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Reputation systems play an essential role in the Internet era, as they enable people to decide whom to trust, by
collecting and aggregating data about users’ behavior. Recently, several works proposed the use of reputation
for the design and scalability improvement of decentralized (blockchain) ledgers; however, such systems
are prone to manipulation and to our knowledge no game-theoretic treatment exists that can support their
economic robustness.

In this work we put forth a new model for the design of what we call, trustworthy reputation systems.
Concretely, we describe a class of games, which we term trustworthy reputation games, that enable a set of
users to report a function of their beliefs about the trustworthiness of each server in a set—i.e., their estimate
of the probability that this server will behave according to its speci!ed strategy—in a way that satis!es the
following properties:

(1) It is (𝐿-)best response for any rational user in the game to play a prescribed (truthful) strategy according
to their true belief.

(2) Assuming that the users’ beliefs are not too far from the true trustworthiness of the servers, playing the
above (𝐿→)Nash equilibrium allows anyone who observes the users’ strategies to estimate the relative
trustworthiness of any two servers.

Our utilities and decoding function build on a connection between the well known PageRank algorithm
and the problem of trustworthiness discovery, which can be of independent interest. Finally, we show how
the above games are motivated by and can be leveraged in proof-of-reputation (PoR) blockchains.
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1 Introduction
Trustworthiness plays a central role is security, cryptography, and distributed systems, where
existence of trusted authorities simpli!es, if not trivializes, several of the underlying goals. As an
example, the primary goal of decentralization is to allow for a secure distributed implementation of
a trusted third party. In economics and game theory, reputation has long been used as a tool to allow
agents to decide on and reason about the trustworthiness of other agents, and make predictions
about their behavior (e.g., in repeated games [Mailath and Samuelson, 2006, Mui, 2002, Resnick
et al., 2001]).

However, despite the long-studied relation (in economics) between reputation and trustworthi-
ness, with only a few notable exceptions, reputation has received little attention in the theory of
cryptography and distributed computing literature. One reason for this is likely the fact that basing
a system’s security on a quantity that is extracted by past observation substantially deviates from
the worst-case adversarial model, e.g., makes the system susceptible to attacks from parties who
act honestly until the are rendered a key, high-reputation role in the system, and then use this role
to break the system’s security.
The recent revolution of blockchain protocols, triggered by the wide adoption of Bitcoin,

Ethereum, and other cryptocurrencies, has brought a renewed interest in reputation in the context
of such protocols. A reputation system in such protocols is typically used in combination with a
more mainstream assumption, like honest majority of hashing power (in proof of work, in short,
PoW, blockchains) or honest majority of stake (in proof of stake, in short, PoS, blockchains). The
common methodology here is to interpret reputation of (some of) the nodes as a way to select
honest (super)majority committees in a faster and/or more scalable manner. This allows to speed up
the block settling time—i.e., the time it takes for a block to be con!rmed—and even add !nality—i.e.,
valid blocks are con!rmed as soon as they are seen on the network—on Nakamoto style blokchains1,
like Bitcoin [Biryukov et al., 2017, Chow, 2007, Gai et al., 2018, Kleinrock et al., 2020, Yu et al., 2019].
Despite several proposed constructions which rely on the existence of trustworthy reputation

systems, the question of how to allow the blockchain to derive such a reputation system has not
been addressed, and existing proposals are restricted to either assuming that such a system is
given (e.g., written on the !rst, so-called genesis block of the blockchain [Kleinrock et al., 2020], or
devising ad-hoc formulas with little to no justi!cation of why they are right and how they can be
computed in a real-world blockchain scenario.

Our work aims to bridge the above gap by proposing an appropriate game theoretic model and a
!rst solution to the above challenging problem. To this direction we use the following methodology:
As is common in reputation-based constructions we model trustworthiness as a reputation system
which is a vector of𝑀 independent binary distributions that correspond to the probability of each
of the 𝑀 servers/blockchain-nodes to follow their protocol (i.e., remain “honest”). We refer to
the 𝑁th value in this vector, R𝐿 , as the trustworthiness of the 𝑁th server (we also at times refer to
the trustworthiness vector as the ground truth). Importantly, the ground truth is not encoded on
the blockchain. Instead the blockchain users have their beliefs about the trustworthiness of each
node. Our goal, then, is to design games that allow the blockchain to extract an order-preserving
estimate of this information from its users, assuming they are rational. Our games rely on a novel
connection between the behavior of the well-known PageRank algorithm [Brin and Page, 1998] on
a bipartite graph and the problem of estimating the trustworthiness of the servers from the beliefs
of su"ciently informed rational users, which can be of independent interest.

1In Nakamoto consensus, a user cannot immediately considers a block as con!rmed but needs to wait for it to get deep
enough on its local valid chain.
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1.1 Our Contribution and Technical Overview
We propose a class of games, which we term trustworthy reputation games (in short, TRep games)
that capture the intuition of the above goal. In a nutshell, a trustworthy reputation game is an 𝑂-agent
Bayesian game against nature, where the (private) state of nature is encoded as a vector of𝑀 values
in [0, 1], R = (R1, . . . ,R𝑀). In our reputation-based blockchain scenario above,𝑀 corresponds to the
number of blockchain servers/nodes and each R𝑁 correspond to the ground truth (trustworthiness
score) of the 𝑃th blockchain node. Note that in this work we focus on blochchains with a !xed
universe of𝑀 nodes. Extending our treatment to dynamically changing universe is an interesting
future direction. Notwithstanding, to allow most generality we allow these sets to be disjoint.

As discussed above, our goal is to enable (anyone with read-access to) the blockchain to discover
R by observing messages posted by the users in our decentralized scenario. To this direction, the set
of pure actions of each user is an endorsement of one of the 𝑃 nodes; hence a mixed strategy (which
is what the user should record on the blockchain to receive associated rewards) is a probability
distribution over the set of the𝑀 servers. A key feature of trustworthy reputation games is that
they come equipped with an e"cient decoding function, which, given any strategy pro!le from a
given class, computes a speci!ed reputation function of the ground truth. Looking ahead, in the
games we design, this class will consist of Nash equilibria (NE) and the reputation function will
provide an estimate of the relative trustworthiness between any two servers, R𝐿/R𝑁 for 𝑁, 𝑃 ↑ [𝑀];
such an estimate will allow us to order the servers according to their trustworthiness, which can
then be used by a reputation-based blockchain in their committee selection.
The core novelty in our work lies in a connection between the well-known PageRank algo-

rithm [Brin and Page, 1998] and our above goals, which we encode into our trustworthy reputation
game. The PageRank algorithm was developed to help a search engine to rank web pages so that it
can o#er better search results, and is considered a catalyst for the dominance of Google among early
search engines. It operates by assigning a rank to each page, which is determined by the number
and quality of links pointing to it. The core idea is that pages with more incoming links—i.e., pages
linked to by more other pages—especially by high-ranking pages, are considered more valuable.

A bit more formally, the idea of PageRank is to model the Internet as a graph, where the nodes
are pages and a link in page 𝑄 pointing to page 𝑄 ↓ corresponds to a directed edge in this graph
from 𝑄 to 𝑄 ↓. The algorithm can be seen as a random walk on this graph, which starts at a random
page, and in every step one might either move along one of the outgoing edges of the current node
or, with some given probability, “teleport” to some other node. (This last idea was added to ensure
that the walk does not get “stuck”.) The (Page)Rank of any node is then computed based on the
frequency that the node is visited in comparison to the overall time of the walk. The details of the
algorithm are not necessary for understanding the intuition of our game. In our technical section,
we o#er the details one needs to understand how the parameters of our game are derived from
PageRank.
Due to its importance, the PageRank algorithm has been extensively studied and several of its

variants have been proposed. Two variants are of particular importance for us: the !rst one is
PageRank over a weighted graph, where for every node 𝑅 its outgoing edges have non-negative
weights that add up to 1 [Xing and Ghorbani, 2004], which can be seen as 𝑅’s weighted endorsement
of each neighbors; and the other is Personalized PageRank [Andersen et al., 2007, Bianchini et al.,
2005, Gupta et al., 2013, Iván and Grolmusz, 2010, Yang et al., 2024], which, intuitively, computes
the importance of every node 𝑅 relative to a speci!c node 𝑆 , i.e., how relevant the endorsement of
𝑅 was in 𝑆 receiving its PageRank.

Here is howwe use PageRank to derive the utilities in our game and compute (an order-preserving
estimate of) the servers’ trustworthiness scores: consider the unidirectional bipartite graph where
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the users are the sources (nodes with incoming degree 0) and the servers are the sinks (nodes
with outgoing degree 0). Each user 𝑅 has an edge pointing to each node/server 𝑇𝐿 , 𝑁 ↑ [𝑀] whose
weight corresponds to the probability according to 𝑅 that 𝑇𝐿 will behave honestly (in other words,
it corresponds to 𝑅’s belief about the trustworthiness score R𝐿 of 𝑇𝐿 .) We refer to this edge as 𝑅’s
weighted endorsement of 𝑇𝐿 . Comparing the structure of this bipartite graph to a weighted graph (as
used in weighted PageRank), one might observe that an edge from 𝑅 to 𝑇𝐿 (which is the endorser’s,
𝑅, perception of the endorsee’s, 𝑇𝐿 , trustworthiness) is analogous to 𝑅 including a weighted link to
𝑇𝐿 , which corresponds to the perception, from 𝑅’s point, of how important 𝑇𝐿 is in the graph. As
such, it is natural to expect that running weighted PageRank on our (bipartite) graph would yield
a rank(-score) of each server 𝑇𝐿 that is a good estimate of 𝑇𝐿 ’s trustworthiness from the collective
perception of the users (sources in the graph). Hence, if the users have an (approximately) accurate
perception of that trustworthiness, PageRank will compute it. We will refer to the rank that is
assigned to each server in the above setting as the server’s (computed) reputation score. As we
shall see, the above intuition is correct: if the users’ beliefs on the servers’ trustworthiness are
(approximately) accurate, and their endorsements are truthful, then PageRank on the above graph
will yield an order-preserving estimate of the ground truth.

The above idea of how to use PageRank on our graph to compute (an estimate of) the ground
truth has several issues that one needs to overcome. On the technical side, !rst, the above bipartite
graph is not suitable for PageRank as the random walk will stop in one step, and second, the sum
of the outgoing edges of a user in not necessarily 1 (as is required by weighted PageRank). Both
these mismatches can be resolved by appropriately “massaging" the graph—adding appropriate
teleportation edges and normalizing the weights (we refer to the technical section for details).
However, to our knowledge the behavior of the PageRank over such a (massaged) graph has not
been su"ciently studied to be able to deduce that the servers’ rank is actually their (relative)
trustworthiness score. Our analysis demonstrates that this is indeed the case, which we believe can
be of independent interest for using this methodology in di#erent scenarios.

This leaves open the following question: even if PageRank works as anticipated when users play
according to their true beliefs about the servers’ trustworthiness, how can we guarantee they do
so? This is where game theory comes to the rescue: we design a Bayesian game, where the (private)
state of nature corresponds to the servers’ trustworthiness scores (ground truth). The belief of the
users about this ground truth is modeled by the user’s type. The utility is computed as follows: draw
a string from the ground-truth distribution (R1, . . . ,R𝑂)—as we discuss below, a 1 bit for the 𝑃th
component corresponds to the 𝑃th server following the protocol—and for each server 𝑃 for which
a bit 1 is sampled, we use (an adaptation of) the Personalized PageRank algorithm to reward its
endorsers. As we prove the (expected value of the) above utility in our trustworthy reputation game
makes playing according to one’s true belief an (𝐿-)Nash equilibrium for an 𝐿 which diminishes in
the number of users (in fact, the strategy is a unique Nash if the users’ beliefs are perfect).
It is worth mentioning that due to the simplicity of the our bipartite graph, running PageRank

and Personalized PageRank on the above (massaged) graph results on relatively simple utility and
decoding functions—the decoding function ends up being an average of the weight of incoming
edges (endorsements from all users) and the utility of each user is essentially the users’ relative
contribution to this average. Generalizing the approach to more complex endorsement graphs is in
our opinion an excellent future research direction and can expand the methodology to a broader
class of applications.

I"%#&"#’&#’!"% !( !)* TR$+,G&-$ We instantiate the above methodology in two games that
assume di#erent users’ beliefs about the servers’ trustworthiness, represented as beliefs on the
state of nature:
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Perfect Information about Nature. We start with the case where users have a perfect information
about the state of nature, i.e., every user knows the vector ↔R = (R1, . . . ,R𝑀). This is of course a
degenerate form of a TRep Game (it is in fact a complete information game against nature rather
than Bayesian). Notwithstanding we !nd this simpler setting ideal to showcase our methodology,
and in particular demonstrate that the above PageRank-based utility and raking system work as
anticipated. We prove the following result for this game, Gperfect:

T.$!*$- 1.1 (’"(!*-&/). Gperfect has a unique Nash equilibrium (NE), where the players play
according to their (accurate) beliefs. By observing the players’ NE strategies, we can compute a
reputation score 𝑈𝐿 for each server 𝑁 ↑ [𝑀], such that for any 𝑁, 𝑃 ↑ [𝑀], | 𝑈𝐿/𝑈 𝑁 = R𝐿/R𝑁 .

Consistent Noisy Information about Nature. We next proceed to a game which is motivated by a
more realistic blockchain scenario. We assume that all players have a noisy but consistent view of
nature’s state, i.e., they all know a value 𝑉 𝑁 ↑ [0, 1] (for each 𝑃 ↑ [𝑀]) where with high probability
(con!dence), 𝑉 𝑁 is within some 𝐿 from the the trustworthiness score of server 𝑃 . We consider this as
a natural scenario which can, for example, occur by all parties applying a consistent statistic on
public data about each server. We prove the following result for this game, Gnoisy:

T.$!*$- 1.2 (’"(!*-&/). In Gnoisy, playing according to their beliefs/types is 𝐿↓-Nash for an 𝐿↓
that diminishes with the size of the user set. By observing the players’ strategies, we can compute a
reputation score 𝑈𝐿 for each server 𝑁 ↑ [𝑀], so that such that for any 𝑁, 𝑃 ↑ [𝑀], with high probability,
𝑈𝐿/𝑈 𝑁 is within an 𝐿↓↓ (diminishing in𝑀) factor from R𝐿/R𝑁 .

Under assumptions about the density of the trustworthiness score vector and/or the number of
servers, the above allows to limit with high probability the number of inversions in the ordering
derived by the decoded reputation scores.

C!""$0#’!" #! P!R/P!S,B/!010.&’"%. Finally, we discuss how the above games can be used
within a reputation-based blockchain, in particular with the hybrid Proof-of-Reputation/Proof-of-
Stake blockcain by [Kleinrock et al., 2020] (we provide an overview in Section 2.4).
The idea is that we can associate nature’s state (i.e., trustworthiness score of each of each

nodes/servers) with the probability that that the node follows the protocol. The blockchain, then,
mints for each server who followed the protocol a !xed amount of coins which is distributed
according to our (Personalized PageRank-based) utility function.

It is worth mentioning that our treatment applies only to the static reputation setting discussed
in [Kleinrock et al., 2020], where the challenge is to discover the initial reputation (e.g., in a
bootstrapping phase) and encode it on a PoR genesis block. Extending our treatment to dynamic
(updateable) reputation is an interesting research direction.

1.2 Related Work
A number of works have studied reputation as an important concept of behavioral analysis in
game theory, (see, e.g., [Mui, 2002, Resnick et al., 2001, Sun, 2015] and references therein.) One
of the most important application domains is in repeated and more, generally, sequential games,
where reputation typically models information about a player’s state that can be extracted from the
player’s past actions and used to improve the future response to this player [Abreu and Pearce, 2007,
Ely and Välimäki, 2003, Fudenberg and Levine, 1992, Mailath and Samuelson, 2006, Schmidt, 1993].
A related line of work investigates learning nature in repeated games [Cripps et al., 2008, Fudenberg
and Yamamoto, 2011, Leoni, 2014, Renault and Tomala, 2004, Sugaya and Yamamoto, 2020]. Our
work can be seen as combining both threads in a novel way: our goal is to learn the state of nature,
which corresponds to an external reputation (as opposed to learning the reputation of the players
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themselves) by using the strategies of the player (as opposed to the move of nature). Moreover, we
aim to learn this state in a one-shot game which is motivated by a blockchain application.

A number of works have applied game theoretic reasoning to the PageRank algorithm [Foulley
et al., 2018, Hopcroft and Sheldon, 2008, Maestre and Ishii, 2016]; however, the goal of these works
is rooted in the original use of the algorithm to discover important pages on the Internet and/or
important nodes in a communication network. In particular, the goal is for the players (page
creators) to maximize some revenue (or a network related quantity like latency of a transmitted
message or accuracy of anomaly detection) by strategically pointing to appropriate pages/network-
nodes. While we also examine the e#ect of strategic play on PageRank, we do so in a specially
designed game where (Personalized) PageRank is also used in the utilities. Our goal is to instead
show that PageRank captures reputation in an extremely natural way (at least in the case of our
massaged bipartite graphs) and playing strategically indeed, recovers a meaningful quantity (the
relative trustworthiness scores). Discovering other classes of graphs, which enable such reasoning
is in our opinion a very interesting direction.

In the context of blockchain, a number of proposals have investigated using an existing reputation
system to improve the properties (liveness, !nality, and scalability) of consensus and blockchain
protocols [Biryukov et al., 2017, Chow, 2007, Gai et al., 2018, Kleinrock et al., 2020, Yu et al.,
2019]. These works, however, either do not touch the question of how the blockchain derives
such a reputation system, or resort to typically ad-hoc tokenization of reputation, e.g., receiving
reputation tokens for hashing or staking. (We refer to [Esber and Kominers, 2021] for a high level
discussion on economic considerations of tokenizing reputation). In contrast, in this work we put
forth the question, and an appropriate model, for the blockchain extracting information about the
trustworthiness of its nodes from its user’s beliefs.
Finally, the structure and goals of trustworthy reputation games bare resemblance to Bayesian

optimal design (BOD) [Nisan et al., 2007]. However there are key di#erences: in contrast to BOD,
(1) we (the designer) do not know the distribution of the agent’s valuation (types), and (2) our
objective is to learn the ground truth (nature’s state), rather than these types or their distribution.
Similarly, to our knowledge, techniques from Prior-independent mechanisms (PIMs) [Azar et al.,
2019, Devanur et al., 2011, Hartline and Roughgarden, 2009], which are designed for the incomplete
information setting, do not apply here as the objectives are di#erent and the game is a one-shot
game.

2 Preliminaries
In this section we introduce basic notation used throughout our technical sections, and provide the
relevant background on the PageRank algorithm and (reputation-based) blockchains.

2.1 Notation
Let Z denote the set of integers, and Z↗𝑃 , the set of integers greater than or equal to 𝑊 . For 𝑂 ↑ Z↗1,
let [𝑂] equal the set, {1, 2, . . . ,𝑂}.

For any probabilistic event 𝑋, let the indicator of 𝑋, 1 [𝑋] denote the binary random variable that
outputs 1 when 𝑋 occurs and 0 otherwise.

We write vectors in boldface, as in 𝜴, 𝜶 , . . .; and matrices in capital letters. Denote the 𝑂↘𝑀matrix
of all ones as, 1𝑂↘𝑀 . Then, 1𝑂↘1 is the row-vector of all one’s of length 𝑂. Often when referring to
the coordinates of some vector, 𝜴, we drop the boldface. Therefore, the 𝑁th coordinate of 𝜴 is 𝑆𝐿 . We
index matrices using𝑌 [𝑁, 𝑃] to denote the value in 𝑁th row and 𝑃th column.

Let 𝜷𝜴 denote the vector whose 𝑁th coordinate, denoted by 𝑍𝐿,𝐿 is 1, and 0 otherwise.
In this work, we will often talk about 𝑎1-normalized vectors, by which we mean vectors that

have been scaled such that their 𝑎1-norm—sum of all entries—sum up to 1. Speci!cally, let ≃·≃1 be
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the 𝑎1 norm. We de!ne an 𝑎1 normalizing function, N : [0, 1]𝑂 ⇐ [0, 1]𝑂 such that,

N(𝜴) =
(

𝑆1
≃𝜴≃1

, . . . ,
𝑆𝑀
≃𝜴≃1

)

We call N(𝜴) the 𝑎1-normalized vector of 𝜴 and denote its 𝑃th coordinate by N(𝜴) 𝑁 .

2.2 PageRank
We present the weighted graph version of PageRank [Brin and Page, 1998, Xing and Ghorbani, 2004]
which readily generalizes the unweighted link graph structure in which it was initially proposed.
Intuitively, one can view weighted PageRank (on a weighted graph) as standard PageRank where
the weights are captured by adding more links (proportionally to the weights). In applications, such
weights correspond to some real number indicating “trust”, “importance” or quality of the outgoing
link. We assume weights are non-negative.
Let 𝑏 = (𝑐 , 𝑋) be a weighted, directed graph. Let |𝑐 | = 𝑂. Write 𝑐 = (𝑆1, . . . 𝑆𝑂) with respect

to an appropriate indexing. We have (𝑅, 𝑆,𝑑) ↑ 𝑋 if there exists an edge from 𝑅 to 𝑆 with (non-
negative) weight,𝑑 . Let𝑑out (𝑆) be the sum of the weight of all outgoing edges of 𝑆 ↑ 𝑐 . We assume
𝑑out (𝑆) > 0 for all 𝑆 ↑ 𝑐 since PageRank is not well-de!ned for “dangling nodes”. Let 𝑑out (𝑐 )
equal the vector of 𝑑𝑄𝑅𝑆 (𝑆𝐿 ) for all 𝑆𝐿 ↑ 𝑐 , and𝑒out be the 𝑂 ↘ 𝑂 diagonal matrix with diagonal
equal to𝑑out (𝑐 ). Let𝑌 be the adjacency matrix of 𝑏 , with respect to the same indexing of 𝑐 .

Fix restart probability constant, 𝑓 ↑ (0, 1). The PageRank vector, 𝜶 is the solution to the following
equation,

𝜶 = 𝜶 (1 → 𝑓)𝑒 →1
out𝑌 + 𝑓

𝑂
· 1

where 1 is the vector of all 1’s and with the constraint that ≃𝜶 ≃1 = 1. We overload noation and
denote 𝜶 (𝑆𝐿 ) = 𝑔𝐿 as the PageRank, aka the rank, of 𝑆𝐿 .

We can also model PageRank as the stationary distribution of a row-stochastic markov chain,

𝑌 ↓ = (1 → 𝑓)𝑒 →1
out𝑌 + 𝑓

𝑂
· 1𝑂↘𝑂

i.e., the PageRank vector is the solution to,

𝜶 = 𝜶𝑌 ↓

Observe that𝑒 →1
out𝑌 is the 𝑎1-row-normalized adjacency matrix of 𝑏 and can be viewed as the

transition matrix of 𝑏 where the probability of transition is directly proportional to the relative
weight on the outgoing edge. The row-stochastic matrix 1

𝑂1n↘n captures the idea of restarting
uniformly to any vertex in the graph. The convex combination of row-stochastic matrices is also
row-stochastic and therefore,𝑌 ↓ is row-stochastic.
When are we guaranteed that the stationary distribution (the PageRank vector) 𝜶 exists? We

present the following lemma whose proof can be found in most standard elementary textbook on
stochastic processes:

L$--& 2.1 ([H233%#*4-, 2002, L$5’" $# &/., 2006]). A !nite markov chain has a unique stationary
distribution if its transition matrix,𝑌 is irreducible. If the chain is also aperiodic then the limiting
distribution converges to the stationary distribution.

It is not hard to see that𝑌 ↓ is irreducible and aperiodic for any 𝑏 (due to restart) and therefore,
has a unique stationary distribution invariant of what distribution you start with. Therefore, the
PageRank vector is well-de!ned.
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Later, it will be helpful to examine PageRank as a system of linear equations. In particular, we
can rewrite the above equation as,

𝜶 (𝑆𝐿 ) =
∑
𝑁↑ [𝑂]

𝜶 (𝑆 𝑁 ) ·𝑌 ↓ [𝑁, 𝑃]

2.3 Personalized PageRank and Contribution
PageRank is an emergent global property of the graph. After taking in all edges into consideration,
it calculates a global “ranking” or importance score for each vertex. Personalized PageRank [Brin
and Page, 1998] aims to capture the (bidirectional) relationship between any two vertices in the
graph; it can be seen as the “signi!cance” of some target node, 𝑕 with respect to some source node,
𝑇 or also, the “importance” of 𝑇 from the perspective of 𝑕 [Andersen et al., 2007, Bianchini et al.,
2005, Gupta et al., 2013, Iván and Grolmusz, 2010, Yang et al., 2024]. In this work, we will be more
interested in the latter interpretation as we will measure the importance of users in the eventual
ranking of servers and distribute rewards proportional to the relative importance (which we later
call, contribution) of each user.

Formally, the Personalized PageRank vector for vertex 𝑇 , 𝜶𝜶 =
(
𝑔𝑇,1, . . . , 𝑔𝑇,𝑂

)
assigns a numeric

score to each 𝑆𝐿 in the graph. Let 𝑇 = 𝑆𝑃 . We overload notation again and denote, 𝜶𝜶 (𝑆𝐿 ) = 𝑔𝑇,𝐿 . For
the same restart-probability constant as in PageRank, 𝜶𝜶 is the (unique) solution to the following
equation,

𝜶𝜶 = 𝜶𝜶 (1 → 𝑓)𝑒 →1
out𝑌 + 𝑓𝜷𝜷

with ≃𝜶𝜶 ≃1 = 1.
Personalized PageRank can be interpreted as a random walk over the graph that starts at 𝑇 and

with probability 1 → 𝑓 travels to a neighboring vertex along the path of the random walk, and
with probability 𝑓 restarts at 𝑇 . Then, the signi!cance of 𝑕 with respect to 𝑇 is how frequently the
random walk passes through the vertex, 𝑕 and is equal to, 𝜶𝜶 (𝑕). In other words, we can also model
Personalized PageRank as the stationary distribution of a row-stochastic markov chain,

𝑌 ↓
𝑇 = (1 → 𝑓)𝑒 →1

out𝑌 + 𝑓𝑋𝑇

where 𝑋𝑇 is the 𝑂 ↘ 𝑂 matrix in which every row is equal to 𝜷𝜶 .
As mentioned, Personalized PageRank can also be interpreted from the view of 𝑕 . De!ne the

inverse Personalized PageRank vector, aka Contribution PageRank vector, for vertex 𝑕 , 𝜶→1
𝜸 as the

vector of 𝜶𝜶 (𝑕) for all 𝑇 ↑ 𝑐 . In other words, 𝜶→1
𝜸 (𝑇) = 𝜶𝜶 (𝑕).

We de!ne, the relative contribution PageRank vector for 𝑕 as,

𝜸→1
𝜸 (𝑇) =

𝜶→1
𝜸 (𝑇)∑

𝑇↑𝑈 𝜶→1
𝜸 (𝑇)

Later, we will be interested in measuring the relative contribution with respect to only a subset
of the vertices, 𝑐 ↓ which we de!ne by only summing over the contributions from 𝑐 ↓,

𝜸→1
𝜸 |𝜹 ↑ (𝑇) =

𝜶→1
𝜸 (𝑇)∑

𝑇↑𝑈 ↓ 𝜶→1
𝜸 (𝑇)

Personalized PageRank can also be generalized to any distribution of source nodes by changing
𝜷𝜷 in the equation. For example, we can measure the signi!cance of 𝑕 with respect to a set of
vertices, 𝑖 , of size𝑀 instead of a single vertex by replacing 𝜷𝑇 with a vector that is equal to 1/𝑀 at
each coordinate that corresponds to 𝑖 . Intuitively, this corresponds to the random walk restarting
from any vertex in 𝑖 uniformly at random. Then, Personalized PageRank of 𝑕 with respect to 𝑖 is
how frequently a random walk starting (and restarting) from 𝑖 passes through 𝑕 .
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2.4 Proof of Reputation with Proof of Stake Fallback
In Section 6, we will show how our trustworthy reputation games can be applied to the proof-of-
reputation with proof-of-stake fallback (in short, PoR/PoS) paradigm for bootstrapping—i.e., setting
the inital parameters of—the blockchain proposed in [Kleinrock et al., 2020]. Below, we provide a
high level overview of that paradigm.

The PoR/PoS paradigm assumes a so-called reputation system, which is a vector of 𝑂 independent
(probability distributions on) binary random variables (R1, . . . ,R𝑂). The number 𝑂 is the number of
blockchain nodes (also referred to as servers) who are tasked with running the blockchain protocol,
e.g., in Bitcoin that would be theminers. Each R𝐿 corresponds to the probability that the 𝑁th node will
remain “honest” in the protocol, i.e., it will follow its prescribed protocol. Given such a reputation
vector, as long as it closely captures the “ground truth,” or in other words, the true probability of
servers’ honesty, [Kleinrock et al., 2020] shows how to select committees of size 𝑗 = polylog(𝑂) so
that with big probability a majority of the parties in all committees will be honest.
As argued in [Asharov et al., 2013, Kleinrock et al., 2020] the simplest way for achieving the

above goal (maximizes the probability of honest majorities) is to order the parties according to
their reputation, and select the top𝑗 in this ordering. (In fact, the actual mechanism/lottery for this
selection has several additional properties, which ensures and intuitive notion of fairness; but the
above simple deterministic selection algorithm is su"cient for understanding the use of reputation
within PoR blockchains.)

Given such a mechanism for selecting honest-majority committees, a PoR blockchain can be
constructed in a similar way as common Byzantine Fault-Tolerant (BFT) blockchains, e.g., Algorand
in the proof-of-stake (PoS) setting: proceed in phases (often refered to a slots or blockchain rounds)
where in each 𝑁th round a committee is chosen to vote on (by adding their digital signature on) the
𝑁th block, and a block is accepted if and only if its voted by more than 𝑗/2 parties in this 𝑁th-slot
committee (i.e., has a majority vote by committee members).
Importantly, observe that in order to take a decision on whether or not the majority of the 𝑁th

slot committee has voted, it is essential that parties can verify whether a signature corresponds to
a party in this committee. And to make sure that parties adopt the same block, there should be
agreement among the committee members. This is done by making sure that the reputation system
(and the associated randomness) used for the lottery are “known” to the blockchain (i.e., they are
encoded in its past blocks).

The blockchain from [Kleinrock et al., 2020] also forti!es the security of its above PoR methodol-
ogy by assuming a fallback blockchain, which is based on the proof-of-stake paradigm, and is used
to detect and correct forks due to an inaccurate reputation system. In particular, parties running
the PoR based constriction above, periodically report (a publicly veri!able digest) of their view.
The proposed mechanisms ensures that if the blockchain properties are violated then it will be
promptly noted on the secondary chain. In this case, the system (temporarily) falls back to that
secondary chain. As discussed above, this mechanism is necessary for security; however, its details
beyond what is discussed above are not relevant for our paper.

3 Trustworthy Reputation Games
In this section, we formally de!ne a new class of games called Trustworthy Reputation Games. We
show how to use PageRank to de!ne meaningful utilities, and a “meta-objective” of the game,
which we formalize using the notion of decodability, which we introduce to our games.

As a reminder, the goal of the model is: users have some belief about the trustworthiness of
the servers and we wish for them to act in accordance to their beliefs. As a game, we model the
trustworthiness scores of the servers as nature’s (private) state and the belief as a type. We thus,
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model our game as a Bayesian game [Harsanyi, 1982, Zamir, 2009] where nature assigns a type to
each player representing each players’ belief about nature’s private state before the game begins.
We formalize this below.

De!nition 3.1 (Trustworthy Reputation Game with (E, 𝑘 )-Decodability). Let 𝑂,𝑀 ↑ Z↗2.

The Game. A Trustworthy Reputation Game or TRep Game is a simultaneous Bayesian game
against nature and is de!ned as a tuple, G =

(
P,A =

∏
𝐿↑ [𝑂] A𝐿 , (𝑅𝐿 )𝐿↑ [𝑂] , (𝑙𝐿 )𝐿↑ [𝑂] ,

(
R𝑁

)
𝑁↑ [𝑀]

)
where,

(i) Players. P = (𝑄𝐿 )𝐿↑ [𝑂] is the set of 𝑂 agents/players,
(ii) Action Space. A is the action space (or equivalently pure strategy space since the game is

simultaneous) of all the players. Every player has the same set of actions, A𝐿 = [𝑀], and so
A = [𝑀]𝑂 . Let 𝑚𝐿 = 𝑃 if 𝑄𝐿 picks 𝑃 as its action. Let ω𝐿 be the set of all probability distributions
over A𝐿 , i.e., the set of all (mixed) strategies of 𝑄𝐿 . Strategies are represented as an𝑀-vector
of probabilities. Let ω =

∏
𝐿↑ [𝑂] ω𝐿 , the set of all strategy pro!les of the game.

(iii) Nature.
(
R𝑁

)
𝑁↑ [𝑀] is nature’s (private) state. Each 𝑛 𝑁 ↑ [0, 1] is interpreted as a probability.

We treat Nature as a non-strategic player that always plays the same strategy and has no
payo# from the game. Nature’s move is determined by $ipping𝑀 biased coins or Bernoulli
random variables, 𝑜 𝑁 ⇒ Ber(R𝑁 ), i.e., Pr

[
𝑜 𝑁 = 1

]
= R𝑁 . Denote by N = {0, 1}𝑀 , the space of

nature’s move, and ωN , the set of all probability distributions over N . So, nature will always
play the (mixed) strategy, R = (R1, . . . ,R𝑀) ↑ ωN .

(iv) Types. Players may not have perfect information about nature’s state which we capture
by assigning a “type” to each player. Let 𝑙𝐿 be the type space of 𝑄𝐿 . 𝜹𝜴 ↑ 𝑙𝐿 will represent
𝑄𝐿 ’s belief about nature’s state. (In the following sections, we will give instantiations of the
general game by considering di#erent type spaces.) Denote by T =

∏
𝐿↑ [𝑂] 𝑙𝐿 , the space of

all players’ types.
(v) Utilities. 𝑅𝐿 : T ↘ A ↘ N ⇐ [0, 1] is the utility of 𝑄𝐿 and depends on the players’ types,

actions and nature’s move. When referring to the (expected) utility with respected to mixed
strategies, we overload notation as is standard and write, 𝑅𝐿 : T ↘ ω ↘ ωN ⇐ [0, 1]. We
formally de!ne the utilities in the next section.

(vi) Decodability. Let E ⇑ ω be some set of possible strategy pro!les of G, and let
𝑘 : [0, 1]𝑀 ⇐ [0, 1]⇓ be a possibly randomized function with codomain as vectors of
arbitrary length over [0, 1]. We say that a TRep game, G is (E, 𝑘 )-decodable if there exists
an e"cient decoding function, D : ω ⇐ [0, 1]⇓ such that when sampled using any 𝜷 ↑ E, is
identical to 𝑘 sampled using nature’s private state, i.e.,

D(𝜷) ⇔ 𝑘 (R1, . . . ,R𝑀)

We call 𝑘 the reputation function, and we say, the set of strategy pro!les, E, 𝑘 -encodes nature’s
private state.

In words, the idea of the game is for the players’ to encode some function over nature’s private
state with a suitable set of strategy pro!les. They may have some belief about nature’s state a priori
which in$uences their utility and strategies.

Before we introduce the utilities, we translate the structure of our game into a graph which
formalizes the blockchain network model we are interested in.

De!nition 3.2 (Trustworthy Reputation Graphs). Let 𝑏 =
(
𝑐 = V ↖ V̂, 𝑋,R

)
be a bipartite,

directed, edge-weighted, partially vertex-weighted graph, where R is the vector of vertex weights
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on V̂ only, and (𝑅, 𝑆,𝑑) ↑ 𝑋 i# there exists an edge from 𝑅 ↑ V to 𝑆 ↑ V̂ with weight 𝑑 . We
denote by V = {𝑅1, . . . ,𝑅𝑂} the set of 𝑂 users and by V̂ = {𝑆1, . . . , 𝑆𝑀} the set of𝑀 servers.
𝑏 is a Trustworthy Reputation Graph or TRep Graph if,
(i) edges are directed from V to V̂ and therefore, vertices in V̂ are sinks (i.e., out-degree is 0),
(ii) weights are non-negative and for all 𝑅 ↑ V ,

∑
(𝑅,·,𝑉 ) 𝑑 = 1, i.e., the weights on the outgoing

edges from each vertex, respectively, sum up to 1,
(iii) R = (R1, . . . ,R𝑀), and R𝑁 ↑ [0, 1] for all 𝑃 ↑ [𝑀], i.e., the weight on each vertex in V̂ is in

[0, 1].
For each𝑅𝐿 ↑ V , let𝝐 ( 𝜴) be the vector of edge weights to V̂ . So𝑑 (𝐿 )

𝑁 is equal to𝑑 if
(
𝑅𝐿 , 𝑆 𝑁 ,𝑑

)
↑ 𝑋

and 0 otherwise. We call this vector,𝝐 ( 𝜴) the endorsements of 𝑅𝐿 .
For each 𝑆 𝑁 ↑ V̂ , call R𝑁 the trustworthiness score of 𝑆 𝑁 .

In e#ect, the edge weights from each vertex in V are modeled as a probability distribution over
the vertices in V̂ . It is easy to see the correspondence between TRep games and TRep graphs. The
mixed strategies of each player correspond to the outgoing weighted edges from V (with respect
to some indexing), and nature’s state corresponds to the vertex weights.

We are now ready to introduce the PageRank-inspired utility and decoding function that underlies
TRep games.

3.1 Defining Utilities and Decoding Using PageRank
We examine the (weighted) PageRank algorithm on TRep Graphs. First, we show how PageRank
can be used to evaluate servers. Next, we show a corresponding utility function, de!ned using
Personalized PageRank, that when used in TRep games enable PageRank’s evaluation to recover
the (relative) trustworthiness of the servers.

3.1.1 Evaluating Servers. Let 𝑏 be a TRep graph. We cannot use such a graph structure readily
with PageRank due to the issue of dangling vertices. Observe that every vertex in V̂ is dangling
(out-degree 0) due the directed unidirectional nature of the graph. We resolve this issue by adding
a self-loop to each vertex in V̂ .

Wemake amodi!cation to the general PageRank algorithm reminiscent of Personalized PageRank.
In the case where the random surfer decides to restart, instead of teleporting to any vertex uniformly
at random, we restrict its teleportation toV uniformly at random. That is, a randomwalkwill always
restart from V . The intuition behind this modi!cation is analogous to (generalized) Personalized
PageRank—in our model, we are only interested in the importance of the servers, V̂ , derived from
the users; more speci!cally, we are interested in the relative contribution PageRank of the users for
each server.

Let 𝑙 be the transition matrix for 𝑏 with the above self-loop alteration. We arrange the vertices
such that the !rst 𝑂 indices correspond toV and the next𝑀 correspond to V̂ . Then, we wish to
calculate,

𝜶 = 𝜶 ((1 → 𝑓)𝑙 ) + 𝑓
[ 1
𝑂 · 1𝑂↘1 0𝑀↘1

]
Let 𝑙 ↓ be the Markov chain underlying the above relation (i.e., including restart). We remark

that 𝜶 exists and is unique. Observe that clearly every user is accessible from any server. As for the
other way around, there are two cases, (1) for all 𝑆 ↑ V̂ , there exists 𝑅 ↑ V such that there is an
edge from 𝑅 to 𝑆 . In that case, the underlying Markov chain is clearly irreducible; (2) there exists
𝑆 ↑ V̂ , such that for all 𝑅 ↑ V , there is no edge from 𝑅 to 𝑆 . In that case, 𝑆 is a transient state and its
long term distribution approaches 0. In some sense, 𝑆 is irrelevant to the long term behavior of the
Markov chain and can be ignored. So long as the entire graph is not transient states, we can prune
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all such transient servers where their probability is 0 in the stationary distribution; the remainder
of the states will constitute an irreducible Markov chain (with aperiodicity due to self-loops) for
which there exists a unique stationary distribution. Note that this !ts our intuition precisely—𝑆 ’s
importance as indicated by the stationary distribution is 0 as no user trusts it.

For the prescribed graph structure, we can calculate the PageRank of each server explicitly using
the system of linear equations. Let Pr

[
𝑅𝐿 ⇐ 𝑆 𝑁 | 𝑙

]
= 𝑑 (𝐿 )

𝑁 , the probability of transitioning from
vertex 𝑅𝐿 to 𝑆 𝑁 as speci!ed in𝑙 . Note that Pr[𝑆 ⇐ 𝑆 ↓ | 𝑙 ] = 0, and Pr[𝑆 ⇐ 𝑆 | 𝑙 ] = 1 for any 𝑆 ω 𝑆 ↓,
𝑆, 𝑆 ↓ ↑ V̂ . Also, for 𝑅 ↑ 𝑐 , Pr[𝑅 ⇐ 𝑆 | 𝑙 ↓] = (1 → 𝑓) Pr[𝑅 ⇐ 𝑆 | 𝑙 ] as with probability 𝑓 we restart
to V . Therefore, for each 𝑆 ↑ V̂ , we have,

𝜶 (𝑆) = Pr [𝑆 ⇐ 𝑆 | 𝑙 ↓] 𝜶 (𝑆) +
∑
𝑅↑V

Pr [𝑅 ⇐ 𝑆 | 𝑙 ↓] · 𝜶 (𝑅)

= (1 → 𝑓) Pr [𝑆 ⇐ 𝑆 | 𝑙 ] 𝜶 (𝑆) + (1 → 𝑓)
∑
𝑅↑V

Pr [𝑅 ⇐ 𝑆 | 𝑙 ] · 𝜶 (𝑅)

= (1 → 𝑓)𝜶 (𝑆) + (1 → 𝑓)
∑
𝑅↑V

Pr [𝑅 ⇐ 𝑆 | 𝑙 ] · 𝜶 (𝑅)

=↙ 𝜶 (𝑆) = 1 → 𝑓

𝑓

∑
𝑅↑V

Pr [𝑅 ⇐ 𝑆 | 𝑙 ] · 𝜶 (𝑅)

By symmetry in 𝑙 ↓, 𝑔 (𝑅) = 𝑔 (𝑅↓) = 𝑝 for all 𝑅,𝑅↓ ↑ V and thus,

𝜶 (𝑆) = 𝑝
1 → 𝑓

𝑓

∑
𝑅↑V

Pr [𝑅 ⇐ 𝑆 | 𝑙 ]

Therefore, the PageRank of each server is directly proportional to the sum of its incoming
endorsements from the users,V . Since we are only interested in the PageRank of the servers, we
normalize on the set of the servers which is equivalent to taking the average of the incoming
endorsements, and de!ne, the “reputation score” of server 𝑃 , 𝑆 𝑁 ↑ V̂ as,

𝑈 𝑁 =
1
𝑂

∑
𝑅↑V

Pr[𝑅 ⇐ 𝑆 | 𝑙 ] (1)

Normalizing yields the convenient property that the reputation scores sum up to 1, since,
∑
𝑊𝐿 ↑V̂

𝑈 𝑁 =
∑
𝑊↑V̂

(
1
𝑂

∑
𝑅↑V

Pr[𝑅 ⇐ 𝑆 | 𝑙 ]
)
=

1
𝑂

∑
𝑅↑V

∑
𝑊↑V̂

Pr[𝑅 ⇐ 𝑆 | 𝑙 ] = 1
𝑂

∑
𝑅↑V

1 =
1
𝑂
· 𝑂 = 1

Later, we show how assuming rational players, TRep games—with the utilities as below—ensure
the reputation scores correspond to the relative trustworthiness.

3.1.2 Utilities as a Function of Contribution. Similarly, we analyze Contribution PageRank on 𝑙
and observe that, 𝜶→1

𝝐 (𝑅) for 𝑅 ↑ V, 𝑆 ↑ V̂ is directly proportional to Pr[𝑅 ⇐ 𝑆 | 𝑙 ]. Due to the
self-loop, 𝑆 also has a contribution toward itself, and this indeed appears as, 𝜶→1

𝝐 (𝑆) = 1; however
we are only interested in the (relative) contribution of users and therefore, we use the relative
contribution with respect to only V ,

𝜸→1
𝝐 |V (𝑅) = Pr[𝑅 ⇐ 𝑆 | 𝑙 ]∑

𝑅↓ ↑V Pr[𝑅↓ ⇐ 𝑆 | 𝑙 ] (2)

This quantity is what we will use when determining the utilities of each player. Recall that in our
model, the servers perform some prescribed task such that the behavior/correctness of the server
can be evaluated. Speci!cally, we restrict ourselves to Bernoulli random variables with probabilities
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from R. For each server that behaves “correctly”, we distribute a fraction of unit reward proportional
to the “contribution” of the user to the server’s reputation score.

And so, we derive the (expected) payo# of user 𝑅 in the graph as,
∑
𝑊↑V̂

R𝑁 · 𝜸→1
𝝐 |V (𝑅) =

∑
𝑊↑V̂

R𝑁
Pr[𝑅 ⇐ 𝑆 | 𝑙 ]∑

𝑅↓ ↑V Pr[𝑅 ⇐ 𝑆 | 𝑙 ]

When translating this to TRep games, the transition probabilities map to (mixed) strategies. The
trustworthiness of the servers map to nature’s private state which !xes nature’s strategy as R.
While players have beliefs about the trustworthiness of the servers (i.e., nature’s state in the

game), their utility does not depend on it. In full generality, the types can be used to establish a
distribution over nature’s state enabling Bayesian probability to be used in the analysis of the best
response. Thus, we omit the types from the domain for brevity.
Let 𝜻 =

(
𝜻 (1) , . . . , 𝜻 (𝜻)

)
↑ ω be a strategy pro!le for the players, and 𝜼 = (𝑉1, . . . , 𝑉𝑀) ↑ N be

nature’s strategy (which will be !xed). Then, we de!ne the (expected) utility over mixed strategies
for 𝑄𝐿 , 𝑅𝐿 : ω ↘ ωN ⇐ [0, 1],

E [𝑅𝐿 (𝜻, 𝜼)] =
∑
𝑁↑ [𝑀]

𝑉𝐿 ·
𝑇 (𝐿 )𝑁∑

𝑃↑ [𝑂] 𝑇
(𝑃 )
𝑁

Denote 𝑇 (→𝐿 )𝑁 :=
∑

𝑃↑ [𝑂];𝑃ω𝐿 𝑇
(𝑃 )
𝑁 , the sum of every other players’ probability for action 𝑃 . Hence,

E [𝑅𝐿 (𝜻, 𝜼)] =
∑
𝑁↑ [𝑀]

𝑉𝐿 ·
𝑇 (𝐿 )𝑁

𝑇 (𝐿 )𝑁 + 𝑇 (→𝐿 )𝑁

(3)

3.2 TRep Games Under Di!erent Classes of Beliefs
We study the general TRep games by specifying di#erent distributions of types (classes of beliefs)
held by the players. For each distribution, we present an appropriate E and 𝑘 for which we can
prove decodability. We reason that these choices are natural and highlight a powerful use case in
PoR blockchains. Looking ahead, we will use the same decoding function for both games. Precisely,
the decoding function will be the reputation score of the servers we derived using PageRank.

Looking ahead, in our analysis, the di#erent distributions of types we study are,
(1) There is only one type: (R1, . . . ,R𝑀) and is identically assigned to every player. This represents

the case where every player has perfect information about nature (Section 4),
(2) There is an in!nite number of types of the form, (R1 ± 𝐿, . . . ,R𝑀 ± 𝐿) for some small 𝐿 > 0

but every player still has the same type. This is analogous to modeling the players beliefs as
an additive noisy signal over nature’s state (Section 5).

4 Perfect Information About Nature
In this section, we study the !rst of the two type distributions mentioned above—every player has
the same type that accurately capture nature’s private state. Equivalently, every player has perfect
information about nature’s private state, the probability of its coin-$ips, R𝑁 . In this case, we de!ne
the type space for every 𝑄𝐿 as 𝑙𝐿 = 𝑙perfect = [0, 1]𝑀 . We denote this TRep game as Gperfect. Observe
that Gperfect can be thought of as a (non-bayesian) game against nature with complete and perfect
information, where every player aims to maximize, E [𝑅𝐿 (·,R)]. (The expectation is over nature’s
randomness and the players’ strategies.)

We make a few observations,
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Observation 4.1. Gperfect is (totally) symmetric, and thus a symmetric Nash equilibrium (NE) exists
[Nash, 1951].

Observation 4.2. Gperfect is (expected) constant-sum, with
∑

𝑁↑ [𝑀] R𝑁 when players act rationally.
What we mean here is that the total utility available to all players (the pot) is !xed in expectation.
While there exists strategies where some of amount of the pot is “wasted”—e.g. if R1 > 0 but no
player picks 1 as their action— this is not rational assuming mixed strategies as a player (𝑄𝐿 ) can
assign a tiny probability to action 𝑚𝐿 = 1 and strictly improve their expected utility (even if it’s split
with other players). In other words, if any player plays a strategy such that the probability for each
action 𝑃 (where R𝑁 ω 0) is positive, then the game is constant-sum.

We show that Gperfect is (ENE, 𝑘1)-decodable for,
• ENE equal to the set of all (expected) Nash equilibria of the game, and
• 𝑘1 equals N, the L1-normalizing function.

Observe that 𝑘1 preserves ratios. That is, 𝑘1 (R) = N(R), and
N(R)𝐿
N(R) 𝑁

=
R𝐿
R𝑁

In words, any (expected) NE of the TRep game, Gperfect encodes the pairwise ratios of the
components of nature’s private state.

We !rst prove the following lemma about the space of equilibria of this simpli!ed game,

L$--& 4.3. Gperfect has a unique (expected) NE. The equilibrium is the symmetric strategy pro!le,
𝜻↓ = (𝜻↓ (1) , . . . , 𝜻↓ (𝜻) ), where 𝜻↓ ( 𝜴) = N(R) for all 𝑁 . Therefore, ENE = {𝜻↓}.

P*!!(. Let 𝑎 =
(∑

𝑁↑ [𝑀] R𝑁
)
/𝑂. Since the game is symmetric, 𝑎 is an upper bound on the

(expected) payo# achievable by any player in a Nash equilibria. First, we show that every player
can guarantee a minimum (expected) payo# of 𝑎.

Fix 𝑄𝐿 and its strategy, 𝜻 ( 𝜴) = N(R).
As a function of the strategies of the other players, the expected utility,

E
[
𝑅𝐿

(
N(R), 𝜻 (→𝜴) ;R

)]
=

∑
𝑁↑ [𝑀]

N(R) 𝑁 · R𝑁

𝜻 (→𝜴)
𝜼 + N(R) 𝑁

(using (3))

We observe that the Hermitian of the above function is negative de!nite and therefore is strictly
convex as a function of 𝜻 (→𝜴)

𝜼 ’s over the domain,(
𝜻 (→𝜴)
1 , . . . , 𝜻 (→𝜴)

𝜽

)
: ∝𝑃 ↑ [𝑀], 𝜻 (→𝜴)

𝜼 ↗ 0, and
∑

𝑁↑ [𝑀] 𝜻
(→𝜴)
𝜼 = (𝑂 → 1)


, which is bijective toω(→𝐿 ) =∏

𝑁↑ [𝑀], 𝑁ω𝐿 ω 𝑁 , the strategy space of all other players.
Therefore, E [𝑅𝐿 ] has a unique global minimumwith respect to the 𝜻 (→𝜴)

𝜼 ’s. Partially di#erentiating
in each variable, we !nd that the minimum is achieved at, 𝜻 (→𝜴)

𝜼 = (𝑂 → 1)N (R) 𝑁 . And therefore
the minimum value of E

[
𝑅𝐿

(
R;N(R), 𝜻 (→𝜴) ) ] is,

∑
𝑁↑ [𝑀]

N(R) 𝑁 · R𝑁

𝜻 (→𝜴)
𝜼 + N(R) 𝑁

=
∑
𝑁↑ [𝑀]

N(R) 𝑁 · R𝑁

(𝑂 → 1)N (R) 𝑁 + N(R) 𝑁
=

∑
𝑁↑ [𝑀]

R𝑁

𝑂
= 𝑎

Therefore, an (expected) payo# of 𝑎 is achievable by every player by playing N(R) as its strategy.
(It is non-exploitable.) Moreover if the other players play any strategy such that there exists 𝑃 and
𝑇 (→𝐿 )𝑁 ω (𝑂 → 1)N(R) 𝑁 , then playing N(R) guarantees payo# strictly greater than 𝑎. As any Nash
cannot exceed individual payo# of more than 𝑎, we must have that if 𝜽 =

(
𝜽 (1) , . . . , 𝜽 (𝜻)

)
is Nash

then, 𝜽 (→𝜴)
𝜼 = (𝑂 → 1)N (R) 𝑁 for all 𝑁 ↑ [𝑂], 𝑃 ↑ [𝑀].
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This determines a full-rank linear system whose solution is 𝑝 (𝐿 )𝑁 = N(R) 𝑁 , which is exactly 𝜻↓.
This implies, that if a Nash exists, it must be 𝜻↓.
We can conclude that 𝜻↓ must be Nash since we know that there exists a (symmetric) NE in

symmetric games as per the observation above. This concludes the proof of the lemma.

Recall that strategies in TRep games map to endorsements in TRep graphs. For each server 𝑃 , we
computed a reputation score, 𝑈 𝑁 that was directly proportional to its PageRank, which simpli!ed to
taking an average over incoming endorsements. Translating back to TRep games, we de!ne the
PageRank (PR) decoding function, DPR : ω ⇐ [0, 1]𝑀 ,

DPR (𝜻) =
1
𝑂
· 

∑
𝐿↑ [𝑂]

𝜻 (𝐿 )1 , . . . ,
∑
𝐿↑ [𝑂]

𝜻 (𝐿 )𝑀



i.e., 𝑞PR takes an average of the (mixed) strategies and is the TRep-game analogue of computing
the reputation score.

Finally, we show,

T.$!*$- 4.4. Gperfect is (ENE, 𝑘1)-decodable using 𝑞PR.

P*!!(. Using Lemma 4.3, we have ENE = {(N(R), . . . ,N(R))}, which implies,

DPR (ENE) =


1
𝑂
· 

∑
𝐿↑ [𝑂]

N(R)1, . . . ,
∑
𝐿↑ [𝑂]

N(R)𝑀





= {(N(R)1, . . . ,N(R)𝑀)}
= {N(R)}
= 𝑘1 (R)

Therefore, equilibria in TRep games can be decoded using PageRank to the relative values of
nature’s state (equivalently, to the relative trustworthiness of the servers).

We remark that Gperfect has the neat property that every players’ strategy is exactly the function
on nature’s state we would like to decode. Therefore, the decoding function could have also been to
simply use any players’ strategy in a Nash equilibrium as the output. While this is indeed true, this
is merely a coincidence due to the simpli!ed nature of the above game, which makes the symmetric
NE being unique. The PR decoder provides a unifying treatment in which we use PageRank for
both the utilities and decoding, and we believe this methodology can extend to more complicated
graph structures.

5 (Consistent) Noisy Information About Nature
We continue with our study of TRep games and in this section explore decodability when every
player has an approximation of nature’s private state, R↓ = (R↓

1, . . . ,R↓
𝑀). We suppose that R↓

𝑁 ↑
[0, 1] is distributed such that its expecation as a random variable is equal to R𝑁 , and there exists a
constant, 𝐿 > 0, and some probability, 𝑟 , such that Pr

[
R↓

𝑁 ε
[
Rj → 𝐿,Rj + 𝐿

] ]
′ 𝑟 . We model it as

such to capture the idea of con!dence intervals when approximating a random variable. E.g., the
sample mean is centered around the true value and is normally distributed. Write, R↓

𝑁 = R𝑁 + 𝑠 𝑁𝐿↓

for 𝑠 𝑁 ↑ {→1, 1}.
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We de!ne the type space for every player, 𝑄𝐿 , as 𝑙𝐿 = 𝑙approx = [0, 1]𝑀 . We assume that every
player has the same type, 𝜹𝜴 = 𝜹𝜼 = R↑ = (R↓

1, . . . ,R↓
𝑀), i.e. every player has the same belief about

nature’s state. Denote this game as Gnoisy.
As we shall see, 𝐿 and 𝑟 will determine the “slack” in the relative trustworthiness that we’re able

to decode.
In Section 4 above, we showed that in the perfect information setting (Gperfect), where every

player a priori precisely knew nature’s private state, the unique NE encoded the relative values of
nature’s private state, R. This is of course still true in Gnoisy since the utilities have not changed;
however, the players operate with incomplete information and so, we must deal with a weaker
notion than Nash.
Instead, we show that TRep games with the noisy but identical type distribution shown above

are (E!, 𝑘2)-decodable for,
• E! is the singular set of the “truth-telling” strategy pro!le, denoted by 𝜻tt, in which every
players playN(𝜹𝜴) as their strategy.We call the strategyN(𝜹𝜴) as “truth-telling” as it represents
some !xed function of the players’ belief about the state of nature, which it can locally
compute.

• 𝑘2 : [0, 1]𝑀 ⇐ [0, 1]𝑀 is a randomized function that takes as input 𝜾 = (𝑅1, . . . ,𝑅𝑀), and
outputs 𝜴 such that Pr

[
E [≃𝜴 → N(𝜾)≃∞] ′ 𝑋

≃R≃1

]
↗ 1 →𝑀𝑟 → 𝑡, where 𝑡 is an upper bound

on the probability that |≃R↑≃1 → ≃R≃1 | ↗ 𝑠 for some small constant, 𝑠 . In the end of the
section, we will show that 𝑡 is exponentially-decreasing in𝑀. In words, with high probability,
𝑘2, in expectation, outputs a vector “close” to the 𝑎1-normalized vector with respect to the
𝑎∞-norm.

In the following we show that 𝜻tt, is an 𝐿↓-(Nash) equilibrium [Nisan et al., 2007] for Gnoisy, where
𝐿↓ is decreasing in 𝑂/𝑀2.

L$--& 5.1. Assuming 𝐿 = 𝑢 (1/𝑂), the “truth-telling” strategy pro!le, 𝜻tt, is 𝐿↓-NE for 𝐿↓ = 𝑢 (𝑀2/𝑂).
P*!!(. All players playing N(R) guarantees a payo# that is at most 𝐿↓ less than the payo# from

the best response. 𝑄𝐿 ’s (expected) utility as a function of everyone else playing truthfully is,

E [𝑅𝐿 (𝜿, 𝑇!→𝐿 ;R)] =
∑
𝑁↑ [𝑀]

𝑣 𝑁 · R𝑁

(𝑂 → 1)N(R↑) 𝑁 + 𝑣 𝑁

The above function is strictly concave on the domain of 𝜿 :

𝑣𝐿 ↗ 0;

∑
𝐿↑ [𝑂] 𝑣𝐿 = 1


, and therefore

obtains its maximum at a unique point. Partially di#erentiating and simplifying yields maximum
value at 𝜿↓,

𝑣⇓𝑁 = 𝑂


R𝑁R↓

𝑁∑
𝑃↑ [𝑀]

∈
R𝑃R↓

𝑃
→ (𝑂 → 1)N(R↑) 𝑁

and thus, the deviation from the truthful strategy in each component,

ω𝑣 𝑁 = 𝑣⇓𝑁 → N(R↑) 𝑁 = 𝑂


R𝑁R↓

𝑁∑
𝑃↑ [𝑀]

∈
R𝑃R↓

𝑃
→ 𝑂

R↓
𝑁

≃R↑≃1
We coarsely approximate 𝐿↓. For 𝐿 = 𝑢 (1/𝑂), ω𝑣 𝑁 is small, and we can approximate the change

in utility, 𝐿↓ = E [𝑅𝐿 (𝜿↓, 𝑇!→𝐿 ;R)] → E [𝑅𝐿 (𝜻tt;R)] using linear approximation. We obtain,

𝐿↓ ′ 𝑀2 (𝑂 → 1)
𝑂2

1 + 𝐿

1 → 𝐿
. This completes the proof of the lemma.

We remark that the above is an asymptotic bound that aims at showing that for small enough 𝐿 ,
𝐿↓ is inversely proportional to 𝑂/𝑀2. In particular, for our blockchain-motivated scenario, where a
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natural assumption is that 𝑂 ∋𝑀 (as is the case in major cryptocurrencies) 𝐿↓ will be monotonically
decreasing as the system scales. We note in passing that our numerical experiments demonstrate
that the value of 𝐿↓ would typically be much smaller than𝑀2/𝑂, even for a large number of users.
This is consistent with our intuition that in our game (where utilities are normalized) playing one’s
beliefs guarantees a payo# close to the best possible payo# one can hope even when everyone
is perfectly informed; therefore small deviations from this strategy should not yield major gains
in utility. We conjecture that playing the truth-telling strategy is an approximate Bayesian Nash
Equilibrium for a tighter 𝐿↓ (dominated by 𝐿 and 𝑟). We leave this as a question for future work.
Now, unlike Gperfect, we cannot perfectly decode 𝑘1 (R) = N(R) since the players only know an

approximation of nature’s state . Instead, we prove decodability for the “weaker” function, 𝑘2, that
only approximates the 𝑎1-normalized function in the 𝑎∞-norm. Again, wewill use the same decoding
function, 𝑞PR to show that PageRank approximately decodes to the relative trustworthiness scores
of the servers.
We !rst show that Pr [|≃R↑≃1 → ≃R≃1 | ↗ 𝑠] ′ 𝑡 for some 𝑡 that is exponentially small in 𝑀

using Hoe#ding’s bound. Formally, we treat R↓
𝑁 as a random variable. By assumption, we have

E
[
R↓

𝑁
]
= Rj. Also, ≃R↑≃1 =

∑
𝑁↑ [𝑀] R↓

𝑁 by de!nition, which implies

E
[R↑

1

]
= E

[∑
R↓

𝑁

]
=
∑

E
[
R↓

𝑁
]
=
∑

R𝑁 = ≃R≃1 . (4)

Therefore, Pr [|≃R↑≃1 → ≃R≃1 | ↗ 𝑠] = Pr [|≃R↑≃1 → E [≃R↑≃1] | ↗ 𝑠], which by Hoe#ding’s bound
[Hoe#ding, 1963],

Pr
[R↑

1 → E
[R↑

1

]  ↗ 𝑠
]
′ exp

(
→ 𝑠2

4𝐿2𝑀

)
= 𝑡

which is exponentially decreasing in𝑀. Since the above holds for any 𝑠 , for su"ciently large𝑀,
we can approximate, R↑

1 △ E[
R↑

1]
𝑌𝑍. (4)
= ≃R≃1 . (5)

Using the above, we show,

T.$!*$- 5.2. Gnoisy is (E!, 𝑘2)-decodable.
P*!!(. We have, E! = {(N(R↑), . . . ,N(R↑))}, which implies, DPR (E) = {N(R↑)}
We calculate,

E [≃DPR (E!) → N(R)≃∞] = E
[N(R↑) → N(R)


∞
]
= max

𝑁↑ [𝑀]
E
[N(R↑) 𝑁 → N(R) 𝑁

]

We restrict ourselves to the intersection of events, 𝑋 =

R↓

𝑁 ↑
[
Rj → 𝐿,Rj + 𝐿

]
for all 𝑃 ↑ [𝑀]


,

and 𝑜 = {|≃R↑≃1 → E [≃R↑≃1] | ′ 𝑠}.
Now, Pr[𝑋 ▽𝑜 ] ↗ 1→Pr[𝑋𝑎 ̸𝑜𝑎 ] ↗ 1→ (Pr[𝑋𝑎 ] +Pr[𝑜𝑎 ]), where𝑤𝑎 is de!ned the complement

of event𝑤. By union bound, Pr[𝑋𝑎 ] ′ 𝑀𝑟 , and, Pr[𝑜𝑎 ] ′ 𝑡 as we showed above. Thus, Pr[𝑋▽𝑜 ] ↗
1 →𝑀𝑟 → 𝑡.

Conditioned on 𝑋 ▽ 𝑜 , we have 𝐿↓ ′ 𝐿 and,

max
𝑁↑ [𝑀]

E
[N(R↑) 𝑁 → N(R) 𝑁

] ′ max
𝑁↑ [𝑀]

E
[R𝑁 + 𝑠 𝑁𝐿↓

≃R↑≃1
→

R𝑁

≃R≃1


]

𝑌𝑍. (5)△ max
𝑁↑ [𝑀]

E
[R𝑁 + 𝑠 𝑁𝐿↓

≃R≃1
→

R𝑁

≃R≃1


]

′ 𝐿

E [≃R≃1]
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We conclude that E [≃DPR (E!) → N(R)≃∞] ′
𝐿

E [≃R≃1]
with probability at least 1 →𝑀𝑟 → 𝑡.

Intuitively, the above result demonstrates that for su"ciently small 𝑟 , i.e., su"ciently high
con!dence on the interval, as the system scales in𝑀, the decoding of the above approximate Nash
becomes order preserving with respect to the ground truth. In fact, assuming su"cient large gaps
in the ground truth, the above will be true even for small values of𝑀.

6 Connection to PoR/PoS Blockchain
We show how our TRep games can be applied to PoR blockchains, e.g., [Kleinrock et al., 2020].
Since the novelty of our work is not the application but rather TRep games themselves, the purpose
of this section is to demonstrate the connection, rather than providing the concrete blockchain
construction. For this reason, we will keep the discussion informal.

Recall that in a (byzantine-fault tolerant) PoR blockchain like [Kleinrock et al., 2020], a committee
of nodes is selected for proposing and voting on each block. Most blockchain-based cryptocurrency
systems, give rewards (in terms of coins) to the members of such committee to incentivize participa-
tion. However, the rest of the users of the system typically, do not receive any rewards. An exception
here is systems that o#er their users “dividends” or interest for participation in order to boost
adoption and/or availability (e.g., Algorand) and Proof-of-Stake blockchains that support stake
delegation (e.g., Cardano, Ethereum, etc. ) where users can delegate their stake to stake-pools and
they get a fraction of their rewards when their stake pool (operator) is selected to propose the next
block. We conjecture that our proposed mechanisms can be used also to incentivize truthful stake
delegation. We view this as an interesting research question, albeit less relevant than reputation in a
PoR system, as untruthfully extracted reputation can hurt the systems security, whereas untruthful
stake delegation does not: if the majority of stake is in honest hands, then honest parties will
delegate truthfully, otherwise, security cannot be ensured.
Here, we show how to encode our payo# function into the PoR blockchain for rewarding the

users/endorsers in ways that allow everyone to su"ciently estimate their belief of the ground
truth. Consistently with [Kleinrock et al., 2020] we will assume a static trustworthy reputation
system—i.e., the trustworthiness of the nodes is !xed (part of the ground truth) from the protocol’s
onset. At the beginning of the system’s execution, a biased coin is (privately) $ipped for each node
𝑇𝐿 which is heads with probability R𝐿 . If the outcome of the coin is heads, then 𝑇𝐿 is counted as
corrupted/Byzantine. We will refer to parties who are not corrupted as honest. We remark that an
honest party follows the protocol, whereas a byzantine party might not. For the purpose of this
analysis, we will assume that all byzantine-corrupted parties are eventually faulty, in the sense that
there is a bound 𝑥 ↑ N such that all corrupted parties will be faulty during 𝑥 rounds of the protocol.
We !nd the assumption of eventual-faultiness natural, as corrupted parties who remain honest
have no negative e#ect on the security properties of the blockchain.

We note that static reputation and party set implies that discovery of the ground truth corresponds
to the so-called bootstrapping of the blockchain, in particular, creation of its parameters that can be
engraved on its genesis block, which that is agreed upon by all parties (users and nodes). Indeed,
the reputation system in [Kleinrock et al., 2020] is actually part of their PoR blockchain’s genesis
block written on both the PoR and the (fallback) PoS blockchain. Therefore, in the following we
focus on how to perform such bootstrapping.
An important consideration here is that in absence of publicly agreed trustworthy reputation,

agreeing on such genesis-block parameters is impossible without further assumptions. This is
where the fallback PoS change becomes handy in the bootstrapping phase, as the bootstrapping
happens on the PoS blockchain.
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In the following we show how to use our game(s) to perform this bootstrapping. For simplicity
we focus this discussion on the perfect information game Gperfect. Recall that Gperfect assumes that
users have perfect knowledge of the state of nature. At the onset of the protocol, all users play
Gperfect and record their strategies on the PoS blockchain. The bootstraping protocol then proceeds
as follows: we execute the PoR/PoS protocol, with the di#erence that instead of using the lottery
from [Kleinrock et al., 2020] for picking committees, we follow a !xed round-robin schedule: order
all nodes lexicographically (e.g., according to their wallet address); in the !rst slot choose the !rst
𝑝 = polylog(𝑀) servers, then the next 𝑝 and so on.

It is important to note that in this phase, we have no information about reputation so the safety
and/or liveness of the PoR chain might be violated in several slots. The fallback property of the
PoR/PoS chain from [Kleinrock et al., 2020], guarantees that when this happens, it is detected on the
secondary chain and at least some corrupted node is discovered. When this happens, we restart the
bootstrapping with this node excluded. The above process is done until some iteration completes 𝑥
(the eventual-faultiness parameter) rounds.

At the end of this phase, the system looks at all information on the bootstraping phase recorded
on the PoS blockchain and rewards users according to Gperfect, where servers detected as malicious
correspond to nature sampling 0 and the remainder as sampling 1. Finally, the system executes
the decoding function 𝑞𝑏𝑐 and the associated reputation scores are adopted as the nodes’ repu-
tation. This completes the bootstrapping and the blockchain can then start running the protocol
from [Kleinrock et al., 2020] with the extracted reputation scores as its reputation system.
The following is a corollary of Lemmas 4.3 and 5.1 by observing that the assumption is that

a node 𝑇𝐿 is honest with probability R𝐿 and every corrupted node will be faulty (and recorded as
corrupted) in the boostraping phase—this follows directly by the evantual-faultiness assumption.
The above means that the rewards for parties will occur with the same probability as when nature
moves in Gperfect

C!*!//&*6 6.1. Assuming the users have perfect (resp. consistent noisy) information on the nodes’
trustworthiness, playing according to their truth-telling strategy is a Nash equilibrium (resp, 𝐿↓-best
response for 𝐿↓ as in Lemma 5.1).

The decodability property of the games then ensures that the blockchain can compute an
ordering of the servers according to their trustworthiness, which has no inversions in the perfect
information case and a small (negligible in𝑀 when 𝑟 is negligible in𝑀) probability of inversions in
the incomplete information case. Using this ordering, if selecting the top 𝑦 = polylog(𝑀) nodes
yields a committee where the number of corrupted parties is at most (1/2→ 𝑝↓↓)𝑦 , for some constant
𝑝↓↓ (which is the assumption in [Kleinrock et al., 2020]) then selecting the top 0.9𝑦 parties will also
yield an honest majority committee with overwhelming probability. We defer to [Kleinrock et al.,
2020] for more details.

7 Conclusion and Future Work
We introduced a class of games, called trustworthy reputation games, which is motivated by
the problem of a blockchain system publicly extracting its users’ collective perception of the
trustworthiness of the blockchain nodes. Our games make a novel use of the PageRank algorithm
on bipartite graphs for extracting reputation, which we believe can be of independent interest. Our
work opens a number of interested questions, including how to extend our treatment to repeated
games, as a means of allowing dynamically updateable reputation systems, and investigating the
behavior of our PageRank model on di#erent classes of graphs.



Petros Drineas, Rohit Nema, Rafail Ostrovsky, and Vassilis Zikas 19

Acknowledgments
Petros Drineas, Rafail Ostrovsky, and Vassilis Zikas were supported in part by the Möbby.ai project.

References
Dilip Abreu and David Pearce. 2007. Bargaining, Reputation, and Equilibrium Selection in Repeated Games with Contracts.

Econometrica 75, 3 (May 2007), 653–710. https://doi.org/10.1111/j.1468-0262.2007.00765.x
Reid Andersen, Christian Borgs, Jennifer Chayes, John Hopcraft, Vahab S. Mirrokni, and Shang-Hua Teng. 2007. Local

Computation of PageRank Contributions. In Algorithms and Models for the Web-Graph, Anthony Bonato and Fan R. K.
Chung (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 150–165.

Gilad Asharov, Yehuda Lindell, and Hila Zarosim. 2013. Fair and E"cient Secure Multiparty Computation with Reputation
Systems. In Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference on the Theory and Application of
Cryptology and Information Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part II (Lecture Notes in Computer
Science, Vol. 8270), Kazue Sako and Palash Sarkar (Eds.). Springer, 201–220. https://doi.org/10.1007/978-3-642-42045-0_11

Pablo D. Azar, Robert Kleinberg, and S. Matthew Weinberg. 2019. Prior independent mechanisms via prophet inequalities
with limited information. Games and Economic Behavior 118 (2019), 511–532. https://doi.org/10.1016/j.geb.2018.05.006

Monica Bianchini, Marco Gori, and Franco Scarselli. 2005. Inside PageRank. ACM Trans. Internet Technol. 5, 1 (Feb. 2005),
92–128. https://doi.org/10.1145/1052934.1052938

Alex Biryukov, Daniel Feher, and Dmitry Khovratovich. 2017. Guru: Universal Reputation Module for Distributed Consensus
Protocols. Cryptology ePrint Archive, Paper 2017/671. https://eprint.iacr.org/2017/671

Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Comput. Networks
30, 1-7 (1998), 107–117. https://doi.org/10.1016/S0169-7552(98)00110-X

Sherman S. M. Chow. 2007. Running on Karma - P2P Reputation and Currency Systems. In Cryptology and Network
Security, 6th International Conference, CANS 2007, Singapore, December 8-10, 2007, Proceedings (Lecture Notes in Computer
Science, Vol. 4856), Feng Bao, San Ling, Tatsuaki Okamoto, Huaxiong Wang, and Chaoping Xing (Eds.). Springer, 146–158.
https://doi.org/10.1007/978-3-540-76969-9_10

Martin W. Cripps, Je#rey C. Ely, George J. Mailath, and Larry Samuelson. 2008. Common Learning. Econometrica 76, 4 (July
2008), 909–933. https://doi.org/10.1111/j.1468-0262.2008.00862.x

Nikhil Devanur, Jason Hartline, Anna Karlin, and Thach Nguyen. 2011. Prior-Independent Multi-parameter Mechanism
Design. In Internet and Network Economics, Ning Chen, Edith Elkind, and Elias Koutsoupias (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 122–133.

Je#rey Ely and Juuso Välimäki. 2003. Bad Reputation. The Quarterly Journal of Economics 118, 3 (2003), 785–814. https:
//EconPapers.repec.org/RePEc:oup:qjecon:v:118:y:2003:i:3:p:785-814.

Jad Esber and Scott Duke Kominers. 2021. A Novel Framework for Reputation-Based Systems. https://a16zcrypto.com/
posts/article/reputation-based-systems/

Jean-Louis Foulley, Gilles Celeux, and Julie Josse. 2018. Empirical Bayes approaches to PageRank type algorithms for rating
scienti!c journals. arXiv:1707.09508 [stat.ME] https://arxiv.org/abs/1707.09508

Drew Fudenberg and David K. Levine. 1992. Maintaining a Reputation when Strategies are Imperfectly Observed. The
Review of Economic Studies 59, 3 (July 1992), 561. https://doi.org/10.2307/2297864

Drew Fudenberg and Yuichi Yamamoto. 2011. Learning from private information in noisy repeated games. Journal of
Economic Theory 146, 5 (Sept. 2011), 1733–1769. https://doi.org/10.1016/j.jet.2011.03.003

Fangyu Gai, Baosheng Wang, Wenping Deng, and Wei Peng. 2018. Proof of Reputation: A Reputation-Based Consensus
Protocol for Peer-to-Peer Network. In DASFAA.

Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza Zadeh. 2013. WTF: the who to follow service
at Twitter. In Proceedings of the 22nd International Conference on World Wide Web (Rio de Janeiro, Brazil) (WWW ’13).
Association for Computing Machinery, New York, NY, USA, 505–514. https://doi.org/10.1145/2488388.2488433

John C. Harsanyi. 1982. Games with Incomplete Information Played by “Bayesian” Players. Springer Netherlands, Dordrecht,
154–170. https://doi.org/10.1007/978-94-017-2527-9_8

Jason D. Hartline and Tim Roughgarden. 2009. Simple versus optimal mechanisms. In Proceedings of the 10th ACM Conference
on Electronic Commerce (Stanford, California, USA) (EC ’09). Association for Computing Machinery, New York, NY, USA,
225–234. https://doi.org/10.1145/1566374.1566407

Wassily Hoe#ding. 1963. Probability Inequalities for Sums of Bounded Random Variables. J. Amer. Statist. Assoc. 58, 301
(March 1963), 13–30. https://doi.org/10.1080/01621459.1963.10500830

John Hopcroft and Daniel Sheldon. 2008. Network Reputation Games. eCommons@Cornell (2008).
Olle Häggström. 2002. Irreducible and aperiodic Markov chains. Cambridge University Press, 23–27.
Gábor Iván and Vince Grolmusz. 2010. When the Web meets the cell: using personalized PageRank for analyzing pro-

tein interaction networks. Bioinformatics 27, 3 (12 2010), 405–407. https://doi.org/10.1093/bioinformatics/btq680



Petros Drineas, Rohit Nema, Rafail Ostrovsky, and Vassilis Zikas 20

arXiv:https://academic.oup.com/bioinformatics/article-pdf/27/3/405/48865151/bioinformatics_27_3_405.pdf
Leonard Kleinrock, Rafail Ostrovsky, and Vassilis Zikas. 2020. Proof-of-Reputation Blockchain with Nakamoto Fallback. In

INDOCRYPT (Lecture Notes in Computer Science, Vol. 12578). Springer, 16–38.
Patrick L. Leoni. 2014. Learning in General Games with Nature’s Moves. Journal of Applied Mathematics 2014 (2014), 1–9.

https://doi.org/10.1155/2014/453168
David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. 2006. Markov chains and mixing times. American Mathematical

Society. http://scholar.google.com/scholar.bib?q=info:3wf9IU94tyMJ:scholar.google.com/&output=citation&hl=en&as_
sdt=2000&ct=citation&cd=0

J. M. Maestre and H. Ishii. 2016. A cooperative game theory approach to the PageRank problem. In 2016 American Control
Conference (ACC). 3820–3825. https://doi.org/10.1109/ACC.2016.7525508

G.J. Mailath and L. Samuelson. 2006. Repeated Games and Reputations: Long-Run Relationships. Oxford University Press,
USA. https://books.google.com/books?id=hAISDAAAQBAJ

Lik Mui. 2002. Computational models of trust and reputation: agents, evolutionary games, and social networks. Ph. D.
Dissertation. Massachusetts Institute of Technology, Cambridge, MA, USA.

John Nash. 1951. Non-Cooperative Games. The Annals of Mathematics 54, 2 (Sept. 1951), 286. https://doi.org/10.2307/1969529
Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. 2007. Algorithmic Game Theory. Cambridge University

Press, USA.
Jérôme Renault and Tristan Tomala. 2004. Learning the state of nature in repeated games with incomplete information and

signals. Games and Economic Behavior 47, 1 (2004), 124–156. https://doi.org/10.1016/S0899-8256(03)00153-2
P. Resnick, R Zechauser, E Friedman, and Ko Kuwabara. 2001. Reputation Systems: Facilitation trust in Internet Interactions.

Journal of Communications - JCM 43 (01 2001).
Klaus M Schmidt. 1993. Reputation and Equilibrium Characterization in Repeated Games with Con$icting Interests.

Econometrica 61, 2 (March 1993), 325–351.
Takuo Sugaya and Yuichi Yamamoto. 2020. Common learning and cooperation in repeated games. Theoretical Economics 15,

3 (2020), 1175–1219. https://doi.org/10.3982/te3820
Cheng Sun. 2015. REPUTATION GAMES AND POLITICAL ECONOMY. Ph. D. Dissertation. PRINCETON UNIVERSITY, USA.
W. Xing and A. Ghorbani. 2004. Weighted PageRank algorithm. In Proceedings. Second Annual Conference on Communication

Networks and Services Research, 2004. 305–314. https://doi.org/10.1109/DNSR.2004.1344743
Mingji Yang, Hanzhi Wang, Zhewei Wei, Sibo Wang, and Ji-Rong Wen. 2024. E"cient Algorithms for Personalized

PageRank Computation: A Survey . IEEE Transactions on Knowledge & Data Engineering 36, 09 (Sept. 2024), 4582–4602.
https://doi.org/10.1109/TKDE.2024.3376000

J. Yu, D. Kozhaya, J. Decouchant, and P. Esteves-Verissimo. 2019. RepuCoin: Your Reputation Is Your Power. IEEE Trans.
Comput. 68, 8 (Aug 2019), 1225–1237. https://doi.org/10.1109/TC.2019.2900648

Shmuel Zamir. 2009. Bayesian Games: Games with Incomplete Information. Springer New York, New York, NY, 426–441.
https://doi.org/10.1007/978-0-387-30440-3_29


