
ar
X

iv
:2

50
5.

14
91

4v
1

 [
cs

.D
C

]
 2

0
M

ay
 2

02
5

Sei Giga
v0.1

Benjamin Marsh1, Steven Landers1, and Jayendra Jog1

1Sei Labs

May 2025

1 Introduction

In this work, we present Sei Giga, the first multi-proposer EVM layer-1 blockchain.
Sei Giga uses Autobahn [Gir+25] as a consensus protocol to allow for 5 gigagas
throughput [Mar25] and sub 400ms finality under standard BFT-style security
assumptions. Additionally, Sei Giga uses a custom EVM execution client that
has been built from scratch, a new storage layer, and asynchronous accumulator-
based state commitments. As a result, Sei Giga is able to scale to allow for web2
style usage while ensuring quick finality in settings where it is necessary such as
trading, on a verifiable and secure public ledger. Sei Giga is a decentralized, per-
missionless Proof-of-Stake EVM chain capable of running standard EVM smart
contracts written in typical EVM languages such as Solidity and Vyper. Sei
Giga’s EVM support is equivalent to mainchain Ethereum with the exception
of EIP-4844, PREVRANDAO, the state root, the block gas limit, and the trans-
action fee mechanism, and Sei Giga will continue to support EVM upgrades to
maintain near parity. As is standard in Proof-of-Stake blockchains, Sei Giga is
maintained by a set of staked nodes which act as validators and executors in
the network responsible for ensuring consensus is met and blocks are run; the
nodes are staked and eligible for block rewards to ensure an economic incentive
to keep the chain running, and subject to slashing of the staked coins in the
case of malicious behavior.

In order to ensure speedy consensus, Sei Giga reaches initial consensus over
the ordering of transactions in a block and not the state of the chain given that
block. Given the deterministic nature of EVM execution, this allows the chain
to asynchronously execute blocks post-finality in order to reach an agreed state
in a later block. The split block processing model allows Sei Giga to avoid
execution bottlenecks by slowing consensus. Gas and other associated fees and
rewards on the chain are handled by the underlying native coin of the chain,
SEI. Sei Giga does not utilize a mempool, and transactions are immediately
included by the node. Sei Giga supports multiple types of clients, including

1

https://arxiv.org/abs/2505.14914v1

validator nodes, which participate in both consensus and execution; a full node,
which consists of the RPC layer and the execution layer for the reading path;
light nodes, which consist of the RPC layer alone, and data nodes, which exists
purely to serve recent data. Sei Giga utilizes direct node-to-node networking
preventing propagation across nodes for performance purposes. Transactions
when submitted to the RPC the transaction will be randomly allocated to a
validator reducing the impact of validator targeted spam attacks, transactions
may be submitted to multiple validators for censorship resistance leading to a
fairer transaction inclusion process. A partial refund of the transaction tip will
be refunded if multiple copies of the transaction exist and only a single copy is
executed.

Figure 1: v2 vs Giga

1.1 Comparison to Sei v2

Autobahn achieves over 50× higher throughput than Tendermint by funda-
mentally rethinking how consensus and data availability are managed in a dis-

2

tributed system. In Tendermint, each block is processed sequentially: A single
leader proposes a block, validators must download and fully execute the block
transactions, and then consensus is reached in multiple rounds before the next
block is proposed. This tight coupling between data dissemination, execution,
and consensus means that every block decision incurs significant overhead and
waiting time, resulting in a throughput limited by the speed of one proposer
and the time taken to complete all three rounds of communication.

Autobahn, on the other hand, decouples these processes to dramatically increase
performance. Instead of relying on one leader at a time, every node continu-
ously disseminates its own stream of data proposals in independent lanes. This
multi-proposer architecture eliminates the bottleneck of a single proposer by
allowing parallel data proposals. In this system, each node operates as its own
proposer, continuously creating a chain of proposals. The consensus layer peri-
odically commits a “tip cut,” which is a compact snapshot that aggregates the
latest proposals (tips) from every lane. Since each tip implicitly references the
entire history of its lane, this mechanism allows multiple blocks to be committed
in one consensus instance without having to process each block individually. A
critical innovation in Autobahn is its decoupling of data availability from con-
sensus. In Tendermint, validators must download and verify the entire block
before they can cast their votes, which ties the consensus process directly to the
full dissemination of data. Autobahn, however, uses proofs of availability (PoA)
to certify that a block’s data is accessible without requiring every validator to
download it immediately. Validators can vote based on these compact proofs
while data synchronization occurs asynchronously in the background. This sep-
aration means that the ordering of transactions is not slowed down by the need
to fetch full block data during the consensus round.

Autobahn further reduces latency by lowering the number of communication
rounds. While Tendermint typically requires three full rounds of message ex-
changes to finalize a block, Autobahn’s optimized protocol reaches consensus
in 1.5 roundtrips in Sei Giga. Fewer rounds of communication directly trans-
late into lower per-block latency and, consequently, higher overall throughput.
Additionally, Autobahn supports parallel slot execution where new consensus
slots can begin before previous ones are fully committed. This pipelining en-
sures that the system continuously processes proposals without waiting for each
individual block’s final commitment. Combined with an efficient view-change
mechanism that quickly recovers from network blips or faulty leaders, Auto-
bahn maintains high performance even under suboptimal conditions. Alongside
pipelined block production, Sei Giga’s Autobahn allows for asynchronous block
execution, unlike Tendermint, meaning we reach consensus over the ordering of
transactions in a block and agree on the state later; this ensures that execution
never becomes a bottleneck in the block production process.

The execution process is fully pipelined with parsing, address recovery, and
signature verification happening in parallel to avoid bottlenecks in the execu-

3

tion process in a new client rewritten since v2. Post-processing of the block,
such as receipt generation, is handled out of the hot path meaning the next block
can start execution while the previous block is undergoing post-processing. By
default, the frequently accessed state of Sei Giga is stored in RAM for opti-
mum performance, with the full state stored on disk. The system is designed to
minimize disk reads by ensuring most reads for a transaction (such as balance
checks) are in memory, while disk writes are performed asynchronously solely
for recovery purposes.

Overall, by decoupling execution from consensus, enabling multi-proposer par-
allelism, committing multiple blocks in a single tip cut, reducing the number of
communication rounds, and separating data availability from the critical con-
sensus path, the Sei Giga upgrade brings significant improvements over Sei v2.
The improved execution client achieves a 40x performance boost with a wholly
rebuilt client from scratch, enabling 200k TPS compared to the previous 5k TPS.
The faster consensus algorithm reduces voting rounds from 3 to 1.5, resulting
in a 2x improvement in consensus efficiency. The novel data availability layer
with its multi-producer design delivers a 70x improvement in block production
with 180 blocks versus 2.5 previously while still ensuring strong Byzantine Fault
Tolerance.

2 Async Execution

Sei Giga operates on the basis that once ordering is agreed upon in a block that
the deterministic execution of that block will always result in the same output
state, that is to say that consensus can be reached over just the contents and
ordering of a block without execution.

Claim 1 (Deterministic Execution). Let Sinit be an initial EVM state and let
{ tx1, tx2, . . . , txn} be an ordered list of transactions. If all honest nodes apply
these transactions in the same order to the same initial state, then they will
arrive at an identical final state Sfinal assuming a majority honest network.

Sketch. Consider each transaction txi as a deterministic function

Exec
(
S, txi

)
= S′,

where S is the global state before applying the transaction and S′ is the updated
state after execution. Since EVM execution has no hidden sources of randomness
or nondeterminism, the result of Exec is uniquely determined by S and txi. For
a block containing n transactions, the final state is computed by sequential, or
parallel where viable, application:

Sfinal = Exec
(
Exec(. . .Exec(Sinit, tx1) . . .), txn

)
.

All honest nodes starting with the same Sinit and applying the same transactions
in the same order must thus produce the same Sfinal. Consequently, consensus

4

need only finalize the ordering of blocks, and each node can locally compute the
same state in a consistent fashion.

Figure 2: Async block execution

2.1 State consensus

Given the lack of need for execution to reach consensus Sei Giga is able to re-
move execution as a bottleneck and asynchronously execute finalized blocks in
parallel to the block production process. Once a block has been finalized the
executor node will execute the block and commit to the state of block n along
with others as a batch in a later block n + x for some x ∈ Z, x < 1000 in a
future tip cut once it has a 2

3 quorum, after this the block is not only finalized
but verified through the state consensus having had the state for a single or
multiple executed blocks gossiped around the network. During this time the
chain continues to produce the blocks n+ 1, n+ 2,

The delayed asynchronous state of a block n being included in later block pro-
posals allows for validators to ensure they have not deviated from the agreed
chain state, in the case of a small scale deviation where ϕ < 1

3 of the network
diverges on the state of the chain the chain will continue as normal, if ϕ > 1

3
then the chain will pause as it would in any standard BFT protocol. A software
or hardware bug could allow for the state to diverge despite honest agents hence
the need for consensus. The state root is attested by a signature. A transaction
that fails to execute does not invalidate the execution of the block but that
transaction remains failed. The block production process can be seen as a sep-
arate process to execution, with the final state of the execution of a block being
committed in a later block.

2.2 Execution client

The execution client is based on evmone [Eth25], a c++ EVM implementation,
as opposed to geth. The client only handles tx processing and does not handle

5

any other functionality such as tracing or log searching. Blocks are received
and processed in parallel meaning only the block execution step happens se-
quentially, that is to say that all pre-processing and checks such as signature
recovery happen in parallel, though only a single block will be executed at once.
Post-processing of the block, such as receipt generation, is handled out of the
hot path meaning the next block can start execution while the previous block is
undergoing post-processing. The client is optimised to reduce disk reads by en-
suring most reads for a transaction (check balance) are in memory. Disk writes
are all asynchronous.

Figure 3: Giga Client

2.3 Pipelining and encoding

The execution process is fully pipelined with parsing, address recovery, and sig-
nature verification happening in parallel to avoid bottlenecks in the execution
process by ensuring these otherwise potentially blocking processes.

A flat encoding format is also utilized to ensure cheaper transaction decod-
ing. The transaction encoding is a flat, length-prefixed layout. Each field—such
as nonce, gas limit, and signature—is written out in a known order. Variable-
length fields are prefixed with a small byte indicating their length. This design

6

eliminates nested structures, enabling fast, single-pass decoding, straightforward
zero-copy parsing and overall lower overhead. Once all fields are consumed, any
remaining bytes are assumed to be the transaction input. This approach ensures
minimal serialization overhead.

Algorithm 1 Parsing a Transaction Payload

Require: payload ([]byte)
Ensure: tx is populated
1: ptr ← 0
2: Read and store Type, ChainID , Sender , To, Value, and other fields by

consuming the appropriate number of bytes from payload.
3: if next byte indicates a contract creation then
4: To ← nil
5: end if
6: Read an integer n for the number of access-list entries
7: for i = 1 to n do
8: Read an integer m for the number of storage keys
9: for j = 1 to m do

10: Read each storage key from payload
11: end for
12: Add the address and its keys to tx.AccessList
13: end for
14: Remaining bytes become Input

3 Consensus and Data Dissemination

Autobahn [Gir+25] is a BFT-style consensus protocol, used as a Proof-of-Stake
mechanism in Giga, designed to be performant in the partial synchrony model
like HotStuff [Yin+19]. Where other highly performant protocols offer low-
latency in fault-free synchronous periods or robust recovery from interrupts.
To bridge the gap between traditional view-based protocols which suffer during
blips and DAG-based protocols which offer non-optimal latency during good
intervals, Autobahn offers a hybrid approach with a parallel asynchronous data
dissemination layer with a low-latency, partially synchronous consensus mech-
anism. Thus Autobahn is able to avoid the hangovers of traditional protocols
while matching BFT-throughput with half the latency. A stake weighted leader
selection process akin to Tendermint is used to select leaders. Formal discussions
of the security of Autobahn can be found in [Gir+25].

3.1 Overview and High-Level Architecture

Autobahn separates data availability from ordering. At its core is a data dis-
semination layer that organizes proposals into independent lanes, each enhanced
with a Proof of Availability (PoA). This ensures that data is available with
minimal latency overhead even before being ordered into the global chain. The

7

consensus layer then periodically commits a snapshot (a cut) by ordering the
latest certified tips from all lanes.

Figure 4: Multi-producer

3.2 Data Dissemination Layer (Lanes) and PoA

The DA layer’s sole job is to guarantee that every batch committed in a cut
can later be downloaded by any honest node. We achieve this with an f+1
Proof-of-Availability certificate (PoA).

Lane Structure and Proposal Process. Each replica r maintains its own
lane ℓr, in which it sequentially proposes new batches (or cars) of transactions:

ℓ0r, ℓ
1
r, ℓ

2
r, . . .

When replica r has a new batch of transactions B, it constructs a data proposal:

Prop = ⟨pos, B,parentRef⟩r,

where pos denotes the sequence number in the lane and parentRef references
the hash of the previous proposal in ℓr.

Voting and PoA Certification. Each replica that receives and validates
Prop (i.e., by checking that parentRef matches the previously voted proposal)
returns a vote:

Vote = ⟨digest(Prop)⟩.
Once r collects f + 1 matching votes, it assembles a PoA:

PoA =
(
digest(Prop), {σi}i∈Q

)
with |Q| = f + 1.

8

Figure 5: Prepare

This certifies that at least one correct replica can serve the proposal data on
request.

]

Figure 6: Proposal

Instant Referencing. Because proposals in lane ℓr are chained, referencing
the tip (i.e., the most recent proposal with a PoA) implicitly attests that all
previous proposals in that lane are available. This transitive guarantee reduces
synchronization overhead when lanes are later merged in the consensus process.

9

Figure 7: DA and consensus stages with vote reqs

3.3 Data Availability and Final Execution

Data Synchronization (DA) and Asynchronous Retrieval. Since each
lane’s tip carries a PoA, any replica missing a batch can retrieve it asyn-
chronously from a replica within the PoA set. When a global Cut is committed,
any missing batches must be fetched off the critical path. If the leader is cor-
rect and the network is synchronous, Autobahn commits a new proposal in at
most two communication rounds per slot. When a leader fails to make progress,
replicas revert to a standard view change mechanism and elect a new leader via
a timeout certificate.

Final Global Ordering. Once the global order is fixed via the committed
Cut, all nodes execute transactions in the predetermined order, which will in-
volve a second reordering of transactions by tip. Consistent local execution (as
per Prop. 1) ensures all correct replicas reach the same final state.

3.4 Consensus Layer (Cut of Tips)

Global Ordering via Cuts. The consensus layer periodically commits a
snapshot of the system by collecting the latest certified tips from all lanes:

Cut = {ℓ1[tip], ℓ2[tip], . . . , ℓn[tip]}.

A designated leader (selected via a stake-weighted process similar to Tender-
mint) initiates the ordering process.

Protocol Phases and Pipelining. Autobahn implements a two-phase BFT
agreement protocol:

1. Prepare: The leader collects the most recent certified tips from all lanes
and bundles them into a proposal. Honest replicas then broadcast their
prepare votes.

2. Commit: Once enough votes are collected, a CommitQC is formed, fi-
nalizing the blocks.

10

Figure 8: Tip cut

3. Confirm: If the leader gathers only (n − f) votes, it enters a confirm
phase and waits for additional acknowledgments until a commit certificate
is achieved with 2f + 1 confirm messages.

Pipelining Benefit:
Through the use of quadratic communication and pipelining, Sei Giga achieves a
slow path round trip of 1.5 rather than 2.5. That is to say that the leader sends
a proposal for tip cut N , triggering nodes to send their prepare votes. Once
enough votes are collected, they form a PrepareQC. After that, nodes send their
commit votes, and once enough are collected, a CommitQC is formed, finalizing
the blocks in N . While N is in its commit phase, the leader for tip cut N + 1
may start sending its proposal. In other words, even though each block goes
through two distinct rounds, pipelining allows the next block’s proposal to start
during the commit phase of the previous block, effectively reducing the overall
latency to 1.5 rounds.

Parallel Slots. To minimize delay between successive blocks, consensus slots
are pipelined. Once a replica sees the Prepare message for slot s, it can begin
slot s + 1 without waiting for slot s to fully commit, ensuring that proposals
arriving just too late for one slot do not cause extra round delays.

3.5 System Model, Security, and Reliable Inclusion

System Model and Assumptions.

• Replicas: There are n = 3f + 1 replicas; up to f may be faulty.

• Authentication: All messages are transmitted over authenticated, point-
to-point channels and cryptographic primitives are unforgeable.

11

• Partial Synchrony: Safety is unconditional; liveness requires eventual
network stabilization such that message delays respect known upper bounds.

• Clients: There is no upper bound on potentially faulty clients; clients
submit transactions that are batched into proposals.

Security and Reliable Inclusion. Autobahn’s design ensures that no two
conflicting proposals can both obtain a valid commit certificate in the same slot.
Key points include:

1. Once a proposal receives f+1 votes, at least one correct replica stores the
data.

2. A correct leader must include such proposals in a future Cut.

3. Faulty proposers cannot indefinitely disseminate data without eventual
inclusion.

This mechanism prevents Byzantine replicas from causing wasted dissemination
and protects against censorship beyond a bounded delay.

Figure 9: Async block execution

4 Block-STM-Style Parallel Execution

Let { t1, t2, . . . , tn} be the transactions in a finalized block B, arranged in the
total order determined by that block. Each transaction ti reads some set of ad-
dresses, storage slots, or global variables, collectively denoted by Ri, and writes

12

Figure 10: STM

a set of addresses or slots denoted by Wi. We say that tj depends on ti, de-
noted tj → ti, precisely when (j > i) and there is at least one element in Wi

that intersects with (Rj ∪Wj). Intuitively, this captures all cases in which tj
must see the updated value produced by ti. Because the block imposes a total
order on transactions, the resulting dependency relation is acyclic.

Sei Giga uses optimistic concurrency control (OCC) to leverage the fact that
most transactions are unlikely to conflict. In OCC, each node begins by execut-
ing all transactions in parallel, distributing them across multiple worker threads
and assuming no conflicts will occur [And24]. While executing, each transac-
tion ti uses a private buffer to store changes to its write set Wi, rather than
updating the globally visible EVM state. Once ti finishes, it enters a validation
phase to detect conflicts with any committed transaction tk where k < i. A
conflict arises if tk has written to an address that is in either Ri or Wi after ti
began. If such a conflict is found, ti is rolled back and re-executed (potentially
in a more conservative manner). If no conflict is detected, the changes in Wi

are committed to the global state, and ti is marked complete.

By enforcing that tj cannot commit before all transactions ti with tj → ti have
committed, the system preserves an execution order consistent with the block’s
logical sequence [Gel+22]. Consequently, all honest nodes converge to the same
final post-execution state, just as if they had run the transactions in a purely
sequential fashion from t1 through tn. The key advantage is that when conflicts
are rare, most transactions do not require re-execution, and the parallel execu-
tion phase greatly reduces total latency on modern multi-core hardware. Thus,
while OCC may necessitate rolling back and retrying the occasional conflicting
transaction, the performance benefit of parallelizing non-conflicting transactions
outweighs the re-execution overhead. The process falls back to sequential pro-
cessing if the parallel process continually fails.
By allowing for parallel, rather than sequential transaction processing, as shown
in figure 11 and figure 12 it is trivial to see how execution times can be reduced.

13

Figure 11: Sequential tx execution

Figure 12: Parallel tx execution

5 Storage

Sei Giga adopts a storage strategy that departs from conventional Merkle-tree-
based designs in order to reduce overhead and improve parallelism under ex-
treme throughput. By default the state of Sei Giga is stored in RAM. Instead
of maintaining a Merkle tree for every update to global state, the chain uses a
flat key-value model, where each account, contract storage slot, or globally ac-
cessible variable is mapped directly to a corresponding entry in a log-structured
merge (LSM) tree. Storing ⟨k, v⟩ pairs in this manner is particularly effective
for write-intensive environments. Sequential updates are efficiently batched and
flushed to underlying media.

By eliminating the overhead of traversing or updating multiple tree nodes for
each write, a flat key-value design inherently reduces structural churn, stream-
lines concurrency, and yields more predictable I/O behavior. Because each
update targets a single ⟨k, v⟩ pair rather than an entire branch, locking and
write contention are simplified, facilitating parallel access across distinct keys
without intricate coordination. In addition, storing data in a single-level struc-
ture reduces pointer-chasing and deep lookups, enabling more efficient batch

14

operations within the underlying LSM engine. Together, these benefits allow
Sei Giga to sustain high throughput without the frequent re-hashing and node-
level bookkeeping overhead that typify Merkle-tree-based approaches.

Sei Giga further reduces storage burdens through a tiered approach. Recent
blocks and frequently accessed data reside on high-performance local SSDs, en-
suring fast lookups and updates. Historical or rarely queried information, by
contrast, is migrated to a cold layer that leverages a distributed, columnar
database. This cold layer architecture alleviates the need for every validator
node to store the complete historical ledger on expensive primary media; it also
provides a scalable interface for analytical queries, audit trails, and forensics.
As the network processes petabytes of new data each year under a 5 gigagas
load, offloading stale state from SSDs to cost-effective archival storage becomes
central to sustaining practical hardware requirements for validator operators.

Internally, Sei Giga’s implementation leverages an append-only write-ahead log
(WAL) to guard against crashes and data corruption. Updates are written se-
quentially to the WAL and then applied to RocksDB, which manages the LSM
tree and coordinates compaction routines to maintain balanced input-output
performance. This mechanism ensures durability, enabling a node to recover
from abrupt failures by replaying the WAL and returning the database to a
consistent state. Meanwhile, the cryptographic accumulator is updated accord-
ing to finalized blocks, preserving a verifiable reference to each version of the
global state without demanding an immediate, full-branch hashing procedure.

Through this hybrid of a flat LSM-based key-value store, asynchronous accumulator-
based proofs, tiered storage, and an append-only WAL, Sei Giga provides a
storage subsystem optimized for continuous high throughput. The approach
avoids the overhead typically introduced by Merkle-tree re-computations, while
sustaining strong security guarantees and furnishing a clear growth path for ac-
commodating multiple terabytes of new data annually. This design also ensures
that user-facing nodes can serve recent data efficiently and that light clients
can validate state transitions without bearing the storage cost of all historical
versions, thereby preserving decentralization and verifiability under increasing
load.

5.1 Accumulator

To ensure verifiability without incurring the overhead of recomputing Merkle
paths on every write, Sei Giga replaces the traditional tree structure with a
pairing-based cryptographic accumulator [VB20] allowing for constant time op-
erations. This accumulator is updated asynchronously and can compactly ag-
gregate membership and non-membership proofs across many keys in a single
structure. By allowing proofs to be generated or refreshed in batches, the system
avoids the tight coupling between each individual state update and an expensive
re-hashing procedure. Validators and light nodes can still obtain strong cryp-

15

Figure 13: Storage

tographic guarantees of correctness and data availability, since the accumulator
attests to an agreed-upon state that encompasses recent updates without re-
quiring each node to store or compute a full Merkle path. The absence of rigid
tree-based branching also affords flexible partitioning of the key space, facilitat-
ing parallelism across different shards of state. A light node receives a compact,
aggregated state commitment from the accumulator alongside batched proofs
for the keys or transactions it cares about. It then employs a verification al-
gorithm to check each proof against this commitment, ensuring the correctness
of membership or non-membership without needing to reconstruct full Merkle
paths.

6 Economics

Sei Giga has a native coin called SEI with a total supply of 10 billion, 10 000 000 000.
The Sei coin is used to pay for gas and other associated transaction and usage
costs, as well as for staking and validator rewards. Each block receives a block
reward in Sei which is not paid to the block producer but the sum of all re-
wards in an epoch is paid equally to allowed validators and their delegators,

r =
∑

b∈e br
|V | . Each validator must stake Sei to run a validator node and the

stake is subject to a 21 day bonding period, the 21 day period also applies to
delegated stake, chosen to allow for slashing of malicious behaviour by nodes.
Slashing penalties apply to liveness, and double signing of blocks at the same

16

height. Slashing penalties vary by the severity of the action, such that double
signing incurs a greater penalty than liveness, and increase in severity for future
penalties.

6.1 Governance

Governance on Sei is a community-driven process, that mirrors the approach
taken in v2, that lets stakers propose and vote on network changes. After a
proposal is submitted and the required deposit is met to discourage spam, it
moves to a voting phase where stakers weigh in. If quorum and majority require-
ments are satisfied, the proposal passes; otherwise, it fails and deposits may be
burned. Passed proposals that change the chain’s parameters or software are
automatically enacted, while more general proposals require manual execution.
All governance data is publicly accessible on Seiscan or via direct blockchain
queries.

References

[Yin+19] Maofan Yin et al. HotStuff: BFT Consensus in the Lens of Blockchain.
2019. arXiv: 1803.05069 [cs.DC]. url: https://arxiv.org/abs/
1803.05069.

[VB20] Giuseppe Vitto and Alex Biryukov. Dynamic Universal Accumulator
with Batch Update over Bilinear Groups. Cryptology ePrint Archive,
Paper 2020/777. 2020. url: https://eprint.iacr.org/2020/777.

[Gel+22] Rati Gelashvili et al. Block-STM. 2022. eprint: 2203.06871v3. url:
https://arxiv.org/pdf/2203.06871.

[And24] Vangelis Andrikopoulos. 64.85 of Ethereum Transactions Can Be
Parallelized. 2024. url: https://blog.sei.io/research-64-85-
of-ethereum-transactions-can-be-parallelized/.

[Eth25] Ethereum. evmone. 2025. url: https://github.com/ethereum/
evmone.

[Gir+25] Neil Giridharan et al. Autobahn: Seamless high speed BFT. 2025.
arXiv: 2401.10369 [cs.DC]. url: https://arxiv.org/abs/2401.
10369.

[Mar25] Ben Marsh. Sei Giga: Achieving 5 Gigagas with Autobahn Consen-
sus. 2025. url: https://blog.sei.io/sei-giga-achieving-5-
gigagas-with-autobahn-consensus/.

17

https://arxiv.org/abs/1803.05069
https://arxiv.org/abs/1803.05069
https://arxiv.org/abs/1803.05069
https://eprint.iacr.org/2020/777
2203.06871v3
https://arxiv.org/pdf/2203.06871
https://blog.sei.io/research-64-85-of-ethereum-transactions-can-be-parallelized/
https://blog.sei.io/research-64-85-of-ethereum-transactions-can-be-parallelized/
https://github.com/ethereum/evmone
https://github.com/ethereum/evmone
https://arxiv.org/abs/2401.10369
https://arxiv.org/abs/2401.10369
https://arxiv.org/abs/2401.10369
https://blog.sei.io/sei-giga-achieving-5-gigagas-with-autobahn-consensus/
https://blog.sei.io/sei-giga-achieving-5-gigagas-with-autobahn-consensus/

	Introduction
	Comparison to Sei v2

	Async Execution
	State consensus
	Execution client
	Pipelining and encoding

	Consensus and Data Dissemination
	Overview and High-Level Architecture
	Data Dissemination Layer (Lanes) and PoA
	Data Availability and Final Execution
	Consensus Layer (Cut of Tips)
	System Model, Security, and Reliable Inclusion

	Block-STM-Style Parallel Execution
	Storage
	Accumulator

	Economics
	Governance

