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ABSTRACT
The rapid advancement of artificial intelligence (AI) has enabled so-
phisticated audio generation and voice cloning technologies, posing
significant security risks for applications reliant on voice authen-
tication. While existing datasets and models primarily focus on
distinguishing between human and fully synthetic speech, real-
world attacks often involve audio that combines both genuine and
cloned segments. To address this gap, we construct a novel hy-
brid audio dataset incorporating human, AI-generated, cloned, and
mixed audio samples. We further propose fine-tuned Audio Spectro-
gram Transformer (AST)-based models tailored for detecting these
complex acoustic patterns. Extensive experiments demonstrate that
our approach significantly outperforms existing baselines in mixed-
audio detection, achieving 97% classification accuracy. Our findings
highlight the importance of hybrid datasets and tailored models in
advancing the robustness of speech-based authentication systems.
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1 INTRODUCTION
Voice biometrics have witnessed rapid adoption for user authen-
tication, particularly during the COVID-19 pandemic, as social
distancing protocols accelerated the shift toward contactless secu-
rity systems. Compared to password-based and fingerprint-based
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Figure 1: Our evaluation framework in a smart home audio token
system. It effectively prevents unauthorized access by detecting non-
authentic voices, including AI-synthesized, AI-cloned, and mixed
human-AI speech, thereby ensuring secure control over smart home
environments.

authentication, voice-based authentication offers greater efficiency,
user convenience, and cost-effectiveness [11]. Furthermore, speech
interaction technologies have revolutionized human-computer in-
teraction paradigms, enabling transformative applications in smart
homes, financial services, and medical education via intelligent
voice assistants and authentication systems [13].

However, while enhancing accessibility and operational effi-
ciency, these advancements have introduced critical cybersecurity
vulnerabilities. The proliferation of artificial intelligence (AI) tech-
nologies has enabled the creation of highly realistic synthetic audio
and cloned voices [16], which malicious actors increasingly exploit
to impersonate trusted individuals. For example, in a widely publi-
cized incident in early 2020, a Hong Kong bank manager authorized
a $35 million transfer based on an AI-cloned voice [3], illustrat-
ing the devastating potential of such attacks. This emerging threat
landscape necessitates the development of robust anti-spoofing
mechanisms capable of detecting sophisticated synthetic media.

To counter these risks, significant research efforts have been ded-
icated to detecting AI-generated speech. Automatic speaker verifi-
cation (ASV) systems [4, 14, 16] have become the predominant tech-
nology for voice authentication in mobile phones, smart speakers,
and call centers [11]. ASV systems typically rely on the extraction
of distinctive vocal features—such as pitch, formants, spectral char-
acteristics, and phase information—which are compared against
stored biometric voiceprints to verify speaker identity [7]. A close
feature match grants access, while significant discrepancies trigger
security responses or secondary authentication measures [25].
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Early countermeasure systems primarily utilized hand-crafted
acoustic features, such as Constant-Q Cepstral Coefficients
(CQCC) [23] combined with Gaussian Mixture Models (GMMs),
for spoof detection. Although effective against specific attack types,
these systems often lacked generalization when faced with previ-
ously unseen spoofing methods or recording conditions.

With the rise of deep learning, more robust methods were in-
troduced. Convolutional Neural Networks (CNNs) [31] and Deep
Neural Networks (DNNs) [2] improved detection accuracy by auto-
matically learning discriminative features from spectrogram repre-
sentations. Attention-based architectures, such as the Audio Spec-
trogram Transformer (AST) [10], further enhanced performance
by modeling global time-frequency dependencies. Self-supervised
learning paradigms, including SSAST [9], also demonstrated no-
table improvements in spoof detection under limited labeled data
conditions.

Despite these advancements, current detection systems still
suffer from several limitations rooted in their training data.
Existing public datasets such as FoR-Original [22], ASVspoof
2015/2019/2021 [20], and others focus predominantly on binary
classification—distinguishing between genuine and fully spoofed
utterances.While ASVspoof datasets comprehensively cover speech
synthesis, voice conversion, and replay attacks, they do not model
hybrid attacks where genuine and synthetic speech are interleaved
within a single utterance. Similarly, datasets like HAD [29] and
ADD2023-PF [30] introduced tampered audios with localized modi-
fications but still emphasized isolated segment replacements rather
than complex multi-source compositions. Moreover, many of these
datasets lack diversity in speaker demographics, consistent utter-
ance lengths, and precise annotations of tampering types and posi-
tions.

Consequently, models trained on these datasets tend to overes-
timate their real-world performance and are often ill-equipped to
handle hybrid and partial spoofing attacks [8, 24]. Furthermore,
assumptions of fixed-length speech, minimal background noise,
and perfect recording conditions further limit their applicability to
noisy, unconstrained real-world environments.

To address these critical gaps, this research introduces a novel hy-
brid speech dataset and evaluation framework. Specifically, twelve
participants aged 19–36 years recorded 104 linguistically diverse
sentences, spanning structured content, conversational speech, and
grammatically anomalous constructions. Using these authentic
recordings, we generated cloned and AI-synthesized variants, subse-
quently constructing seven distinct hybrid audio groups represent-
ing various combinations of human, cloned, and synthetic speech.
Each sample was meticulously annotated with speaker metadata,
tampering patterns, and authenticity labels.

Unlike previous datasets, our corpus emphasizes:

• The creation of composite audios combining multiple spoof-
ing types within a single utterance.

• Fine-grained annotations capturing tampering regions,
source modalities, and demographic variations.

• Consistent utterance lengths to facilitate hybrid segment
detection and long-form speech analysis.

To evaluate the discriminative capabilities of detectionmodels on
this hybrid dataset, we fine-tuned two variants of the Audio Spec-
trogram Transformer (AST) architecture [10, 18]. By systematically
categorizing and classifying the audio samples, we assess model
performance under complex and realistic conditions, elucidating
the challenges and potential of hybrid audio detection.

The main contributions of this study are summarized as follows:

• We construct a comprehensive dataset encompassing human,
AI-generated, cloned, and mixed-source audio samples, sig-
nificantly enriching the resource pool for research on voice
anti-spoofing.

• We systematically vary the degree of audio cloning and hy-
bridization to evaluate model performance across different
complexity levels, enabling a deeper understanding of detec-
tion capabilities and limitations.

• We propose two fine-tuned AST-based models tailored for
hybrid speech detection, demonstrating enhanced accuracy
and robustness under realistic adversarial conditions.

Collectively, these contributions advance the development of re-
liable and robust speech-recognition systems capable of countering
emerging threats in cybersecurity-critical applications.

2 RELATEDWORK
2.1 Deepfake Audio Detection Models
Early efforts in deepfake speech detection primarily relied on tradi-
tional machine learning models, such as Gaussian Mixture Models
(GMM) [26], which achieved competitive performance on bench-
marks like ASVspoof 2021 Logical Access (LA). However, their
limited capacity to model global temporal patterns rendered them
ineffective against sophisticated attacks such as replay-based spoof-
ing.

Subsequent approaches leveraged deep learning architectures,
notably Light Convolutional Neural Networks (LFCNN) [20] and
Long Short-Term Memory (LSTM) networks [6], to improve feature
extraction via end-to-end learning. Despite achieving enhanced
detection accuracy compared to traditional methods, these models
often relied on local or sequential operations, hindering their abil-
ity to generalize across diverse spoofing types and unconstrained
recording conditions.

A significant breakthrough came with the introduction of the
Audio Spectrogram Transformer (AST) [10], which treats audio
spectrograms as two-dimensional images and applies self-attention
to model global time-frequency dependencies. AST achieved 95.6%
accuracy on the ESC-50 environmental sound classification task
and 97.4% accuracy on Speech Commands V2, demonstrating strong
generalization and feature modeling capabilities.

Building upon AST, self-supervised learning frameworks like
SSAST-CL [9] achieved further improvements. By leveraging con-
trastive pretraining, SSAST-CL achieved an Equal Error Rate (EER)
of 4.74% on ASVspoof 2021 LA, surpassing many supervised base-
lines and highlighting the potential of unlabeled data for spoofing
detection.

Parallel research explored joint optimization of Automatic
Speaker Verification (ASV) and Countermeasure (CM) systems.
Kanervisto et al. [12] proposed reinforcement learning strategies to
directly minimize tandem Detection Cost Function (t-DCF) metrics,
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achieving a 20% relative reduction in t-DCF compared to indepen-
dently fine-tuned baselines. This joint optimization approach im-
proved robustness against hybrid and hard-to-detect attack classes
(e.g., A17–A19).

Recent advancements also incorporated physical acoustic cues to
enhance detection reliability. For instance, micro-signature model-
ing of microphone imperfection patterns [21] and spectral-temporal
modulation analysis [6] demonstrated improved spoofing detection,
particularly under replay and replay-enhanced attacks.

While these innovations significantly advanced the field, chal-
lenges remain. Most existing models assume uniform speech types
(genuine or spoofed) within a single utterance and are rarely evalu-
ated under realistic conditions involving hybrid or mixed-source au-
dios. Improving detection systems’ ability to handle hybrid attacks,
multi-stage forgeries, and noisy environmental factors remains a
critical direction for future work.

2.2 Spoofed Audio Datasets
Progress in deepfake speech detection has been tightly coupled
with the availability of specialized datasets. The FoR-Original
dataset [22] provided early resources for synthetic speech detection
by offering bona fide and TTS-generated utterances. However, its
binary nature (genuine vs. spoofed) limited its ability to model
complex attack strategies encountered in practical scenarios [15].

The ASVspoof corpora (2015, 2019, 2021) [20] represented sub-
stantial advancements, introducing diverse spoofing modalities
such as speech synthesis, voice conversion, and replay attacks
across logical and physical access scenarios. Nevertheless, these
datasets primarily focus on full-utterance spoofing, lacking exam-
ples where genuine and synthetic content are intertwined within a
single audio file—a growing concern for adversarial attack realism.

Efforts to model partial forgeries have emerged with the HAD
dataset [29], which introduced utterances with isolated word-level
replacements using TTS systems. While beneficial for fine-grained
tampering detection, HAD’s scope is constrained to word substi-
tution and short utterances, limiting its suitability for evaluating
long-form or conversation-level spoofing attacks. The ADD2023-
PF dataset [30] further addressed partial tampering by providing
segment-level annotations of manipulated regions within compos-
ite audios. However, the lack of detailed documentation regarding
spoofing methods and the inconsistency of attack types across
samples pose challenges for building robust, generalizable models.
Additional efforts, such as partially fake audio datasets [1] and ad-
versarially perturbed speech corpora [28], have introduced valuable
resources for evaluating resilience to adversarial attacks. Never-
theless, many existing datasets still suffer from major limitations:
they lack hybrid samples combining multiple spoofing techniques
within the same utterance, they offer insufficient fine-grained an-
notations describing tampering types and boundaries, and they fail
to maintain consistent utterance lengths necessary for real-world
deployment.

To address these deficiencies, our proposed dataset introduces
composite audios combining human, cloned, and AI-generated
speech in varied proportions. It incorporates detailed metadata
including speaker demographics, spoofing methods, and segment-
level boundaries, while ensuring standardized utterance durations

to facilitate both classification and localization tasks. This design
simulates complex real-world adversarial conditions more accu-
rately and supports the development of next-generation hybrid
speech detection systems capable of operating under noisy, uncon-
strained environments.

3 DATASET CONSTRUCTION
3.1 Design Policy
The proposed hybrid anti-spoofing audio dataset is designed to
evaluate detection systems under both controlled and adversarial
conditions. Motivated by the increasing complexity of audio forgery
scenarios in real-world applications, this dataset incorporates clean
genuine audio, cloned and AI-generated speech, hybrid utterances,
and adversarial perturbations including noise, codec compression,
and channel degradation. Our goal is to assess the generalization
and robustness of spoof detection models under challenging, un-
seen, and mixed-modality scenarios.

The dataset consists of two major versions:

• Clean Hybrid Version: Includes genuine, cloned, synthetic,
and hybrid (human-synthetic mix) speech in controlled
recording conditions.

• Noisy/Degraded Version: Applies various distortions
(noise, compression, and filtering) to clean audio to simulate
real-world audio environments.

Each version is split into training, development, and test subsets,
with the test subset further divided into seen and unseen attack
types for robust generalization evaluation.

3.2 Clean Real Audio Collection
Real human speech was collected from twelve participants (aged
19–38, balanced across gender) in an acoustically controlled indoor
setting using studio-grade USBmicrophones. Audio was recorded at
44.1 kHz and downsampled to 16 kHz for consistency with existing
spoofing corpora.

Each speaker recorded 104 scripted sentences across 8 linguisti-
cally diverse categories to ensure phonetic, syntactic, and semantic
variation:

• Alphanumeric combinations
• Pure alphabetic strings
• Numerical sequences
• Natural English phrases (New Concept English)
• Semantically coherent sentence pairs
• Semantically unrelated sentence pairs
• Grammatically incorrect sentences
• Complex anomaly-infused constructions

These categories were chosen to emulate both structured and
spontaneous speech patterns, supporting tasks such as forgery
detection, localization, and contextual spoof analysis.

• Structured content (e.g., alphanumeric sequences, pure al-
phabetic sequences)

• Natural language sentences (e.g., coherent vs. unrelated sen-
tences)

• Complex grammatical constructions (e.g., sentences with
embedded grammatical errors or semantic anomalies)
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This design ensures the dataset captures phonetic variability,
syntactic complexity, and spontaneous speech phenomena crucial
for training generalizable models. Table 1 summarizes the sentence
composition.

Type Name Number of Sentences

Alphanumeric Combination Sentences 8
Pure Alphabetic Sentences 8
Numeric Sequence Sentences 8
New Concept English 2 Lesson 1 Sentences 16
Semantically Coherent Sentence Pairs 16
Semantically Unrelated Sentences 16
Grammatical Error-Embedded Sentences 16
Complex Sentences with Semantic-Grammatical Anomalies 16

Table 1: Composition of sentence types in the human speech dataset.

3.3 Cloned and Synthetic Audio Generation
We used a Tacotron 2-based TTS system equipped with speaker
embeddings to synthesize cloned speech. Four levels of reference
embedding conditions were implemented to systematically vary
the fidelity of voice cloning:
C1: Single sentence reference (minimal context)
C2: Subset corpus reference (16-sentence context)
C3: Full speaker corpus (104 sentences)
C4: Target sentence embedding (maximum context)
Each cloned sample was evaluated using the ERes2NetV2

model [5] to measure speaker similarity. All cloning conditions
exceeded a 0.70 reliability score, validating their effectiveness in
simulating believable spoof attacks.

In addition to cloned samples, fully synthetic speech was gener-
ated using zero-shot TTS systems, further enriching the diversity
of spoofing artifacts. Each synthesized audio was paired with a
corresponding transcript to ensure semantic validity.

3.4 Hybrid Audio Construction
Hybrid utterances were crafted by concatenating genuine and syn-
thetic segments within a single audio stream. This mimics practical
spoofing cases where attackers inject synthesized phrases into au-
thentic recordings.

Three composition patterns were utilized:
• Human speech followed by AI-speech (H→S)
• AI-speech followed by human speech (S→H)
• Interleaved segments (H↔S↔H)

Transitions were smoothed using 10 ms cross-fading to eliminate
audible artifacts. Each file was annotated with source types, gender,
segment arrangement, and spoof type (0 = real, 1 = fake).

3.5 Noisy and Codec-Augmented Dataset
To simulate real-world variability, we created a noisy version of the
dataset by introducing additive distortions across three dimensions:

(a) Additive Noise: Background noise (e.g., street sounds, café
ambiance, white noise) was sourced from open noise datasets and
injected at SNRs of 10, 15, 20, and 30 dB.

(b) Channel Simulation: Low-pass filtering (4 kHz cutoff)
and spectral shaping were applied to simulate recording over mis-
matched devices.

(c) Compression Artifacts: Audio was encoded and decoded
using the Opus codec at 16 and 24 kbps, introducing quantization
noise and frame loss.

Each corrupted utterance retained its original label, but was
further annotated with SNR levels, noise type, and degradation
parameters to support domain-aware training.

3.6 Dataset Statistics
The final dataset consists of two major partitions:

• Hybrid Clean Dataset: 1,248 utterances (312 per class × 4
classes: human, cloned, AI-generated, hybrid).

• Noisy/Compressed Dataset: 1,248 utterances derived from
the clean set with added distortions.

Each speaker contributed equally across all categories, ensuring
demographic and linguistic balance.

3.7 Design Advantages
The dataset offers several innovations over prior benchmarks such
as ASVspoof 2019 [20], HAD [29], and ADD2023-PF [30]:

• Multi-source Hybrid Samples: Unlike binary spoof cor-
pora, we provide realistic adversarial combinations in a sin-
gle utterance.

• Multi-fidelity Cloning: Four levels of speaker context al-
low controlled evaluation of cloning accuracy and spoofing
difficulty.

• Domain Transfer Evaluation: Noisy and degraded sam-
ples simulate mobile devices, low-bandwidth transmission,
and user environments.

• RichMetadata: Each sample includes spoof origin, segment
order, gender, and degradation type to support interpretabil-
ity and explainability research.

In conclusion, our dataset fills critical gaps in existing bench-
marks by introducing hybrid compositions, variable fidelity spoof-
ing, and practical noise artifacts—supporting future research in
robust, real-world speech anti-spoofing.

3.8 Dataset
The dataset comprises two major partitions:

• Clean Hybrid Dataset: 1,248 utterances across four bal-
anced spoofing classes, constructed using speaker-controlled
human recordings and Tacotron 2-based synthesis.

• Noisy/DegradedDataset: 1,248 utterances derived from the
clean version by applying real-world distortions, including
additive noise (at multiple SNR levels), low-pass filtering,
and Opus-based codec compression.

Each utterance is annotated with spoofing type, speaker ID,
gender, and distortion parameters (if applicable). The dataset design
emphasizes diversity in spoofing strategies, segment arrangements,
and degradation conditions.
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Figure 2: Construction process of the hybrid sentence dataset, en-
compassing recording, cloning, synthesis, and composite generation.

4 DETECTION METHODOLOGIES
4.1 Overview
This study constructs a comprehensive hybrid audio dataset to sup-
port the detection of adversarial speech manipulations, including
speech synthesis, voice conversion, and replay attacks [11]. To repli-
cate real-world complexity, we developed six hybrid configurations
by combining these attack modalities (e.g., synthetic-replay, clone-
replay). Cloned samples were generated using state-of-the-art TTS
systems, and replay conditions were simulated via intra-speaker
temporal concatenation.

To evaluate detection performance, we employed two high-
impact variants of the Audio Spectrogram Transformer (AST) [10],
selected from the Hugging Face model hub for their transfer learn-
ing readiness and practical deployment coverage:

• MIT/ast-finetuned-audioset-10-10-0.4593: A general-
purpose AST model pretrained on 10-second audio clips
from AudioSet, encompassing diverse sound classes such as
speech, music, and ambient noise. This model provides broad
acoustic coverage and is ideal for assessing generalizability
to unseen spoofing patterns.

• MattyB95/AST-ASVspoof2019-Synthetic-Voice-
Detection: A domain-specific AST model fine-tuned on the
ASVspoof 2019 LA dataset. It focuses on synthetic voice
detection and serves as a specialized baseline for binary
spoof classification.

These complementary models enable an analysis of both broad-
domain robustness and task-specific optimization under hybrid and
adversarial spoofing conditions.

The Audio Spectrogram Transformer (AST) is a convolution-
free architecture based on the Vision Transformer (ViT) paradigm,
designed for end-to-end audio classification using spectrogram rep-
resentations. AST directly models the long-range time-frequency
dependencies in audio signals using self-attention mechanisms.

Figure 3: Architectural framework of the baseline Audio Spectro-
gram Transformer (AST) model.

4.2 Model Architecture: Audio Spectrogram
Transformer (AST)

4.2.1 Design Overview. The AST architecture adapts the Vision
Transformer (ViT) paradigm for audio spectrogram classification.
Rather than relying on convolutional filters, AST treats audio spec-
trograms as visual patches, enabling the model to learn long-range
time-frequency dependencies from early layers. The design is in-
tentionally modular, consisting of three key stages:

(1) Spectrogram Conversion: Raw waveforms are first con-
verted into 128-bin log-Mel spectrograms using a 25 ms
Hamming window and 10 ms hop length.

(2) Patch Embedding: The spectrogram is segmented into over-
lapping 16 × 16 patches with 6-frame overlaps in both fre-
quency and time. These patches are flattened and linearly
projected to a 768-dimensional space. A trainable position
embedding is added to encode spatial structure. A learn-
able [CLS] token is prepended to aggregate sequence-level
representation.

(3) Transformer Encoding and Classification: The patch
sequence is passed through 12 Transformer encoder blocks,
each containing multi-head self-attention (12 heads), layer
normalization, residual connections, and GELU-activated
feed-forward layers. The final [CLS] token output serves as
the global representation, which is classified into 4 spoofing
categories via a softmax head.

This architecture benefits from high scalability, flexibility across
input lengths, and strong inductive bias for capturing hybrid audio
characteristics. Unlike CNNs, which emphasize localized feature
extraction, AST excels at modeling distributed spoofing artifacts
across entire utterances.

4.2.2 Architectural Details. The input to the AST model is a spec-
trogram of shape 128 ×𝑇 , where 𝑇 is determined by the duration
of the audio. Key architectural components include:

• Patch Size: 16 × 16 with overlap
• Embedding Dimension: 768
• Transformer Layers: 12 encoder blocks
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• Attention Heads: 12 per encoder
• Position Encoding: Trainable vectors for patch indexing
• Classification Token: [CLS] prepended to the sequence

The final classifier outputs one of four class labels:

• Class 0 – Human (bona fide) speech
• Class 1 – Cloned (speaker-matched) synthetic speech
• Class 2 – AI-generated synthetic speech
• Class 3 – Hybrid audio (mixed human and synthetic seg-
ments)

4.2.3 Transfer Learning and Optimization Strategy. We initialized
both AST variants using pretrained weights: the MIT model was
trained on AudioSet (over 2M weakly labeled clips), and MattyB95
was fine-tuned on ASVspoof 2019. We then re-fine-tuned both
models on our hybrid spoofing dataset to maximize performance
under realistic and adversarial conditions.

Training configuration includes:

• Optimizer: Adam with weight decay
• Learning rate: 2 × 10−5 with cosine decay
• Batch size: 3
• Epochs: 20 with early stopping on validation loss
• Input: Zero-padded log-Mel spectrograms of 6 seconds

This strategy not only accelerates convergence but also en-
ables the models to maintain discriminative power in noisy, codec-
compressed, or mixed-source audio—critical for real-world ASV
systems.

4.2.4 Pretraining Strategy and ViT Adaptation. A major advantage
of AST is its ability to benefit from large-scale visual pretraining,
owing to the structural similarity between audio spectrograms and
images. However, due to the data-hungry nature of Transform-
ers, training AST from scratch is infeasible for most audio tasks.
We therefore employ cross-modal transfer learning from Vision
Transformers (ViT), adapting pretrained weights from ImageNet
classification.

To enable this transfer, several adjustments are made:

• Channel Adaptation: ViT expects 3-channel RGB input,
while AST takes single-channel spectrograms. We average
the weights of ViT’s input channels to initialize AST’s patch
embedding layer, simulating a triplicated mono-channel.

• Input Normalization: Spectrograms are normalized to zero
mean and standard deviation 0.5 to match ViT initialization
statistics.

• Positional Embedding Resizing: ViT uses fixed-size posi-
tional embeddings (e.g., 24 × 24 for 384×384 images), while
audio inputs vary in length. We adopt a cut-and-bilinear
interpolation strategy to reshape ViT’s 2D positional em-
beddings to AST’s patch grid (e.g., 12 × 100 for 10-second
audio). The [CLS] token’s positional vector is reused without
change.

• Classification Layer Reset: The final ViT classification
layer is replaced with a new 4-class head corresponding to
human, cloned, AI-generated, and hybrid audio.

In this work, we specifically adapt weights from a pretrained
DeiT (Data-efficient Image Transformer) model [? ], which was

trained on ImageNet using knowledge distillation. This model con-
tains 87M parameters and achieves 85.2% top-1 accuracy. To align
with AST, we average its dual [CLS] tokens and discard its image-
specific output layer.

4.2.5 Training Configuration and Label Design. ASTwas fine-tuned
using speaker-disjoint partitions from our hybrid dataset. The input
was zero-padded or cropped to 6-second segments and transformed
into log-Mel spectrograms (128 bins, 25ms frame, 10ms hop). Train-
ing used the Adam optimizer with a learning rate of 2 × 10−5 and
cosine annealing, for 20 epochs with early stopping.

We defined four spoofing class labels:
• 0 – Human: Authentic speech recorded from real speakers.
• 1 – Cloned: Speech synthesized with Tacotron2 using
speaker embeddings.

• 2 – AI-generated: Fully synthetic speech without speaker
identity preservation.

• 3 – Hybrid: Concatenated sequences mixing human and
synthetic segments.

This fine-tuning pipeline bridges pretrained vision knowledge
with task-specific audio spoof detection, achieving both high classi-
fication accuracy and generalization to noisy and adversarial inputs.

5 EVALUATION
5.1 Experimental Setup
The evaluation was conducted using both clean and noisy versions
of the proposed hybrid spoofing dataset. Four spoofing classes were
defined: (0) genuine human speech, (1) AI-cloned speech, (2) AI-
generated speech, and (3) hybrid (mixed-source) speech. These
classes reflect realistic adversarial scenarios designed to challenge
anti-spoofing models under varied linguistic, acoustic, and synthe-
sis conditions.

Audio recordings were sampled at 16 kHz and converted into
128-bin log-Mel spectrograms using a 25 ms Hamming window and
a 10 ms frame shift. All experiments were conducted on an NVIDIA
A100 GPU. Training followed an 80/20 train-test split, ensuring
speaker disjointness to prevent overfitting.

Each model was trained for 20 epochs using the Adam optimizer
with an initial learning rate of 2 × 10−5, cosine decay scheduling,
and early stopping. Batch size was fixed at 3 for stability given the
variable input lengths and memory constraints.

5.2 Evaluation Metrics
Performance was measured using classification accuracy, F1-score,
false positive rate (FPR), and false negative rate (FNR) across the
four spoofing classes. For reliability-based binary classification
(used in baseline benchmarking), the following thresholding rule
was applied:

𝑦 =

{
0 if |real_tag − reliability_score| < 0.5
1 otherwise

Overall classification accuracy was computed as:

Accuracy =
𝐶

𝑁
× 100%
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where 𝐶 is the number of correct predictions and 𝑁 is the to-
tal number of samples. Confusion matrices and reliability score
distributions were used to analyze error patterns and inter-class
ambiguities.

5.3 Datasets
To establish robust benchmark performance for spoofed speech
detection, we conducted evaluations on two datasets: the widely
used ASVspoof 2019 Logical Access (LA) dataset [24] and our newly
constructed hybrid spoofed audio dataset, introduced in Section 3.

ASVspoof 2019 LA Dataset. The ASVspoof 2019 LA dataset
serves as a standard benchmark in the field of automatic speaker
verification (ASV). It comprises bona fide and spoofed utterances
generated using advanced text-to-speech (TTS) and voice conver-
sion (VC) algorithms. The dataset is organized into disjoint training,
development, and evaluation sets, offering a comprehensive frame-
work to assess generalization under realistic synthesis conditions.

Proposed Hybrid Spoofed Audio Dataset (HSAD). To over-
come the limitations of existing benchmarks—such as binary clas-
sification focus, limited spoof type diversity, and the absence of
hybrid composition realism—we constructed the HSAD dataset. It
includes six carefully designed categories that reflect a spectrum of
real-world and adversarial audio conditions:

• G1 – Genuine Human: Natural, untouched speech record-
ings from real speakers.

• G2 – Pure AI Clone: Cloned speech generated using
Tacotron 2-based models with varying levels of speaker ref-
erence embeddings (e.g., single-sentence, corpus-level, and
target-matched).

• G3 – Pure AI Generated: Fully synthetic speech created via
zero-shot TTS systems with no prior speaker conditioning.

• G4 – Mixed: AI Generated + Human: Spliced utterances
formed by concatenating segments of AI-generated and hu-
man speech to simulate content injection attacks.

• G5 – Mixed: AI Cloned + AI Generated: Utterances com-
bining cloned and AI-generated segments, introducing com-
plex spoofing configurations.

• G6 – Human Recombined: Human-only segments rear-
ranged into hybrid-like flows to emulate natural conversa-
tional variation without introducing spoof artifacts.

Each audio sample is labeled with speaker ID, spoof type, seg-
ment structure, and signal fidelity level. Beyond clean speech, the
dataset also includes an adversarial variant with environmental
noise (10–30 dB SNR), channel filtering (low-pass at 4 kHz), and
compression artifacts (Opus codec at 16–24 kbps) to simulate de-
ployment conditions. These features support detailed robustness
evaluation and promote generalization studies for both fine-grained
classification and real-world ASV defense mechanisms.

5.4 Baseline Models
To evaluate performance on these datasets, we selected three state-
of-the-art transformer-based models from the Hugging Face model
repository:

MIT-AST [19]: A general-purpose Audio Spectrogram Trans-
former (AST) model pretrained on the AudioSet corpus using
weakly labeled 10-second audio segments. This model captures

Table 2: Performance on ASVspoof 2019 LA Dataset.

Model Name Correct
Predictions Accuracy ( %)

MIT-AST 63,663 / 71,237 89.37%
MattyB95 63,863 / 71,237 89.65%
WpythonW 42,143 / 71,237 59.16%

diverse acoustic events and serves as a strong baseline for general
audio classification tasks.

MattyB95 [17]: A domain-specific AST model fine-tuned di-
rectly on the ASVspoof 2019 LA dataset for detecting synthetic
speech. It provides a strong reference for binary spoof detection.

WpythonW [27]: This model is trained on ElevenLabs synthetic
speech and provides an additional comparison point, particularly
for evaluating generalization across spoof generation techniques
not included in the ASVspoof dataset.

Together, these models offer diverse architectural and training
configurations—ranging from broad-spectrum audio classification
to specialized spoofing detection—enabling comprehensive eval-
uation of detection capabilities under both standard and newly
proposed conditions.

5.5 Performance on ASVspoof 2019 LA
To evaluate baseline spoof detection performance, we tested three
transformer-based models on the ASVspoof 2019 Logical Access
(LA) dataset [24]. These included MIT-AST, a general-purpose Au-
dio Spectrogram Transformer (AST) model pretrained on AudioSet;
MattyB95, which was specifically fine-tuned on ASVspoof 2019
challenge data; and WpythonW, a variant trained with ElevenLabs-
generated synthetic speech. Table 1 presents the number of correct
predictions and overall accuracy for each model.

The results confirm that transformer-based architectures are
highly effective for speech spoof detection. Both the MIT and Mat-
tyB95 models achieved nearly identical performance, with accuracy
rates exceeding 89%, demonstrating that large-scale audio pretrain-
ing (e.g., on AudioSet) and fine-tuning on task-specific datasets both
contribute significantly to model robustness. Notably, MattyB95,
which was explicitly optimized on ASVspoof 2019, achieved the
highest accuracy, albeit with only a marginal improvement over
MIT’s general-purpose variant. This highlights the value of domain-
aligned tuning for maximizing performance on known spoofing
types.

In contrast, the WpythonW model exhibited significantly lower
accuracy at just 59.16%, despite being based on the same architec-
tural backbone. This substantial performance drop indicates that
models trained narrowly on specific synthetic speech generators
may suffer from poor generalization when exposed to a wider vari-
ety of spoofed content. The reliance on ElevenLabs speech alone
likely contributed to overfitting, making the model less effective on
broader spoof distributions present in the ASVspoof benchmark.

These findings collectively underscore the importance of bal-
ancing large-scale, diverse pretraining with targeted fine-tuning.
Pretrained transformer models provide a strong foundation, but
their ability to detect spoofed content across diverse conditions de-
pends critically on exposure to representative spoofing variations
during the fine-tuning phase. Future evaluation metrics should
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Table 3: Reliability score statistics for six spoofing groups (G1–G6)
evaluated using MIT-AST and MattyB95 models on the proposed
HSAD dataset.

Group Mean Std
Dev Max Min Mode

M
IT
-A
ST

G1 0.8414 0.1339 0.9768 0.0071 0.7977
G2 0.8756 0.0829 0.9923 0.0185 0.8828
G3 0.8606 0.0959 0.9639 0.3924 0.7320
G4 0.8009 0.1398 0.9827 0.0908 0.7479
G5 0.8092 0.1343 0.9927 0.0185 0.7705
G6 0.7904 0.1748 0.9794 0.0095 0.0095

M
at
ty
B9

5

G1 0.5385 0.4925 1.0000 5.96e-7 5.96e-7
G2 0.9821 0.1319 1.0000 5.96e-7 1.0000
G3 0.3519 0.3519 1.0000 5.96e-7 5.96e-7
G4 0.3669 0.4733 1.0000 5.96e-7 5.96e-7
G5 0.6658 0.4679 1.0000 5.96e-7 5.96e-7
G6 0.2713 0.4435 1.0000 5.96e-7 5.96e-7

move beyond raw accuracy to consider generalization across spoof-
ing techniques and robustness under real-world signal degradation,
which will be explored in subsequent sections.

5.6 Performance on the Proposed HSAD Dataset
To evaluate the robustness and generalization capabilities of
transformer-based models under realistic spoofing conditions, we
assessed the two best-performing baseline models—MIT-AST and
MattyB95—on our proposed Hybrid Spoofed Audio Detection
(HSAD) dataset.

Table 3 summarizes the reliability score statistics for both mod-
els across six spoofing groups: G1 (Genuine Human), G2 (Pure
AI Clone), G3 (Pure AI Generated), G4 (Mixed: AI Generated +
Human), G5 (Mixed: AI Clone + AI Generated), and G6 (Human
Recombined).

The MIT-AST model, despite achieving a high average accuracy
of 93.67% on the HSAD dataset, failed to correctly identify any
genuine human utterances, misclassifying them as spoofed. This
is evidenced by the close overlap of mean reliability scores for
Group G1 (Human, 0.8414), G2 (Cloned, 0.8756), and G3 (Generated,
0.8606). Such overlap indicates insufficient class separation and un-
dermines model interpretability and trustworthiness in real-world
deployment.

In contrast, the MattyB95 model exhibited a lower overall accu-
racy of 65% but showed improved class distinction. Its reliability
scores for genuine human speech (G1: 0.5385) and human recom-
bined segments (G6: 0.2713) were substantially lower than those
for cloned (G2: 0.9821) and hybrid compositions, offering better
separation between genuine and synthetic content.

However, both models struggled with the hybrid categories.
Groups G4 (AI Generated + Human) and G5 (AI Clone + AI Gen-
erated) yielded highly dispersed scores with large standard devia-
tions, suggesting confusion due to complex boundary conditions
and mixed-source signal characteristics.

These results underscore three critical insights:
1. **Limitations of Standard Pretraining:** Models like MIT-AST,

despite broad pretraining on AudioSet, are not calibrated for fine-
grained spoof discrimination and tend to overgeneralize, especially
in the presence of hybrid or partially spoofed audio.

2. **Benefit of Spoof-Specific Tuning:** While MattyB95 exhibits
better discrimination between real and spoofed speech, its perfor-
mance degrades under distribution shifts, such as unseen hybrid
constructs.

3. **HSAD Dataset Utility:** The HSAD dataset introduces nu-
anced scenarios and spoofing combinations absent from tradi-
tional corpora, highlighting its importance in benchmarking robust,
future-ready detection architectures.

In conclusion, existing models fail to reliably detect and classify
hybrid spoofing attacks due to overlapping decision boundaries.
These findings motivate the development of hybrid-aware models
with finer temporal segmentation, semantic consistency modeling,
and adaptive spoof calibration strategies tailored to composite real-
world conditions.

5.7 Fine-Tuned Model Performance
To validate the efficacy of the proposed HSAD dataset, we fine-
tuned two transformer-based models—Model A, adapted from the
MIT-AST architecture, and Model B, derived from MattyB95. Both
models retained the Audio Spectrogram Transformer (AST) back-
bone and were retrained on our multi-source dataset to enhance
domain-specific spoof detection.

Training was conducted for 20 epochs using the Adam optimizer
and cosine learning rate scheduling, with early stopping based on
validation loss. Audio inputs were standardized to 128-bin log-Mel
spectrograms computed with 25ms frame length and 10ms hop
size. A batch size of 3 was used, and training was performed on an
NVIDIA A100 GPU.

Model A achieved a validation accuracy of 97.88%, while Model
B slightly exceeded this with 98.08%. On the test set, both models
stabilized at 97% accuracy, substantially outperforming the baseline
AST variants. The confusionmatrices illustrate these improvements.
Model A (fine-tuned MIT-AST) achieved particularly consistent per-
formance across all categories, whileModel B (fine-tunedMattyB95)
showed strong discriminability among hybrid and synthetic speech
types.

Figure 4: Confusion matrix – MIT fine-tuned (Model A)
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Figure 5: Confusion matrix – MattyB95 fine-tuned (Model B)

Both models correctly identified hybrid audio samples with 100%
precision, demonstrating their ability to capture compositional
cues that standard classifiers often miss. For AI-generated and AI-
cloned content, recall exceeded 88%, confirming their capability
to recognize nuanced synthetic speech even when integrated into
natural audio flows. The classification accuracy for human speech
rose to 84%, representing a dramatic improvement compared to the
baseline MIT-AST model, which had previously misclassified all
genuine utterances.

Performance gains extended beyond accuracy. As shown in Fig. 6,
Model A achieved a 71% reduction in false positives for human
speech (from 1,207 to 197), whileModel B demonstrated a 95% reduc-
tion in false negatives for AI-generated content (from 14,117 to 684).
Both models reached an F1-score of 99%, indicating strong balance
between precision and recall. Furthermore, Model A reduced its
parameter count by 0.4M compared to the original MIT-AST (from
86.6M to 86.2M) while achieving a 2.27% F1-score gain, highlighting
the efficiency and effectiveness of dataset-specific adaptation.

Figure 6: Comparison of false positives, false negatives, F1-score,
and parameter count across baseline and fine-tuned models

These findings emphasize that models pretrained on general-
purpose audio datasets struggle with complex spoof compositions
unless retrained on spoof-specific corpora. Although MIT-AST ben-
efited from broad AudioSet pretraining, it lacked calibration for
spoof detection tasks, particularly under hybrid scenarios. Con-
versely, the MattyB95 baseline model exhibited a stronger spoof
detection bias but suffered from low reliability scores and misclas-
sifications on unfamiliar or subtle combinations of synthetic and

real audio. After fine-tuning, both models demonstrated significant
improvements in generalization, particularly under adversarial and
mixed-source conditions.

In conclusion, fine-tuning on the HSAD dataset not only im-
proved classification accuracy and F1-score, but also enhanced
the models’ robustness against false classifications and improved
computational efficiency. These results affirm the importance of
dataset-specific training for spoof detection and underline the po-
tential of HSAD as a benchmark for advancing robust, real-world
anti-spoofing solutions.

5.8 Discussion
This study introduces a systematically constructed Hybrid and
Spoofed Audio Dataset (HSAD) designed to expose the limitations
of current state-of-the-art anti-spoofing systems under complex and
adversarial conditions. Unlike existing corpora such as ASVspoof
2019, which focus predominantly on binary classification and clean
synthetic speech, our dataset reflects real-world threat vectors
through four spoofing classes: genuine human speech, AI-cloned
speech, fully AI-generated speech, and various hybrid composi-
tions combining human and synthetic audio segments. Addition-
ally, we inject practical distortions such as environmental noise,
codec compression, and channel degradation to simulate mobile
and cross-platform transmission conditions.

Empirical results from this work highlight a significant perfor-
mance gap betweenmodels trained on homogeneous public datasets
and their effectiveness when deployed in adversarial environments.
Although the MIT/AudioSet transformer model achieved over 93%
accuracy in aggregate, it misclassified all genuine human samples
as spoofed, revealing a critical flaw in model calibration. The Mat-
tyB95 baseline, despite being fine-tuned on the ASVspoof 2019
dataset, showed improved class separability but struggled with
mixed-source inputs due to overlapping reliability distributions.

In contrast, fine-tunedmodels trained directly onHSAD achieved
substantially higher performance across all metrics. With accuracy
exceeding 97% and F1-scores approaching 99%, these models re-
duced false positive rates for human speech by over 70% and false
negatives for synthetic speech by over 90%. These results not only
validate the advantage of dataset-specific fine-tuning, but also em-
phasize the importance of including hybridized spoof structures
during training to account for increasingly subtle and compositional
spoofing techniques.

5.9 Limitations and Future Works
5.9.1 Limitations. Despite the substantial contributions of this
work, several limitations must be acknowledged to contextualize
the findings:

1. SpoofingCoverage.The proposedHSAD dataset currently fo-
cuses on two primary spoofing paradigms: text-to-speech (TTS) syn-
thesis and AI-based voice cloning. It does not yet incorporate other
advanced attack vectors such as voice conversion (VC), prosody
manipulation, GAN-generated speech, or adversarial examples de-
signed to evade detection systems. This restricts the coverage of
spoofing techniques and may limit model robustness under more
exotic or unseen attacks.
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2. Environmental Realism. Although HSAD includes artificial
distortions such as additive noise, codec compression, and filter-
ing, all clean speech recordings were collected under controlled
acoustic environments. Realistic variability—including spontaneous
speech, reverberant rooms, overlapping speakers, mobile device mi-
crophones, and network-based degradation—remains unaddressed.
This may introduce evaluation bias when deploying models in truly
unconstrained conditions.

3. Dataset Scale and Generalization. The speaker pool is lim-
ited to twelve individuals, which, although balanced in terms of
age and gender, may not reflect broader phonetic diversity. More-
over, the number of utterances per spoofing category is constrained.
Consequently, there is a risk of overfitting to the dataset-specific
patterns, especially when models are deployed on cross-domain
benchmarks or real-world applications.

4. Hybrid Annotation Granularity. While the dataset in-
cludes hybrid compositions, annotations are currently coarse-
grained—focusing on utterance-level authenticity rather than fine-
grained localization of spoofed segments. This limits the ability
to analyze and interpret partial spoofing strategies or perform
segment-level detection.

5.9.2 Future Work. Building on the current work, several direc-
tions are planned to further improve dataset realism, model robust-
ness, and interpretability:

1. Expansion of Spoof Modalities. Future iterations of HSAD
will include broader spoofing types such as voice conversion, neu-
ral vocoder-based attacks, multilingual TTS, and adversarial at-
tacks crafted using gradient-based or black-box methods. This will
improve the comprehensiveness of the dataset and increase the
challenge for detection models.

2. Real-World Data Collection. To better approximate deploy-
ment scenarios, we will incorporate audio collected in the wild
using smartphones, smart speakers, and telephony-grade systems.
Data will span multiple environments (e.g., urban outdoors, homes,
transit), capturing the variability encountered in everyday usage.

3. Segment-Level Annotation and Localization. Future re-
leases of HSAD will include precise time-stamped annotations for
the onset and offset of synthetic segments within hybrid utterances.
This will enable the training and evaluation of spoof localization
models, and support applications such as real-time detection and
signal repair.

4. Cross-Corpus Benchmarking.Wewill benchmark our mod-
els on additional datasets such as ADD2023-PF, Half-and-Half
(HAD), and multilingual corpora to evaluate cross-domain trans-
ferability. This will help establish HSAD’s utility as a training and
diagnostic resource for general-purpose anti-spoofing systems.

5. Model Explainability and Robustness Analysis. We plan
to integrate explainable AI (XAI) techniques such as attention
heatmaps and gradient-based saliency to better understand model
decisions, especially under ambiguous or adversarial inputs. Robust-
ness evaluation under perturbation (e.g., adversarial noise, pitch
shifting) will also be explored.
In conclusion, while HSAD and its associated fine-tuned models
represent a significant advance in spoof detection, the field remains

dynamic. Continued expansion of spoofing strategies, environmen-
tal realism, and explainability mechanisms will be critical for devel-
oping trustworthy, real-world voice security systems.

6 CONCLUSION
This study presented the Hybrid Spoofed Audio Dataset (HSAD),
a novel and realistic benchmark aimed at advancing the robust-
ness of automatic speaker verification (ASV) systems against di-
verse and hybrid spoofing threats. Unlike prior corpora limited to
binary spoof labels, HSAD introduces six fine-grained spoof cate-
gories—including AI-cloned, zero-shot generated, andmixed-source
utterances—constructed via Tacotron-based voice cloning, zero-
shot synthesis, and hybrid segment splicing. Real-world conditions
were further simulated through noise injection, codec compression,
and spectral filtering.

Comprehensive evaluations using two state-of-the-art Audio
Spectrogram Transformer (AST) models pretrained on AudioSet
and ASVspoof 2019 revealed critical limitations. While the MIT-AST
model achieved 93.67% overall accuracy, it failed to correctly iden-
tify genuine human audio. The MattyB95 model performed better
on human detection but suffered from reduced confidence and poor
separation across hybrid categories. These results highlight the
poor generalization of models trained on traditional, homogeneous
spoof datasets.

Fine-tuning both models on HSAD led to substantial perfor-
mance gains—elevating classification accuracy to 97%, boosting
F1-scores to 99%, and dramatically reducing false positive and false
negative rates. This underscores the necessity of dataset-specific
adaptation and the value of richly annotated, diverse spoof datasets
for training spoof-aware detection models.

Looking ahead, future work will expand the scope of spoof types
to include voice conversion (VC), adversarially crafted attacks, and
multilingual synthesis. Real-world recordings captured through
mobile and conferencing devices will further increase environmen-
tal realism. Finally, explainable AI (XAI) methods will be integrated
to support interpretability and temporal spoof localization within
composite audio streams.

In summary, HSAD establishes a new foundation for anti-
spoofing research, addressing key gaps in existing benchmarks
and demonstrating the transformative effect of task-aligned fine-
tuning for transformer-based ASV systems. This work paves the
way towardmore secure and trustworthy audio verification systems
in real-world applications.
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