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Abstract
Graph Neural Networks (GNNs) have been widely
used for graph analysis. Federated Graph Learning
(FGL) is an emerging learning framework to col-
laboratively train graph data from various clients.
However, since clients are required to upload model
parameters to the server in each round, this pro-
vides the server with an opportunity to infer each
client’s data privacy. In this paper, we focus on
label distribution attacks (LDAs) that aim to infer
the label distributions of the clients’ local data. We
take the first step to attack client’s label distribu-
tions in FGL. Firstly, we observe that the effective-
ness of LDA is closely related to the variance of
node embeddings in GNNs. Next, we analyze the
relation between them and we propose a new at-
tack named EC-LDA, which significantly improves
the attack effectiveness by compressing node em-
beddings. Thirdly, extensive experiments on node
classification and link prediction tasks across six
widely used graph datasets show that EC-LDA out-
performs the SOTA LDAs. For example, EC-LDA
attains optimal values under both Cos-sim and JS-
div evaluation metrics in the CoraFull and LastFM
datasets. Finally, we explore the robustness of EC-
LDA under differential privacy protection.

1 Introduction
1.1 Background
Graph Neural Networks (GNNs), designed to process graph-
structured data, have gained significant attention for their ef-
fectiveness across various applications including recommen-
dation systems [He et al., 2020], social networks [Fan et al.,
2019], and protein interaction prediction [Jha et al., 2022].
GNNs can capture information between neighboring nodes,
enhancing the expressiveness of node embeddings and mak-
ing them highly suitable for real-world applications.

The performance of GNNs requires a large amount of
data. However, due to privacy concerns and regulatory
restrictions, machine learning platforms cannot access raw
data directly, which makes centralized GNN learning chal-
lenging. In recent years, a lot of works [He et al., 2021;

Zhang et al., 2021] have integrated Federated Learning (FL)
[McMahan et al., 2017] with GNNs, proposing the Feder-
ated Graph Learning (FGL). FL is a distributed, privacy-
preserving machine learning paradigm that enables clients to
train models collaboratively while keeping their local data
isolated. It addresses the challenge of data silo, where data is
distributed across different sources and cannot be easily com-
bined for joint analysis, by enabling model training without
the need to share the raw data.

However, recent studies have shown that local data in
FL remains vulnerable to privacy attacks [Zhu et al., 2019;
Geiping et al., 2020; Zhao et al., 2020]. One such attack is
label distribution inference attacks (LDAs), which aim to in-
fer the label distribution of a client’s local training data by
analyzing the gradients shared between clients and the server.
This represents a significant privacy threat in FL. For ex-
ample, if multiple online shopping companies collaborate to
train a recommendation system model (as shown in Figure
1), a malicious server with access to the label distribution of
a private social network could target specific users, increasing
the success rate of fraudulent activities and posing a serious
threat to user security.
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Figure 1: An overview of EC-LDA.
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1.2 Previous Works and Problems
Despite existing works on LDAs, there are significant chal-
lenges when applying them to FGL. Firstly, these attacks do
have certain limitations. For example, [Gu and Bai, 2023;
Wainakh et al., 2021] requires the use of real auxiliary
datasets to execute the attacks. [Yin et al., 2021] requires
the use of non-negative activation functions. Additionally,
the performance of attacks in [Ma et al., 2023; Wainakh et
al., 2021] declines as the local epochs in FL increase, achiev-
ing effective results only with a single local training epoch.
These assumptions restrict their applicability in GNN scenar-
ios. Furthermore, the message-passing characteristic among
adjacent nodes in GNNs complicates node embeddings, po-
tentially introducing irrelevant details into the model output,
thereby making LDA in GNNs more challenging.

1.3 Our Contributions
In this paper, we propose Embedding Compression-Label
Distribution Inference Attack (EC-LDA), a novel LDA in
FGL. Through exploring the factors behind the poor perfor-
mance of LDAs in GNNs, we find there are strong correla-
tion between the effectiveness of LDA and the variance of
node embeddings. In GNNs, the variance in node embed-
dings primarily originates from the GNN layers and increases
with the number of layers, which in turn degrades the attack
performance of LDA. EC-LDA addresses this issue by com-
pressing node embeddings, thereby reducing their variance
and enhancing attack performance. Moreover, EC-LDA over-
comes the drawbacks of existing methods. It keeps stable per-
formance as training samples and local epochs increase and
doesn’t need specific activation functions or extra datasets for
attacks. Our main contributions are as follows:

• We analyze the relationship between the performance of
LDA and the message-passing characteristics of GNNs,
and introduce EC-LDA, the first approach that imple-
ment efficient LDA on FGL.

• We apply EC-LDA to six graph datasets and conduct
extensive experiments targeting both node classification
and link prediction tasks. These experiments demon-
strate that EC-LDA consistently achieves significant at-
tack performance across various scenarios. EC-LDA
achieves a Cos-sim as high as 1.000 under almost all
cases.

• We utilize DP-GNN (node-level DP) and label-DP
(label-level DP) for local GNN training and evaluate the
robustness of EC-LDA under these privacy protection
mechanisms.

2 Preliminaries
2.1 Graph Neural Networks
In general, GNNs are designed to process data G(V,E) struc-
tured as a graph. Here, V represents the set of nodes and E
represents the adjacency matrix of G. Each node vi ∈ V has
a feature vector ui. GNNs generate valuable node embed-
dings via message-passing, making them suitable for various
downstream tasks like node classification and link prediction.
In this paper, we consider Graph Convolutional Networks

(GCN) [Kipf and Welling, 2016], Graph Attention Networks
(GAT) [Veličković et al., 2017], and GraphSAGE [Hamilton
et al., 2017] as target GNNs.

GNNs typically follow the message-passing strategy that
updates the features of nodes iteratively by aggregating the
features of their neighbors. Typically, a GNN model’s h-th
layer can be formulated as:

uh
i = σ(uh−1

i , AGG(uh−1
j , j ∈ Bi)), (1)

where uh−1
i is the representation obtained at the (h−1)-th

layer of node vi, and u0
i is the node feature ui of node vi,

Bi represents the neighbors of node vi, AGG(·) represents
the aggregation function, σ represents the activation function
such as ReLU .

2.2 Federated Graph Learning
A typical FGL system follows the FedAvg [McMahan et
al., 2017] algorithm. Specifically, the server sends an initial
global model to all the clients. Then each client trains a local
model with its local private data Gi(Vi,Ei) and shares its lo-
cal model parameters with the server. The server then aggre-
gates the local model parameters of all the clients to construct
the global model’s parameters, which can be formulated as:

W t =

N∑
i=1

piW
t
i , (2)

where N is the number of clients, W t
i and pi are trained

model parameters at the t-th epoch and the weight of client
i, respectively, W t is the global model parameters at the t-th
epoch. The optimization problem of FGL is formulated as:

W ∗ = argmin
W

N∑
i=1

piL(W,Vi,Ei;Yi), (3)

where L(·) represents the loss function, Yi is node label in the
node classification task or link label in the link prediction task
of client i, respectively, Vi represents the set of nodes and Ei

represents the adjacency matrix of Gi.

2.3 Threat Model
As shown in Figure 1, we consider the FGL scenario in which
the server is malicious. In this scenario, the server is not only
interested in accessing the label distributions of the clients’
private data, but also has the ability to manipulate the param-
eters of the deployed model. Furthermore, the server can an-
alyze the gradients uploaded by the clients.

3 Related Work
The label distribution inference attack is a type of label re-
covery attack. [Zhu et al., 2019] was the first to restore
the training sample from gradients. They restored the input
data and associated label from the gradients using gradient-
matching. This method continuously optimizes the dummy
input data and associated label by minimizing the mean
square error of the gradients of the dummy sample with
respect to the true gradients. [Zhao et al., 2020] intro-
duced iDLG and were the first to propose that with a non-
negative activation function, privacy label can be extracted



Variance*1000 of I 41.052 23.719 21.283 10.640 4.547 2.031 0.817 0.224 0.067 0.003

Err 4.367 3.433 2.765 2.217 1.523 1.012 0.599 0.309 0.138 0.028

Table 1: Err with the variance of I when local epochs E is set to 1, the WikiCS dataset and a 2-layer GCN model are used.

with 100% success rate from the signs of gradients at the out-
put layer. Both of these methods are applicable only to single-
sample training scenarios. Afterwards, [Yin et al., 2021;
Geng et al., 2021] extended the attacks to the mini-batch sce-
nario, enhancing the applicability of the attacks.

Overall, most existing label recovery attacks focus on im-
age datasets, and none of them discuss label distribution on
graph datasets. In this paper, We focus on label distribution
inference attacks against GNNs. More releated work please
refer Appendix A.

4 Massage-Passing Issue in LDA
In this section, we will analyze how the message-passing
mechanism in GNNs exacerbates LDA. We begin with an in-
troduction to LDA. The prior analysis [Geng et al., 2021] has
shown that, for the k-th sample in a batch: ∆W

(FC)
l /E ≈

1
K

∑
k(pk,l

∑
m Ik,m − yk,l

∑
m Ik,m), where ∆W

(FC)
l is

the sum of the gradients of the l-th output unit in the last
fully connected layer along the input dimension, Ik,m is the
input of the k-th sample at the m-th input unit of the last fully
connected layer, pk,l is the post-softmax probability at index
l of the k-th sample, E is the local epochs. Furthermore,
we have:

∑
k yk,l · Ī ≈

∑
k pk,lIk −K∆W

(FC)
l /E, where

Ik =
∑

m Ik,m, and Ī is the mean value of Ik.
In order to separate out

∑
k yk,l, we assume that Ik is close

to its mean value, i.e., Ī . Based on this assumption, we have:

dl :=
∑
k

yk,l ≈
∑

k pk,lIk

Ī
−

K∆W
(FC)
l

EĪ
, (4)

where dl is the number of nodes inferred with label l(l =
1, 2, . . . , L). With the number of each label, we can compute
the label distribution, which we define as D. In FL, we as-
sume that the server can get E and ∆W

(FC)
l from clients.

Additionally, the dummy training data randomly generated
by the server can be used to estimate K, pk,l, Ik, and Ī . We
named this method as LDA.
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Figure 2: Illustrates the trend of variance of I with the number of
GCN layers. The experimental results at this point are the normal-
ized results.

Algorithm 1 Compression of node embeddings
Input: Global model parameters G, clipping threshold C
Output: The global model parameters G′ after clipping and
compression

1: N← 0, G′ ← G
2: for p ∈ G do
3: N = N+ ∥p∥22
4: end for
5: N← N1/2

6: for p ∈ G, p′ ∈ G′ do
7: p′ ← p/max(1, N

C )
8: end for
9: return G′

Now we apply and analyze the LDA in GNNs. For the
sake of description, we define I := [I1, I2, ·, IK ]. Starting
from the above assumption, i.e., Ik is close to Ī , we can find
that the error arises mainly because we replace Ik with Ī , i.e.,
we consider that

∑
k yk,lIk ≈

∑
k yk,l · Ī . We define the

magnitude of the error as:

Err :=
1

K

∑
l

|
∑
k

yk,l(Ik − Ī)| = 1

K

∑
k

|Ik − Ī|. (5)

We can intuitively see that if the variance of I is smaller,
the Err is smaller and the performance of the attack is bet-
ter, and vice versa. To verify our conjecture, we conduct ex-
periments on FGL by performing attacks during mid-training
round and analyze the variance of I versus Err. Table 1 illus-
trates how Err varies with the variance of I , demonstrating
that the Err declines as I’s variance declines, which confirms
our suspicions.

As mentioned earlier, GNNs incorporate neighbor infor-
mation through the message-passing mechanism. However,
the message-passing mechanism also increases the variance
of node embeddings. Moreover, the variance of the node em-
beddings increases with the number of GNN layers in the
global model, and the node embeddings are directly related
to I . We conduct experiments with GNN models featuring
1, 2, and 3 GCN layers and observe how the variance of I
changes with the number of GCN layers. Figure 2 illustrates
the variance of I as a function of the number of GCN layers.
It can be seen that as the number of GCN layers increases,
the variance of I becomes larger. Therefore, minimizing the
variance of I is crucial for enhancing attack efficacy.

5 Our Methodology: EC-LDA
To minimize the variance of I , one effective approach is
to constrain the absolute values of Ik within a small range,
which can be achieved by clipping the model parameters.

Based on the above analysis, we now describe the design
of EC-LDA, an enhanced attack for GNNs. Unlike LDA, EC-
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LDA makes full use of Equation 4 by clipping the parameters
of the global model before distributing it to clients, which re-
duces the variance of node embeddings, thus making the vari-
ance of I smaller. As shown in Figure 3, EC-LDA consists of
three main steps:

• Step 1: Clipping model. The server clips the ini-
tial model and sends it to clients to get the gradients.
Algorithm 1 demonstrates the clipping method. First
the ℓ2 norm N of the model is computed, and then
p/max(1, N

C ), i.e., the clipped parameters, will replace
the original parameters p.

• Step 2: Forward propagation of dummy data. The
server generates dummy training data randomly and in-
puts it into the initial model to obtain Ik, Ī , and pk,l.

• Step 3: Calculating distribution. After the server gets
gradients, pk,l, Ik, and Ī , Equation 4 is used to infer the
label distributions of clients’ private data.

Algorithm 2 demonstrates EC-LDA in FGL. The boxed
part represents the additional component of EC-LDA com-
pared to the normal training process. First, the server initial-
izes the model parameters and attack results. If the server
does not perform an attack in the current round r, the training
process is no different from the normal training process. If
the server is going to perform an attack in round r, it will save
the initial model Wr−1 for round r as W

′

r−1 and clip Wr−1

with Algorithm 1, i.e. Step 1. The server generates dummy
training data and feeds it into W

′

r−1 to obtain pk,l, Ik and Ī ,
i.e. Step 2. Then the server sends the clipped model down to
all clients, and each client trains on its local private data and
uploads the trained model. After training, server calculates
the label distribution D with Equation 4, and saves D into L,
i.e. Step 3. The server uses the saved initial model W

′

r−1 of
round r to replace Wr so that the model trained and aggre-
gated on the clipped model can be avoided to be passed to

the next round. Therefore, a few attacks do not significantly
impact model performance. The training process of clients
does not differ from the general training process, clients first
receive the model Wr−1 from the server, then train the model
Wr−1 with the local privacy training data for E times and up-
load the trained model to the server. In other words, EC-LDA
trades one round of training resources for one round of label
distributions of clients’ private training data.

Discussion. Implementing EC-LDA requires GNN layers
with a fully connected final layer and the use of the cross-
entropy loss function, which makes EC-LDA particularly ver-
satile within classification tasks on GNNs, such as node clas-
sification. Since the link prediction is a binary classification
task, EC-LDA is still applicable to link prediction tasks as
long as the last fully connected layer of the model has two
output units and the cross-entropy loss function is used. For
node classification, EC-LDA can attack the label proportions,
while for link prediction, it can target the graph density.

6 Experiments
In this section, we demonstrate the effectiveness of EC-LDA
through answering the following three research questions:

• RQ1 - How effective is EC-LDA with real-world graph
datasets, specifically for tasks such as node classification
and link prediction?

• RQ2 - How robust is EC-LDA under different experi-
mental variables?

• RQ3 - How the effectiveness of EC-LDA changes in the
defense of differential privacy?

6.1 Experimental Settings
Here, we introduce evaluation metrics, model architecture,
baselines, and relevant to the experiments as follow. The de-



Algorithm 2 EC-LDA against FGL (Server-side)
Input: Number of clients N , global rounds R, attack rounds
A
Output: Final global model WR, attack result L

1: Initialize global model W0, attack result L
2: for r = 1, 2, 3, . . . , R do
3: if r ∈ A then
4: W

′

r−1 ←Wr−1, clipping Wr−1 with Algorithm 1

5: Generate dummy training data DTD

6: Input DTD into W
′

r−1 to obtain pk,l, Ik and Ī

7: end if
8: for n = 1, 2, 3, . . . , N do
9: Client n performs local training and uploads Wr,n

and gradients
10: if r ∈ A then
11: Calculate D based on Equation 4

12: Add D to L
13: end if
14: end for
15: Server aggregates all local models Wr,n to Wr

16: if r ∈ A then
17: Replace Wr with the initial model W

′

r−1

18: end if
19: end for

tails of datasets and hyper-parameter settings please refer to
the Appendix E.

Evaluation Metrics: Inspired by [Geng, 2016], we use
the following two evaluation metrics to fully demonstrate
the effectiveness of EC-LDA: cosine similarity(cos-sim) and
Jensen-Shannon divergence(JS-div). Cos-sim measures the
similarity of two distributions and is applicable when the sim-
ilarity of vectors is not directly related to the length of the
vectors, while JS-div measures the distance between two dis-
tributions. Cos-sim takes values in the range [−1, 1]. The
larger the cos-sim, the closer the inferred label distribution is
to the ground-truth label distribution, i.e., the more effective
the attack is. The value of JS-div ranges from [0, 1], and the
more effective the attack is, the smaller the JS-div is.

Model Architecture: To illustrate the general applicability
of EC-LDA, we choose three classical GNN models as global
models, which are GCN, GAT, and GraphSAGE. All of the
above models consist of two parts, the GNN layers and the
fully connected layers.

Baselines: We compare EC-LDA with three different at-
tacks which are Infiltrator [Meng et al., 2023], iLRG [Ma
et al., 2023], and LLG* [Wainakh et al., 2021]. Infiltrator
infers the label of the victim node by adding a neighbor to
the victim node and observing the output of the neighbor. It
is worth noting that Infiltrator focuses on node-level attacks,
and for comparison, we attack all training nodes with Infil-
trator. LLG* and iLRG both reveal the number of each la-
bel, and we use the number of samples per label extracted
by iLRG and LLG* to compute the label distribution of each
client. Similar to EC-LDA, iLRG and LLG* also use the gra-

dients of the last fully connected layer of the model, and when
E is greater than 1, we use ∆W (FC)/E as an approximation
of the gradients.

Dummy Training Data: Based on the previous analysis,
we know that the smaller the variance of I , the better the at-
tack performance. Since the dummy training data is also re-
lated to the variance of I we generate it from a Gaussian dis-
tribution with a mean of 0 and a standard deviation of 0.001,
containing 1000 nodes. This configuration enhances the at-
tack performance.

6.2 Attack Performance (RQ1)
Node Classification. We evaluate the performance of EC-
LDA with all datasets and all GNN types, which, for the node
classification task, have a varying number of labels and are
widely distributed, with 4 kinds of labels for nodes in the
Facebook dataset and 70 kinds of labels for nodes in the Cora-
Full dataset, the datasets with the smallest and the largest
number of classes, respectively. Table 2 shows the experi-
mental results. From the comparison presented in Table 2,
it is evident that EC-LDA consistently demonstrates excep-
tional performance across various datasets and three distinct
GNN models, as indicated by the cos-sim scores consistently
at or above 0.999 and the JS-div consistently at or below
0.002, aligning closely with the optimal values. Remark-
ably, EC-LDA’s outstanding performance remains consistent
regardless of the number of labels, the number of nodes, and
the specific GNN types, showcasing its broad applicability.
Additionally, EC-LDA consistently outperforms other meth-
ods across all experiments.
Link Prediction. In the link prediction experiments, we set
the same number of positive and negative edges. Please refer
to Appendix B for the experimental results. In all experi-
ments of link prediction, cos-sim and JS-div reached 1.000
and 0.000, respectively, demonstrating the stunning perfor-
mance of EC-LDA.

6.3 Ablation Experiments (RQ2)
To explore the effectiveness of EC-LDA under varying pa-
rameters, we performed extensive ablation experiments on
the node classification tasks. Specifically, we explored the
impact of the number of GNN layers, E, C, and number of
clients separately. Please refer to the Appendix D for relevant
experiments regarding the number of clients.

Impact of the Number of GNN Layers. We show the
effect of the number of GNN layers on the performance of
EC-LDA in Figure 4, where we use three different network
structures with 1, 2, and 3 GNN layers, respectively, and each
one is ubiquitous in GNNs. Figure 4 shows that as the GNN
layers increase, EC-LDA performance improves, contrary to
Figure 2. This is due to clipping reducing model parameters,
which lowers the absolute values and variance of Ik, result-
ing in better attack performance. Overall, EC-LDA delivers
excellent performance across three kinds of models.

Impact of C. In EC-LDA, the server will distributes the
clipped model during attack rounds. The method of clip-
ping directly affects the performance of EC-LDA. We em-
ploy the ℓ2 norm clipping method and investigate the impact
of C on EC-LDA. Figure 5 shows that the performance of



Dataset GNN types Cos-sim JS-div

EC-LDA Infiltrator iLRG LLG* EC-LDA Infiltrator iLRG LLG*

CoraFull
GCN 1.000 0.946 0.299 0.418 0.000 0.031 0.400 0.506
GAT 1.000 0.977 0.314 0.395 0.000 0.017 0.415 0.515

GraphSAGE 1.000 0.946 0.249 0.304 0.000 0.035 0.486 0.552

LastFM
GCN 1.000 0.953 0.590 0.414 0.000 0.040 0.212 0.410
GAT 1.000 0.978 0.494 0.349 0.000 0.023 0.281 0.451

GraphSAGE 1.000 0.966 0.470 0.347 0.000 0.038 0.315 0.448

WikiCS
GCN 1.000 0.865 0.610 0.475 0.001 0.058 0.212 0.402
GAT 1.000 0.987 0.622 0.488 0.001 0.010 0.214 0.396

GraphSAGE 1.000 0.721 0.561 0.512 0.001 0.130 0.242 0.374

Cora
GCN 1.000 0.981 0.601 0.558 0.001 0.009 0.267 0.327
GAT 1.000 0.995 0.499 0.527 0.001 0.004 0.328 0.343

GraphSAGE 1.000 0.987 0.469 0.588 0.000 0.009 0.382 0.312

CiteSeer
GCN 1.000 0.996 0.579 0.432 0.001 0.004 0.295 0.386
GAT 1.000 0.997 0.522 0.439 0.001 0.004 0.294 0.383

GraphSAGE 1.000 0.992 0.474 0.409 0.000 0.008 0.368 0.402

Facebook
GCN 1.000 0.991 0.679 0.581 0.000 0.003 0.195 0.326
GAT 0.999 0.991 0.670 0.434 0.002 0.003 0.208 0.394

GraphSAGE 1.000 0.982 0.643 0.519 0.000 0.008 0.251 0.354

Table 2: Performance of different attacks when training GCN, GAT, and GraphSAGE models on various datasets.
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Figure 4: Performance of EC-LDA when the number of GNN layers
of the model is 1, 2, and 3, respectively.

EC-LDA under different C. We can observe that as C in-
creases, the performance of EC-LDA deteriorates. This is
because with increasing C, the clipping intensity decreases.
When C exceeds the ℓ2 norm of the model parameters, the
value of max(1, N

C ) will be equal to 1, which means no clip-
ping will be applied to the model, leading to a deterioration
in EC-LDA’s performance.

Impact of E. To study the effect of different E on EC-
LDA, we evaluate the performance of EC-LDA under dif-
ferent E. We show the experimental results in Table 3. It
is evident that EC-LDA performs exceptionally well across
varying E, with its performance across all datasets almost re-
maining unaffected by changes in E. As introduced in the
previous section, we use ∆W

(FC)
n /E as an approximation

of the gradients for EC-LDA. As E increases, the error be-
tween the true gradients and the approximated gradients be-
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Figure 5: EC-LDA’s performance varies with changes in C.

comes larger, which results in a slight degradation of the per-
formance of EC-LDA in some cases. Overall, EC-LDA per-
forms effectively across different E.

6.4 Defense Performance of Differential Privacy
(RQ3)

Differential privacy (DP) is a powerful privacy-preserving
technology widely used in machine learning due to its rig-
orous mathematical definition. DP can defend against vari-
ous attacks, such as membership inference attacks [Hui et al.,
2021], adversarial example attacks [Lecuyer et al., 2019], and
data reconstruction attacks [Balle et al., 2022]. Specifically,
we consider node-level differential privacy DP-GNN [Daiga-
vane et al., 2021] and label-level differential privacy Label-
DP [Ghazi et al., 2021]. DP-GNN controls the out-degree of
nodes and is a variant of DP-SGD [Abadi et al., 2016]. Label-
DP adds noise to the label matrix to protect the labels of the
training dataset.



1 2 3 4 5
Privacy Budget 

0.6

0.8

1.0

C
os

-s
im

Cora

1 2 3 4 5
Privacy Budget 

CiteSeer

1 2 3 4 5
Privacy Budget 

LastFM

1 2 3 4 5
Privacy Budget 

Facebook

1 2 3 4 5
Privacy Budget 

WikiCS
EC-LDA DP-GNN Label-DP

Figure 6: The attack performance in EC-LDA, DP-GNN and Label-DP.
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Figure 7: The model accuracy in EC-LDA, DP-GNN and Label-DP.

Figure 6 and Figure 7 show that the performance of EC-
LDA and the final accuracy of the FGL model with privacy
budget ϵ on node classification tasks under DP-GNN and
Label-DP defenses, respectively. Privacy budget ϵ controls
the magnitude of the added noise: a smaller privacy budget
ϵ results in larger noise, and vice versa. In other words, a
smaller privacy budget ϵ leads to a decline in the model’s final
inference performance. From Figure 6, it is evident that the
defense effectiveness of Label-DP improves with decreasing
privacy budget ϵ. This improvement arises because Label-DP
introduces increasing noise to the labels as privacy budget ϵ
decreases. Additionally, the inferred label distribution closely
matches the distribution after noise addition due to EC-LDA’s
powerfulness in recovering label distributions. This align-
ment results in a significant disparity between the inferred
distributions and actual label distributions, consequently di-
minishing EC-LDA’s attack effectiveness.

However, as privacy budget ϵ decreases, the defense effect
of DP-GNN remains almost unchanged, which is because the
fact that DP-GNN introduces Gaussian noise across all gradi-
ent layers, whereas in EC-LDA, the gradients of the last fully
connected layer used for attacks are derived from summation
along the input dimension. In the summation process, the
added Gaussian noise will cancel out the positive and nega-
tive, reducing the overall noise, thereby leading to the insen-
sitivity of the defense effect of DP-GNN to privacy budget ϵ.
Therefore, the defense methods based on DP-SGD fail to be
effective against EC-LDA.

7 Conclusion
This paper demonstrates the effectiveness of EC-LDA for la-
bel privacy in FGL scenarios. We discovered that LDA’s per-
formance is influenced by the variance of node embeddings in
GNNs and proposed EC-LDA, which improves attack perfor-

Model Local
Epochs

Cos-sim JS-div

Cora Facebook Cora Facebook

GCN
1 1.000 1.000 0.000 0.000
3 1.000 1.000 0.000 0.000
5 1.000 1.000 0.001 0.000

GAT
1 1.000 1.000 0.000 0.000
3 1.000 1.000 0.000 0.001
5 1.000 0.999 0.001 0.002

GraphSAGE
1 1.000 1.000 0.000 0.000
3 1.000 1.000 0.000 0.000
5 1.000 1.000 0.000 0.000

Table 3: Attack performance of EC-LDA when E is 1, 3, and 5,
respectively.

mance by compressing node embeddings. Extensive experi-
ments on six graph datasets show that EC-LDA outperforms
SOTA methods in both node classification and link prediction
tasks. We also explored the role of differential privacy in de-
fending against EC-LDA. This paper primarily demonstrates
the effectiveness of our attack method. In EC-LDA, the server
clips the model’s parameters, actively disrupting the normal
training process, and this behavior may be detected. Future
work will focus on enhancing the stealthiness of attacks, po-
tentially by training a fishing model with performance and pa-
rameter distributions similar to the original model for client
deployment, to replace the compressed model.
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A Related Work

Inference Attack against GNNs. [Chen et al., 2023] investi-
gated graph data leakage in horizontal federated and vertical
federated scenarios. Specifically, link inference attack and
attribute inference attack are proposed in the vertical feder-
ated scenario, graph reconstruction attack and graph feature
attack are proposed in the horizontal federated scenario. [Qiu
et al., 2022] proposed an inference attack against the relation-
ships between nodes of GNNs in vertical federated scenarios.
[Meng et al., 2023] inferred the labels of victim nodes by
infiltrating the raw graph data, i.e., by adding elaborately de-
signed nodes and edges, and their attacks can only be per-
formed on trained models. However, their attacks focus on
the node-level, and there are no extant papers on label distri-
bution inference attacks at the graph-level for FGL.

Label Recovery Attack. The label distribution inference
attack is a type of label recovery attack. [Zhu et al., 2019] was
the first to restore the training sample from gradients. They
restored the input data and associated label from the gradi-
ents using gradient-matching. This method continuously op-
timizes the dummy input data and associated label by mini-
mizing the mean square error of the gradients of the dummy
sample with respect to the true gradients. [Zhao et al., 2020]
introduced iDLG and were the first to propose that with a non-
negative activation function, privacy label can be extracted
with 100% success rate from the signs of gradients at the out-
put layer. Both of these methods are applicable only to single-
sample training scenarios. Afterwards, [Yin et al., 2021;
Geng et al., 2021] extended the attacks to the mini-batch sce-
nario. Among them, [Yin et al., 2021] also requires the use
of non-negative activation functions and does not allow du-
plicate labels within a mini-batch. Therefore, their method
is applicable when the number of classes in the dataset is
far greater than the batch size. [Gu and Bai, 2023] believes
that the label distribution of the training dataset will leave a
footprint in the parameter changes of the model output layer.
They use the auxiliary dataset to obtain the connection be-
tween the gradients of the output layer and the label distribu-
tion of the training data, then train a neural network model
accordingly to obtain the label distribution information of the
training dataset. [Aggarwal et al., 2021] relies on number
theory and combinatorics to recover label information from
log-loss scores. However, their method is sensitive to the
number of classes in the dataset, and as the variety of labels
increases, not only does the accuracy decrease, but the infer-
ence time also increases. [Ma et al., 2023] recovered class-
wise embeddings from the gradients and further restored the
number of each label. [Dang et al., 2021] proposes RLG,
which extracts label information with the gradients of the out-
put layer, but RLG requires the use of the soft-max activation
function. Additionally, RLG only reveals which labels are
used for training, without disclosing the quantity of samples
per label. [Zhou et al., 2022] proposed PPA, which can infer
a client’s label information but can only output the majority
class or minority class. It cannot fully reflect the label infor-
mation. [Wainakh et al., 2021] proposed LLG, which utilizes
the magnitude and direction of shared gradients to determine
whether a specific label is present. LLG has three versions,

suitable for different scenarios. Among them, LLG assumes
that the attacker can only access shared gradients, LLG* as-
sumes that the attacker can access both the model’s parame-
ters and gradients, and LLG+ assumes that the attacker has an
auxiliary dataset. [Wang et al., 2019] proposed three attack
methods, which can infer whether a specific label appears in
the training process, the quantity of each label for a specific
client in a round, and the quantity of each label throughout
the entire training process, respectively.

Overall, most existing label recovery attacks focus on im-
age datasets, and none of them discuss label distribution on
graph datasets. In this paper, We focus on label distribution
inference attack against GNNs.

B Experimental Results of the Link
Prediction Tasks

Table 4 shows the performance of EC-LDA on all datasets
in the link prediction task, where we can see that EC-LDA
achieves the optimal values on both metrics, demonstrating
an impressive performance.

Dataset GNN types Cos-sim JS-div

Facebook
GCN 1.000 0.000
GAT 1.000 0.000

GraphSAGE 1.000 0.000

CiteSeer
GCN 1.000 0.000
GAT 1.000 0.000

GraphSAGE 1.000 0.000

Cora
GCN 1.000 0.000
GAT 1.000 0.000

GraphSAGE 1.000 0.000

WikiCS
GCN 1.000 0.000
GAT 1.000 0.000

GraphSAGE 1.000 0.000

LastFM
GCN 1.000 0.000
GAT 1.000 0.000

GraphSAGE 1.000 0.000

CoraFull
GCN 1.000 0.000
GAT 1.000 0.000

GraphSAGE 1.000 0.000

Table 4: Performance of EC-LDA when training GCN, GAT, and
GraphSAGE models on various datasets for link prediction tasks.

C Label Distribution
We employ a community detection algorithm to partition the
graph dataset for each client, which identifies communities
within the network(i.e., groups of nodes with high connection
densities). Figure 8 shows the distribution of labels assigned
to each client by this algorithm for the Cora dataset. From
the figure, it is evident that, with a setup of 10 clients, the
algorithm simulates a variety of label distributions. Our prior
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Figure 8: The label distribution obtained by each client when dividing the Cora dataset under five different random seeds.

experimental results indicate that EC-LDA consistently de-
livers strong performance. Therefore, we conclude that EC-
LDA can perform well across a range of distributions.

D Impact of Number of Clients
To investigate the impact of the number of clients on the per-
formance of EC-LDA, we conducted experiments on the Cora
dataset, varying the number of clients from 5 to 50. Figure 9
demonstrates the performance of EC-LDA as the number of
clients changes. We can see that regardless of the number of
clients, the performance of EC-LDA remains excellent, show-
casing its wide applicability.
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Figure 9: The performance of EC-LDA when the number of clients
is 5, 10, 20, and 50, using the WikiCS and Facebook datasets.

E Datasets and Hyper-parameter Settings
We conduct experiments on six widely used public datasets:
Cora [Sen et al., 2008], CiteSeer [Sen et al., 2008], LastFM
[Rozemberczki and Sarkar, 2020], Facebook [Rozemberczki
et al., 2021], CoraFull [Bojchevski and Günnemann, 2017],
and WikiCS [Mernyei and Cangea, 2020]. Cora, CiteSeer,
WikiCS, and CoraFull are citation network datasets. Face-
book and LastFM are social network datasets. We show the
main features of these datasets in Table 5. To demonstrate the
effectiveness of EC-LDA under conditions with a large num-
ber of labels, we select the CoraFull dataset, which has up to
70 labels.

All datasets use the SGD optimizer. If not specified, all the
experiments in this paper use the following setup: all at E of
5, clipping threshold C of 0.01, number of clients of 10, and

Network
Types Datasets #Nodes #Edges #Features #Classes

Citation
Network

CiteSeer 2120 7358 3703 6
Cora 2485 10138 1433 7

WikiCS 11311 297033 300 10
CoraFull 18800 125370 8710 70

Social
Network

Facebook 22470 342004 128 4
LastFM 7624 55612 128 18

Table 5: Main features of the datasets

attack on all the clients in the middle round. All the experi-
ments in this paper are taken with different random seeds to
repeat 5 times, and the results are averaged.
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