
ar
X

iv
:2

50
5.

14
89

1v
1 

 [
cs

.C
R

] 
 2

0 
M

ay
 2

02
5

On the (in)security of Proofs-of-Space based
Longest-Chain Blockchains

Mirza Ahad Baig1 and Krzysztof Pietrzak1

1ISTA, Austria

Abstract. The Nakamoto consensus protocol underlying the Bitcoin
blockchain uses proof of work as a voting mechanism. Honest miners
who contribute hashing power towards securing the chain try to extend
the longest chain they are aware of. Despite its simplicity, Nakamoto
consensus achieves meaningful security guarantees assuming that at any
point in time, a majority of the hashing power is controlled by honest
parties. This also holds under “resource variability”, i.e., if the total
hashing power varies greatly over time.

Proofs of space (PoSpace) have been suggested as a more sustainable re-
placement for proofs of work. Unfortunately, no construction of a “longest-
chain” blockchain based on PoSpace, that is secure under dynamic avail-
ability, is known. In this work, we prove that without additional assump-
tions no such protocol exists. We exactly quantify this impossibility result
by proving a bound on the length of the fork required for double spend-
ing as a function of the adversarial capabilities. This bound holds for
any chain selection rule, and we also show a chain selection rule (albeit
a very strange one) that almost matches this bound.

Concretely, we consider a security game in which the honest parties at
any point control ϕ > 1 times more space than the adversary. The ad-
versary can change the honest space by a factor 1 ± ε with every block
(dynamic availability), and “replotting” the space (which allows answer-
ing two challenges using the same space) takes as much time as ρ blocks.

We prove that no matter what chain selection rule is used, in this game
the adversary can create a fork of length ϕ2 · ρ/ε that will be picked as
the winner by the chain selection rule.

We also provide an upper bound that matches the lower bound up to a
factor ϕ. There exists a chain selection rule (albeit a very strange one)
which in the above game requires forks of length at least ϕ · ρ/ε.
Our results show the necessity of additional assumptions to create a
secure PoSpace based longest-chain blockchain. The Chia network in
addition to PoSpace uses a verifiable delay function. Our bounds show
that an additional primitive like that is necessary.

This research was funded in whole or in part by the Austrian Science Fund (FWF)
10.55776/F85

https://arxiv.org/abs/2505.14891v1


1 Introduction

Bitcoin was the first successful digital currency. What set it apart from previous
attempts like Digicash [6] was the fact that it is permissionless. This means it is
decentralized – so no single entity can shut it down or censor transactions – and
moreover, everyone can participate in maintaining and securing the currency.

The key innovation in Bitcoin is the blockchain which realizes a “decentral-
ized ledger”. In the case of a digital currency, this ledger simply records all the
transactions, but it can also hold richer data like smart contracts [12].

A blockchain is a hash-chain b0 ←↩ b1 ←↩ b2 . . . ←↩ bj where each bi is a
data block that contains a “payload” (transactions, a time stamp, etc.), a hash
hi = H(bi−1) of the previous block, and a “proof of work” (PoW) πi.

The collision-resistance of the hash function H ensures that a block bi com-
mits all the previous blocks. The main novelty is the way proofs of work are used
to make it computationally costly to add a block: To create a valid block bi one
must find a value πi such that the hash of the previous block and πi is below
some threshold

0.H(bi−1, πi) < 1/D

here we think of the hash as a binary string: if the difficulty D is 2k, then the
hash H(bi−1, πi) must start with at least k 0’s. Parties called miners compete to
find PoWs to extend the latest block. They are incentivized by rewards (block
rewards and transaction fees) to contribute computing power towards this task.
Bitcoin is permissionless in the sense that everyone can be a miner and the
protocol does not need to know who currently participates [10]. Bitcoin can
be shown to be secure (in particular, it does not allow for double spending),
assuming that a majority of the hashing power is controlled by honest parties
who follow the protocol rules. The most important rule just states that a miner
should always work towards extending the heaviest valid chain (typically, the
heaviest chain is also the longest one, hence the name “longest chain”) they
are aware of. Blockchains following this general rule are called “longest-chain
blockchains”, the protocol itself is referred to as “Nakamoto consensus”.

Alternative Proof Systems. Nakamoto consensus uses computation as a resource
so that a miner who holds an α fraction of the total resource will contribute an
α fraction of all blocks in expectation, and thus get roughly an α fraction of the
rewards.

Using computation as a resource has several negative implications. The main
one is the ecological impact: currently Bitcoin mining is burning roughly as much
energy as the Netherlands. It is thus natural to look for a more “sustainable”
resource that could replace hashing power in a longest-chain blockchain.

The most investigated alternative are proofs of stake (PoStake), where the
coins as recorded on the blockchain serve as a resource. More precisely, miners
can stake their coins, which takes them temporarily out of circulation. They can
then participate in the mining process, getting a fraction of the rewards which
is proportional to the fraction of their stakes coins.

2



PoStake is extremely appealing as it is basically wasteless as it is not a
“physical” resource, but it raises many technical questions and conceptual issues.
One argument that is often raised is that PoStake is not really permissionless
as the only way to participate in mining lies in acquiring coins from a limited
supply in the first place.

In [8] proofs of space (PoSpace) were introduced. A PoSpace is a proof system
where a prover convinces a verifier that it “wastes” disk space. The motivation
for this notion was a replacement for proofs of work which is still a “physical
resource ”, and thus does not share many of the shortcomings of PoStake, but
is also much more sustainable than proofs of work.

Proofs of Space. A proof of space [8] is an interactive protocol between a prover
P and a verifier V . The main protocol parameter is a value N determining the
disk space of an (honest) prover (a typical value would be N = 243 bits, which
corresponds to one TB). In an initialization phase, which is executed once, the
honest prover initializes his disk space space of size N with a file S, called a
“plot”. This phase should be very efficient for the verifier (or not involve the
verifier at all [2]), while the prover should run in time Õ(N). This is basically
optimal as they must run in time N to just “touch” the entire disk space.

After the initialization phase, the prover can create valid proofs for random
challenges very efficiently, in particular, only accessing a tiny portion of its local
file S. The security property of a PoSpace states that any prover who instead of
S stores some data S′ of some size that is “sufficiently” smaller than S, will fail to
“efficiently” create a proof for a random challenge with “significant” probability.

We will not discuss what exactly “sufficiently” and “significant” means here.
Let us mention that for the application to longest-chain blockchains it is sufficient
that for any 0 < α < 1, a prover storing α ·N bits will fail on a 1 − α fraction
of the challenges.

Concerning the “efficiently” in the statement above, note that a malicious
prover can always create a valid proof even when storing almost nothing by
simply running the initialization procedure after getting the challenge to create
the plot S, and then computing the proof using the honest algorithm. Thus the
best we can hope for is that a malicious prover needs Ω̃(N) computational work
(i.e., the cost of computing the plot) when only storing a sufficiently compressed
plot S′.

The observation above also implies that a prover with N space can “pretend”
to have k ·N space by creating k different plots sequentially using k ·Õ(N) work.
Note that when attacking a blockchain, one would need to do the replotting
afresh for every block, as the challenge for a block is only known once the pre-
vious block is computed. Thus, creating a proof using such a replotting attack
is extremely expensive compared to creating proofs honestly, and this attack is
presumably not an issue when blocks arrive sufficiently frequently. The results
of this paper show that this intuition is wrong.

Longest-Chain Blockchains from Proofs of Space. To construct a longest-chain
blockchain from PoSpace we can use Nakamoto consensus, but replace the PoW

3



with PoSpace. There are various challenges one must address which we outline
below.

Interactive Resource Initialization: In Bitcoin, a miner with some mining
hardware can start participating in mining at any time. For PoSpace this is
in general not the case as there’s an initialization phase. The earliest PoSpace
longest-chain proposal (which remained purely academic) is Spacemint [11],
which uses the pebbling-based PoSpace from [8]. This PoSpace has an inter-
active initialization phase after which the verifier holds a type of commitment
to the plot created by the prover. In Spacemint the chain plays the role of the
verifier, and the commitment must be uploaded by a miner to the chain as
a special transaction before they can start mining. The function-inversion-
based PoSpace from [2] has a non-interactive initialization, i.e., the verifier
is not involved at all, and thus it can be used like a PoW in Bitcoin. This
PoSpace is used in the Chia network [7] blockchain.

Bock-Arrival Times: In Bitcoin, the arrival time of blocks can be controlled
by setting the difficulty. Unlike PoW, PoSpace (also PoStake) are efficient
proof systems, where once the resource (a plot or staked coins) is available,
creating a proof is cheap and fast, so we need another mechanism. The easiest
approach is to simply assume all parties have clocks and specify that blocks
are supposed to arrive in specific time intervals, say once every minute. This
is the approach taken by Spacemint [11] or Ouroboros [9], while in the Chia
network [7] verifiable-delay functions (VDFs) are used to enforce some clock-
time between the creation of blocks.

Costless Simulation/Grinding: The key difference between PoW and “ef-
ficient” proof systems like PoSpace or PoStake is the fact that producing
proofs for k > 1 different challenges require k times as much of the resource
in PoW, but it makes hardly a difference for PoSpace or Postake, as pro-
ducing a proof is extremely cheap compared to acquiring the resource in
the first place. This “costless simulation” property creates various issues in
the blockchain setting. One such issue is grinding attacks. Consider a set-
ting where an adversary can influence the challenge, a typical example is a
blockchain like Bitcoin where the challenge for the next block depends on the
current block, and the miner that creates the current block can e.g. choose
which transactions to add. Such an attacker can “grind” through many dif-
ferent blocks until they find one that gives a challenge they like (say because
with this challenge they can also win the next block).
A canonical countermeasure against grinding first proposed in Spacemint [11]
is to “split” the chain in two. One chain only holds canonical values like
proofs and is used for creating challenges, while another chain holds all the
“grindable” values (transactions, time-stamps, etc.).

Costless Simulation/Double-Dipping: Even once grinding is no longer an
issue, with costless simulation an adversary can still cheaply try to extend
many of the past blocks, this way growing a tree rather than a chain. This
strategy has been proven to virtually increase the adversarial resource by a
factor of e = 2.72 [7]. An elegant countermeasure against this attack was

4



proposed in [4], the basic idea is to only use the kth block for computing
challenges, this “correlated randomness” technique decreases the advantage
as k increases.

Costless Simulation/Bootstrapping: An adversary having some resource
(space or stake) N can immediately create a long chain. Typically one would
make up the time-stamps for this chain so it looks like a legit chain that has
been created over a long period. In context of PoStake this is a well-known
problem, while Spacemint [11] was the first instance this appeared in litera-
ture for PoSpace.

Replotting: In PoSpace a prover who has space of size N and gets a challenge
c can pretend to have much more space by re-initializing the same space
k times with different identifiers, this way creating k proofs pretending to
have k · N bits of space. As replotting is fairly expensive, in a context like
Blockchains, where challenges arrive frequently, it seems impossible (or at
least not rational) to continuously replot. In this paper we show that this
intuition is flawed; replotting attacks, in combination with bootstrapping,
are used in our lower bound showing no PoSpace longest-chain blockchain is
secure under resource variability. This was identified as a problem in [11].

1.1 Resource Variability

In this work, we prove that no PoSpace based longest-chain blockchain can be
secure. Resource variability means that the amount of the resource dedicated to
mining changes over time.

Bitcoin can be shown to be secure under resource variability as long as the
honest parties hold more hashing power than a potential adversary at any point
in time.

With PoStake the situation is more interesting. A PoStake based longest-
chain protocol using the Bitcoin chain-selection rule where one picks the “heavi-
est” chain is not secure due to bootstrapping attacks.1 On the positive side, the
paper on Ouroboros Genesis [3] shows that a completely different chain selection
rule does imply security even for PoStake based chains (with some additional
assumptions, like assuming honest parties delete old keys). Their chain selection
rule basically says that given two chains A and B one only looks at the weight of
a short subchain starting at the point where A and B fork, and picks the chain
whose subchain is heavier.

For PoSpace based chains the genesis chain selection rule is not secure, in
fact, unlike the heaviest chain rule, the genesis rule is insecure even without

1 More precisely, assume there’s a point in time where a very high amount of coins is
staked, say at the ith block the honest parties staked chi coins, while the adversary
A controls a 1/ϕ < 1 fraction of that, i.e., cai = chi /ϕ. At this point, A bootstraps
a private fork bi ←↩ bi+1 . . .←↩ bi+T of some length T , each block having weight cai .
If for the next T blocks the amount staked by the honest parties is (on average)
sufficiently smaller than cai , the chain created by the honest parties will look lighter
than the private fork of A at block i+T , and at this point A can release his private
fork which will be adapted by all honest parties.

5



resource variability (i.e. when we assume the space of the honest and adver-
sarial parties is static). There is a simple attack exploiting bootstrapping and
replotting, which we’ll sketch below. Informally, the reason this attack does not
apply in the PoStake or PoW settings is that there’s no analog of replotting in
PoStake, while in the PoW setting, we do not have bootstrapping.

1.2 Modelling a Longest-Chain PoSpace Blockchain

To model a PoSpace based longest-chain blockchain we will make a few idealizing
assumptions. As our main result is a lower bound, this only makes our result
stronger, concretely

Resource: We assume the chain grows by exactly one fresh block per time unit,
and each block exactly reflects the amount of space that was used. In reality,
a blockchain like Chia or Bitcoin (in the PoW setting) only approximately
reflects this amount. One can get a very good approximation of the space
used by looking at a sufficiently long subsequence (this idea is used when
recalibrating the difficulty). Alternatively one could consider a blockchain
design where each block contains the best k proofs for some k > 1. The
larger k, the lower the variance and thus the better the approximation. With
“block” we do not necessarily model a single block, but rather the appearance
of a fresh challenge, and this challenge can be used for multiple blocks (e.g.
in Chia we have a fresh challenge every 10 minutes, but as Chia uses the
correlated randomness technique to prevent double dipping, this challenge
is used for up to 64 actual blocks).

Attacks: While we model bootstrapping and replotting, we assume there is no
grinding or double dipping. This is justified as we have techniques to mostly
prevent griding and double dipping, while there’s no simple way to prevent
replotting, and to prevent bootstrapping we need additional primitives like
VDFs.

Resource Variability: The adversary can control the change in resource, but
is restricted to change it only within some 1+ε factor with each block, where
ε > 0. The quantitative lower bound and the matching upper bound depend
crucially on this parameter.

1.3 Approach for Lower Bound

To prove our lower bound we let an adversary specify two possible forks, A and
B of a chain by specifying how the space of the honest parties changes over time
in both cases. Now assume we show that (for given ranges of parameters) by
exploiting bootstrapping and replotting it is possible to create such forks where
B can be “faked” using a fraction (say half) of the space the honest parties had
in A, and vice versa, i.e., A can be faked using half the space of B.

This means that an adversary in a hypothetical world where A is the honest
chain could fake chain B and vice versa, thus, no matter which chain selection
rule is used, in one of the two worlds the adversary’s fork will succeed (say the

6



chain rule prefers A over B, then in a “world” where B is the correct profile, the
adversary can create a fork A which will win over B).

For our upper bound, we show that a particular chain selection rule is secure
almost up to the parameters for which our lower bound applies.

Fig. 1: Two profiles as used in our lower bound for ε = 0.01, ϕ = 2 and ρ = 4.

1.4 Proof Sketch for Lower Bound

To prove our lower bound, we specify two profiles R and B reflecting the space
honest users have, and then outline a strategy for how (by using bootstrapping
and replotting) one can create profile R using a profile B/ϕ, where only a 1/ϕ
fraction of the space in B is available (i.e., the space the adversary has in world
A) and vice versa. Moreover, in the profiles B and R the space is only allowed
to change by a 1 + ε per block. We will sketch the main idea using the profiles
in Fig. 1. The profile R is plotted by the light red solid line and profile B is
plotted by the light blue solid line. The solid lines show how much space honest
parties control and the dashed lines of the respective colors show how much
adversary controls for the respective solid space profile. The honest parties start
at space 1, then we let the profile B increase to ϕ as fast as allowed (i.e., by a
factor 1 + ε per step), then we go back to 1 as fast as possible, and then there
is a long flat part (the length will depend on our parameters). Profile R is the
mirrored version of B.

Let us now sketch how the R (shown by light red solid line in Fig. 1) profile
can be faked using a 1/ϕ fraction of B (shown by solid light blue in Fig. 1). This
is illustrated in the figures in Figs. 2(a) and 2(b). The adversary does nothing
until block 70 when its space B/ϕ reaches its maximum.

At this point B/ϕ ≥ 1 and the adversary can bootstrap the flat part of R for
1233 steps as shown in the top left graph of Fig. 2. At this point, the adversary
only needs to fake the “tent” in the last 140 steps of the R profile. For this, it
uses replotting.

7



(a) (b)

(c) (d)

Fig. 2: The figs (a), (b) outline how the red profile from Fig 1 is faked using the
blue profile for parameters ε = 0.01, ϕ = 2 and ρ = 4. In the first step, we use
bootstrapping to create the flat part of the solid red profile (once the solid blue
profile reaches the “peak”, a 1/ϕ fraction of the solid blue profile is as high as the
flat part of the solid red profile, and thus it can be bootstrapped). Then we use
replotting to create the “tent” of the solid red profile (as ρ = 4, i.e., replotting
takes four steps, it is sufficient that the remaining area below the blue profile is
as large as the area under the red “tent”. The two figures (b), and (c) illustrate
how the blue profile is faked using the red one.

2 Model

2.1 Basic Notation for Chains

In the abstract model of the chain, we assume that time progresses in discrete
steps t0, t1, t2, . . .. During the ith step (ti−1, ti] the honest parties add a (su-
per)block bi. We’ll always indicate the position of a block in the chain with a
subscript like here.

The space available to the honest parties and the adversary at time i is
denoted with sHi and sAi , respectively. We assume that each block bi perfectly
reflects the amount of space that was used to create it, which is denoted by s(bi)
(for the genesis block b0 we set s(b0) = 1).

8



We denote with bi ←↩ bi+1 that bi+1 is extending (i.e., contains a hash of)
block bi. For a chain

Cℓ0 = b0 ←↩ . . .←↩ bℓ,

we denote with S(Cℓ0) the space-profile of chain Cℓ0 which is defined as (s(bi))
ℓ
i=0,

the sequence of space used to create each block bi. We’ll often use the notation
Cji = bi ←↩ . . .←↩ bj to denote subchains.

Glossary:

sHi ∈ R>0: The space available to the honest parties at step i.
sAi ∈ R>0: The space available to the adversary A at step i.
ϕ > 1: The honest/adversarial space ratio ∀i : sHi /sAi = ϕ
ε > 0: The rate of change of the space ∀i : sHi · 1

1+ε ≤ sHi+1 ≤ sHi · (1+ε)

ρ ∈ N+
≥2: Number of steps required for replotting

2.2 Chain Selection Rules

A chain selection rule takes as input two chains of the same length and outputs
bit indicating the “winner”

Λ : C × C → {0, 1}

Consider two chains Cℓ0, C̃ℓ0

Cℓ0 = b0 ←↩ . . .←↩ bℓ C̃ℓ0 = b̃0 ←↩ . . .←↩ b̃ℓ

The Bitcoin chain selection rule simply picks the chain of higher weight, adapted
to our space setting this “highest weight rule” Λw is

Λw(Cℓ0, C̃ℓ
′

0 ) = 0 ⇐⇒
ℓ∑

i=0

s(bi) >

ℓ′∑
i=0

s(b̃i)

Note that the two chains may not always be of the same length but for our lower
bound result we can assume without loss of generality that they are equal.

Most proposed and deployed longest-chain blockchains use a highest weight
rule like this, in some cases augmented with checkpointing or finality gadgets
that prevent miners from replacing their current chain with another chain that
forks too far in the past even if it has a higher weight. An interesting exception
is the rule suggested in Ouroboros Genesis [3] which, for some parameter k ∈ N,
chooses the winning chain based only on the weight of the k blocks following the
forking point of the two chains. We’ll denote the forking point (i.e., the index of
the first blocks that differs) by λ as it looks like a forking chain, let

λ
def
= min{i : bi ̸= b̃i}

9



The genesis chain selection rule, adapted to our setting, can now be defined as

Λk
genesis(C

j
0, C̃

j
0) = 0 ⇐⇒

min(j,λ+k)∑
i=λ+1

s(bi) >

min(j,λ+k)∑
i=λ+1

s(b̃i)

The Ouroboros genesis rule was introduced as a proof-of-stake based longest-
chain blockchain that is secure under resource variability. In Lemma 2 we observe
that for a proof-of-space based chain, this rule is not secure, and our impossibility
result from Theorem 1 shows that in fact, no secure rule exists.

2.3 Adversarial Options

We consider an experiment where honest farmers create a chain (the “honest
chain”) following the rules, while an adversary tries to create a private fork that
can at some point be released and will be chosen as the winner over the honest
chain by the chain selection rule.

Before specifying the game let us describe the option the adversary has in
this game. Concerning the honest chain, if the adversary doesn’t contribute at
all, the honest parties at the end of the jth step (i.e., time tj) will have created
and agreed on a chain

b0 ←↩ b1 ←↩ . . . bj where ∀i ∈ [j] : s(bi) = sHi

The adversary could contribute to the honest chain, which would create a chain
where

b0 ←↩ b1 ←↩ . . . bj where ∀i ∈ [j] : sHi ≤ s(bi) ≤ sHi + sAi

Intuitively, for the chain selection rule, there shouldn’t be any advantage for an
adversary to contribute to the honest mining as it should only make the honest
chain better, and this will be the case in our attack proving the lower bound.

While the honest parties will always create the ith block in the chain at time
i, the adversary A who creates his private fork must not adhere to this, his only
constraint is that his fork must have the same length as the honest chain when
it is released.

In a PoSpace based chain, there are two ways in which A can exploit this,
bootstrapping and replotting, outlined below.

Bootstrapping. If at time i A knows of a (prefix of a) chain Cj0 = b0 ←↩ . . .←↩ bj ,
they can extend it immediately to a longer chain. The only constraint is that
the space profile of the new blocks is at most the space available to A, i.e., the
new chain satisfies

Cj0 ←↩ bj+1 ←↩ . . .←↩ bk where ∀i > j : s(bi) ≤ sAi

10



Replotting. The replotting parameter ρ ∈ N+ specifies how many time steps it
takes A to replot its space. By replotting the space k times – which requires k ·ρ
steps – they can create a superblock that looks as if they had k + 1 times the
space they actually hold. Formally, using replotting, at time i, they can start
extending a chain Cj0 with an extra block Cj0 ←↩ bj+1 where s(bj+1) ≤ k · sAi , and
this will be done by time i+ k · ρ.2

2.4 The Forking Game

We now define the game in which an adversary A forks the honest chain with
the goal of fooling the chain selection rule Λ to accept their fork as the winner.

Remark 1 (Probabilitsic vs. Deterministic). When analyzing actual blockchains
there’s always some probabilistic argument, e.g., in Bitcoin the probability that
an adversary controlling X% (for X < 50) of the hashing power can double
spend decreases exponentially with the confirmation time, but it is technically
never 0. Our “game” on the other hand is completely deterministic (for given
parameters and fork lengthA can win with probability 0 or 1) because we assume
that each block perfectly reflects the amount of the resource (i.e., space) that
was available to create it. While our analysis can be adapted to a probabilistic
setting, we don’t do so as it does not lead to any more interesting insight.

The game is parameterized by ε > 1, controlling how fast the amount of honest
space changes; the changes are controlled by the adversary but allowed to change
only by a factor (1 + ε) per step. 3 The parameter ϕ > 1 controls the amount
of honest vs. adversarial space while ρ ∈ N+ is the number of steps required for
replotting.

The (ϕ, ε, ρ, Λ)-game is defined as follows:

2 In an actual chain, the parameter ρ = Treplot/Tblock is defined by Treplot, the clock
time required to replot, divided by Tblock, the clock time in-between challenges (which
is simply the block arrival time if the challenge for a block depends on the previous
block like in Bitcoin). In practice, Tblock should be large enough for a message to
spread across the network, which is a few seconds. How large Treplot is, depends on
many things, most importantly, on the type of PoSpace used. In the PoSpace based
on function inversion [2] initialization is parallelizable, and thus Treplot can be in the
order of seconds if the attacker has enough compute power (in particular, GPUs).
As a consequence, ρ can only be assumed to be a small constant. In pebbling-based
PoSpace [8], initialization is inherently sequential, and Treplot (and thus ρ) is much
larger.

3 Assuming that an adversary can precisely control the change of honest space is a
strong assumption. But for our lower bound (i.e., an attack for any chain selection
rule), arguably natural space profiles suffice. In particular, our attack works for any
profile where the honest space stays below some bound s for a longer period of time,
with the exception of a “peak” of height ϕ · s in the middle (the more “narrow” this
peak is, the shorter the overall period where the profile is below s can be). To break
particular chain selection rules, even less demanding profiles are enough, e.g. for the
rule used in Spacemint, it’s sufficient that the profile at some point in time starts to
decrease sufficiently much.

11



1. – The round counter is set to i := 0 and the “replotting lock” lock := 0.
– The honest and adversarial chains are initialized with the genesis block
C00 = C̃00 = b0 (where w.l.o.g. s(b0) = 1).

– A chooses its initial space sA0 and we set the honest space to sH0 := sA0 ·ϕ.
2. In each round

– Increase the round counter i := i+ 1.
– A chooses the space adjustment γi in the range 1

(1+ε) ≤ γi ≤ (1+ ε) and

the space is set to

sAi := sAi−1 · γi , sHi := sAi · ϕ

– The honest chain is extended

Ci0 := Ci−1
0 ←↩ bi

with a block with space profile s(bi) = sHi
– If lock > 0 (i.e., replotting is going on) set lock := lock− 1, otherwise A

can extend its current chain C̃j0 in two ways

bootstrap: Extend C̃j0 to

C̃j
′

0 = Cj0 ←↩ b̃j+1 ←↩ . . .←↩ b̃j′

where ∀t, j + 1 ≤ t ≤ j′ : s(b̃t) ≤ sAi .
replot: A can call a replot request by which the last block b̃j is replaced

with a block b̃′j with space profile

s(b̃′j) ≤ s(b̃j) + sAi

Set the replotting lock to lock := ρ− 1.
– if lock = 0 (i.e., no replotting going on) and the length j of the adver-

sarial chain B̃j
0 is at least j ≥ i, then A can stop the game.

If the chain selection rule prefers the current (i block prefix of the) adversarial
chain to the honest one, i.e.,

Λ(Ci0, C̃i0) = 1

then we say the game is ℓ-winning for the A, where ℓ denotes the length of
the fork (i.e., length of chain minus the length of the common prefix)

ℓ = i−max{k : bk = b̃k}.

2.5 Forking Existing Rules

In this section, we’ll observe that the forking game can be won against the
highest weight Λw and the genesis Λk

genesis chain selection rules that we discussed
in Section 2.2. To break Λw one only requires bootstrapping (but no replotting)
and resource variability, i.e. a ε > 0. For Λk

genesis the ϕ can be 1.

12



Lemma 1. The (ϕ, ε, ρ, Λw)-game can be ℓ-won for ℓ =
⌈
ϕ
ε

⌉
Proof. To win (ϕ, ε, ρ, Λw)-game, A simply bootstraps a long chain and then
reduces the amount of space dynamically in order to make the honest chain
have weight less than the adversarial chain. A never contributes to the honest
chain.

Concretely, in each step i > 0 the adversary decreases the space by the
maximum allowed amount sHi+1 = 1

(1+ε) · s
H
i . At i = 1 A bootstraps

C̃j0 = C00 ←↩ b̃1 ←↩ b̃2 ←↩ · · · ←↩ b̃j

where s(b̃t ) = sH0 /ϕ = 1/ϕ for all t ∈ [1, j]. After this adversary simply lets C0
catch up. The game ends on round j. This gives,

Weight of Cj0 =

j∑
t=0

(
1

(1 + ε)

)t

=
1− 1

(1+ε)j+1

1− 1
(1+ε)

<
1

1− 1
(1+ε)

while

Weight of C̃j0 = 1 +
j

ϕ

Thus when j ≥
⌈

1
(1+ε)−1 · ϕ

⌉
the weight of the adversarial chain is higher

than the weight of the honest chain. Hence Λw(Cj0, C̃
j
0 ) = 1. ⊓⊔

Lemma 2. The (ϕ, ε, ρ, Λk
genesis)-game can be ℓ-won for ℓ = ⌈ϕ⌉ · k · ρ

Proof. To win (ϕ, ε, ρ, Λk
genesis)-game, A simply replots many times to get an

adversarial chain which in its k blocks after the fork has enough weight to be
larger than the weight of the honest chain in the corresponding k blocks.

Concretely, the game runs till l = ⌈ϕ⌉ · k · ρ. Throughout the game, A does
not use the resource variability; sHi , sAi remain constant at 1, 1

ϕ respectively.
Further, A doesn’t contribute to the honest chain. This produces

Cj0 = b0 ←↩ b1 ←↩ · · · ←↩ bl

such that s(bi) = 1∀i ∈ [0, l].
A does the following:

1. On round i = 1, it forks the chain to create

C̃10 = b0 ←↩ b̃1

where s(̃b1) =
1

(1+ε) . Set j := 1

2. Starting with round i = 1 and ending on round l, it does the following steps:
(a) If (i− 1) mod ⌈ϕ⌉ ·ρ = 0 and i > 1, put j := j+1 and add a new block

b̃j , with s(̃bj) =
1
ϕ to the adversarial chain

C̃j0 := b0 ←↩ b̃1 ←↩ · · · ←↩ b̃j−1 ←↩ b̃j .

Then A puts lock := ρ− 1 and starts replotting on b̃j .

13



(b) For next ⌈ϕ⌉ · ρ − 1 rounds A repeats replotting on b̃j to increase its
space to ⌈ϕ⌉ /ϕ ≥ 1. Go back to step (a).

3. In the last round A bootstraps the chain to create additional l− k blocks to
get a chain of length l + 1.

The adversarial chain now is

C̃l0 = b0 ←↩ b̃1 ←↩ · · · ←↩ b̃l−1 ←↩ b̃l.

Here λ = 0 as the chains Cl0, C̃l0 forked at the first block. Thus we get
∑min(l,k)

i=1 s(bi) =

k while
∑min(l,k)

i=1 s(̃bi) ≥ k. Hence Λk
genesis(C

j
0, C̃

j
0 ) = 1 and A wins. ⊓⊔

2.6 Our Contribution

Having introduced the forking game, we can now state our main result that
under resource variability, no PoSpace longest-chain blockchain is secure.

Theorem 1 (Impossibility Result). For every chain selection rule Λ, there
exists an adversary A that wins the (ϕ, ε, ρ, Λ)-forking game in

ℓ =

⌈
ρ · ϕ2 · (1 + ε) ·

(
(1 + ε)− 1

ϕ

ε

)⌉

+

⌈
ρ · ϕ2 ·

(
(1 + ε)− 1

ϕ

ε

)⌉
+ 2 ·

⌈
log ϕ

log(1 + ε)

⌉
steps.

We sketched the general proof idea in Section 1.4. The full formal proof can
be found in the Appendix A.1. While the expression in the theorem is somewhat
complicated, typically we’d assume that ε is small, say < 0.1, while ϕ is bounded
away from 1, say ϕ ≥ 1.1. In this case the bound becomes

ℓ ≤ O(ρ · ϕ2/ε) .

Next, we prove that the fork length in the attack from Theorem 1 is an
optimal attack up to a factor ϕ. We show this by providing a simple chain
selection rule Λtent such that A can not win a (ϕ, 1 + ε, ρ, Λtent) if the fork

length is less than ρ
(
ϕ · (1 + ε) · 1−

1
ϕ

ε −
⌈

log ϕ
log(1+ε)

⌉)
.

Before we give proof, we’ll make a definition that will be useful. A Γ =
(ϕ, x, y)-tent, with x ∈ N, y ∈ R>0, is the infinite sequence

. . . , yx−1, yx, yx+1, . . .

where for i > x, yi = yi−1/ϕ and for i < x, y2x−i = y2x−i+1/ϕ (for an illustration
see Fig. 1, where the first 36 steps of the dark blue curve are part of a (ϕ =
1.02, x = 18, y = 2) tent. We say y is the size of the tent Γ = (ϕ, x, y) and that
tent Γ = (ϕ, x, y) is larger than tent Γ ′ = (ϕ, x′, y′) if y > y′.

14



Theorem 2 (The attack from Theorem 1 is tight up to ϕ). For any
(ϕ, 1 + ε, ρ) there’s a chain selection rule Λtent for which no adversary can win
the (ϕ, 1 + ε, ρ, Λtent) forking game in less than

ρ

(
ϕ · (1 + ε) ·

1− 1
ϕ

ε
−
⌈

log ϕ

log(1 + ε)

⌉)
steps

The full proof can be found in Appendix A.2.

3 Discussion and Open Problem

In this paper, we showed that there’s no chain selection rule that guarantees
security (against double spending) for a permissionless longest-chain blockchain
based on proofs of space assuming honest parties always hold more space than
an adversary.

Overcoming our No-Go Result. Recall that our attacker can replot space and
bootstrap the chain. Two existing PoSpace based chains, Chia and Filecoin, avoid
our impossibility in different ways. Chia prevents bootstrapping by additionally
using proofs of time, while Filecoin avoids replotting by using a BFT (rather
than longest-chain) type protocol as we’ll elaborate below.

Chia [7] combines proofs of space with “proofs of time”, where the latter are
instantiated with verifiable delay functions [5]. One can think of (a simplified
version of) Chia as simply alternating PoSpace with VDFs, where the challenge
for the next VDF (PoSpace) is computed from the previous PoSpace (VDF
output). Bootstrapping such a chain is not possible as the main security property
of a VDF requires that computing its output requires time.

In Filecoin parties must register their space before it can be used for mining.
Moreover, parties must constantly compute and publish proofs for their regis-
tered space. Blocks are then created by the parties who registered space in a
BFT-type protocol. Informally, this prevents replotting as only registered space
can be used, and registering more space than one actually controls is not possible
as one must constantly prove that space is available. Using the classification from
[10], one can see our results as being in the fully permissionless setting (where
the protocol has no knowledge about current participation), while Filecoin works
in a quasi-permissionless setting (where parties must be known to the protocol
and be always available).

A question one can ask is whether simply committing to space without peri-
odic checks would overcome our impossibility result. This would correspond to
dynamic availability setting in [10]. The answer is no: an adversary can simply
plot and commit to many different proofs of space in the honest chain and then
later replot them when launching an attack. Thus our result precludes PoSpace
based Nakamoto like longest chain blockchain in both fully permissionless and
dynamic availability setting.

15



Open Problems. Our upper and lower bounds are separated by a gap ϕ, we
believe this gap can be closed by coming up with a more sophisticated chain
selection rule for Theorem 2.

References

1. The chia network blockchain. https://docs.chia.net/green-paper-abstract/ (2019)
2. Abusalah, H., Alwen, J., Cohen, B., Khilko, D., Pietrzak, K., Reyzin,

L.: Beyond hellman’s time-memory trade-offs with applications to proofs of
space. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Appli-
cations of Cryptology and Information Security, Hong Kong, China, Decem-
ber 3-7, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol.
10625, pp. 357–379. Springer (2017). https://doi.org/10.1007/978-3-319-70697-
9 13, https://doi.org/10.1007/978-3-319-70697-9 13

3. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availabil-
ity. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018. pp. 913–930. ACM (2018). https://doi.org/10.1145/3243734.3243848,
https://doi.org/10.1145/3243734.3243848

4. Bagaria, V.K., Dembo, A., Kannan, S., Oh, S., Tse, D., Viswanath,
P., Wang, X., Zeitouni, O.: Proof-of-stake longest chain protocols: Se-
curity vs predictability. In: Soares, J.M., Song, D., Vukolic, M. (eds.)
Proceedings of the 2022 ACM Workshop on Developments in Con-
sensus, ConsensusDay 2022, Los Angeles, CA, USA, 7 November
2022. pp. 29–42. ACM (2022). https://doi.org/10.1145/3560829.3563559,
https://doi.org/10.1145/3560829.3563559

5. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018. pp.
757–788. Springer International Publishing, Cham (2018)

6. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D.,
Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology: Proceedings of
CRYPTO ’82, Santa Barbara, California, USA, August 23-25, 1982. pp. 199–203.
Plenum Press, New York (1982). https://doi.org/10.1007/978-1-4757-0602-4 18,
https://doi.org/10.1007/978-1-4757-0602-4 18

7. Cohen, B., Pietrzak, K.: The chia network blockchain.
https://docs.chia.net/files/Precursor-ChiaGreenPaper.pdf (2019), this is an
early proposal and differs significantly from the implemented version [1]

8. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology – CRYPTO 2015. pp.
585–605. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

9. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H.
(eds.) Advances in Cryptology - CRYPTO 2017 - 37th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10401,
pp. 357–388. Springer (2017). https://doi.org/10.1007/978-3-319-63688-7 12,
https://doi.org/10.1007/978-3-319-63688-7 12

16



10. Lewis-Pye, A., Roughgarden, T.: Permissionless consensus (2024),
https://arxiv.org/abs/2304.14701

11. Park, S., Kwon, A., Fuchsbauer, G., Gazi, P., Alwen, J., Pietrzak, K.:
Spacemint: A cryptocurrency based on proofs of space. In: Meiklejohn, S.,
Sako, K. (eds.) Financial Cryptography and Data Security - 22nd Inter-
national Conference, FC 2018, Nieuwpoort, Curaçao, February 26 - March
2, 2018, Revised Selected Papers. Lecture Notes in Computer Science, vol.
10957, pp. 480–499. Springer (2018). https://doi.org/10.1007/978-3-662-58387-
6 26, https://doi.org/10.1007/978-3-662-58387-6 26

12. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger

A Proofs

A.1 Proof of Theorem 1

Theorem 1 (Impossibility Result). For every chain selection rule Λ, there
exists an adversary A that wins the (ϕ, ε, ρ, Λ)-forking game in

ℓ =

⌈
ρ · ϕ2 · (1 + ε) ·

(
(1 + ε)− 1

ϕ

ε

)⌉

+

⌈
ρ · ϕ2 ·

(
(1 + ε)− 1

ϕ

ε

)⌉
+ 2 ·

⌈
log ϕ

log(1 + ε)

⌉
steps.

Proof (Proof of Theorem 1). We already sketched the general idea in Section 1.4
and will make it more formal here.

To prove the theorem we must specify two space profiles S = (sHi )ℓi=0 and
S̃ = (s̃hi )

ℓ
i=0 where s

H
0 = s̃h0 and sHi /(1 + ε) ≤ sHi+1 ≤ sHi ·(1+ε) and s̃hi /(1 + ε) ≤

s̃hi+1 ≤ s̃hi · (1 + ε)(same for s̃h) such that

– Using sAi = sHi /ϕ the adversary can create a chain

C̃l0 = b0 ←↩ b̃1 ←↩ · · · ←↩ b̃ℓ−1 ←↩ b̃ℓ.

with space profile (s̃h0 , s̃
h
1 , . . . , s̃

h
ℓ )

– Using s̃ai = s̃hi /ϕ the adversary can create a chain

Cl0 = b0 ←↩ b1 ←↩ · · · ←↩ bℓ−1 ←↩ bℓ.

with space profile (sH0 , sH1 , . . . , sHℓ )

For this we first define k :=
⌈

log ϕ
log(1+ε)

⌉
and l :=

⌈
ρ · ϕ2 · (1 + ε) ·

(
1+ε− 1

ϕ

ε

)⌉
+⌈

ρ · ϕ2 ·
(

1+ε− 1
ϕ

ε

)⌉
. Notice, ℓ = 2k + l.

In the first space profile in the first k rounds space increases by a factor 1+ε
each round and then in the next k rounds it decreases by a factor 1 + ε each
round. In the remaining l+1 rounds the space stays constant at 1. In the second
space profile the roles of k and l+1 rounds are reversed; in the first l+1 rounds

17



the space stays constant at 1. Then in the next k rounds space increases by a
factor 1 + ε each round and finally in the last k rounds it decreases by a factor
1 + ε each round. Formally,

sHi =


(1 + ε)i for 0 ≤ i ≤ k − 1

(1 + ε)2k−i for k ≤ i ≤ 2k − 1

1 for 2k ≤ i ≤ l + 2k

and

s̃hi =


1 for 0 ≤ i ≤ l

(1 + ε)i−l−1 for l + 1 ≤ i ≤ l + k

(1 + ε)l+2k−i for l + k + 1 ≤ i ≤ l + 2k

Lemma 3 (A creates S̃ from S). An adversary, A, playing (ϕ, 1 + ε, ρ, Λ)-

forking game can create a chain C̃ℓ0 such that S(C̃ℓ0) = (s̃hi )
ℓ
i=0 while honest chain

is Cℓ0 with S(Cℓ0) = (sHi )ℓi=0

Proof (Proof of Lemma 3). The adversary, A, does following to create C̃ℓi=0

while honest chain is Cℓi=0:

1. At round i = 0,

C00 = C̃00 = b0

where s(b0) = 1.
2. For 1 ≤ i ≤ k − 1, set 1 + εi = 1 + ε. Thus sHi = 1 + ε · sHi−1. Honest chain

becomes

Ci0 = Ci−1
0 ←↩ bi

where s(bi) = (1 + ε)i. The adversarial chain

C̃00 = b0

remains unchanged.
3. For i = k, set 1 + εi = 1 + ε. So, sHi = 1 + ε · sHi−1 = (1 + ε)k ≥ ϕ. Thus

sAi ≥ 1. Honest chain is

Ci0 = Ci−1
0 ←↩ bi

where s(bi) = (1 + ε)i. Now A bootstraps the adversarial chain to become

C̃l0 = b0 ←↩ b̃1 ←↩ . . .←↩ b̃l

where s(̃bj) = 1 for all j ∈ [1, l]. This is demonstrated in Fig. 2(a).
4. For k+1 ≤ i ≤ 2k, set 1+ εi =

1
(1+ε) . Thus, s

H
i = (1+ ε)2k−i. Honest chain

becomes

Ci0 = Ci−1
0 ←↩ bi

where s(bi) = (1 + ε)2k−i. The adversarial chain remains at C̃l0.

18



5. For 2k+1 ≤ i ≤ l+2k, set 1+ εi = 1. Thus sHi = 1. Honest chain continues
as

Ci0 = Ci−1
0 ←↩ bi

where s(bi) = 1. For the adversarial chain, A uses replotting to create

C̃l+2kl
l+1 = b̃l+1 ←↩ . . .←↩ b̃l+2k

such that

s(bl+i) =

{
(1 + ε)i for 1 ≤ i ≤ k

(1 + ε)2k−i for k + 1 ≤ i ≤ 2k.

This is demonstrated in Fig. 2(b). Thus it achieves an adversarial chain

C̃ℓ0 = C̃l0 ←↩ C̃l+2k
l+1

with the space profile S̃.

To see why replotting can achieve the requisite space profile, note that sAi =
1/ϕ ∀i ∈ [l + 1, l + 2k]. In order to create a block b such that s(b) = α, A
needs to replot

⌈
α− 1

ϕ
1
ϕ

⌉
= ⌈α · ϕ− 1⌉ times and this would take ρ · ⌈α · ϕ− 1⌉

rounds. Thus the total number of rounds required is

k∑
i=1

ρ ·
⌈
(1 + ε)i · ϕ− 1

⌉
+

2k∑
i=k+1

ρ ·
⌈
(1 + ε)2k−i · ϕ− 1

⌉
≤ ρ ·

k∑
i=1

⌈
(1 + ε)i · ϕ− 1

⌉
+ ρ ·

k−1∑
i=0

⌈
(1 + ε)i · ϕ− 1

⌉
≤ ρ ·

k∑
i=1

(1 + ε)i · ϕ+ ρ ·
k−1∑
i=0

(1 + ε)i · ϕ

= ρ · ϕ · (1 + ε) · (1 + ε)k − 1

ε
+ ρ · ϕ · (1 + ε)k − 1

ε

≤ ρ · ϕ · (1 + ε) · ϕ · (1 + ε)− 1

ε
+ ρ · ϕ · ϕ · (1 + ε)− 1

ε(
as ϕ ≤ ⌈ϕ⌉ ≤ (1 + ε)k ≤ ϕ · (1 + ε)

)
= ρ · ϕ2 · (1 + ε) ·

1 + ε− 1
ϕ

ε
+ ρ · ϕ2 ·

1 + ε− 1
ϕ

ε

≤

⌈
ρ · ϕ2 · (1 + ε) ·

(
1 + ε− 1

ϕ

ε

)⌉
+

⌈
ρ · ϕ2 ·

(
1 + ε− 1

ϕ

ε

)⌉
= l

Since total number of rounds is ℓ = l + 2k, the adversary A after round 2k
has l rounds to replot, which is sufficient.

19



At round i = l + 2k = ℓ we have the honest chain as Cℓ0 with space-profile

S and adversarial chain as C̃ℓ0 with space-profile S̃. This completes the proof
of Lemma 3. ⊓⊔

Lemma 4 (A creates S from S̃). An adversary, A, playing (ϕ, 1 + ε, ρ, Λ)-
forking game can create a chain Cℓ0 such that S(Cℓ0) = (sHi )ℓi=0 while honest chain

is C̃ℓ0 with S(C̃ℓ0) = (s̃hi )
ℓ
i=0

Proof (Proof of Lemma 4). To create Cℓi=0 while honest chain is C̃ℓi=0, the ad-
versary, A, does the reverse of Lemma 3, i.e. it first replots and then bootstraps.
Formally,

1. At round i = 0,

C00 = C̃00 = b0

where s(b0) = 1. Note that here C̃ is the honest chain while C is the adver-
sarial chain.

2. For round 1 ≤ i ≤ l, set 1+εi = 1. Thus, sHi = 1. The honest chain becomes

C̃i0 = C̃i−1
0 ←↩ b̃i

where s(̃bi) = 1. A replots a chain

C2k0 = b0 ←↩ b1 ←↩ . . .←↩ b2k

such that

s(bi) =

{
(1 + ε)i for 1 ≤ i ≤ k

(1 + ε)2k−i for k + 1 ≤ i ≤ 2k.

This is demonstrated in Fig. 2(c). As argued in Lemma 3 Item 5 l rounds
are sufficient to replot Cl0.

3. For round l + 1 ≤ i ≤ l + k − 1, set 1 + εi = 1 + ε. Thus sHi = (1 + ε)i−l.
The honest chain becomes

C̃i0 = C̃i−1
0 ←↩ b̃i

where s(̃bi) = (1 + ε)i−l. The adversarial chain remains unchanged.
4. For round i = l+ k, set 1+ εi = 1+ ε. Thus sHi = (1+ ε)k ≥ ⌈ϕ⌉. Therefore,

sAi ≥
⌈ϕ⌉
ϕ ≥ 1. The honest chain continues as

C̃i0 = Ci−1
0 ←↩ b̃i

where s(̃bi) = (1 + ε)k. A uses space sAi ≥ 1 to bootstrap the adversarial
chain to form

C2k+l
0 = C2k0 ←↩ b2k+i ←↩ . . .←↩ b2k+l

where s(b2k+i) = 1 ∀i ∈ [1, l]. This is demonstrated in Fig. 2(d).

20



5. For round l+k+1 ≤ i ≤ l+2k, set 1+ εi =
1

(1+ε) . Thus s
H
i = (1+ ε)l+2k−i.

The honest chain continues as

C̃i0 = C̃i−1
0 ←↩ b̃i

where s(̃bi) = (1 + ε)l+2k−i. The adversarial chain remains unchanged.

At round i = l + 2k = ℓ we have the honest chain as C̃ℓ0 with space-profile

S̃ and adversarial chain as Cℓ0 with space-profile S. This completes the proof
of Lemma 4. ⊓⊔

Consider any chain selection rule Λ. From Lemmas 3 and 4 we get two forking
games: first, where the honest chain is Cℓ0 and A creates C̃ℓ0 and second, where the

honest chain is C̃ℓ0 andA creates Cℓ0. If Λ(Cℓ0, C̃ℓ0) = 0, then in the first forking game

the chain selection rule would choose the adversarial chain. If Λ(Cℓ0, C̃ℓ0) = 1, then
in the second forking game the chain selection rule would choose the adversarial
chain. Therefore in either case it is possible to fool the chain selection. Note that
we made no restriction on Λ; we only used replotting and resource variability.
Hence, we can conclude that there does not exist a secure chain selection rule
under resource variability. ⊓⊔

A.2 Proof of Theorem 2

Theorem 2 (The attack from Theorem 1 is tight up to ϕ). For any
(ϕ, 1 + ε, ρ) there’s a chain selection rule Λtent for which no adversary can win
the (ϕ, 1 + ε, ρ, Λtent) forking game in less than

ρ

(
ϕ · (1 + ε) ·

1− 1
ϕ

ε
−
⌈

log ϕ

log(1 + ε)

⌉)
steps

Proof. Given two chains Cj0 = b0 ←↩ · · · ←↩ bj and C̃j
0 = b̃0 ←↩ · · · ←↩ b̃j selection

rule first determines the forking point f , i.e., the first block where chains diverge
to have bf ̸= b̃f . Let l := j − f denote the fork length.

Let S = (a1, . . . , al)
def
= (s(bf ), . . . , s(bj)) and S̃ = (ã1, . . . , ãl)

def
=

(s(̃bf ), . . . , s(̃bj)) be the space profiles of the fork. The Λtent rule now picks
the chain whose fork covers the larger tent. More formally, let µ be maximal
such that there exists a tent Γ = (ϕ, x, µ) under S, where f ≤ x ≤ j and for all

i, 0 ≤ i ≤ j we have ai ≥ yi. Similarly, we define tent Γ̃ = (ϕ, x̃, µ̃) for S̃. With

these definitions, the chain selection rule is defined as Λtent(Cj0, C̃
j
0) = 0 if µ ≥ µ̃.

Let’s assume Cj0 is the honest chain, while C̃j
0 is the adversarial one created

in the (ϕ, 1+ε, ρ, Λtent) forking game. To win the game it must hold that µ̃ > µ.
We know that during the fork (when the honest parties created bf , . . . , bj) the
honest parties never controlled more µ space (otherwise we could have embedded
a tent larger than µ under A), and thus the adversary never controlled more than
µ/ϕ space in that phase. But during that phase he must have created a chain

21



with space profile S̃, which in particular contains a tent of size µ̃, and thus also
a tent Γ̃ ′ = (ϕ, x̃, µ) of size µ (as µ < µ̃). While the adversary might have used
bootstrapping to create this it could only have bootstrapped space up to µ/ϕ.

We want a lower bound on the amount of space above µ/ϕ in the tent Γ̃ ′

after the forking point. Let z̃ := x̃−f and k =
⌈

log ϕ
log(1+ε)

⌉
. We have the following

scenarios

1. If z̃ ≥ k or l − z̃ ≥ k, then the fork is long enough to contain a sequence of
µ, µ

(1+ε) , · · · ,
µ

(1+ε)k−1 above the µ
ϕ . Number of rounds required to replot this

space, using µ
ϕ , is

k−1∑
i=0

ρ ·

⌈
µ

(1+ε)i −
µ
ϕ

µ
ϕ

⌉
=

k−1∑
i=0

ρ ·
⌈

ϕ

(1 + ε)i
− 1

⌉

≥ ρ ·
k−1∑
i=0

(
ϕ

(1 + ε)i
− 1

)
= ρ ·

(
ϕ · (1 + ε) ·

1− 1
ϕ

ε
− k

)
.

2. If z̃ < k and l− z̃ < k, then the fork is too short for replotting as every step
of the tent in the forked chain is above µ/ϕ and for each of them we need
at least ρ steps of replotting. Thus in total at least ρ ∗ l steps are required.
Since ρ ≥ 2, replotting is not possible. Therefore, A cannot win the game
and we have a contradiction.

This finishes the proof that to win (ϕ, 1 + ε, ρ, Λtent) forking game the fork

length must be at least ρ ·
(
ϕ · (1 + ε) · 1−

1
ϕ

ε − k
)
. ⊓⊔

22


