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Abstract—Industrial Internet of Things (IIoT) systems have
become integral to smart manufacturing, yet their growing
connectivity has also exposed them to significant cybersecurity
threats. Traditional intrusion detection systems (IDS) often rely
on centralized architectures that raise concerns over data privacy,
latency, and single points of failure. In this work, we propose
a novel Federated Learning-Enhanced Blockchain Framework
(FL-BCID) for privacy-preserving intrusion detection tailored
for IIoT environments. Our architecture combines federated
learning (FL) to ensure decentralized model training with
blockchain technology to guarantee data integrity, trust, and
tamper resistance across IIoT nodes. We design a lightweight
intrusion detection model collaboratively trained using FL across
edge devices without exposing sensitive data. A smart contract-
enabled blockchain system records model updates and anomaly
scores to establish accountability. Experimental evaluations using
the ToN-IoT and N-BaIoT datasets demonstrate the superior
performance of our framework, achieving 97.3% accuracy while
reducing communication overhead by 41% compared to baseline
centralized methods. Our approach ensures privacy, scalability,
and robustness—critical for secure industrial operations. The
proposed FL-BCID system provides a promising solution for en-
hancing trust and privacy in modern IIoT security architectures.

I. INTRODUCTION

The Industrial Internet of Things (IIoT) represents a trans-
formative paradigm in the digitization of industrial systems,
enabling smart factories, predictive maintenance, and au-
tonomous operations through the integration of interconnected
sensors, actuators, and control systems [1], [22]. While IIoT
promises operational efficiency, its increasing reliance on open
networks and heterogeneous devices introduces critical secu-
rity vulnerabilities [2], [19], [24]. Intrusion detection systems
(IDS) have traditionally served as frontline defenses; however,
conventional IDS frameworks are often centralized, leading to
bottlenecks, high latency, and data privacy concerns [3], [21],
[23].

The adoption of machine learning (ML) in IDS has signif-
icantly improved detection accuracy by enabling systems to
learn complex attack patterns from historical data. Nonethe-
less, centralized ML-based IDS architectures require aggre-
gating data at a central location, posing significant threats

to privacy, especially in industries handling sensitive data
such as energy, healthcare, and manufacturing [4], [18], [25].
To address these challenges, federated learning (FL) has
emerged as a decentralized ML paradigm where models are
collaboratively trained across edge devices while retaining data
locally [5], [20]. Despite its privacy advantages, FL alone lacks
mechanisms to ensure the integrity of model updates and trust
among participating nodes.

To bridge this gap, blockchain technology has gained trac-
tion as a distributed ledger system that provides immutability,
transparency, and auditability [6], [17]. When combined with
FL, blockchain can serve as a trusted environment to record
model updates, enable consensus, and prevent model poisoning
attacks by ensuring the provenance of updates [9], [26].

However, the integration of FL and blockchain for IIoT
intrusion detection remains underexplored. Existing solutions
either fail to provide efficient intrusion detection tailored to
IIoT constraints or overlook the privacy and trust requirements
of decentralized industrial environments [7]. Moreover, many
proposed frameworks do not address the computational lim-
itations of edge devices, nor do they mitigate the overhead
associated with blockchain operations [8].

Problem Definition: How can we design a privacy-
preserving, trustworthy, and efficient intrusion detection sys-
tem for IIoT that overcomes the limitations of centralized IDS
architectures, preserves data privacy, and provides secure audit
trails for model updates?

The growing number of cyberattacks on industrial networks
and the widespread adoption of IIoT necessitate security solu-
tions that are decentralized, privacy-preserving, and scalable.
Ensuring security while respecting the limited computational
and communication resources of IIoT nodes is vital for the
successful deployment of smart manufacturing systems [10].

We propose FL-BCID: a Federated Learning-Enhanced
Blockchain Framework for privacy-preserving intrusion detec-
tion in IIoT. The framework combines lightweight FL-based
intrusion detection models with a permissioned blockchain
system that records training contributions, anomaly scores, and
supports smart contract execution for trust enforcement.
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Unlike prior work that treats FL and blockchain inde-
pendently, FL-BCID tightly integrates both technologies to
enhance security and auditability. Our framework is tailored
for IIoT-specific constraints, supports lightweight model archi-
tectures, and reduces communication costs through optimized
model update schemes.

Key Contributions:
• We propose FL-BCID, a novel hybrid architecture com-

bining federated learning and blockchain for privacy-
preserving and trustworthy intrusion detection in IIoT.

• We design a lightweight federated learning-based in-
trusion detection model that adapts to the constrained
computation and memory resources of IIoT edge devices.

• We implement a smart contract-enabled permissioned
blockchain to ensure integrity and accountability of
model updates and anomaly reports.

• We evaluate our framework on benchmark IIoT datasets
(ToN-IoT and N-BaIoT), achieving high detection accu-
racy (97.3%) and demonstrating reduced communication
overhead (41%) compared to centralized approaches.

This paper is structured as follows: Section II presents a
detailed review of related work on federated learning and
blockchain in IIoT. Section III describes our system model,
including the mathematical formulation and threat model.
Section IV outlines the experimental setup, datasets, and
evaluation results. Finally, Section V concludes the paper and
suggests directions for future research.

II. RELATED WORK

Intrusion detection in Industrial Internet of Things (IIoT)
has been a subject of extensive research, particularly with the
adoption of federated learning and blockchain technologies.
In this section, we present a comprehensive review of recent
works that intersect these domains, identifying their method-
ologies, strengths, and limitations.

Nguyen et al. [7] proposed a federated learning-based
IDS for IIoT, leveraging distributed edge devices to train
anomaly detection models. The work demonstrated strong
privacy preservation and competitive accuracy. However, it
lacked mechanisms to verify the integrity of the distributed
updates, making it vulnerable to adversarial manipulation.

Qu et al. [8] introduced a decentralized blockchain-based
framework for IIoT security that records all data access events.
While this enhances transparency, the system is not optimized
for real-time intrusion detection and incurs high latency due
to heavy blockchain transactions.

Lu et al. [9] combined blockchain with machine learning
to improve the trustworthiness of collaborative systems. Their
use of smart contracts enabled traceability, but their model
required central aggregation for training, which reintroduces
privacy risks.

Yin et al. [10] developed a hierarchical federated learning
architecture for IIoT that balances load across devices. Despite
its scalability, the model was not resilient to poisoning attacks
and did not incorporate any tamper-proof ledger for model
updates.

Xiao et al. [11] proposed a privacy-aware intrusion detection
approach using homomorphic encryption in federated learning.
The system provides strong privacy guarantees but at the cost
of computational efficiency, which is critical for resource-
constrained IIoT nodes.

Ferdowsi et al. [12] introduced a game-theoretic framework
for secure federated learning. While effective in adversarial
environments, the model assumes honest participants in the
aggregation phase and lacks auditability.

Huang et al. [13] presented a comprehensive survey of
blockchain applications in IIoT, including security and identity
management. The paper outlined multiple use cases but did not
propose a concrete IDS model.

Khan et al. [14] examined the integration of FL in healthcare
and industrial domains. The study highlighted the importance
of privacy but emphasized that current FL approaches do not
address data integrity issues.

Shayan et al. [15] proposed Biscotti, a peer-to-peer secure
FL system based on blockchain and differential privacy. While
innovative, Biscotti focuses on generic applications and lacks
specific tailoring to IIoT constraints.

Li et al. [16] surveyed recent advances in FL, emphasizing
its applicability in IoT and edge computing. The work recog-
nized blockchain as a complementary tool but did not detail
integration mechanisms.

In summary, while prior studies have contributed signifi-
cantly to the domains of federated learning and blockchain for
security applications, few have explored their joint application
in IIoT intrusion detection. Key gaps include: lack of integra-
tion between FL and blockchain, absence of smart contract-
based validation mechanisms, and insufficient consideration of
IIoT resource constraints. Our proposed FL-BCID framework
addresses these gaps by:

• Seamlessly integrating FL and blockchain to ensure pri-
vacy, trust, and integrity.

• Utilizing smart contracts to automate anomaly verifica-
tion and update validation.

• Designing lightweight models suitable for IIoT edge
devices with limited resources.

III. SYSTEM MODEL

In this section, we formalize the proposed Federated
Learning-Enhanced Blockchain Intrusion Detection (FL-
BCID) system for IIoT environments. The architecture in-
volves a set of IIoT nodes collaborating to train a shared
intrusion detection model using federated learning, while
blockchain is employed to record model updates and facilitate
secure auditability using smart contracts.

A. Network and Entity Definitions

Let V = {v1, v2, . . . , vN} denote a set of N IIoT devices.
Each vi ∈ V is an edge node with local data Di used for
training an intrusion detection model. The edge nodes are re-
sponsible for executing the intrusion detection models locally
without transmitting raw data, ensuring privacy preservation.
These devices operate with limited computational resources



and rely on federated learning to collaboratively train a shared
model.

The system includes a permissioned blockchain network
B that stores model updates, anomaly scores, and associated
metadata. This blockchain acts as a secure, immutable ledger
to enhance transparency and accountability. Smart contracts
S deployed on the blockchain verify model updates and
enforce data sharing and contribution policies. These contracts
also automate validation processes and mitigate the risk of
malicious updates. A designated aggregator node A, either
centralized or distributed, is tasked with securely aggregating
the model updates submitted by all edge devices using a
federated averaging algorithm.

B. Mathematical Formulation

Each node vi minimizes a local loss function Li(w) over
its private dataset Di:

Li(w) =
1

|Di|
∑

xj∈Di

ℓ(fw(xj), yj) (1)

The global model is obtained using federated averaging:

w̄ =

N∑
i=1

|Di|∑N
j=1 |Dj |

wi (2)

Smart contracts validate updates:

S(wi) =

{
1, if update satisfies trust and anomaly thresholds
0, otherwise

(3)
Anomaly scores ai are computed at each device:

ai = 1− Accuracylocal(x, y, wi) (4)

Block validation timestamp:

tk = Timestamp(Blockk) (5)

Blockchain ledger B logs:

B = {(vi, wi, ai, tk)|i = 1, . . . , N} (6)

Gradient clipping to preserve privacy:

g̃i =
gi

max(1, ∥gi∥2

C )
(7)

Noise addition for differential privacy:

ĝi = g̃i +N (0, σ2C2I) (8)

Model update cost:

Ci = α · Size(wi) + β · Latency(vi) (9)

Gas cost of recording block:

Gk = γ · Size(Blockk) (10)

Reputation score:

Ri(t+ 1) = Ri(t) + δ · Valid(wi) (11)

Model divergence:

Di = ∥wi − w̄∥2 (12)

Trust weight:

Ti =
Ri∑N
j=1 Rj

(13)

Block hash:

Hk = SHA256(Blockk) (14)

Consensus validity:

C(k) = 1 ⇐⇒ Majority validators approve Blockk (15)

C. Federated Learning and Blockchain Integration Algorithm

Algorithm 1 FL-BCID: Federated Learning with Blockchain
for IIoT Intrusion Detection

1: Initialize global model w̄(0)

2: for each round t = 1 to T do
3: for each device vi ∈ V in parallel do
4: Compute local gradient gi = ∇Li(w

(t−1))
5: Clip gradient: g̃i = Clip(gi)
6: Add noise: ĝi = g̃i +N (0, σ2I)

7: Update local model w(t)
i = w

(t−1)
i − ηĝi

8: Send w
(t)
i and ai to aggregator

9: end for
10: Aggregator computes global model: w̄(t) =

FedAvg({w(t)
i })

11: Record updates (vi, w
(t)
i , ai) in blockchain using smart

contract S
12: end for

Explanation: The algorithm initializes a global model and
runs for T rounds. In each round, devices compute and
clip gradients, then inject noise for differential privacy. The
updated models are aggregated, and the results are verified
and recorded on the blockchain. Smart contracts play a key
role in validating and storing trustworthy updates.



D. Notation Table

TABLE I
SUMMARY OF NOTATIONS

Symbol Description

V Set of IIoT edge devices
Di Local dataset at device vi
wi Local model weights
w̄ Aggregated global model
S Smart contract function
ai Local anomaly score
t Timestamp
B Blockchain ledger
gi Gradient at device vi
g̃i Clipped gradient
ĝi Noisy gradient (DP)
Ci Model update cost
Gk Blockchain gas cost
Ri Reputation score
Di Model divergence
Ti Trust weight
Hk Hash of block k
C(k) Consensus result

IV. EXPERIMENTAL SETUP AND RESULTS

To validate the effectiveness and efficiency of the proposed
FL-BCID framework, we conducted extensive simulations us-
ing realistic IIoT datasets. This section details the experimen-
tal configuration, simulation parameters, evaluation metrics,
results, and comparative analysis with baseline approaches.

A. Experimental Setup

The experiments were performed using a simulation envi-
ronment implemented in Python 3.10. The federated learning
components were implemented using TensorFlow Federated
(TFF), while the blockchain simulation was modeled using
Hyperledger Fabric emulator. The testbed mimics an IIoT edge
computing environment with 10 edge nodes (N = 10) and a
single aggregator node. Each edge device is simulated to have
independent local data and limited computing resources. We
used the ToN-IoT and N-BaIoT datasets to represent realistic
industrial network traffic for training and evaluation.

oindentSimulation Hardware and Tools:
• CPU: Intel i7-12700K @ 3.6GHz
• RAM: 32GB DDR4
• Simulator: Python + TFF + Hyperledger Fabric
• Datasets: ToN-IoT, N-BaIoT

TABLE II
SIMULATION PARAMETERS

Parameter Value

Number of edge devices (N ) 10
Learning rate (η) 0.01
Local epochs per round 3
Batch size 64
Differential privacy noise scale (σ) 1.0
Blockchain block size 2MB
Consensus algorithm PBFT
Simulation rounds (T ) 50

B. Evaluation Metrics

To assess performance, we use the following metrics: ac-
curacy, precision, recall, F1-score, communication overhead
(bytes exchanged per round), and time-to-convergence (in
rounds).

C. Results and Analysis

Figure 1 shows the accuracy over simulation rounds. Our
framework achieves a final test accuracy of 97.3% on ToN-
IoT and 96.8% on N-BaIoT, outperforming centralized and
decentralized baselines.
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Fig. 1. Model accuracy over federated rounds on IIoT datasets.

Figure 2 shows that FL-BCID reduces communication over-
head by 41% compared to standard FL due to optimized update
frequency and model compression.
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Fig. 2. Communication overhead comparison.

In terms of precision and recall, our model achieved 95.9%
and 96.2% respectively, indicating strong capability in distin-
guishing normal and malicious traffic. Figure 3 provides the
confusion matrix for the final model.
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Fig. 3. Confusion matrix for FL-BCID on test data.

Time-to-convergence results shown in Figure 4 indicate
that our system requires 21 rounds to converge to optimal
performance, compared to 30+ rounds for standard FL.

0 10 20 30 40 50
Rounds

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Time to Convergence
Standard FL
FL-BCID

Fig. 4. Comparison of time to convergence.

D. Comparative Analysis
We compare FL-BCID with three baselines:
• Centralized IDS: Trains a model on a central server with

all data.
• Standard FL: FL without blockchain or smart contracts.
• Blockchain-only IDS: Stores local decisions on-chain

without collaborative learning.

TABLE III
PERFORMANCE COMPARISON

Method Accuracy Comm. Overhead Rounds to Converge

Centralized IDS 94.5% High 18
Standard FL 96.1% High 30
Blockchain-only IDS 92.8% Low N/A
FL-BCID (ours) 97.3% Low 21

The results clearly indicate that FL-BCID achieves superior
detection accuracy while ensuring privacy and reducing com-

munication costs, validating the effectiveness of integrating
blockchain with federated learning for secure IIoT systems.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed FL-BCID, a novel framework
that integrates federated learning and blockchain technologies
to develop a privacy-preserving and trustworthy intrusion
detection system for Industrial Internet of Things (IIoT) en-
vironments. Our solution addresses the pressing challenges of
data privacy, communication overhead, and model integrity
inherent in conventional centralized IDS architectures. By
enabling decentralized training across edge devices, FL-BCID
eliminates the need to transmit sensitive IIoT data to a central
server. At the same time, the integration of a permissioned
blockchain ensures tamper-resistant recording of model up-
dates and anomaly scores, thereby enhancing transparency and
accountability. Smart contracts play a crucial role in verifying
contributions and enforcing update validation policies without
requiring human intervention. Comprehensive experiments on
the ToN-IoT and N-BaIoT datasets confirm the effectiveness
of our framework. FL-BCID achieved a detection accuracy
of 97.3%, reduced communication overhead by 41%, and
converged faster compared to standard federated learning and
blockchain-only solutions. These results demonstrate that our
approach is not only accurate but also resource-efficient and
robust under realistic IIoT conditions.

For future work, we plan to extend FL-BCID by incorpo-
rating adaptive federated optimization strategies that account
for heterogeneous device capabilities and data distributions.
Additionally, we aim to investigate the use of lightweight
consensus mechanisms to further reduce blockchain latency
and energy consumption. Enhancing the resilience of the
framework against model poisoning and Byzantine attacks
through reputation-aware aggregation schemes also remains
a promising direction. Ultimately, we envision FL-BCID serv-
ing as a foundational component in the secure and scalable
deployment of next-generation IIoT infrastructures.
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