment point that is required to derive the public keys required
to create the second commitment transaction.

TABLE IX
FIELDS OF ‘OPEN CHANNEL’ MESSAGE.

Variable Description Formalization
chain hash Hash of the blockchain

underlying the payment
channel.

Not required because for-
malization considers only
one blockchain.

temporary channel id Temporary id to describe
the channel.

Not required because
channel is uniquely
identified by the pair of
the channel parties.

funding satoshis Number of satoshis that
the funder deposits into
the channel.

Field ‘Capacity’

push msat Number of millisatoshi
that the funder is giving
to the other party.

Not included for simplic-
ity.

dust limit satoshis No output is created
with an amount less
than this value. This
prevents outputs from
being created that cannot
be spent economically
because the amount of
fees required to spend
the output would be
higher than the value of
the output.

Not required because
fees are not modeled.

max htlc value in -
flight msat

Maximum amount of
millisatoshi that can be
part of HTLCs.

Not included for simplic-
ity.

channel reserve satoshis Amount of satoshis that
both users need to keep
as their balance and can-
not spend to disincen-
tivize cheating attempts.

Not required because the
formalization does not
consider the game theo-
retic aspect of whether a
user might want to cheat
but instead shows that
cheating never succeeds.

htlc minimum msat Amount that any HTLC
must at least have.

Not required for security
properties.

feerate per kw Fee rate for commitment
and HTLC transactions.

Not required as
blockchain fees are
not modeled.

to self delay Number of blocks that
an output of the coun-
terparty must be locked
until the counterparty can
spend it.

Modeled as constant
‘TO SELF DELAY’.

max accepted htlcs Maximum number of
HTLCs that are accepted
at the same time to
ensure that messages do
not grow too large.

Not required.

funding pubkey Public key used for lock-
ing the funding output
that can only be spent
using signatures of keys
of both users.

Modeled as the user’s
public key.

revocation basepoint Point used to calculate
revocation keys.

Modeled in form of a
public/private revocation
key pair.

payment basepoint Point used to calculate
the payment keys.

Modeled as the user’s
public key.

delayed payment base-
point

Point used to calculate
the delayed payment
keys.

Modeled as the user’s
public key.

htlc basepoint Point used to calculate
the HTLC keys.

Modeled as the user’s
public key.

first per commitment -
point

Point to calculate keys
for the first commitment
transaction.

Only revocation key is
rotated. Modeled as key
index variable as part of
the key.

channel flags Flags, e.g. whether this
channel is to announced
publicly to the P2P net-
work.

Not required.
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TABLE X
FIELDS OF ‘ACCEPT CHANNEL’ MESSAGE. WITH THE EXCEPTION OF
MINIMUM DEPTH ALL FIELDS ARE ALSO DESCRIBED IN TABLE IX.

Variable Description Formalization
temporary channel id Temporary id to de-

scribe the channel.
Not required because
channel is uniquely
identified by the pair
of the channel parties.

dust limit satoshis No output is created
with an amount less
than this value. This
prevents outputs
from being created
that cannot be spent
economically because
the amount of fees
required to spend
the output would be
higher than the value
of the output.

Not required because
fees are not modeled.

max htlc value in -
flight msat

Maximum amount of
millisatoshi that can
be part of HTLCs.

Not included for sim-
plicity.

channel reserve -
satoshis

Amount of satoshis
that both users need to
keep as their balance
and cannot spend
to disincentivize
cheating attempts.

Not required because
the formalization
does not consider the
game theoretic aspect
of whether a user
might want to cheat
but instead shows
that cheating never
succeeds.

htlc minimum msat Amount that any
HTLC must at least
have.

Not required for secu-
rity properties.

minimum depth Number of blocks cre-
ated after a transac-
tion has been pub-
lished until the trans-
action is considered
confirmed.

Not required as trans-
actions are modeled
as being finally con-
firmed immediately.

to self delay Number of blocks
that an output of the
counterparty must
be locked until the
counterparty can
spend it.

Modeled as constant
‘TO SELF DELAY’.

max accepted htlcs Maximum number of
HTLCs that are ac-
cepted at the same
time to ensure that
messages do not grow
too large.

Not required because
message sizes are the-
oretically not limited.

funding pubkey Public key used for
locking the funding
output that can only
be spent using signa-
tures of keys of both
users.

Modeled as the user’s
public key.

revocation basepoint Point used to calculate
revocation keys.

Modeled in form of a
public/private revoca-
tion key pair.

payment basepoint Point used to calculate
the payment keys.

Modeled as the user’s
public key.

delayed payment -
basepoint

Point used to calculate
the delayed payment
keys.

Modeled as the user’s
public key.

htlc basepoint Point used to calculate
the HTLC keys.

Modeled as the user’s
public key.

first per commit-
ment point

Point to calculate keys
for the first commit-
ment transaction.

Only revocation key
is rotated. Modeled as
key index variable as
part of the key.

TABLE XI
FIELDS OF ‘FUNDING CREATED’ MESSAGE.

Variable Description Formalization
temporary channel id Temporary id to de-

scribe the channel.
Not required because
channel is uniquely
identified by the pair
of the channel parties.

funding txid ID of the funding
transaction

.

funding output index Output ID for the
funding output of the
funding transaction.

Not required as fund-
ing transaction con-
tains only one output.

signature Signature of the first
commitment transac-
tion

First commitment
transaction signed by
inserting private key.

TABLE XII
FIELDS OF ‘FUNDING SIGNED’ MESSAGE.

Variable Description Formalization
channel id ID of the channel

derived from funding
transaction

Not required.

signature Signature of the first
commitment transac-
tion

First commitment
transaction signed by
inserting private key.

10) Formalization of Opening a Payment Channel: The
module PaymentChannelUser contains the actions to open,
update, and close a payment channel. As in the module
HTLCUser, the actions of the module PaymentChannelUser
are parameterized for a specific user u and a payment channel
c of user u . In this section, we use u and c to refer to the
user and channel passed as parameters to an action.

To encode in the variables of a user u , in which state of
the protocol the user is, the variable c, uState contains a string
of characters that describes the state. The state is initialized
to ‘init’ and after sending an ‘open channel’ message, the
state advances to ‘open-sent-open-channel’ which means that
the user u expects to receive an ‘accept channel’ message in
the next step. Sending and receiving of messages is modeled
as described above in Appendix B3. The ‘open channel’ and
‘accept channel’ messages contain many fields that are not
relevant for the TLA+ formalization (see Tables IX and X).
On reason for fields not being modeled is that they are used
for features that are not included in the TLA+ formalization
because they are optional features (e.g, ‘push msat’). Further,
the TLA+ formalization does not model transaction fees for on-

TABLE XIII
FIELDS OF ‘CHANNEL READY’ MESSAGE.

Variable Description Formalization
channel id ID of the channel

derived from funding
transaction

Not required.

second per commit-
ment point

Point to calculate keys
for the second com-
mitment transaction

Only revocation key
is rotated. Modeled as
key index variable as
part of the key.
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chain transactions. We leave this aspect out of scope to keep
the model and security analysis focused. However, modeling
transaction fees could be included in the formalization as
part of future work. The basepoints and first commitment
point are modeled by sending the public key as explained in
Appendix B4.

After having received an ‘accept channel’ message, a fund-
ing user creates the funding transaction. A transaction is
created as a record consisting of a set of inputs, a set of
outputs, an id and an absolute timelock (see Appendix B4).
The id of the funding transaction is chosen as a unique un-
predictable identifier. Once created, the funding transaction is
stored in the field ‘transactions’ of the variable ‘c, uInventory’.
The sending of the signature of the first commitment trans-
action in the ‘funding created’ message is modeled by the
action ‘SendSignedFirstCommitTransaction’. As explained in
Appendix B4, sending a signature is modeled by sending
the whole transaction with they funder’s key added to the
transaction’s input. In the same way, the non-funding user
responds with the signed first commitment transaction for the
funder in the ‘funding signed’ message. Once the funder has
received the other user’s signature on the first commitment
transaction, the funder publishes the funding transaction by
adding it to the set of published transactions in the variable
‘LedgerTx’. Together with adding the transaction to LedgerTx,
a new entry for the transaction is added to the variable TxAge
which maps transaction ids to clocks. A new clock for the
published transaction is created and initialized to 0. This
clock models the age of the transaction, i.e. how many blocks
have been created since the transaction was published. This
information is relevant for spending conditions with timelocks.

After the users have noticed that the funding transaction has
been published, both users exchange new revocation public
keys which models the exchange of per commitment points
(see Appendix B4). Because each user can send the new
revocation public key to the other user after noticing that the
funding transaction has been published, the order in which
the ‘channel ready’ messages are sent is not deterministic
and a user might first send the ‘channel ready’ message
and then receive the other user’s ‘channels ready’ message
or the other way around. In the formalization, this has the
effect that the actions ‘SendNewRevocationKey’ and ‘Re-
ceiveNewRevocationKey’ are enabled in two different states
(e.g., ‘open-funding-pub’ and ‘open-new-key-received’) and
update the state accordingly (e.g., ‘open-new-key-sent’ and
‘rev-keys-exchanged’). After the new revocation public keys
are exchanged, the channel is ready to operate, i.e., to add
HTLCs to the commitment transaction.

11) Updating a Payment Channel: After a user has sent at
least one ‘update add htlc’ message (see Table XIV) to inform
the other user about an HTLC, the user sends a ‘commitment -
signed’ message. The ‘commitment signed’ message contains
a signature for the new commitment transaction in which
all outgoing HTLCs for which an ‘update add htlc’ message
was sent are included and incoming HTLCs that have been
fulfilled are not included. The receiving user responds with

TABLE XIV
FIELDS OF ‘COMMITMENT SIGNED’ MESSAGE.

Variable Description Formalization
channel id ID of the channel

derived from funding
transaction

Not required.

signature Signature of the new
commitment transac-
tion

New commitment
transaction signed by
inserting private key.

num htlcs Number of HTLCs in
the new commitment
transaction

Not required because
the field is redundant.

num htlcs * signature Signature of each
HTLC transaction

HTLC transaction
signed by inserting
private key.

TABLE XV
FIELDS OF ‘REVOKE AND ACK’ MESSAGE.

Variable Description Formalization
channel id ID of the channel

derived from funding
transaction

Not required.

per commitment se-
cret

Secret for key deriva-
tion of keys for the
previous commitment
transaction.

Only revocation key
is rotated. Modeled as
sending the private re-
vocation key.

next per commit-
ment point

Point to calculate keys
for the new commit-
ment transaction

Only revocation key
is rotated. Modeled by
sending public revo-
cation key.

a ‘revoke and ack’ message (see Table XV) to acknowledge
the reception of the new commitment transaction signature
and to revoke the old commitment transaction by sending the
per commitment secret for the old commitment transaction.

12) Formalization of Updating a Payment Channel: When
the user u is in state ‘rev-keys-exchanged’, the action ‘Send-
SignedCommitment’ can be enabled if there is at least one
HTLC to add or remove and the action ‘ReceiveSignedCom-
mitment’ can be enabled if there is a ‘commitment signed’
message in the variable cMessages to be received by user
u . The actions find HTLCs to be updated by the states of the
HTLCs and update the states of the HTLCs according to Fig. 8.
The action ‘SendSignedCommitment’ sends the complete new
signed commitment transaction and signed HTLC transactions
to model the sending of signatures (see Appendix B4). If
an outgoing HTLC has timed out, it will not be added by
‘SendSignedCommitment’ and a commitment transaction that
commits to an incoming HTLC that has timed out will not be
accepted by ‘ReceiveSignedCommitment’.

The formalization keeps track of the balance that a user
should have in the channel. This value is stored in the variable
‘c, uBalance’. During the opening of the payment channel, the
value of c, uBalance is set to the channel’s capacity for the
funder of the channel and to 0 for the other user. When a user
commits to a new HTLC in the action ‘SendSignedCommit-
ment’, the action decrements the user’s balance by the amount
of the HTLC. The variable c, uBalance models for each user

26



the balance that the user is guaranteed to receive as long as
the user follows the protocol. The amount of an HTLC is
added to a user’s balance when the user fulfills the HTLC by
sending the preimage to the other user which is modeled by
the ‘SendHTLCPreimage’ action of the module HTLCUser.

Additionally, there is a variable uChannelBalance which
models the balance that a user has in all of the user’s channels.
This variable is part of the security property and updated when
a payment is processed. The differences between the variables
c, uBalance and uChannelBalance is that c, uBalance repre-
sents only the balance that a user has in a channel that is not
part of an HTLC while uChannelBalance is the sum of all
channels including the amount that is locked in HTLCs.

13) Closing a Payment Channel: There are two ways to
close a payment channel: The simplest way is to close the
channel by publishing the latest commitment transaction on
the blockchain. Both parties can also create a dedicated closing
transaction that cannot be revoked and, thus, does not require
timeout and which is smaller than a commitment transaction
and, thus, costs less fees to publish on the blockchain. For
the formalization, we chose to leave this type of closing out
of scope because it is an optimization that is useful but not
required for a functional and secure protocol. Closing might,
however, be dishonest if a party publishes a commitment
transaction that is not the latest commitment transaction.

Each party has to watch the blockchain for published com-
mitment transactions and react accordingly. When a channel is
closed with an outdated commitment transaction, the honest
party has to spend the commitment transaction’s revocation
outputs. When a channel is closed with a latest commitment
transaction that contains HTLCs, these HTLCs need to be
resolved on the blockchain. If an incoming HTLC can be
fulfilled, an HTLC success transaction must be published
and, if an outgoing HTLC is timed out, an HTLC timeout
transaction must be published. HTLCs that are not part of the
latest commitment transaction, are aborted if they have not
been committed, timed out or persisted.

14) Formalization of Closing a Payment Channel: In the
formalization, a payment channel can only be closed by pub-
lishing a commitment transaction on the blockchain. This can
either be done honestly modeled by the action ‘CloseChannel’
or dishonestly modeled by the action ‘Cheat’. We model that
a user observes a commitment transaction on the blockchain
using different actions depending on whether the other party
closed honestly or dishonestly. When the payment channel is
closed honestly, the published commitment transaction defines
which HTLCs are committed and which are not. The action
‘NoteThatOtherPartyClosedHonestly’ updates the states of the
HTLCs accordingly: The state of HTLCs that were in the
process of being committed but are not committed is set to
ABORTED. The state of those HTLCs that are committed
is set to COMMITTED and the state of HTLCs that were
fulfilled and are not in the commitment transaction is set to
PERSISTED. When the payment channel is closed dishonestly,
the action ‘Punish’ models that the user u notices the outdated
commitment transaction and publishes a transaction that uses

the revocation keys to punish the cheating party.
A challenge for the formalization is that a channel might be

closed while the channel is in the process of being updated. A
dishonest user might revoke a commitment transaction and
publish the revoked commitment transaction. If the honest
user observes the published commitment transaction on the
blockchain before the honest user receives the revocation key,
the honest user treats the publication of the commitment
transaction as an honest closing. After having received the
revocation key, the honest user has to react to the published
commitment transaction as a cheating attempt.

15) Formalization of Messages: The exchange of messages
in a channel is modeled by letting the users write messages
to a message queue per channel from which each user can
read the user’s first message. A message is sent by an action
that specifies that the channel’s message queue is extended by
the message that is sent. A message contains a field for the
recipient, the sender, the message’s type, and the payload. For
each type of message, the formalization includes an action that
expects such a message and reacts to the message. An action of
user u that reads a message contains a condition that checks
that the first message sent to user u has the expected type.
The action updates the user’s state as required and removes the
message from the queue. There are two types of variables used
for message queues. The global variable Messages is a set that
contains all messages for requesting and sending an invoice.
There is variable cMessages for each channel c that models
a FIFO queue for messages exchanged between the two users
of channel c. Because of this approach to model messages,
the messages in cMessages are delivered in order and the
messages in the global Messages variable can be delivered
in an arbitrary order. Messages can be directly received or
arbitrarily delayed because after a step in which a message
was sent there can be no or an unlimited number of steps that
advance time until a step is taken in which the message is
received.

16) Formalization of Time Flow: HTLCs as well as com-
mitment transactions use timelocks to enforce that certain
actions cannot be done before a certain point in time. The
values used in Lightning for timelocks are numbers that
indicate a specific height of the Bitcoin blockchain. Because
the blockchain grows on average at a constant rate, the height
of the blockchain represents a logical time that grows on
average linear to the clock time. Because the height of the
blockchain represents a logical time, we refer to the height
of the blockchain also simply as time. We model the time,
i.e., height of the blockchain, as an integer number that
can increase in integer steps. The current value of the time
is stored in the variable LedgerTime. A step that increases
LedgerTime is modeled as an action of the LedgerTime
module. A behavior of the system described by the TLA+

specification is a sequence of steps of actions of the users
(modules PaymentChannelUser and HTLCUser) and of steps
that advance the time, i.e., increase the value of LedgerTime.
Depending on where in a behavior the steps that advance the
time are taken between steps of actions of users, the actions
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of users are modeled to happen slowly or quickly relative to
the growth of the blockchain.

In some situations, the protocol requires a user to take an
action before the blockchain has reached a certain height.
An example for such a situation is that, if a user knows the
preimage for an HTLC, the user must fulfill the HTLC before
the HTLC times out. Consider the following scenario: There
is an HTLC from user A to user B with a timeout at time 10.
User B knows the preimage and the current time is 8. While
the action for fulfilling the HTLC is enabled, the action for
increasing the LedgerTime is also enabled. It is acceptable
that the value of the variable LedgerTime is increased to
9. However, if the value of the variable LedgerTime was
increased to 10 before user B fulfills the HTLC, user B would
not have followed the protocol which requires user B to fulfill
the HTLC before the HTLC’s timeout. Therefore, to model
honest behavior of user B, we need to model that user B
performs an action before the variable LedgerTime reaches
the value 10. If the value of the variable LedgerTime is 9,
the action that increases the value of LedgerTime should not
be enabled until user B has fulfilled the HTLC. To model
this urgency requirement, we let the each module specify a
set of points in time called TimeBounds that are the heights
of the blockchain at which the user needs to perform an
action at the latest. The time (resp. height of the blockchain)
will not advance further than the minimal height specified
by all TimeBounds. For the previous example, the value
of TimeBounds of the module PaymentChannelUser would
include the HTLC’s timelock - 1 for each incoming HTLC that
the user has the preimage for and that is not fulfilled. After an
action that removes the condition for a time bound has been
taken, the height of the blockchain can advance further. We
check that no execution of the protocol is stuck because of
a time bound but no action is possible and the height of the
blockchain cannot advance by using a liveness property that
checks that the time finally reaches a specified maximal value.

17) Liveness of Users: The Lightning protocol requires that
honest users perform certain steps if they can. For example,
a user must respond to a ‘commitment signed’ message with
a ‘revoke and ack’ message. In the TLA+ specification, we
model these requirements using a weak fairness condition that
specifies that, if for an honest user an action is continuously
enabled, the user has to eventually take a step of this action.
In general, we assume that dishonest users take steps in which
they read from the environment but not steps in which they
actively change their environment, i.e. dishonest users retrieve
messages and read the blockchain but are not required to
send messages or publish transactions. However, to a certain
degree, we also need to assume liveness for dishonest users.
We make the following exceptions: A first exception is that, to
achieve progress during channel opening, we specify a weak
fairness condition that dishonest users actively participate in
the opening of the channel. This simplifies the formalization
as we can assume that channels are actually opened. The
requirement is not a practical limitation of the adversary as,
until a channel has been opened, there is nothing to loose or

gain. If the protocol execution terminates before the funding
transaction has been published, the execution had no effect
on the blockchain and, thus, on the balances of the users.
A second exception is that we specify that, once the other
user in the channel has terminated, even dishonest users must
publish transactions if they can. This exception simplifies
the definition of idealized channels because each user ends
in a state in which the user has spent all outputs on the
blockchain that the user can spend. This exception is also
not a practical limitation of the adversary as the other user
who has already terminated will not be able to profit from
actions of the adversary anymore. We make a third exception
for one specific situation: Assume that an HTLC is part of
a commitment transaction that has been honestly published
on-chain, i.e. the commitment transaction cannot be revoked.
The timeout of the HTLC has already passed. The user for
whom the HTLC is incoming is honest but does not have
the preimage. The user for whom the HTLC is outgoing is
dishonest. Now, the dishonest user could spend the HTLC
output and the honest user would note that the HTLC has
timedout on-chain. If the dishonest user never spends the
HTLC output, the honest user stays in a state in which the
HTLC might be resolved in two different ways: Either the
dishonest user spends the HTLC output on-chain or the honest
user might receive the preimage for the HTLC and spend
the HTLC output. Because we specify that users terminate
only if they know how all HTLCs have been resolved, this
situation prevents honest users from terminating. We decide
this situation by specifying that, in this specific situation, a
dishonest user publishes a transaction on-chain to timeout the
HTLC and retrieve the HTLC’s amount. This exception is only
required because of the specific termination condition in our
formalization. Because the issue is about an output that is
expected to be spent by the dishonest user, in practice, this
is not a real problem because an honest user retrieves the
honest user’s balance and it is acceptable if the HTLC is never
finally timedout. An alternative to this exception would be to
change the protocol so that the honest user marks the HTLC as
timedout although the HTLC has not been timedout on-chain.

C. Generalized Time Skip Theorem

Given a real-time specification SpecS , we define a specifi-
cation SpecŜ that is implemented by SpecS and potentially has
fewer states. The two specifications differ only in how time is
advanced. While in a common real-time specification SpecS
time is advanced by steps of one time unit, the definition of
specification SpecŜ allows time to only advance to points in
time at which a new step becomes possible. We say that a
step becomes possible in a state with time t if the step would
not be possible at the directly preceding point in time t ´ 1.
The optimized specification does not allow points in time at
which every step that is possible could also have been taken at
an earlier point in time. For a specification in which at many
points in time the same steps are possible, this optimization
reduces the state space and, thus, reduces the time required
for model checking.
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In this section, we define a general real-time specification
SpecS and the corresponding optimized specification SpecŜ .
We formulate that the original real-time specification imple-
ments the optimized specification in Theorem 9 and prove
Theorem 9 in Appendix D.

1) Real-Time Specification SpecS : The real-time specifica-
tion SpecS to be optimized is defined as SpecS “ InitS ^
˝rNextS svS ^ LivenessS with the set of variables vS . The
specification SpecS must be an explicit-time real-time spec-
ification with a set of clocks X and an AdvanceTimeS
action. We assume that the specification has the following
properties: The clocks X are modeled as variables that are
not externally visible. An action may not read a clock and
write the clock’s value to another variable.7 In all initial
states, the clocks have the same value. By the AdvanceTimeS
action, the values of all clocks x P X are advanced by 1.
This assumption facilitates the proof, however, it is not a
real restriction because a specification that allows only `1
advancements of time implements a specification that allows
advancements by any natural number. The AdvanceTimeS
action might be disabled if a time bound is reached. Time
bounds are defined for each clock x P X by a mapping Bx

from states to a set of natural numbers. Time may not advance
from a state s if any clock x has a value that is equal to
one of the time bounds in the set Bx psq for clock x and
state s . The NextS action of the specification S is a disjunct
of an internal next action NextI and the AdvanceTimeS
action: NextS “ NextIS _ AdvanceTimeS . LivenessS is the
conjunction of formulas of the form WFvS pAq and SFvS pAq
for subactions A of NextS . In this paper, we assume that all
values of the clock x are elements of the set N0.

2) Optimized Specification Ŝ : We define the optimized
specification Ŝ with the variables vŜ “ vS as: SpecŜ “

InitŜ ^ ˝rNextŜ svarsŜ ^ LivenessŜ with InitŜ “ InitS and
NextŜ “ AdvanceTimeŜ _ NextIŜ and NextIŜ “ NextIS
and LivenessŜ “ LivenessS . Thus, the only difference
between specifications S and Ŝ is how time is advanced
by the AdvanceTime actions. To define AdvanceTimeŜ , we
introduce the following definitions. We refer to the state space
of the optimized specification Ŝ as Σ̂.

We define a function T̂ x
d that translates a state s to another

time by returning a state s 1 as a copy of state s with the clock
x set to d , i.e. s 1.x “ d .

Definition 3 (T̂ x
d ).

T̂ x
d : Σ̂Ñ Σ̂

s ÞÑ s 1 so that p@v P vS : s 1.v “ s.vq

^ s 1.x “ d

Using the definition of T̂ x
d , we can express an assumption

on Bx psq. We assume that Bx psq is independent of the value
of the clock x . Formally:

7We see no reason why this would be a practical restriction. To measure
time differences, new clocks can be created.

Assumption 1.

@x P X , d P N0, s P Σ̂ : Bx psq “ Bx pT̂ x
d psqq

We extend the definition of T̂ x
d from a function of states to

a function T̂ x
d on behaviors:

Definition 4 (T̂ x
d ).

T̂ x
d : Σ̂˚ Ñ Σ̂˚

xσ0, σ1, σ2, ...y ÞÑ xT̂ x
d pσ0q, T̂

x
d pσ1q, T̂

x
d pσ2q, ...y

Define the set NŜ Ď Σ̂˚ as the set of all behaviors that
consist of NextIŜ or stuttering steps.

Definition 5 (NŜ ).

NŜ “ tσ “ xσ0, σ1, ...y P Σ̂˚ : @i P N0 : σi

rNextIŜ sv
Ŝ

ÝÝÝÝÝÝÝÑ σi`1u

and accordingly for specification S

Definition 6 (NS ).

NS “ tσ “ xσ0, σ1, ...y P Σ˚ : @i P N0 : σi

rNextIS svS
ÝÝÝÝÝÝÝÑ σi`1u

Using this definition of the set NŜ , we can express that
a behavior σ P Σ̂˚ consists of NextIŜ or stuttering steps by
stating that σ P NŜ .

We define a newly possible behavior as a behavior that
contains a step that was not possible if the behavior started at
the directly preceding point in time. Formally, a newly possible
behavior is a behavior σ P NŜ so that there exists a clock
x P X so that, while the behavior starts at time t “ σ0.x , it
holds that T̂ x

t´1pσq R NŜ , i.e., if σ is translated to the directly
preceding point in time, then the resulting behavior T̂ x

t´1pσq
contains a step that is not allowed by action NextIŜ .

A newly possible behavior for state s , is a newly possible
behavior σ that starts in a state created by translating state s
to a time t P N for a clock x P X , i.e., σ0 “ T̂ x

t psq.
We define the function ETPx (EnablingTimePoints) that

maps a state s to all points in time at which a newly possible
behavior for state s exists.

Definition 7 (ETPx psq).

ETPx : ΣÑ PpNq
s ÞÑ tt P N : Dσ “ xσ0, σ1, ...y P NS :

σ0 “ T x
t psq ^ T x

t´1pσq R NSu

We assume a function relETPx psq that is defined in spec-
ification SpecS and maps a state to a set of natural numbers
so that the following conditions are met:

Assumption 2.

@x P X , s P Σ : ETPx psq Ď relETPx psq

^ tb ` 1 | b P Bx psqu Ď relETPx psq

For a state s for each value t in the set ETPx psq, there
exists a NextIŜ step in a behavior that starts at state T̂ x

t psq
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(state s where clock x is translated to time t), so that the step
is not possible when translating the behavior to time t ´ 1.
The set relETPx psq contains the points in time that are in
ETPx psq and may contain additional points.

Using the definition of relETPx , the action AdvanceTimeŜ
can be defined as an action that sets the new value of each
clock x P X to a point in time that is in the set relETPx . All
other variables are left unchanged:

Definition 8 (AdvanceTimeŜ ). For two states s, t P Σ̂, it

holds that s
AdvanceTimeŜ
ÝÝÝÝÝÝÝÝÝÑ t iff

t .time ą s.time

^ @v P vŜ : t .v “ s.v

^ @x P X : t .x “ s.x _ t .x P relETPx psq

^ @x P X : @b P Bx psq : s.x ď b ñ t .x ď b

With the definition of AdvanceTimeŜ , the specification
SpecŜ is fully defined and we can state the theorem that SpecS
implements SpecŜ :

Theorem 9.
SpecS ñ SpecŜ

D. Proof of Generalized Time Skip Theorem

Based on the definitions given above in Appendix C, we
prove Theorem 9.

1) Extended Real-Time Specification SpecS 1 : Because the
proof that specification SpecS implements specification SpecŜ
needs auxiliary variables for defining how a clock is mapped
to specification SpecS , we define an extended specification
SpecS 1 that wraps specification SpecS and adds the auxiliary
variables.

Specification SpecS 1 uses the variables vS 1 defined as
the variables vS of SpecS and the auxiliary variables
mappedClockx for each clock x P X :

vS 1 “ vS Y
ď

x P X
tmappedClockx u

Specification SpecS 1 is defined by SpecS 1 “ InitS 1 ^

˝rNextS 1svS1 ^ LivenessS 1 where InitS 1 is defined as:

InitS 1 “InitS

^ @x P X : mappedClockx “ x

In TLA+, x :ą y is the notation for a function that maps x to
y . Note, that we do not distinguish between a clock x and the
value of the clock x to simplify notation.
LivenessS 1 is defined as LivenessS .
NextS 1 is defined as NextS 1 “ AdvanceTimeS 1 _ NextIS 1

where NextIS 1 is defined as:

NextIS 1 “NextIS

^ @x P X : mappedClock 1x “ mappedClockx

AdvanceTimeS 1 is defined as:

AdvanceTimeS 1 “

AdvanceTimeS

^ @x P X :mappedClock 1x “ max ptmappedClockx u

Y tn P relETPx : n ď x 1uq

relETPx is used without a state parameter here. The param-
eter of relETPx is the ‘current’ state, i.e., the state that is
described by the unprimed variables in AdvanceTimeS 1 .

Lemma 10. SpecS ñ SpecS 1

PROOF: The lemma follows directly from the definition of
SpecS 1 because the added variables mappedClockx are auxil-
iary variables and, in particular, history variables, that do not
affect whether a NextS step is enabled or not.

2) Proof of Theorem 9: In the proof, we use the following
notation: F is formula F in which each clock x P X is
replaced by the variable mappedClockx . Formally, this can
be expressed using the notation F WITH v1 Ð e1, v2 Ð e2 to
describe the expression F where variable v1 is substituted by
expression e1 and variable v2 is substituted by expression e2.
With x1, x2, x3, ... being the clocks in X :

F “ F WITH x1 ÐmappedClockx1 ,

x2 ÐmappedClockx2 ,

x3 ÐmappedClockx3 ,

...

Analogously to the definition of T̂ x
d above, we define T 1x

d

to be a function that, given a state s P Σ1, returns a state s
that equals the given state s except that the value of the clock
x is set to d .

Definition 11 (T 1x
d ).

T 1x
d : Σ1 Ñ Σ1

s ÞÑ s 1 so that p@v P v 1
S : s 1.v “ s.vq

^ s 1.x “ d

We extend the definition of T 1x
d from a function of states

to a function of behaviors:

Definition 12 (T 1x
d ).

T 1x
d : Σ1˚ Ñ Σ1˚

xσ0, σ1, σ2, ...y ÞÑ xT 1x
d pσ0q,T

1x
d pσ1q,T

1x
d pσ2q, ...y

Analogously to NŜ , we define NS 1 Ď Σ1˚ to be the set of
all behaviors in specification S 1 that consist of NextIS 1 and
stuttering steps.

Definition 13 (NS 1 ).

NS 1 “ tσ “ xσ0, σ1, ...y P Σ1˚ : @i P N0 : σi

rNextIS1 sv
S1

ÝÝÝÝÝÝÝÑ σi`1u

We define nx psq to equal the minimal n P N0 so that there
exists a newly possible behavior for given state s where the
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clock x is set to s.x ´n . We assume that the function min is
defined so that if the parameter of min is the empty set, min
equals 8.

Definition 14 (nx ).

nx psq – minptn P N0 : Dσ P NS 1 : σ0 “ T 1x
s.x´npsq

^ T 1x
s.x´n´1pσq R NS 1uq

Lemma 15. Given two states s, t P Σ1 and s
AdvanceTimeS1

ÝÝÝÝÝÝÝÝÝÝÑ

t , it holds for all x P X that:

t .mappedClockx ě max ps.mappedClockx , t .x ´ nx ptqq

We write the proof of this lemma in form of a structured
proof as introduced in [66]. Given a state s P Σ1, we use the
notation :s to refer to a copy of state s of which the variables
mappedClockx were removed so that :s P Σ “ Σ̂.

PROOF: We prove the implication of Lemma 15, by assuming
that s, t P Σ1^s

AdvanceTimeS1

ÝÝÝÝÝÝÝÝÝÝÑ t and proving that @x P X :
t .mappedClockx “ max ps.mappedClockx , t .x ´ nx ptqq. Let
x P X be arbitrary but fixed.
x1y1. t .mappedClockx “ max pts.mappedClockx u Y

tn P relETPx p:sq : n ď t .xuq

PROOF: By the assumption that s, t P Σ1^s
AdvanceTimeS1

ÝÝÝÝÝÝÝÝÝÝÑ

t , by definition of AdvanceTimeS 1 , and by writing the
primed variables v 1 as t .v and the unprimed variables v
as s.v .

x1y2. t .mappedClockx “ max ps.mappedClockx ,
max ptn P relETPx p:sq : n ď t .xuqq

PROOF: By x1y1 and rearranging the values to take the
maximum from.

x1y3. max ptn P relETPx p:sq : n ď t .xuq ě t .x ´ nx ptq
PROOF:
x2y1. max ptn P relETPx p:sq : n ď t .xuq “ t .x ´

minptn P N0 : pt .x ´ nq P relETPx p:squq
PROOF: max ptn P relETPx p:sq : n ď t .xuq can be
written as max ptn P N0 : n P relETPx p:sq ^ n ď

t .xuq because relETPx p:sq Ď N0. The greatest value
n so that n ď t .x can be written as t .x ´ n0
for the minimal value n0 so that t .x ´ n0 ď t .x .
Then, max ptn P relETPx p:sq : n ď t .xuq “ t .x ´
minptn P N0 : pt .x ´ nq P relETPx p:sq ^ pt .x ´ nq ď
t .xuq. The statement follows because t .x´n ď t .x holds
for all n P N0.

x2y2. minptn P N0 : pt .x ´ nq P relETPx p:squq ě

minptn P N0 : pt .x ´ nq P ETPx p:squq “

minptn P N0 : Dσ P NS : σ0 “ T̂ x
t.x´np:sq ^

T̂ x
t.x´n´1pσq R NSuuq

PROOF: By definition of relETPx and ETPx .
x2y3. minptn P N0 : Dσ P NS 1 : σ0 “ T 1x

t.x´nptq ^
T 1x
t.x´n´1pσq R NS 1uq “ nx ptq

PROOF: Definition of nx .
x2y4. @n P N0 : pDσ P NS : σ0 “ T̂ x

t.x´np:sq ^

T̂ x
t.x´n´1pσq R NS ðñ Dσ1 P NS 1 : σ1

0 “

T 1x
t.x´nptq ^ T 1x

t.x´n´1pσ
1q R NS 1q.

PROOF: We prove the statement by proving both direc-
tions of the implication:
x3y1. ASSUME: n P N0, σ P NS , σ0 “ T̂ x

t.x´np:sq,
T̂ x
t.x´n´1pσq R NS

PROVE: Dσ1 P NS 1 : σ1
0 “ T 1x

t.x´nptq ^
T 1x
t.x´n´1pσ

1q R NS 1q

PROOF: Define a behavior σ1 P NS 1 by adding the
variables mappedClockx to each state of a copy σ1 of
σ with, for each state σ1

i of the behavior σ1 it holds that
σ1
i .mappedClockx “ s.mappedClockx . Because the

variables mappedClockx do not affect the conditions of
NextIS 1 and are not changed by NextIS 1 and because
all other variables are changed by NextIS 1 as by
NextIS , it holds that each step in σ1 is a step of NextIS 1

which means that σ1 P NS 1 .
By definition of AdvanceTimeS 1 , the states s and t
differ only by the variables mappedClockx and x .
Because T̂ x

t.x´np:sq.x “ t .x ´ n “ T 1x
t.x´nptq.x , it

follows that σ1
0 “ T 1x

t.x´nptq. By the definition of σ1

and by the assumption T̂ x
t.x´n´1pσq R NŜ , it holds that

T 1x
t.x´n´1pσ

1q R NS 1 .
x3y2. ASSUME: n P N0, σ1 P NS 1 , σ1

0 “ T 1x
t.x´nptq,

T 1x
t.x´n´1pσ

1q R NS 1

PROVE: Dσ̂ P NŜ : σ̂0 “ T̂ x
t.x´np:sq ^

T̂ x
t.x´n´1pσ̂q R NŜ

PROOF: Define a behavior σ̂ P NŜ by removing the
variables mappedClockx from each state in σ and du-
plicating the first state, i.e. σ̂ “ x :σ0

1, :σ0
1, :σ1

1, :σ2
1, ...y.

Because the first step is a stuttering step and NextIS 1 “

NextIŜ , it holds that σ̂ P NŜ .
By definition of AdvanceTimeS 1 , all variables of
the states s and t are equal except the variables
mappedClockx and x . It holds that :T 1x

t.x´nptq “

T̂ 1x
t.x´np:sq because in both states the value of clock

x is t .x ´ n and the variables mappedClockx do not
appear in both states. Because σ̂0 “ :σ0

1
“ :T 1x

t.x´nptq,
it holds that σ̂0 “ T̂ x

t.x´npsq.
By definition of σ̂ and by the assumption
T 1x
t.x´n´1pσ

1q R NS 1 , it holds that T̂ x
t.x´n´1pσ̂q R NŜ .

x3y3. Q.E.D.
By x3y1 and x3y2.

x2y5. Q.E.D.
After rearranging the left part (x2y1), expanding the
definition of relETP (x2y2), and expanding the definition
of nptq (x2y3), the conclusion follows by x2y4.

x1y4. Q.E.D.
The lemma follows from x1y2 by using x1y3.

Definition 16 (InvS 1 ). Define an invariant InvS 1 of a state s
of specification SpecS 1 as:

InvS 1psq ” @x P X : s.mappedClockx ě s.x ´ nx psq

Lemma 17. InvS 1 is an invariant of specification SpecS 1 :

SpecS 1 ñ ˝InvS 1

x1y1. InitS 1 ñ InvS 1
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Let x P X be arbitrary but fixed. By definition of InitS 1 ,
it holds that s.mappedClockx “ s.x . Because it holds that
nx psq ě 0 by definition of nx and by definition of min , it
holds that s.mappedClockx ´ s.x ě ´nx psq.

x1y2. InvS 1 ^ rNextS 1svS1 ñ Inv 1
S 1

x2y1. InvS 1 ^ pv 1
S 1 “ vS 1q ñ Inv 1

S 1

PROOF: Assume that InvS 1 and v 1
S 1 “ vS 1 . It directly

follows that Inv 1
S 1 .

x2y2. InvS 1 ^AdvanceTimeS 1 ñ Inv 1
S 1

PROOF: We refer to the step’s starting state as s and to
the ending state as t . Let x P X be arbitrary but fixed.
Lemma 15 states that it follows from AdvanceTimeS 1

that t .mappedClockx ě max ps.mappedClockx , t .x ´
nx ptqq. It follows that t .mappedClockx ě t .x ´ nx ptq
This is equal to InvS 1ptq which can be written as Inv 1

S 1 .
x2y3. InvS 1 ^NextIS 1 ñ Inv 1

S 1

PROOF: We refer to the step’s starting state as s and to
the ending state as t . Let x P X be arbitrary but fixed.
We assume that InvS 1 ^NextIS 1 holds and we prove that
Inv 1

S 1 .
x3y1. nx psq ď nx ptq

PROOF: In the case that nx psq “ 0, it follows that
nx psq ď nptq because it follows from the definition of
nx ptq that nx ptq ě 0.
In the following, we assume that nx psq ą 0 which
is the only other possible case because nx psq ě 0 by
definition of nx psq.
x4y1. @n P N0 it holds that, if n ă nx psq,

then @σ P NS 1 : σ0 “ T 1x
s.x´npsq ñ

T 1x
s.x´n´1pσq P NS 1

PROOF: Follows from the definition of nx psq. nx psq
is defined as minptn P N0 : f pnqu for a boolean-
valued function f . The definition of min implies that
@n P N0 : n ă nx psq ñ ␣f pnq.

x4y2. @n P N0 it holds that, if n ă nx psq, then the
step from T 1x

s.x´npsq to T 1x
s.x´nptq is a NextIS 1

step.
PROOF: We show this by induction over n P N0.
For n “ 0, we have to show that the step from
T 1x

s.x´0psq to T 1x
s.x´0ptq is a NextIS 1 step. This holds

of x2y3 because T 1x
s.x psq “ s and the step from s to

t is a NextIS 1 step We assume that if n ă nx psq,
then the step from T 1x

s.x´npsq to T 1x
s.x´nptq is a

NextIS 1 step. We prove that if n ` 1 ă nx psq,
then the step from T 1x

s.x´pn`1q
psq to T 1x

s.x´pn`1q
ptq

is a NextIS 1 step. Because the step from T 1x
s.x´npsq

to T 1x
s.x´nptq is a NextIS 1 step, there exists a be-

havior σ “ xT 1x
s.x´npsq,T

1x
s.x´nptq, ...y. By x4y1,

the behavior T 1x
s.x´pn`1q

pσq is a behavior in NS 1

which means that its first step is a NextIS 1 step from
T 1x

s.x´pn`1q
psq to T 1x

s.x´pn`1q
ptq.

x4y3. @n P N0 it holds that, if n ă nx psq,
then @σ P NS 1 : σ0 “ T 1x

s.x´nptq ñ

T 1x
s.x´n´1pσq P NS 1

PROOF: By x4y2, it holds for all n P N0 if n ă

nx psq, then for every behavior σt that starts in state
σt
0 “ T 1x

s.x´nptq, a behavior σs that starts in σs
0 “

T 1x
s.x´npsq can be constructed because the step from

T 1x
s.x´npsq to T 1x

s.x´nptq is a NextIS 1 step. Because
by x4y1 it holds that T 1x

s.x´n´1pσ
sq P NS 1 , it follows

that T 1x
s.x´n´1pσ

tq P NS 1 .
x4y4. minptn P N0 : Dσ P NS 1 : σ0 “ T 1x

t.x´nptq ^
T 1x
t.x´n´1pσq R NS 1uq ě nx psq

PROOF: By x4y3 and because s.x “ t .x .
x4y5. Q.E.D.

PROOF: By x4y4 and the definition of nx ptq “
minptn P N0 : Dσ P NS 1 : σ0 “ T 1x

t.x´nptq ^
T 1x
t.x´n´1pσq R NS 1uq.

x3y2. Q.E.D.
Because NextIS 1 leaves the variables mappedClockx

and x unchanged, it holds that t .mappedClockx “

s.mappedClockx and t .x “ s.x . By InvS 1 it follows
that t .mappedClockx ě t .x ´ nx psq and, by x3y1, it
follows that t .mappedClockx ě t .x ´ nx ptq.

x2y4. Q.E.D.
PROOF: Because x2y1, x2y2, x2y3, and rNextS 1svS1 “

pAdvanceTimeS 1 _NextIS 1q _ pv 1
S 1 “ vS 1q.

x1y3. Q.E.D.
By x1y1, x1y2, and the definition of SpecS 1 .

Lemma 18.
InitS 1 ñ InitŜ

PROOF: Recall that, by definition, InitS 1 “

InitS ^ @x P X : mappedClockx “ x and
InitŜ “ pInitŜ WITH x1 Ð mappedClockx1 , x2 Ð

mappedClockx2 , x3 Ð mappedClockx3 , ... and InitŜ “ InitS .
Because @x P X : mappedClockx “ x , it trivially holds that
InitS 1 ñ InitŜ .

Lemma 19. For every state s P Σ1 it holds that if InvS 1psq
then

@x P X : @σ P NS 1 : σ0 “ s ñ T 1x
s.mappedClockx pσq P NS 1

and InvS 1pT 1x
s.mappedClockx psqq.

PROOF: Let s P Σ1. We assume that InvS 1psq holds.
x1y1. @x P X : @σ P NS 1 : σ0 “ s ñ

T 1x
s.mappedClockx pσq P NS 1

PROOF: Let x P X be arbitrary but fixed.
x2y1. nx psq ą s.x ´ s.mappedClockx ´ 1

PROOF: By assumption, InvS 1psq holds, i.e.
s.mappedClockx ě s.x ´ nx psq. By rearranging,
it follows that nx psq ě s.x ´ s.mappedClockx .
Because time is discrete and increases in integer
steps, we can replace the ě by ą and it follows that
nx psq ą s.x ´ s.mappedClockx ´ 1

x2y2. @n P N0 : n ă nx psq ñ @σ P NS 1 : σ0 “ s ñ
T 1x
s.x´n´1pσq P NS 1

PROOF: This follows from the definition of nx psq. By
definition, nx psq “ minptn P N0 : Dσ P NS 1 : σ0 “

T 1x
s.x´npsq ^ T 1x

s.x´n´1pσq R NS 1uq. In words, nx psq is
defined as the smallest value by that the value of clock
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x in state s must be decreased so that a valid behavior
exists that starts in state T 1x

s.x´nx psq
psq but the behavior

T 1x
s.x´nx psq´1pσq in which x is one step of time lower is

not a valid behavior. Therefore, for all values n smaller
than nx psq, it holds that each behavior that starts in state
s can be translated to a valid behavior where the clock
x is set to s.x ´ n . Formally, this can be expressed as:
x3y1. @n P N0 : n ă nx psq ñ @σ P NS 1 : σ0 “

T 1x
s.x´npsq ñ T 1x

s.x´n´1pσq P NS 1

PROOF: From the definition of nx psq follows by
definition of min that @n P N0 : n ă nx psq ñ
␣pDσ P NS 1 : σ0 “ T 1x

s.x´npsq^T 1x
s.x´n´1pσq R NS 1q.

Moving the negation inwards: @n P N0 : n ă

nx psq ñ @σ P NS 1 : ␣pσ0 “ T 1x
s.x´npsq ^

T 1x
s.x´n´1pσq R NS 1q

Applying the equivalence ␣pa ^ ␣bq “ a ñ b from
boolean algebra: @n P N0 : n ă nx psq ñ @σ P NS 1 :
σ0 “ T 1x

s.x´npsq ñ T 1x
s.x´n´1pσq P NS 1

Informally speaking, x3y1 states that for all n ă nx psq
all behaviors starting in a state in which the clock x is set
to s.x ´n can be translated to a valid behavior in which
the clock x is set to s.x ´n ´ 1. However, the statement
to prove requires that all behaviors starting in a state in
which the clock x is unchanged, i.e., set to s.x ´ 0, can
be translated to a valid behavior in which the clock x is
set to s.x ´ n ´ 1. We use induction over n P N0, to
show that all the steps reducing the clock x by a single
time step can be combined.
x3y2. Q.E.D.
x4y1. If n “ 0, then n ă nx psq ñ @σ P NS 1 : σ0 “

s ñ T 1x
s.x´n´1pσq P NS 1

PROOF: Follows from x3y1 by inserting n “ 0.
Let n P N0 be arbitrary but fixed.
x4y2. ASSUME: n ă nx psq ñ @σ P NS 1 : σ0 “

T 1x
s.x psq ñ T 1x

s.x´n´1pσq P NS 1

PROVE: n ` 1 ă nx psq ñ @σ P NS 1 : σ0 “

T 1x
s.x psq ñ T 1x

s.x´pn`1q´1pσq P NS 1

PROOF:
x5y1. n ` 1 ă nx psq ñ @σ P NS 1 : σ0 “

T 1x
s.x psq ñ T 1x

s.x´pn`1q
pσq P NS 1

It holds that n`1 ă nx psq ñ n ă nx psq and, by
writing s.x´n´1 as s.x´pn`1q, the statement
follows from the assumption.

x5y2. n ` 1 ă nx psq ñ @τ P NS 1 : τ0 “

T 1x
s.x´pn`1q

psq ñ T 1x
s.x´pn`1q´1pτq P NS 1

PROOF: By x3y1 and replacing n by n ` 1.
x5y3. n ` 1 ă nx psq ñ @σ P NS 1 :

σ0 “ T 1x
s.x psq ñ T 1x

s.x´pn`1q
pσq P NS 1 ñ

T 1x
s.x´pn`1q´1pT

1x
s.x´pn`1q

pσqq P NS 1

PROOF: For all σ P NS 1 with σ0 “ s and all
n P N0 it holds by definition of T 1x that the first
state of T 1x

s.x´pn`1q
pσq P NS 1 is T 1x

s.x´pn`1q
psq.

Thus, we can apply x3y1 with n set to n ` 1 and
the statement follows.

x5y4. Q.E.D.

Because T 1x
s.x´pn`1q´1pT

1x
s.x´pn`1q

pσqq “

T 1x
s.x´pn`1q´1pσq, it follows from x5y3 that

n ` 1 ă nx psq ñ @σ P NS 1 : σ0 “ T 1x
s.x psq ñ

T 1x
s.x´pn`1q´1pσq P NS 1 .

x2y3. Q.E.D.
x3y1. s.x ´ s.mappedClockx ´ 1 ě 0

PROOF: If s.x “ s.mappedClockx , then Lemma 19 is
trivial. Thus, we assume that s.x ‰ s.mappedClockx .
By definition of AdvanceTimeS 1 , it holds that
s.x ą s.mappedClockx . If follows that s.x ´

s.mappedClockx ą 0 and, because time increases in
discrete steps, it holds that s.x´s.mappedClockx ě 1.

From x2y1 and x3y1 it follows that we can
insert s.x ´ s.mappedClockx ´ 1 for n in
x2y2. It holds that @σ P NS 1 : σ0 “ s ñ

T 1x
s.x´ps.x´s.mappedClockx ´1q´1pσq P NS 1 . This is equal

to @σ P NS 1 : σ0 “ s ñ T 1x
s.mappedClockx pσq P NS 1 .

To simplify notation, we define wpx , sq “ T 1x
s.mappedClockx psq

and we omit the parameters, i.e. we write w instead of wpx , sq.
x1y2. @x P X : w .mappedClockx ě w .x ´ nx pwq

PROOF: Let x P X be an arbitrary but fixed.
x2y1. nx pwq ě 0

PROOF: By definition of nx , nx maps to values in N0 or
8.

x2y2. w .mappedClockx “ w .x
PROOF:
x3y1. w .x “ s.mappedClockx

PROOF: By definition of T 1, T 1 sets the value of w .x
to s.mappedClockx .

x3y2. w .mappedClockx “ s.mappedClockx

PROOF: By definition of T 1, T 1 sets the value of
w .mappedClockx to the respective value in s , i.e.
s.mappedClockx .

x3y3. Q.E.D.
PROOF: By x3y1 and x3y2

x2y3. Q.E.D.
PROOF: From x2y1 follows that 0 ě ´nx pwq. Adding
w .x on both sides of the equation results in w .x ě

w .x ´ nx pwq. The statement follows by replacing w .x
by w .mappedClockx because of x2y2.

Goal: We want to show that the specification S 1 implements
the time-optimized specification Ŝ . This means we show that
the following theorem holds:

Theorem 20. SpecS 1 ñ SpecŜ

In the proof, we use the shorthand LS 1 for LivenessS 1 and LŜ

for LivenessŜ .
x1y1. InitS 1 ^ ˝rNextS 1svS1 ^ LS 1 ñ ˝rNextŜ svŜ ^ LŜ

x2y1. InvS 1 ^ rNextS 1svS1 ñ rNextŜ svŜ
x3y1. InvS 1 ^ pv 1

S 1 “ vS 1q ñ NextŜ _ pv
1

Ŝ
“ vŜ q

PROOF: Because InvS 1 ^ pv 1
S 1 “ vS 1q ñ pv 1

S 1 “

vS 1q ñ pv 1

Ŝ
“ vŜ q.

x3y2. InvS 1 ^NextS 1 ñ NextŜ _ pv
1

Ŝ
“ vŜ q

x4y1. InvS 1 ^AdvanceTimeS 1 ñ NextŜ _ pv
1

Ŝ
“ vŜ q
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x5y1. SUFFICES: ASSUME: InvS 1 ^

AdvanceTimeS 1

PROVE: NextŜ _ pv
1

Ŝ
“ vŜ q

PROOF: Obvious.
x5y2. CASE: @x P X : mappedClock 1x “

mappedClockx

PROOF: In this case, AdvanceTimeS 1 does not
change the value of the variables mappedClockx .
Because, by definition, AdvanceTimeS 1 leaves all
variables except mappedClockx for all x P X
unchanged, only the clocks are changed. As the
values of the clocks do not affect the value of vŜ ,
it follows that v 1

Ŝ
“ vŜ .

x5y3. CASE: Dx P X : mappedClock 1x ą

mappedClockx

PROOF: We refer to the step’s starting state as
s and to the ending state as t . Let Y Ď X be
the set of clocks y for which mappedClock 1y ą

mappedClocky . We show that the step from
state s to state t is an AdvanceTimeŜ step.
To show that, we show that the properties of
AdvanceTimeŜ defined in Definition 8 are ful-
filled.
x6y1. @y P Y : t .y ą s.y

PROOF: Because mappedClock 1y ą

mappedClocky which can also be written
as t .mappedClocky ą s.mappedClocky and
t .mappedClocky “ t .y .

x6y2. @x P X zY : t .x “ s.x
PROOF: By definition of AdvanceTimeS 1 ,
the value of mappedClockx cannot
decrease. Because x R Y , it follows that
t .mappedClockx “ s.mappedClockx which
equals t .x “ s.x .

x6y3. @y P Y : t .y P relETPypsq
PROOF: By definition of AdvanceTimeS 1 ,
it holds that mappedClock 1y “

max ptmappedClockyu Y tt P relETPy :
t ď y 1uq. Because mappedClock 1y ą

mappedClocky , it follows that
mappedClock 1y “ max ptt P relETPy :
t ď y 1uq. We can also write this as
t .mappedClocky “ max ptt P relETPypsq :
t ď t .yuq P relETPypsq.

x6y4. @v P vŜ : t .v “ s.v
PROOF: For all v P vŜ it holds that v 1 “ v and,
because v “ v it holds that v 1 “ v .

x6y5. @x P X : @b P Bx psq : b ě s.x ñ t .x ď b
PROOF: Let x P X be arbitrary but fixed. Let
b P Bx psq be arbitrary but fixed.
In this proof, we assume that b ě s.x and
we show that it follows that t .x ď b. The
assumption can also be written as b ě

s.mappedClockx .
x7y1. b ě s.x

PROOF: We prove this by contradiction. As-
sume that b ă s.x . Then pb ` 1q ď s.x and
s.mappedClockx ě pb ` 1q ą b because
pb ` 1q P relETPx psq. This is a contradic-
tion to b ě s.mappedClockx .

By Assumption 1, it holds that
@d P N0, s P Σ̂ : Bx psq “ Bx pT̂ x

d psqq
which means that Bx psq “ Bx psq. By
AdvanceTimeS 1 , it holds for all b1 P Bx psq
that s.x ď b1 ñ t .x ď b1. Because
Bx psq “ Bx psq, it also holds for b that
s.x ď b ñ t .x ď b.
From x7y1 it follows that t .x ď b.
By definition, it holds that t .mappedClockx ď

t .x and, therefore, t .mappedClockx ď b.
This can also be written as t .x ď b

x6y6. Q.E.D.
By x6y1, x6y3, and x6y4 it holds that
AdvanceTimeŜ .

x5y4. Q.E.D.
PROOF: Because, by definition of
AdvanceTimeS 1 , it holds that AdvanceTimeS 1 ñ

mappedClock 1x ě mappedClockx , the steps x5y2
and x5y3 cover all possible cases. Thereby and
by x5y1 follows the statement to prove.

x4y2. InvS 1 ^NextIS 1 ñ NextŜ _ pv
1

Ŝ
“ vŜ q

PROOF: We refer to the step’s starting state as s
and to the ending state as t . Informally speaking,
we show that every NextI step that is allowed in
specification S 1 is also allowed in specification Ŝ .
x5y1. SUFFICES: ASSUME: InvS 1 ^NextIS 1

PROVE: NextŜ _ pv
1

Ŝ
“ vŜ q

PROOF: Obvious.
x5y2. @x P X : @σ P NS 1 : σ0 “ s ñ

T 1x
s.mappedClockx pσq P NS 1

PROOF: By Lemma 19 because s is a state of
specification SpecS 1 .

x5y3. @σ P NS 1 : σ0 “ s ñ

x P X pT 1x
s.mappedClockx qpσq P NS 1

PROOF: By Lemma 19, each behavior in NS 1

that starts in a state of specification SpecS 1 , is
mapped by T 1x to a behavior in NS 1 that starts in a
state of specification SpecS 1 . Therefore, executing
the mappings for each clock consecutively, results
in a behavior in NS 1 that starts in a state of
specification SpecS 1 .

x5y4. x P X pT
1x
s.mappedClockx qpsq

NextIS1

ÝÝÝÝÝÑ

x P X pT
1x
s.mappedClockx qptq

PROOF: By x5y3 and because a behavior σ that
starts with the state s followed by state t is in
NS 1 .

x5y5. s
NextIS1

ÝÝÝÝÝÑ t
PROOF: By x5y4 and because, by definition, s “

x P X pT
1x
s.mappedClockx qpsq.

x5y6. NextIS 1
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PROOF: By x5y5 written differently.
x5y7. Q.E.D.

PROOF: Because NextIS 1 “ NextIŜ and because
NextŜ “ NextIŜ _ AdvanceTimeŜ , it follows
from x5y6 that NextŜ and also that NextŜ_pv

1

Ŝ
“

vŜ q.
x4y3. Q.E.D.

PROOF: By x4y1 and x4y2 and because NextS 1 “

AdvanceTimeS 1 _NextIS 1 .
x3y3. Q.E.D.

PROOF: By x3y1 and x3y2 and because rNextS 1svS1 “

NextS 1 _ pv 1
S 1 “ vS 1q.

x2y2. Q.E.D.
PROOF: By x2y1 and Lemma 17 and because LS 1 “ LŜ .

x1y2. InitS 1 ^ ˝rNextS 1svS1 ^ LS 1 ñ

InitŜ ^ ˝rNextŜ svŜ ^ LŜ

PROOF: By x1y1 and Lemma 18.
x1y3. Q.E.D.

PROOF: By definitions of SpecS 1 and SpecŜ .

E. Proof for Application of Generalized Time Skip Theorem
to Formalization of Lightning

To prove that Theorem 9 can be applied to the formalization
of Lightning, we need to prove that, for each clock x P X ,
the set relETPx defined in the specification meets the require-
ments of Assumption 2 and that the time bounds used in the
specification meet the requirements of Assumption 1.

We start by proving that the time bounds specified in
SpecificationI.tla meet Assumption 1.

PROOF: BLedgerTime is defined by TimeBounds of
PaymentChannelUser . As the variable LedgerTime does
not occur in the definition of TimeBounds , the definition
of TimeBounds is independent of LedgerTime and, thus,
Assumption 1 holds for BLedgerTime .
Similarly, BTxAge is defined by TxTimeBounds of
PaymentChannelUser . As the variable TxAge does not
occur in the definition of TxTimeBounds , the definition of
TxTimeBounds is independent of TxAge and, thus, Assump-
tion 1 holds for BTxAge .
In conclusion, Assumption 1 holds for all clocks of the
specification.

We prove that relETPx meets Assumption 2. The set
relETPLedgerTime is defined as relETP in SpecificationII.

PROOF: First, we prove the second statement:
x1y1. @x P X , s P Σ : tb ` 1 | b P Bx psqu Ď relETPx psq

PROOF: For LedgerTime, the statement directly follows
from the definition of relETP in SpecificationII that defines
relETP as union of tt`1 : t P TimeBoundsu and another
set. For the TxAge clocks, the set of time bounds can only
be the empty set or tTO SELF DELAY´1u. Because the
set relETPTxAge contains TO SELF DELAY , it holds
for all states s P Σ that tb ` 1 | b P BTxAgepsqu “
tTO SELF DELAY u Ď relETPTxAgepsq.

x1y2. @x P X , s P Σ : ETPx psq Ď relETPx psq

PROOF: We have to show that for every n P ETPx psq, it
holds that n P relETPx psq. This means that if there is a
newly possible behavior at time n , then time n must be in
relETPx psq.
Our proof strategy is based upon the following observation:
For each n P ETPx psq, there exists a newly possible
behavior σ for clock x P X and time n P N. By definition
of ETPx psq, the behavior σ contains a step xs, ty that is
not possible at time n´1, i.e., the step xT̂ x

n´1psq, T̂
x
n´1ptqy

is not allowed in the specification. In the step xs, ty, the
clock x is unchanged because σ P N x

Ŝ
. Define a mapping

a from ETPx psq to the subactions of the specification, that
assigns to each n P ETPx psq a subaction A so that s A

ÝÑ t

but not T̂ x
n´1psq

A
ÝÑ T̂ x

n´1ptq, i.e., a step of action apnq
is not possible if clock x is set to n ´ 1 and becomes
possible at time n . For the step xT̂ x

n´1psq, T̂
x
n´1ptqy, not

to be possible, there must be a condition that contains
the clock x because the value of the clock x is the only
difference between the states T̂ x

n´1psq and s . Therefore,
to find all n P ETPx psq, we inspect all subactions of the
NextI action of SpecificationI and select the actions that
depend on the value of the clock x . We need to prove for
each subaction of NextI that all points in time at which
a step of this action becomes possible, are included in
relETPx . Therefore, our strategy is as follows: We go
through all subactions A of NextI , we find the conditions
under which an A step exists that is enabled at time n but
not at time n´ 1, and verify that in all states s from which
a state that meets these conditions can be reached by NextI
steps it holds that n P relETPx psq.
Actions of module PaymentChannelUser: There are nine ac-
tions in the module that depend on the value of LedgerTime
and three actions that depend on TxAge .
x2y1. @s P Σ : @n P ETPLedgerTimepsq :

apnq “ SendSignedCommitment ñ

n P relETPLedgerTimepsq
The action SendSignedCommitment commits to new
HTLCs by including them in the new commitment trans-
action that is sent. Outgoing HTLCs are included if they
are in state NEW and if their timelock is greater than
the current value of LedgerTime. For two consecutive
points in time n ´ 1 and n , a step of the action Send-
SignedCommitment is possible at time n but not at time
n´1 if a SendSignedCommitment step is allowed at time
n ´ 1 that adds an HTLC but the same HTLC could not
be added at time n because n ´ 1 is smaller than the
HTLC’s timelock but n is equal to the HTLC’s timelock.
It follows that a long as there is an HTLC that is in
state NEW, the set relETPLedgerTimepsq must include the
HTLC’s timelock because at this point in time a new
step might become possible that sends a commitment
transaction without including this HTLC. This condition
is fulfilled by the definition of TimelockRegions of the
module PaymentChannelUser.
Further, the set relETPLedgerTimepsq must include the
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timelock of each HTLC that might come into state NEW.
The only way for an HTLC to reach the state NEW is to be
created by the action AddAndSendOutgoingHTLC in the
module HTLCUser. This action creates an HTLC for an
outgoing payment with the payment’s timelock. Thus, the
set relETPLedgerTimepsq must include the timelock of
each outgoing payment. This condition is fulfilled by the
definition of TimelockRegions of the module HTLCUser.
An outgoing payment is created if an incoming HTLC
is received that is to be forwarded. The timelock
of the newly created payment is taken from the
dataForNextHop field in the message that was prepared
by the original sender of the payment. Thus, the set
relETPLedgerTimepsq must include all the timelocks in-
cluded in the dataForNextHop fields for payments that
are already in process and, for multi-hop payments that
are not yet in process, the set relETPLedgerTimepsq
must include the timelocks as they will appear in the
dataForNextHop field. This condition is fulfilled by the
definition of TimelockRegions of the module HTLCUser.
It is possible to predict these timestamps because they are
calculated only based on a payment’s timelock and the
payment’s route which are known already in the initial
states of the specification.
Given that all these values are included in the set
relETPLedgerTimepsq, the set relETPLedgerTimepsq con-
tains all points in time at which a SendSignedCommit-
ment step becomes possible because the action Send-
SignedCommitment depends on LedgerTime only for
choosing the HTLCs to add.

x2y2. @s P Σ : @n P ETPLedgerTimepsq :
apnq “ ReceiveSignedCommitment ñ

n P relETPLedgerTimepsq
Analogously to x2y1, ReceiveSignedCommitment accepts
a commitment transaction that is being received only if
the incoming HTLCs that are committed have a timelock
that is greater than LedgerTime. An incoming HTLC
can be committed only if it is in state NEW. As de-
scribed above, the set relETPLedgerTimepsq contains an
HTLC’s timelock already for all HTLCs that are or
can come into state NEW. Under this condition, the set
relETPLedgerTimepsq contains all points in time at which
a ReceiveSignedCommitment step becomes possible be-
cause the action ReceiveSignedCommitment depends on
LedgerTime only for deciding which HTLCs are allowed
to be added in a commitment transaction being received.

x2y3. @s P Σ : @n P ETPLedgerTimepsq :
apnq “ ReceiveRevocationKey ñ

n P relETPLedgerTimepsq
The action ReceiveRevocationKey depends on
LedgerTime for defining which HTLCs are marked as
COMMITTED. By definition of ReceiveRevocationKey, an
incoming HTLC is only committed if it is in state SENT-
COMMIT and has a timelock greater than LedgerTime.
As described above, the set relETPLedgerTimepsq
contains an HTLC’s timelock already for all HTLCs

that are or can come into state NEW. Additionally,
the set relETPLedgerTimepsq must also contain an
HTLC’s timelock if the HTLC is in state SENT-
COMMIT or in one of the states RECV-COMMIT and
PENDING-COMMIT which are preceding states of SENT-
COMMIT. This condition is fulfilled by the definition of
TimelockRegions of the module PaymentChannelUser.
Under this condition, the set relETPLedgerTimepsq
contains the timelocks of all HTLCs that are in state
SENT-COMMIT or can come into this state.

x2y4. @s P Σ : @n P ETPLedgerTimepsq : apnq “

CloseChannelñ n P relETPLedgerTimepsq
The action CloseChannel chooses a transaction for clos-
ing based on LedgerTime. The channel can always be
closed using the latest commitment transaction. The
channel can also be closed using a pending new com-
mitment transaction unless there is an HTLC that is in
state RECV-COMMIT and has timed out, i.e., the HTLC
has a timelock lower than or equal to the value of
LedgerTime. A step of CloseChannel that closes using a
pending new commitment transaction becomes possible
if a timedout HTLC that is in state RECV-COMMIT is
advanced to another state. Because the timelocks of all
HTLCs that are in state RECV-COMMIT or any preceding
state are included in the set relETPLedgerTimepsq, the set
relETPLedgerTimepsq contains all points in time at which
a step of CloseChannel becomes possible.

x2y5. @s P Σ : @n P ETPLedgerTimepsq :
apnq P tCheat,Punish,RedeemHTLCAfterCloseu ñ
n P relETPLedgerTimepsq

The actions Cheat, Punish, and RedeemHTLCAfterClose
all use a formula that finds transactions that can be used
to spend outputs of published transactions and one of the
transactions found is published. This formula depends on
LedgerTime as well as TxAge because outputs might be
timelocked and only spendable after an absolute timelock
or after a certain time after the transaction containing the
output was published. If LedgerTime reaches the abso-
lute timelock of an output or TxAge reaches the relative
timelock of an output, there is a new transaction in the
set of publishable transactions and, thus, a step publishing
this new transaction becomes possible. Consequently, the
set relETPLedgerTimepsq must contain absolute time-
locks of outputs that might be spent by such a new
transaction. This condition is fulfilled by the definition
of TimelockRegions of the module PaymentChannelUser
because TimelockRegions contains all absolute timelocks
of outputs in the ledger.
To account for the points in time at which an output
of a transaction becomes spendable that has not been
published yet, the set relETPLedgerTimepsq must also
include the absolute timelocks of transactions that are
stored in the users’ Inventory variables. This condition
is fulfilled by the definition of TimelockRegions of the
module PaymentChannelUser. Such absolute timelocks in
transactions in the users’ Inventory variables are created
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based on the absolute timelocks of uncommitted HTLCs.
As shown in the steps above, the timelocks of these
HTLCs are included by the definition of TimelockRe-
gions of the module PaymentChannelUser.

x2y6. @s P Σ : @n P ETPLedgerTimepsq : apnq “

NoteThatHTLCFulfilledOnChainByOtherUser ñ
n P relETPLedgerTimepsq

The action NoteThatHTLCFulfilledOnChain finds an
HTLC that has been fulfilled on-chain, adds the preimage
to the user’s variables, and marks the HTLC as PER-
SISTED. If the HTLC that has been fulfilled has timed
out for longer than the grace period, i.e., LedgerTime
is greater than the HTLC’s timelock plus the duration
of the grace period, the HTLC’s preimage is added to
the set LatePreimages. A step of NoteThatHTLCFul-
filledOnChain in which a preimage is added to the set
LatePreimages becomes possible if LedgerTime equals
the HTLC’s timelock `G`1 where G is the duration of
the grace period. Therefore, the set relETPLedgerTimepsq
must contain for each HTLC that is in a state that
can be followed by state PERSISTED the value of the
HTLC’s timelock `G ` 1. This condition is fulfilled
by the definition of TimelockRegions of the module
PaymentChannelUser and HTLCUser because for every
HTLC that is in a state that can be followed by the state
PERSISTED or that can be created, these sets contain the
value of the HTLC’s timelock `G ` 1.

x2y7. @s P Σ : @n P ETPLedgerTimepsq : apnq “

NoteThatHTLCFulfilledOnChainInOtherChannelñ
n P relETPLedgerTimepsq

With respect to the use of LedgerTime, the defini-
tion of NoteThatHTLCFulfilledOnChainInOtherChannel
equals the definition of NoteThatHTLCFulfilledOnChain-
ByOtherUser and, thus, the conclusion follows analo-
gously to x2y6.

x2y8. @s P Σ : @n P ETPTxAgepsq :
apnq P tCheat,Punish,RedeemHTLCAfterCloseu ñ
n P relETPTxAgepsq

The actions Cheat, Punish, and RedeemHTLCAfterClose
all use a formula that finds transactions that can be used
to spend outputs of published transactions and one of the
transactions found is published. This formula depends on
LedgerTime as well as TxAge because outputs might be
timelocked and only spendable after an absolute timelock
or after a certain time after the transaction containing
the output was published. If TxAge reaches the relative
timelock of an output, there is a new transaction in the
set of publishable transactions and, thus, a step publishing
this new transaction becomes possible. Consequently, the
set relETPTxAgepsq must contain the relative timelocks
of outputs that might be spent by such a new transaction.
Because all relative timelocks in the specification equal
the constant TO SELF DELAY, this condition is fulfilled
by the definition of AdvanceLedgerTime which assumes
that relETPTxAgepsq “ tTO SELF DELAY u.

The module HTLCUser contains five actions that depend

on LedgerTime and no actions that depend on TxAge:
x2y9. @s P Σ : @n P ETPLedgerTimepsq :

apnq “ AddAndSendOutgoingHTLC ñ

n P relETPLedgerTimepsq
The action AddAndSendOutgoingHTLC adds a payment
with the lowest timelock of all payments whose timelock
is greater than the value of LedgerTime. Thus, a new
step of AddAndSendOutgoingHTLC becomes possible
if a payment cannot be added anymore because the
value of LedgerTime equals the payment’s timelock and
a payment with the next upcoming timelock becomes
the payment with the lowest timelock of all payments
whose timelock is greater than the value of LedgerTime.
Because the definition of TimelockRegions of the module
HTLCUser contains the timelock of each existing or
future payment, all points in time at which a new step
of AddAndSendOutgoingHTLC becomes possible are
included in relETPLedgerTimepsq.

x2y10. @s P Σ : @n P ETPLedgerTimepsq :
apnq “ SendHTLCPreimage ñ

n P relETPLedgerTimepsq
The action SendHTLCPreimage depends on LedgerTime
and sends the preimage to an HTLC only if the HTLC’s
timelock plus the constant grace period G is greater than
LedgerTime. By this dependency, a SendHTLCPreimage
step cannot become possible because, if a SendHTL-
CPreimage is possible at one point in time, then at any
preceding point in time is also smaller than the HTLC’s
timelock plus the grace period G .

x2y11. @s P Σ : @n P ETPLedgerTimepsq :
apnq “ ReceiveHTLCPreimage ñ

n P relETPLedgerTimepsq
Analogously to the action NoteThatHTLCFulfilledOn-
ChainByOtherUser in the module PaymentChannelUser,
the action ReceiveHTLCPreimage adds the preimage of
an HTLC to the variable LatePreimages if the HTLC’s
timelock `G is smaller than LedgerTime. Thus, a new
step becomes possible at an HTLC’s timelock `G `

1. Because the set relETPLedgerTimepsq contains the
HTLC’s timelock `G ` 1 for every HTLC that can be
fulfilled, this condition is fulfilled.

x2y12. @s P Σ : @n P ETPLedgerTimepsq : apnq “

SendHTLCFailñ n P relETPLedgerTimepsq
The action SendHTLCFail depends on LedgerTime to
fail an HTLC that has been committed if the HTLC
has timed out. Thus, a SendHTLCFail becomes pos-
sible if the value of LedgerTime equals the timelock
of an HTLC that is in state COMMITTED. As the set
relETPLedgerTimepsq contains the timelock of all HTLCs
that are committed and can come into state COMMITTED,
the set relETPLedgerTimepsq contains all points in time
at which a step of SendHTLCFail becomes possible.

x2y13. @s P Σ : @n P ETPLedgerTimepsq : apnq “

ReceiveHTLCFailñ n P relETPLedgerTimepsq
The action ReceiveHTLCFail marks an HTLC only
as failed if the HTLC’s timelock is smaller than or
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equal to LedgerTime. This is the same condition as
for the action SendHTLCFail and, by x2y12, the set
relETPLedgerTimepsq contains all points in time at which
a step of ReceiveHTLCFail becomes possible.

The module MultiHopMock contains one action that de-
pends on LedgerTime and no actions that depend on TxAge .
x2y14. @s P Σ : @n P ETPLedgerTimepsq : apnq “

ReceivePreimageForIncomingHTLC ñ

n P relETPLedgerTimepsq
The action ReceivePreimageForIncomingHTLC mocks
the reception of a preimage of an HTLC. The action
describes steps that add the preimage to the variable
LatePreimages and steps that do not add the preim-
age to LatePreimages. The preimage must be added to
LatePreimages if the HTLC’s timelock is smaller than
or equal to LedgerTime. Thus, at an HTLC’s timelock,
a step that does not add the preimage to LatePreimages
becomes impossible but no new step becomes possible
because a step that adds the preimage to LatePreimages
is already possible when LedgerTime is smaller than the
HTLC’s timelock.

F. Proof that Specification pII q refines Specification pIII q

Let C be the set of all channels that exist in a specification
and U be the set of all users of a specification and Uc the
users that are part of channel c P C .

The states of specification pI q are defined by the fol-
lowing variables. The variables that are specific for a user
and/or a channel are prefixed with an identifier of the
specific user and/or channel. In the proofs, we omit the
prefixes when they are irrelevant or it is clear from the
context which user or channel is referred to. For each
user u P U : vu “ t uPreimageInventory, uLatePreimages,
uPaymentSecretForPreimage, uNewPayments, uPayments,
uChannelBalance, uExtBalance, uHonest u. For each chan-
nel c P C : vc “ t cMessages, cUsedTransactionIds,
cPendingBalance u. For each channel c P C and for each user
u of channel c: vc,u “ t c, uState, c, uBalance, c, uVars,
c, uDetailVars, c, uInventory u. Global variables: vg “ t

LedgerTime, TxAge, Messages, LedgerTx u.
Specification pII q has the same variables as specification

pI q. Specification pIIaq has the variables that specification pII q
has and additionally a variable uRequestedInvoices for each
user u in which data about the mocked environment is stored.
Specifically, it is stored for which payments an invoice was
already requested.

The states of specification pIII q are defined by the following
variables: For each user u: vu “ t uPreimageInventory,
uLatePreimages, uPaymentSecretForPreimage,
uNewPayments, uPayments, uChannelBalance, uExtBalance,
uHonest u For each channel c P C : vc “ t cMessages,
cPendingBalance u. For each channel c and for each user
u of channel c: vc,u “ t c, uState, c, uBalance, c, uVars u
Global variables: vg “ t LedgerTime, Messages u

1) pIIaq ñ pIIIaq:

Definition 21. Define fc to be the refinement mapping from
specification pIIaq to specification pIIIaq for channel c. The
refinement mapping fc is defined using TLA+ in the file
SpecificationIIatoIIIa.tla.

Lemma 22. Specification pIIaq for channel c P C is a
refinement of specification pIIIaq with the refinement mapping
fc .

We check the correctness of this lemma using model check-
ing (see Section VII). We model check specification pIIaq and
verify that applying the mapping to each state leads to steps
of specification pIIIaq.

Lemma 23. The refinement mapping fc maps steps of
PaymentChannelUser to steps of IdealChannel, steps of
HTLCUser to steps of HTLCUser, steps of MultiHopMock to
steps of MultiHopMock, and steps of LedgerTime to steps of
LedgerTime or stuttering steps.

PROOF: By design, steps of an action A of HTLCUser and
MultiHopMock are mapped to steps of the same action A in
specification pIIIaq. This mapping of steps to steps of the
same action is implemented in the refinement mapping by
leaving the variables or the fields of variables unchanged by
the refinement mapping that are updated by the actions of
HTLCUser and MultiHopMock. Because the values of the
refinement mapping of all variables except LedgerTime do
not depend on LedgerTime, these values are unchanged, if
the value of LedgerTime changes. Because the refinement
mapping does not change the value of LedgerTime and no
action in another module describes a change in LedgerTime, a
step of LedgerTime is mapped to a step of LedgerTime. Steps
of the module PaymentChannelUser are mapped to steps of
the module IdealChannel.

2) pII q ñ pIII q: We prove that specification pII q is a
refinement of specification pIII q by defining a mapping g
from the state space of specification pII q to the state space
of specification pIII q and by proving that the mapping g is
a refinement mapping. The mapping g works as follows: In
a first step, the mapping g defines for each channel c in
specification pII q a state of specification pIIaq. This state of
specification pIIaq is mapped to a state of specification pIIIaq
using the refinement mapping fc . The mapping g assigns to a
state of specification pII q a state of specification pIII q with
the channel-specific variables of specification pIIIaq for each
channel c and the user-specific and general variables of the
given state of specification pII q.

An instance of specification pIIaq defines the behavior of
one single channel. To define an instance of specification pIIaq
for each channel c P C we use the function mc to define a
state of specification pIIaq based on a state of specification
pII q. To this end, specification pIIaq has the same global
variables vg used by specification pII q but only the variables
vu for the state of the two participating users of the channel
c and the variables vc,u and vc that are specifically related to
the channel c.
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Definition 24 (mc). Define a mapping mc : ΣpII q Ñ ΣpIIaq

so that for a state s P ΣpII q, the state mcpsq assigns to all
variables in ΣpIIaq the following values:

Each channel-specific variable v P vc,uYvc in specification
pIIaq is assigned the value of the corresponding variable in
state s with c prepended to the variable’s name. E.g., the
variable ChannelMessages in specification pIIaq is assigned
the value s.cMessages.

The user-specific variables v P vu in specification pIIaq are
assigned the following values. As a helper we define the set
of relevant preimages Ru,c for each user u of the channel
c as the domain of the function uPaymentSecretForPreimage
combined with the set of all preimages for hashes of HTLCs
stored in c, uVars.

‚ uPreimageInventory is assigned the value of
s.uPreimageInventory X Ru,c .

‚ uLatePreimages is assigned the value of
s.uLatePreimagesX Ru,c .

‚ uPaymentSecretForPreimage is assigned the value of
s.uPaymentSecretForPreimage.

‚ uNewPayments is assigned the set of all payments in
s.uNewPayments that are initiated by user u , for which
the next hop is channel c, or for which there exists an
incoming HTLC in c, uVars.

‚ uChannelBalance and uPayments are assigned the cor-
responding values in state s .

‚ uHonest and uExtBalance are assigned the correspond-
ing values in state s .

‚ uRequestedInvoices is assigned the set of payments of
users that are not part of channel c for which an invoice
was requested from user u .

The global variables in specification pIIaq are assigned the
following values:

‚ Messages is assigned a set that contains all messages in
s.Messages for which either the sender or the recipient
is a user that is member of channel c.

‚ LedgerTx is the set of all transactions in s.LedgerTx that
are related to channel c, i.e., the transaction with the
funding output and any directly or indirectly spending
transactions.

‚ LedgerTime is assigned the greatest value of the set
cTimelockRegions that is lower than s.LedgerTime. The
set cTimelockRegions consists of the value that was as-
signed to LedgerTime for channel c in the previous step8

combined with the union of the TimelockRegions sets of
PaymentChannelUser, HTLCUser, and MultiHopMock for
the users of channel c .

Lemma 25. Given a state of specification pII q, then in all
channels c P C created by the mapping mc it holds that for
every step xs, ty of an action of an instance of Payment-
ChannelUser or HTLCUser for channel c, in all channels
c1 ‰ c the step xmc1psq,mc1ptqy is either a stuttering step,

8This value is obtained by adding a helper variable for each channel c to
specification pII q that stores the mapped value of LedgerTime for channel c.

a step of an instance of MultiHopMock for channel c1 or a or
a step of HTLCUser for channel c1 and the same user as in
channel c.

Let xs, ty be a step in specification pII q of an action of the
modules PaymentChannelUser or HTLCUser for channel c.
The variables vc1 and vc1,u that are specific to channel c1 and
the variables of users u who are not part of channel c are
unaffected by a step in channel c and, thus, these variables
are unchanged in the step xmc1psq,mc1ptqy.
Variables that are left to discuss because they are possibly
changed in the step xmc1psq,mc1ptqy are the global variables
vg and the user specific variables vu for users who are both
in channel c1 and channel c. These variables are: Messages,
LedgerTx, LedgerTime, TxAge, uPreimageInventory,
uLatePreimages, uPaymentSecretForPreimage,
uChannelBalance, uPayments, uNewPayments, uHonest,
uExtBalance, and uRequestedInvoices
The variables LedgerTx and TxAge are reduced by mc1 to
values that are specific to channel c1. Thus, a change in
channel c does not affect the value of LedgerTx and TxAge in
the step xmc1psq,mc1ptqy and these variables are unchanged.
The variable LedgerTime cannot be changed in step xs, ty
which is a step of an action of the modules PaymentChannel-
User or HTLCUser. Because the set cTimelockRegions can
only become smaller, the value of LedgerTime in step
xmc1psq,mc1ptqy does not change.
The remaining variables are changed by the following
actions of the modules PaymentChannelUser and
HTLCUser: PublishFundingTransaction, RedeemHTL-
CAfterClose, NoteThatHTLCFulfilledOnChainByOtherUser,
NoteThatHTLCFulfilledOnChainInOtherChannel,
RequestInvoice, GenerateAndSendPaymentHash, Receive-
PaymentHash, SendHTLCPreimage, ReceiveHTLCPreimage,
AddAndSendOutgoingHTLC, and ReceiveUpdateAddHTLC.
In the following, we prove for each of these actions that a step
xs, ty of these actions in channel c is a step xmc1psq,mc1ptqy
in channel c1 and either a stuttering step, a step of an action
of MultiHopMock or of HTLCUser for the same user.
x1y1. If xs, ty is a step of PublishFundingTransaction of

user u in channel c, then xmc1psq,mc1ptqy is either a
stuttering step, a step of an action of MultiHopMock or
of HTLCUser for user u .

PROOF: The variables that are changed by PublishFund-
ingTransaction and are not specific to channel c are
uExtBalance and uChannelBalance. By definition of mc ,
both variables are unchanged in step xmc1psq,mc1ptqy if
user u is not part of channel c1. In the step xs, ty the
channel balance of user u is increased by the funding
amount which is the user’s external balance. This change
is described by the action UserOpensPaymentChannel of
the module MultiHopMock which decreases the balance of
user u by to zero and adds it to the channel balance of
user u stored in the variable uChannelBalance. Thus, these
variables of user u change in the same way as described by
the action PublishFundingTransaction. The information that
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this balance is stored in an external channel from the view
of channel c1 is stored by adding a record to the variable
uRequestedInvoices tat stores the amount that is stored in
the other channel. As all other variables remain unchanged,
xmc1psq,mc1ptqy is a step of UserOpensPaymentChannel if
user u is part of channel c1 and a stuttering step otherwise.

x1y2. If xs, ty is a step of RedeemHTLCAfterClose or
SendHTLCPreimage of user u in channel c, then
xmc1psq,mc1ptqy is either a stuttering step, a step of
an action of MultiHopMock or of HTLCUser for user
u .

PROOF: The variables that are changed by RedeemHTL-
CAfterClose and SendHTLCPreimage and are not specific
to channel c are uPayments and uChannelBalance. By
definition of mc , both variables are unchanged in step
xmc1psq,mc1ptqy if user u is not part of channel c1. Both
variables are only changed if a payment is processed. This
can only be the case if u is the receiver of the payment.
This change of the variables in step xmc1psq,mc1ptqy is
described by the action ProcessOtherPayment of MultiHop-
Mock which describes that any payment of which the user u
is the receiver may be processed and the respective balance
be received.

x1y3. If xs, ty is a step of NoteThatHTLCFulfilledOnChain-
ByOtherUser or ReceiveHTLCPreimage of user u in
channel c, then xmc1psq,mc1ptqy is either a stuttering
step, a step of an action of MultiHopMock or of
HTLCUser for user u .

PROOF: The variables that are changed by NoteThatHTLC-
FulfilledOnChainByOtherUser and ReceiveHTLCPreimage
and are not specific to channel c are uPreimageInventory,
uLatePreimages, uPayments and uChannelBalance. By
definition of mc , these variables are unchanged in step
xmc1psq,mc1ptqy if user u is not part of channel c1. Further,
by definition of mc , the variables uPreimageInventory and
uLatePreimages are unchanged if the preimage that is being
read from the blockchain is not in the set Ru,c1 . If user u
is the receiver of the payment associated with the fulfilled
HTLC, then the HTLC is not part of another channel of user
u and only the variables uPayments and uChannelBalance
are changed. This change in the step xmc1psq,mc1ptqy is
described by the action ProcessOtherPayment of Multi-
HopMock which describes that any payment of which the
user u is the sender may be processed and the respective
balance be deducted from uChannelBalance. If user u is
not the receiver of the payment associated with the fulfilled
HTLC, then the variables uPayments and uChannelBalance
are unchanged in step xs, ty and, by definition of mc1 ,
they are unchanged in step xmc1psq,mc1ptqy. The variables
uPreimageInventory and uLatePreimages change only in
step xmc1psq,mc1ptqy if the preimage of the fulfilled HTLC
is in Ru,c1 . As channels c1 and c are different channels and,
if uPreimageInventory is changed by NoteThatHTLCFul-
filledOnChainByOtherUser or ReceiveHTLCPreimage, the
received preimage must be for an outgoing HTLC in channel
c, the HTLC for which the preimage is received must be

an incoming HTLC in channel c1. Thus, the change to the
variables uPreimageInventory and uLatePreimages in step
xmc1psq,mc1ptqy that a preimage is received is described
by the action ReceivePreimageForIncomingHTLC of the
module MultiHopMock.

x1y4. If xs, ty is a step of NoteThatHTLCFulfilledOn-
ChainInOtherChannel of user u in channel c, then
xmc1psq,mc1ptqy is either a stuttering step, a step of
an action of MultiHopMock or of HTLCUser for user
u .

PROOF: The variables that are changed by NoteThatHTL-
CFulfilledOnChainInOtherChannel and are not specific to
channel c are uPreimageInventory and uLatePreimages.
By definition of mc , both variables are unchanged in step
xmc1psq,mc1ptqy if user u is not part of channel c1. By def-
inition of NoteThatHTLCFulfilledOnChainInOtherChannel,
the HTLC that is being fulfilled must be an incoming HTLC.
Thus, the change to the variables uPreimageInventory and
uLatePreimages in step xmc1psq,mc1ptqy that a preimage is
received is described by the action ReceivePreimageForIn-
comingHTLC of the module MultiHopMock.

x1y5. If xs, ty is a step of RequestInvoice of user u in channel
c, then xmc1psq,mc1ptqy is either a stuttering step, a step
of an action of MultiHopMock or of HTLCUser for user
u .

PROOF: The action RequestInvoice is not specific to a
channel but only specific to user u . If user u is in channel c1,
step xmc1psq,mc1ptqy is also described by RequestInvoice
of the module HTLCUser. If user u is not in channel c1,
the global variable Messages might be changed in step
xmc1psq,mc1ptqy if a message is sent from user u to a user
of channel c1. Such a step xmc1psq,mc1ptqy is described by
the action RequestInvoice of the module MultiHopMock. If
no user of channel c1 is the recipient of the message sent
by u , then, by definition of mc1 , the variable Messages is
unchanged in xmc1psq,mc1ptqy and xmc1psq,mc1ptqy is a
stuttering step.

x1y6. If xs, ty is a step of GenerateAndSendPaymentHash of
user u in channel c, then xmc1psq,mc1ptqy is either a
stuttering step, a step of an action of MultiHopMock or
of HTLCUser for user u .

PROOF: The action GenerateAndSendPaymentHash is not
specific to a channel but only specific to user u . If user u
is in channel c1, step xmc1psq,mc1ptqy is also described by
GenerateAndSendPaymentHash of the module HTLCUser.
If user u is not in channel c1, the global variable Messages
might be changed in step xmc1psq,mc1ptqy if user u replies
to a message sent from a user of channel c1. Such a step
xmc1psq,mc1ptqy is described by the action GenerateAnd-
SendPaymentHash of the module MultiHopMock. The value
included in the reply is deterministic as it can be deducted
from the payment id for which an invoice is requested. Thus,
the action GenerateAndSendPaymentHash of the module
MultiHopMock can define the reply that an actual user
would send. If user u replies to a message that was not
sent by a user from channel c1, by definition of mc1 , the
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variable Messages is unchanged in xmc1psq,mc1ptqy and
xmc1psq,mc1ptqy is a stuttering step.

x1y7. If xs, ty is a step of ReceivePaymentHash of user u in
channel c, then xmc1psq,mc1ptqy is either a stuttering
step, a step of an action of MultiHopMock or of
HTLCUser for user u .

PROOF: The action ReceivePaymentHash is not specific
to a channel but only specific to user u . If user u is
in channel c1, step xmc1psq,mc1ptqy is also described by
ReceivePaymentHash of the module HTLCUser. If user u
is not in channel c1, the global variable Messages might
be changed in step xmc1psq,mc1ptqy if user u receives
a message sent by a user from channel c1. Such a step
xmc1psq,mc1ptqy is described by the action ReceivePaymen-
tHash of the module MultiHopMock that describes for the
user in channel c1 that the received message is removed from
the Messages variable. If user u receives a message that was
not sent by a user from channel c1, by definition of mc1 ,
the variable Messages is unchanged in xmc1psq,mc1ptqy and
xmc1psq,mc1ptqy is a stuttering step.

x1y8. If xs, ty is a step of AddAndSendOutgoingHTLC of
user u in channel c, then xmc1psq,mc1ptqy is either a
stuttering step, a step of an action of MultiHopMock or
of HTLCUser for user u .

PROOF: The only variable that is changed by AddAnd-
SendOutgoingHTLC and is not specific to channel c is
uNewPayments. By definition of mc , this variable is un-
changed in step xmc1psq,mc1ptqy if user u is not part of
channel c1. The change to the variable uNewPayments is
that a payment is removed. This change is described by the
action AddOutgoingHTLCToOtherChannel of the module
MultiHopMock.

x1y9. If xs, ty is a step of ReceiveUpdateAddHTLC of user u
in channel c, then xmc1psq,mc1ptqy is either a stuttering
step, a step of an action of MultiHopMock or of
HTLCUser for user u .

PROOF: The only variable that is changed by Receive-
UpdateAddHTLC and is not specific to channel c is
uNewPayments. By definition of mc , this variable is un-
changed in step xmc1psq,mc1ptqy if user u is not part of
channel c1. The change to the variable uNewPayments is
that a payment is added that should be forwarded. This
change is described by the action AddNewForwardedPay-
ment of the module MultiHopMock. The action AddNew-
ForwardedPayment describes the payments that can be
added based on the initial payments of other users and
calculates the parameters of the payment to be forwarded
based on the position of the channel c1 in the path of the
payment.

x1y10. Q.E.D.
PROOF: The steps above discussed all actions that change
variables that have an effect on the variables in step
xmc1psq,mc1ptqy. Thus, for all steps xs, ty of other actions,
the step xmc1psq,mc1ptqy is a stuttering step.

Lemma 26. For each channel c P C , the mapping mc maps a

state of specification pII q to a valid state of specification pIIaq
of channel c. Formally: @s P ΣpII q, c P C : mcpsq P ΣpIIaq

We prove the lemma by induction:
Let Fi be the set of initial states of specification Si .
x1y1. @s P FpII q, c P C : mcpsq P FpIIaq

By definition of the initial states, applying the selection by
mc to an initial state of specification pII q results in an initial
state of specification pIIaq.

x1y2. ASSUME: s P ΣpII q and mcpsq P ΣpIIaq and xs, ty is
a step of specification pII q

PROVE: mcptq P ΣpIIaq

Assume that state s is a valid state of specification pII q
and mcpsq is a valid state of specification pIIaq. We show
that for a step xs, ty to a state t of specification pII q, it
holds that mcptq is a valid state of specification pIIaq.
A step of specification pII q is either a step of a (1)
PaymentChannelUser, (2) HTLCUser, (3) LedgerTime, or
(4) a final withdraw step.
x2y1. If xs, ty is a step of PaymentChannelUser, then

mcptq P ΣpIIaq

If the step xs, ty is a step of PaymentChannelUser, it is
either (1.1) a step of an action of PaymentChannelUser
for channel c or (1.2) for another channel.
x3y1. If xs, ty is a step of PaymentChannelUser for

channel c, then mcptq P ΣpIIaq

If the step xs, ty is a step of an action of Payment-
ChannelUser for channel c then xmcpsq,mcptqy is a
step of specification pIIaq because specification pIIaq
allows exactly the same action of PaymentChannelUser
that changes the variables selected by the mapping
mc . Because xmcpsq,mcptqy is a step of specification
pIIaq, mcptq is a state of specification pIIaq.

x3y2. If xs, ty is a step of PaymentChannelUser for a
channel other than channel c, then mcptq P ΣpIIaq

If the step xs, ty is a step of an action of Payment-
ChannelUser for a channel other than channel c, the
variables in specification pII q that are specific to chan-
nel c do not change between states s and t . However,
the variables for the users participating in channel c
might change in the step xs, ty or global variables
might change. For example, a user of channel c might
receive a preimage. To account for such changes, speci-
fication pIIaq contains the module MultiHopMock. The
module MultiHopMock abstracts all actions that can
happen in other payment channels. By Lemma 25, it
holds that mcptq P ΣpIIaq and, thus, mcptq P ΣpIIaq.

x3y3. Q.E.D.
By x3y1 and x3y2.

x2y2. If xs, ty is a step of HTLCUser, then mcptq P ΣpIIaq

A step of HTLCUser is either a step of an action of
HTLCUser for channel c or for another channel.
x3y1. If xs, ty is a step of HTLCUser for channel c, then

mcptq P ΣpIIaq

If the step xs, ty is a step of an action of HTLCUser for
channel c then xmcpsq,mcptqy is a step of specification
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pIIaq because specification pIIaq allows exactly the
same action of HTLCUser that changes the variables
selected by the mapping mc . Because xmcpsq,mcptqy
is a step of specification pIIaq, mcptq is a state of
specification pIIaq.

x3y2. If xs, ty is a step of HTLCUser for a channel other
than channel c, then mcptq P ΣpIIaq

If the step xs, ty is a step of an action of HTLCUser
for a channel other than channel c, the variables in
specification pII q specifically for channel c do not
change between states s and t . However, the variables
for the users participating in channel c might change
in the step xs, ty or global variables might change. As
in step x2y1, we use the module MultiHopMock to
account for this. For every action in HTLCUser that
changes a variable that is also used in another channel,
there is an action in MultiHopMock that describes the
changes to the variables. By Lemma 25, it holds that
mcptq P ΣpIIaq and, thus, mcptq P ΣpIIaq.

x3y3. Q.E.D.
By x3y1 and x3y2.

x2y3. If xs, ty is a step of LedgerTime, then mcptq P ΣpIIaq

If the step xs, ty is a step of LedgerTime, the only change
between states s and t is an increase in LedgerTime.
By the definition of mc , LedgerTime changes in the step
xmcpsq,mcptqy as defined by the module LedgerTime.
Thus, the step xmcpsq,mcptqy is a step of specification
pIIaq. Thus, mcptq P ΣpIIaq.

x2y4. If xs, ty is a final withdraw step, then mcptq P ΣpIIaq

Assume that xs, ty is a final withdraw step in specification
pII q. The final withdraw action is defined in specification
pIIaq as in specification pII q with the exception of the
new value of uExtBalance for each user u . Thus, we
only need to show that the change of uExtBalance in
xmcpsq,mcptqy conforms to the final withdraw action of
specification pIIaq. The balance of dishonest users does
not change in step xs, ty which matches the definition of
the final withdraw action in specification pIIaq. In step
xs, ty, the value of uExtBalance for each honest user u is
increased by user u’s on-chain balance. In specification
pIIaq the visible on-chain balance might be less than in
specification pII q because only the on-chain transaction
for channel c are visible. However, because specification
pIIaq requires that the value of uExtBalance for an honest
user u is at least the user’s previous balance increased by
the on-chain balance from channel c, the user u’s new
external balance can be larger than the balances visible
in specification pIIaq and, therefore, xmcpsq,mcptqy is a
step of specification pIIaq. It follows that mcptq P ΣpIIaq.

x2y5. Q.E.D.
By x2y1, x2y2, x2y3, and x2y4 because a step in specifi-
cation pII q can only be either a step of PaymentChannel-
User, HTLCUser, LedgerTime, or a final withdraw step.

x1y3. Q.E.D.
By induction using x1y1 and x1y2.

Let F be the set of the refinement mappings fc for all chan-
nels c P C from specification pIIaq to specification pIIIaq
that we defined in the TLA+ code of the formalization in
SpecificationIIatoIIIa.tla.

Definition 27 (g). Define the function g from ΣpII q, the
state space of specification pII q, to ΣpIII q, the state space of
specification pIII q, as follows. For a state s of specification
pII q, let gpsq be a state of specification pIII q with the
following value to variable assignments:

‚ The global variables vg are assigned as follows:
– Messages is assigned s.Messages which equals the

value
Ť

c P C fcpmcpsqq.Messages, the union of all
global messages.

– LedgerTime is assigned the value
s.LedgerTime which equals the value
maxc P C pfcpmcpsqq.LedgerTimeq.

‚ The variables vu that concern one specific user u are
assigned the value s.v because these variables are left
unchanged by fc .

‚ In the set of variables vc that concern one
specific channel c P C , there are the variables
cMessages and cPendingBalance. This variables are
assigned the value fcpmcpsqq.ChannelMessages and
fcpmcpsqq.PendingBalance respectively.

‚ For the variables v P vc,u that concern one specific user
u and channel c, the value of the variable v in state gpsq
is defined as fcpmcpsqq.v .

Lemma 28. A step of IdealChannel or HTLCUser in spec-
ification pIIIaq is also possible if the variables that are
reduced by mc (i.e., uPreimageInventory, uLatePreimages,
uNewPayments, Messages) contain additional values that are
filtered out by mc (see Definition 24).

PROOF:
x1y1. All conditions on the first state of a step of IdealChannel

or HTLCUser are valid even if the variables that are
reduced by mc contain additional values that are filtered
out by mc .

PROOF: It can be checked for every action of IdealChannel
and HTLCUser and every variable that is reduced by mc that
this property holds. For this proof, we discuss all relevant
cases. The remaining cases are either trivial or analogous
to the discussed cases.
The action RequestInvoice of HTLCUser requests an in-
voice only if there are no payments with lower timelock
in uNewPayments that are initiated by the user u . Because
mc retains all payments that are initiated by the user u in
uNewPayments, the additional payments that are filtered out
by mc are not relevant for this condition.
The action GenerateAndSendPaymentHash of HTLCUser
adds a preimage for the requested payment to
uPreimageInventory and a payment secret to
uPaymentSecretForPreimage. The action contains a
condition that the generated preimage may not already be
in uPreimageInventory. Because the value chosen for the
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preimage in the formalization depends on and is unique for
the payment that the preimage is for, if the preimage has
already been generated then it must have been generated
by this action and must have been added to the domain of
uPaymentSecretForPreimage and, therefore, it is selected
by mc .
The action AddAndSendOutgoingHTLC selects a payment
that has the lowest timelock of all payments for which the
next hop is this channel. Because mc retains all payments
in uNewPayments for which the next hop is this channel,
additional payments that are not filtered out by mc do not
affect this condition.
In IdealChannel, some actions have checks whether the
preimage of an HTLC is in uPreimageInventory. Because
these checks are only for preimages for HTLCs of the users
and mc retains all preimages for which an HTLC exists,
these checks return the same result if uPreimageInventory
contains more values.

x1y2. All conditions on the second state of a step of Ideal-
Channel or HTLCUser are valid even if the variables
that are reduced by mc contain additional values that
are filtered out by mc .

PROOF: The values of the concerned variables in the second
state of a step are always described by the actions of
IdealChannel and HTLCUser by describing a change and
not directly the new value. More concretely, the actions
define that a value is added or removed to the set and all
remaining values of the set remain unchanged. Thus, a step
of IdealChannel or HTLCUser is still valid if the concerned
variables contain additional values.

x1y3. Q.E.D.
PROOF: Because the conditions on the first and the second
state are valid, a step of IdealChannel or HTLCUser is also
a valid step if the variables that are reduced by mc contain
additional values that are filtered out by mc .

Theorem 29. The function g is a refinement mapping from
specification pII q to specification pIII q.

x1y1. For all s P ΣpII q : Πpgpsqq “ Πpsq
PROOF: The externally visible variables are for all users
u P U : uPayments, uExtBalance, uChannelBalance, and
uHonest. These variables are by definition unchanged by g .

x1y2. For all initial states s of specification pII q, gpsq is an
initial state of specification pIII q

PROOF: All variables in state s are mapped by g either by
directly assigning the value of the variable in state s or by
applying functions fc P F . By definition of fc , fc does not
change values in the initial states. By definition of Init of
specifications pII q and pIII q, it follows that all variables
of a state of specification pII q are mapped to values of an
initial state of specification pIII q.

x1y3. For all steps xs, ty of specification pII q, xgpsq, gptqy is
a step of specification pIII q.

PROOF:
A step of specification pII q can be one of the following.
x2y1. CASE: xs, ty is a step of an action of the module

LedgerTime in specification pII q.
PROVE: xgpsq, gptqy is a step of the module

LedgerTime in specification pIII q.
The only variable that is updated in step is the variable
LedgerTime. Because the way that the refinement map-
pings fc update variables does not depend on the value of
LedgerTime, all variables other than LedgerTime are un-
changed in step xgpsq, gptqy. It follows that xgpsq, gptqy
is a step of the module LedgerTime in specification pIII q
because all variables except LedgerTime are unchanged
and gpsq.LedgerTime “ gptq.LedgerTime and specifi-
cation pIII q allows LedgerTime to increase by at least
the values that are allowed in specification pII q because
specification pIII q is a regular (unoptimized) real-time
specification.

x2y2. CASE: xs, ty is a step of an action of the module
HTLCUser or PaymentChannelUser in spec-
ification pII q.

PROVE: xgpsq, gptqy is a step of HTLCUser or
IdealChannel in specification pIII q.

Let c P C be the channel and u the user for which
the step xs, ty is a step of an action of HTLCUser or
PaymentChannelUser. By the proof of Lemma 26, the
step xmcpsq,mcptqy is a step of an action of HTLCUser
or PaymentChannelUser for user u in the instance of
specification pIIaq that is described by the mapping
mc . By Lemma 25, the step xmc1psq,mc1ptqy is a step
of HTLCUser, MultiHopMock or a stuttering step in
the instance of specification pIIaq for every channel
c1 ‰ c that is described by the mapping mc1 . By
Lemma 22, the step xfcpmcpsqq, fcpmcptqqy is a step of
HTLCUser or IdealChannel in specification pIIIaq and
the step xfc1pmc1psqq, fc1pmc1ptqqy is a step of HTLUser,
MultiHopMock or a stuttering step in specification pIIIaq.
The channel-specific variables of all channels c1 ‰ c
and the user-specific variables of all users u 1 ‰ u are
unchanged in the step xs, ty and, by definition of g ,
these variables are also unchanged in step xgpsq, gptqy.
Therefore, only the global variables, user-specific vari-
ables for user u and channel-specific variables for channel
c might be changed in step xgpsq, gptqy. Because the
step xfcpmcpsqq, fcpmcptqqy is a step of HTLCUser or
IdealChannel in specification pIIIaq, by Lemma 28 and
the definition of g , the step xgpsq, gptqy is a step of
HTLCUser or IdealChannel in specification pIII q.

x1y4. Q.E.D.
PROOF: By x1y1, x1y2, x1y3, and the definition of refine-
ment mappings and because specification pIII q contains
the same fairness condition as specification pII q that only
behaviors are valid that end in a state in which all users
have withdrawn their balance.

G. Proof of Application of Generalized Time Skip Theorem to
Specification pIII q

Analogously to Appendix E, to prove that Theorem 9 can be
applied to specification pIII q, we need to prove that, for each
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clock x P X , the set relETPx defined in the specification
meets the requirements of Assumption 2 and that the time
bounds used in the specification meet the requirements of
Assumption 1. In contrast to specification pI q, specification
pIII q contains only one clock which is LedgerTime.

We start by proving that the time bounds specified in
SpecificationIII.tla meet Assumption 1.

PROOF: BLedgerTime is defined by TimeBounds of
IdealChannel . As the variable LedgerTime does not occur in
the definition of TimeBounds , the definition of TimeBounds
is independent of LedgerTime and, thus, Assumption 1 holds
for BLedgerTime .

We prove that relETPx meets Assumption 2. The set
relETPLedgerTime is defined as relETP in SpecificationIV.

PROOF: First, we prove the second statement:
x1y1. @x P X , s P Σ : tb ` 1 | b P Bx psqu Ď relETPx psq

PROOF: The statement directly follows from the definition
of relETP in SpecificationIIa that defines relETP as union
of tt ` 1 : t P TimeBoundsu and another set.

x1y2. @x P X , s P Σ : ETPx psq Ď relETPx psq
PROOF: We have to show that for every n P ETPx psq, it
holds that n P relETPx psq. This means that if there is a
newly possible behavior at time n , then time n must be in
relETPx psq.
We use the same proof strategy as Appendix E. We go
through all subactions A of NextI , we find the conditions
under which an A step exists that is enabled at time n but
not at time n´ 1, and verify that in all states s from which
a state that meets these conditions can be reached by NextI
steps it holds that n P relETPx psq.
Define a mapping a from ETPx psq to the subactions of the
specification, that assigns to each n P ETPx psq a subaction
A so that s A

ÝÑ t but not T̂ x
n´1psq

A
ÝÑ T̂ x

n´1ptq, i.e., a step
of action apnq is not possible if clock x is set to n ´ 1 and
becomes possible at time n .
The module HTLCUser contains five actions that depend
on LedgerTime that have already been discussed in Ap-
pendix E. We do not repeat the proofs for these actions
here.
The module IdealChannel contains seven actions that de-
pend on LedgerTime:
x2y1. @s P Σ : @n P ETPLedgerTimepsq :

apnq “ UpdatePaymentChannel ñ

n P relETPLedgerTimepsq
PROOF: The action UpdatePaymentChannel depends on
the value of LedgerTime to choose the HTLCs to add
and to remove. For this, the condition that is used is
the condition that an HTLCs timelock is greater than
LedgerTime. Thus, the set relETPLedgerTimepsq must
contain an HTLC’s timelock because at the timelock
of an HTLC a new step becomes possible that does
not add a specific HTLC or that removes an HTLC
that has timedout. This is fulfilled by the definition of
TimelockRegions of the module IdealChannel that is

included by relETPLedgerTimepsq.
The action UpdatePaymentChannel also contains a condi-
tion that under certain conditions the value of LedgerTime
is smaller than an HTLC’s absolute timelock plus the
grade period G . For larger values of LedgerTime steps
become impossible but this condition does not allow for
new steps to become possible.

x2y2. @s P Σ : @n P ETPLedgerTimepsq :
apnq “ SetOnChainHTLCsAndCheater ñ

n P relETPLedgerTimepsq
PROOF: As UpdatePaymentChannel, the action SetOn-
ChainHTLCsAndCheater contains a condition that under
certain conditions the value of LedgerTime is smaller than
an HTLC’s absolute timelock plus the grade period G .
For larger values of LedgerTime steps become impossible
but this condition does not allow for new steps to become
possible.
Another condition requires a user to have at least the bal-
ance of incoming HTLCs that cannot be persisted because
the user was dishonest and the value of LedgerTime is
larger than or equal to the HTLC’s timelock + G. This
condition might lead to steps becoming impossible but
there are no steps of SetOnChainHTLCsAndCheater that
can become possible.

x2y3. @s P Σ : @n P ETPLedgerTimepsq :
apnq “ FulfillIncomingHTLCsOnChain ñ

n P relETPLedgerTimepsq
PROOF: The action FulfillIncomingHTLCsOnChain can
fulfill an HTLC on-chain as long as the HTLC’s timelock
+ G is greater than LedgerTime. Because the action
chooses a subset of fulfillable HTLCs as the HTLCs to
fulfill, if the value of LedgerTime reaches an HTLC’s
timelock + G no new step becomes possible but only all
steps that include fulfilling this HTLC become impossi-
ble.
Additionally, the action has the same condition for the
balance of users as SetOnChainHTLCsAndCheater that
also does not lead to steps becoming possible.

x2y4. @s P Σ : @n P ETPLedgerTimepsq :
apnq “ NoteFulfilledHTLCsOnChain ñ

n P relETPLedgerTimepsq
PROOF: The action NoteFulfilledHTLCsOnChain can
note a fulfilled HTLC on-chain as long as the HTLC’s
timelock + G is greater than LedgerTime. Because the
action chooses a subset of fulfillable HTLCs as the
HTLCs to fulfill, if the value of LedgerTime reaches an
HTLC’s timelock + G no new step becomes possible but
only all steps that include fulfilling this HTLC become
impossible.
If the preimage for an HTLC is learned when the value
of LedgerTime is greater than the HTLC’s timelock +
G, the preimage is added to the set uLatePreimages.
Thus, for each HTLC that can be fulfilled, the set
relETPLedgerTimepsq must include the HTLC’s timelock
+ G + 1. This is fulfilled by the definition of Timelock-
Regions of the module IdealChannel that is included by
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relETPLedgerTimepsq.
x2y5. @s P Σ : @n P ETPLedgerTimepsq :

apnq “ CommitHTLCsOnChain ñ

n P relETPLedgerTimepsq
PROOF: The action CommitHTLCsOnChain can persist
an HTLC on-chain as long as the HTLC’s timelock + G
is greater than LedgerTime. Because the action chooses
a subset of persistable HTLCs as the HTLCs to persist,
if the value of LedgerTime reaches an HTLC’s timelock
+ G no new step becomes possible but only all steps that
include persisting this HTLC become impossible.
The action CommitHTLCsOnChain also contains a
condition that under certain conditions the value of
LedgerTime is smaller than an HTLC’s absolute timelock
plus the grade period G . For larger values of LedgerTime
steps become impossible but this condition does not allow
for new steps to become possible.
If the preimage for an HTLC is persisted when the value
of LedgerTime is greater than the HTLC’s timelock +
G, the preimage is added to the set uLatePreimages of
the user who learns the preimage. Thus, for each HTLC
that can be persisted, the set relETPLedgerTimepsq must
include the HTLC’s timelock + G + 1. This is fulfilled
by the definition of TimelockRegions of the module
IdealChannel that is included by relETPLedgerTimepsq.
Another condition requires a user to have at least the bal-
ance of incoming HTLCs that cannot be persisted because
the user was dishonest and the value of LedgerTime is
larger than or equal to the HTLC’s timelock + G. This
condition might lead to steps becoming impossible but
there are no steps of CommitHTLCsOnChain that can
become possible.

x2y6. @s P Σ : @n P ETPLedgerTimepsq :
apnq “ FulfillHTLCsOnChain ñ

n P relETPLedgerTimepsq
PROOF: The action FulfillHTLCsOnChain can fulfill an
HTLC on-chain as long as the HTLC’s timelock + G is
greater than LedgerTime. Because the action chooses a
subset of fulfillable HTLCs as the HTLCs to fulfill, if
the value of LedgerTime reaches an HTLC’s timelock +
G no new step becomes possible but only all steps that
include fulfilling this HTLC become impossible.
If the preimage for an HTLC is learned when the value
of LedgerTime is greater than the HTLC’s timelock +
G, the preimage is added to the set uLatePreimages.
Thus, for each HTLC that can be fulfilled, the set
relETPLedgerTimepsq must include the HTLC’s timelock
+ G + 1. This is fulfilled by the definition of Timelock-
Regions of the module IdealChannel that is included by
relETPLedgerTimepsq.

x2y7. @s P Σ : @n P ETPLedgerTimepsq :
apnq “ ClosePaymentChannel ñ

n P relETPLedgerTimepsq
PROOF: The action ClosePaymentChannel contains a
condition in the function ValidMapping that verifies
that an HTLC can only be timed out if the value of

LedgerTime is at least the HTLCs timelock. Thus, steps
in which the HTLC is timed out are only valid from a
state on in which the value of LedgerTime is at least the
HTLC’s timelock. Therefore, the relETPLedgerTimepsq
must include the HTLC’s timelock. This is fulfilled
by the definition of TimelockRegions of the module
IdealChannel that is included by relETPLedgerTimepsq.
The function ValidMapping contains a check that an
HTLC can only be persisted as long as the value of
LedgerTime is lower than the HTLC’s timelock + G. An
increasing value of LedgerTime does not enable new steps
to become possible.
If the preimage for an HTLC is learned when the value
of LedgerTime is greater than the HTLC’s timelock +
G, the preimage is added to the set uLatePreimages.
Thus, for each HTLC that can be fulfilled, the set
relETPLedgerTimepsq must include the HTLC’s timelock
+ G + 1. This is fulfilled by the definition of Timelock-
Regions of the module IdealChannel that is included by
relETPLedgerTimepsq.

x2y8. Q.E.D.
By x2y1, x2y2, x2y3, x2y4, x2y5, x2y6, and x2y7 we have
proven for all subactions of NextI that @x P X , s P Σ :
ETPx psq Ď relETPx psq.

x1y3. Q.E.D.
By x1y1 and x1y2 both statements of Assumption 1 are
proven.
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