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Abstract

We study the problem of differentially private second moment estimation and
present a new algorithm that achieve strong privacy-utility trade-offs even for
worst-case inputs under subsamplability assumptions on the data. We call an input
(m,α, β)-subsamplable if a random subsample of size m (or larger) preserves
w.p ≥ 1 − β the spectral structure of the original second moment matrix up
to a multiplicative factor of 1 ± α. Building upon subsamplability, we give a
recursive algorithmic framework similar to Kamath et al. (2019) that abides zero-
Concentrated Differential Privacy (zCDP) while preserving w.h.p the accuracy
of the second moment estimation upto an arbitrary factor of (1 ± γ). We then
show how to apply our algorithm to approximate the second moment matrix of a
distribution D, even when a noticeable fraction of the input are outliers.

1 Introduction

Estimating the second moment matrix (or equivalently, the covariance matrix) of a dataset is a
fundamental task in machine learning, statistics, and data analysis. In a typical setting, given a dataset
of n points in Rd, one aims to compute an empirical second moment (or covariance) matrix that is
close, in spectral norm, to the true second moment matrix. However, as modern datasets increasingly
contain sensitive information, maintaining strong privacy guarantees has become a key consideration.

A natural way to protect sensitive data is through differential privacy (DP). In this paper, we focus on
the zero-Concentrated Differential Privacy (zCDP) framework (Bun & Steinke, 2016), which offers
elegant composition properties and somewhat tighter privacy-utility trade-offs compared to traditional
(ϵ, δ)-DP. While there have been works regarding the estimation of the second moment matrix (and
PCA), they mostly focused on Gaussian input or well-conditioned input (see Related Work below).
In contrast, our work focuses on a general setting, where the input’s range is significantly greater
than λmin, the least eigenvalue of the 2nd-moment matrix.

Suppose indeed we are in a situation where the first and least eigenvalues of the input’s 2nd moment
matrix are very different. By and large, this could emanate from one of two options: either it is
the result of a few outliers, in which case it is unlikely to approximate the 2nd moment matrix
well with DP; or it is the case that the underlying distribution of the input does indeed have very
different variances along different axes, and here DP approximation of the input is plausible. Our
work is focuses therefore on the latter setting, which we define using the notion of subsamplability.
Namely that from a sufficiently large random subsample, one can recover a spectral approximation
to the original second moment matrix with high probability. This property resonates with classical
matrix-concentration results (namely, matrix Bernstein bounds), yet – as our analysis shows – our
subsamplability assumption offers a less nuanced path to controlling the tail behavior of the data.
In this work we formalize this notion of subsamplability – which immediately gives a non-private
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approximation the data’s second moment matrix, and show how it can be integrated into a privacy-
preserving algorithm with some overhead.

Subsamplability Assumption. Throughout this paper, we assume that our n-size input dataset is
subsamplable, which we formally define as follows.
Definition 1.1. ((m,α, β)-subsamplability) Let X ⊆ Rd be a dataset of n points. Fix m ≤ n, α >
0, β ∈ (0, 1). Let X̂1, . . . , X̂m′ be a random subsample of m′ ≥ m points i.i.d from X . Denote
Σ = 1

n

∑
i∈[n]

XiX
T
i and Σ̂ = 1

m′

∑
i∈[m′]

X̂iX̂
T
i , then the dataset X is (m,α, β)-subsamplable if:

∀m′ ≥ m : Pr[(1− α)Σ ⪯ Σ̂ ⪯ (1 + α)Σ] ≥ 1− β

By assuming subsamplability, we ensure that the critical spectral properties of the data are retained,
enabling efficient and accurate private estimation. This assumption provides a tractable way to
manage the inherent complexity of the problem while maintaining robustness to variations in the
data. On the contrapositive — when the data isn’t subsamplable, estimating the second moment
matrix becomes significantly more challenging. Furthermore, in the case where the n input points are
drawn i.i.d. from some distribution (the case we study in Section 4) subsamplability follows directly
from the convergence of a large enough sample to the true (distributional) second moment matrix;
alternatively, sans subsamplability we cannot estimate the distribution’s second moment matrix.

It is important to note that our subsamplability assumption is weaker than standard concentration
bounds, which state that for any α, β there exists m(α, β) such that a random subsample of m (or
more) points preserve w.p.≥ 1− β the spectral structure of Σ upto a (1± α)-factor. Here we only
require that for some α, β there exists such a m(α, β), a distinction that allows us to cope even
with a situation of a well-behaved distribution with outliers, as we discuss in Section 4. In our
analysis we require that α = O(1) (we set it as α ≤ 1/2 purely for the ease of analysis); however,
our analysis does require a bound on the β parameter, namely having β = O(α/ log(R)), with
R denoting the bound on the L2 norm of all points. It is an interesting open problem to replace
this requirement on β with a O(1)-bound as well. It is also important to note that our result is
stronger than the baseline we establish: subsamplability implies that using (roughly) m/ϵ samples,
one can succesfully apply the subsample-and-aggregate framework (Nissim et al., 2007) and obtain a
1±O(α)-approximation of the spectrum of the second moment matrix. In contrast, our algorithm
can achieve a (1± γ)-approximation of the second moment matrix of the “nice” portion of the input
even for γ ≪ α (provided we have enough input points). Details below.

Contributions. First, we establish a baseline for this problem. Under our subsamplability assump-
tion, we use an off-the-shelf algorithm of Ashtiani & Liaw (2022) that follows the “subsample-and-
aggregate” paradigm (Nissim et al., 2007) to privately return a matrix Σ̃ satisfying (1− 2α)Σ ⪯ Σ̃ ⪯
(1 + 2α)Σ.

We then turn our attention to our algorithm, which is motivated by the same recursive approach given
in Kamath et al. (2019): In each iteration we deal with an input X whose 2nd moment matrix satisfy
I ⪯ Σ ⪯ κI , add noise (proportional to κ/m) to its 2nd-moment matrix and find the subspace of large
eigenvalue (those that are greater than ψκ for ψ ≈ 1/m), and then apply a linear transformation Π
reducing the projection onto the subspace of large eigenvalues by 1/2, thereby reducing the second
moment matrix of ΠX so that it is ⪯ 3κ

7 I . So we shrink R, the range of the input, to
√

3/7R and
continue by recursion. Yet unlike Kamath et al. (2019) who work with the underlying assumption that
the input is Gaussian, we only know that our input is subsamplable, and so in our setting there could
be input points whose norm is greater than

√
3/7R after applying Π and whose norm we must shrink

to fit in the
√

3/7R-ball. So the bulk of our analysis focuses on these points that undergo shrinking,
and show that they all must belong to a particular set we refer to as Ptail (see Definition 3.2). We
argue that there aren’t too many of them (just roughly a β/m-fraction of the input) and that even with
shrinking these points, the second moment matrix of the input remains ⪰ I . This allows us to recurse
all the way down to a setting where κ ∝ m, where all we have to do is to simply add noise to the 2nd
moment matrix to obtain a (1± γ)-approximation w.h.p.

We then apply our algorithm to an ensemble of points drawn from a general distribution (even a
heavy-tailed one). So next we consider any distribution D with a finite second moment ΣD where
the vector y = Σ

−1/2
D x for x ∼ D exhibits particular bounds (See Claim 4.2 for further details), and
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give concrete sample complexity bounds for our algorithm to approximate ΣD up to a factor of 1± γ
w.p. 1 − ξ. We then consider a mixture of such a well-behaved D with an η-fraction of outliers.
We show that our algorithm allows us to cope with the largest fraction of outliers (roughly Õ(1/d))
provided that the second moment matrix of the outliers Σout satisfies Σout ⪯ O(1/η)ΣD. In contrast,
the subsample and aggregate baseline (and other baselines too) not only requires a smaller bound on
η but also has a significantly large sample complexity bound. Details appear in Section 4.

Organization. After surveying related work in the remainder of Section 1, we introduce necessary
definitions and background in Section 2. In Section 3.1 we survey the baseline of Ashtiani & Liaw
(2022), and in Section 3.2 we discuss using existing algorithms to estimate the initial parameters of
the input we require, namely its range R and its least eigenvalue λmin. Multiplying R2 by 1/λmin

we obtain an input that indeed satisfies I ⪯ Σ ⪯ κI (with κ = R2/λmin). Then, in Section 3.3 we
present our algorithm and state its utility theorem, which we prove in Section 3.4. Finally, Section 4
illustrates how to apply our framework to a general (potentially heavy tailed) distribution, including
the case of a noticeable fraction of outliers.

Related Work. Differential privacy has been extensively studied in the context of mean and
covariance estimation, particularly in high-dimensional regimes. Early work by Dwork et al. (2014)
proposed private PCA for worst-case bounded inputs via direct perturbation of the second moment
matrix, laying foundational tools for differentially private matrix estimation. Subsequently, Nissim
et al. (2007) introduced the subsample-and-aggregate framework, which has since become a standard
paradigm for constructing private estimators under structural assumptions.

A significant body of research has focused on learning high-dimensional Gaussian distributions
under differential privacy. Kamath et al. (2019) introduced a recursive private preconditioning
technique for Gaussian and product distributions, achieving nearly optimal bounds while relying on
the assumption of a well-behaved (Gaussian) input. Their approach underlies several subsequent
advances in private estimation. Building on these ideas, Kamath et al. (2022) proposed a polynomial-
time algorithm for privately estimating the mean and covariance of unbounded Gaussians. Their
algorithm, which incorporated a novel private preconditioning step, improved both accuracy and
computational efficiency.

Ashtiani & Liaw (2022) proposed a general framework that reduces private estimation to its non-
private analogue. This yielded efficient, approximate-DP estimators for unrestricted Gaussians with
optimal (up to logarithmic factors) sample complexity. Their method also demonstrated the power
of reduction-based techniques in bridging private and non-private statistics. Aden-Ali et al. (2021)
gave near-optimal bounds for agnostically learning multivariate Gaussians under approximate DP,
while Amin et al. (2019) and Dong et al. (2022) revisited the task of private covariance estimation
under ϵ-DP and zCDP, respectively. These works introduced trace- and tail-sensitive algorithms for
better handling of data heterogeneity.

Recent work has emphasized robustness and practical applicability. For example, Biswas et al. (2020)
introduced a robust and accurate mean/covariance estimator for sub-Gaussian data, and Kothari et al.
(2022) developed a robust, polynomial-time estimator resilient to adversarial outliers. Further, Alabi
et al. (2023) presented near-optimal, computationally efficient algorithms for privately estimating
multivariate Gaussian parameters in both pure and approximate DP models.

A particularly notable contribution is by Brown et al. (2023), who studied the problem of differen-
tially private covariance-aware mean estimation under sub-Gaussian assumptions. They introduced
a polynomial-time algorithm that achieves strong Mahalanobis distance guarantees with nearly op-
timal sample complexity. Their techniques also extend to distribution learning tasks with provable
guarantees on total variation distance.

Our algorithm outperforms prior methods that rely on per-point bounded leverage and residual
conditions—most notably the private covariance estimation algorithm of Brown et al. Brown et al.
(2023)—in settings where the dataset may contain a small fraction of outliers or where individual
points may exhibit high leverage scores, but the global spectral structure is preserved in random
subsamples. Unlike their algorithm, which requires strong uniform constraints on every data point
(i.e., no large leverage scores), our method only assumes a subsamplability condition that holds with
high probability over random subsamples. This allows us to tolerate the presence of many multiple
outliers, provided they do not dominate the overall spectrum. Moreover, our algorithm is tailored
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for second moment estimation, and achieves strong utility guarantees even when the second moment
matrix has a large condition number – a regime where the estimator of Brown et al. (2023) may incur
significant error with the presence of outlier correlated with the directions of small eigenvalues. A
more elaborated discussion demonstrating this setting appears in Section 4.2.

2 Preliminaries

Throughout the paper, we assume that our instance of dataset is subsamplable, as given in Defini-
tion 1.1.

Notations. Let Sd−1 denote The unit sphere in Rd, which is defined as the set of all points in
d-dimensional Euclidean space that have unit norm, i.e., Sd−1 = {x ∈ Rd | ∥x∥2 = 1}. Here, the
superscript d− 1 indicates that the unit sphere is an object of intrinsic dimension d− 1 embedded in
Rd.
Let GUE(σ2) denote the distribution over d× d symmetric matrices N where for all i ≤ j, we have
Nij ∼ N (0, σ2) i.i.d.. From basic random matrix theory, we have the following guarantee.
Fact 2.1 (see e.g. Tao (2012) Corollary 2.3.6). For d sufficiently large, there exist absolute constants
C, c > 0 such that: Pr

N∼GUE(σ2)
[∥N∥2 > Aσ

√
d] ≤ Ce−cAd for all A ≥ C.

Definition 2.2 (Differential Privacy (Dwork et al., 2006)). A randomized algorithm A satisfies
(ϵ, δ)-differential privacy if, for all datasets D and D′ differing in at most one element, and for all
measurable subsets S of the output space of A, it holds that:

Pr[A(D) ∈ S] ≤ eϵ Pr[A(D′) ∈ S] + δ.

Definition 2.3 (Zero-Concentrated Differential Privacy (zCDP) (Bun & Steinke, 2016)). A random-
ized algorithm A satisfies ρ-zero-concentrated differential privacy (ρ-zCDP) if, for all datasets D
and D′ differing in at most one element, and for all α > 1, the Rényi divergence of order α between
the output distributions of A on D and D′ is bounded by ρα, i.e., Dα(A(D)∥A(D′)) ≤ ρα. Here,
ρ ≥ 0 is the privacy parameter that controls the trade-off between privacy and utility, and Dα denotes
the Rényi divergence of order α.
Theorem 2.4 (Bun & Steinke (2016)). If a randomized algorithm A satisfies ρ-zero-concentrated
differential privacy (ρ-zCDP), then A also satisfies (ϵ, δ)-differential privacy for any δ > 0, where:

ϵ = ρ+
√
2ρ ln

(
1
δ

)
.

Theorem 2.5 (Composition Theorem for ρ-zCDP). LetM1 andM2 be two independent mechanisms
that satisfy ρ1-zCDP and ρ2-zCDP, respectively. Then their compositionM1 ◦M2 satisfies (ρ1+ρ2)-
zCDP.

3 Technical Analysis

3.1 Baseline

In this section, we provide a baseline for the problem of 2nd-moment estimation using subsample
and aggregate framework (Nissim et al., 2007). For the lack of space we move the entire discussion
of the baseline to Appendix A, and only cite here the conclusion.
Theorem 3.1. Let ξ, ϵ, δ be parameters, and let X ⊆ Rd be a (m,α, β)-subsamplable set of n points.
Then, there exists an algorithm for which the following properties hold:

1. The algorithm is (2ϵ, 4eϵδ)-Differential Private.

2. The algorithm returns Σ̃ satisfying ∥Σ−1/2Σ̃Σ−1/2 − I∥ ≤ 2α, where Σ = 1
nXX

⊤.

These guarantees hold under the following conditions:

1. The dataset size satisfies: n ≥ 800m· max

{√
2d(d+1/η2)

ϵ ,
8d
√

ln(2/δ)

ϵ , 8 ln(2/δ)
ϵ ,

12
√
d ln(2/δ)

ϵη ,
ln(1+ eϵ−1

2δ )
80ϵ

}
where η = α

48C(
√
d+
√

ln(4/ξ))
for a sufficiently large constant C > 0.
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2. The subsamplability parameters satisfy m ≥ 2βn/ξ.

In particular, Item 1 suggests a sample complexity bound of n = Ω(d·m(α,β)
ϵα ).

3.2 Finding Initial Parameters

Our recursive algorithm requires as input two parameters that characterize the “aspect ratio” of
the input, namely – Rmax, the maximum distance of any point from the origin, and λmin, the
minimum eigenvalue of the input. These two parameters give us the initial bounds, as they imply
that λminI ⪯ Σ ⪯ R2

maxI . Due to space constraints, we move the entire discussion, regarding how
to apply off-the-shelf algorithms, or modify such algorithms, to obtain these initial parameters to
Appendix B.

3.3 Main Algorithm and Theorem

Next, we detail our algorithm that approximates the second moment of the input. Its starting point
is the assumption that the input has a known bound on the L2-norm of each point R, and that the
second moment matrix of the input, Σ, satisfies I ⪯ Σ ⪯ R2I .

Algorithm 1 DP Second Moment Estimation
Input: a (m,α, β)-subsamplable set of n points X ⊆ Rd, parameters: error parameter ξ ∈ (0, 1),
privacy parameter ρ, covering radius R.

1: Set: η ← 1/2, T ← log7/3

(
( 1
1−α )R2

640m

)
, ψ ← 1

10m , c← 1
80m , C ← 640m, κ← R2

2: Σ̃← RecDPSME (
√

( 1
1−α )X, η, ψ,C, c, (

1
1−α )κ,

√
( 1
1−α )R, T, ξ, ρ)

3: return (1− α)Σ̃

Algorithm 2 Recursive DP Second Moment Estimation (RecDPSME)
Input: a set of n points X ⊆ Rd, parameters: linear shrinking η < 1,
eigenvalue threshold ψ < 1, stopping value C, noise c, eigenvalue upper
bound κ, radius R, iterations bound T , error parameter ξ, privacy loss ρ.

1: Set σ ← 4R2
√
T

n
√
2ρ

2: Sample N ∼ GUE(σ2)

3: Σ̃← 1
nXX

T +N
4: if κ ≤ C then
5: return Σ̃.
6: end if
7: V ← Span({vi : eigenvector of Σ̃ with eigenvalue ≥ ψκ})
8: Π← ηΠV +ΠV ⊥ {ΠU denotes the projection matrix onto U .}

9: Y ←
√

8
7ΠX .

10: Xnext ← S(Y ) where S(Y ) =

{
y ·min

{
1,
√

3
7R

∥y∥2

}
: y ∈ Y

}
11: Σrec ← RecDPSME

(
Xnext, η, ψ, C, c,

3
7κ,
√

3
7R, T, ξ, ρ

)
12: return 7

8Π
−1ΣrecΠ

−1

In our analysis, the following definition plays a key role.
Definition 3.2. Let X be a (m,α, β)-subsamplable set. We denote Ptail as the set of
points whose projection onto some direction u in Rd is m times greater than expected, namely

Ptail =

{
x ∈ X : ∃u ∈ Rd : ⟨x, u⟩2 > m(1 + α) · 1

n

∑
x∈X
⟨x, u⟩2

}
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Theorem 3.3. Fix parameters ξ ∈ (0, 1), ρ > 0, γ > 0 and κ ≥ 1. Let X ⊂ Rd be a (m,α, β)-
subsamplable set of n points bounded in L2 norm by R2, with α ≤ 1/2 and β ≤ α

4(1+α) log( R2

(1+α)m
)

s.t. I ⪯ Σ ⪯ R2I where Σ = 1
nXX

T . Then, denoting T = log7/3

(
( 1
1−α )R2

640m

)
= O(log(R/m)), we

have that for Algorithm 1, if

n ≥ Ω

(
m

√
d

ρ

(√
T log(T/ξ) +

log(1/ξ)

γ

))

Then (1) Algorithm 1 satisfies ρ-zCDP,1 (2) Ptail holds at most a (β+β
2

m )-fraction of |X|, and (3) w.p.
≥ 1− 2ξ it outputs Σ̃ such that:

(1− γ)Σeff ⪯ Σ̃ ⪯ (1 + γ)Σ

where Σeff =
1
n

∑
x∈X\Ptail

xxT .

3.4 Algorithm’s Analysis

Next we prove Theorem 3.3. Momentarily we shall argue that Algorithm 2 repeats for at most

T = log7/3

(
( 1
1−α )R2

640m

)
iterations. Based on Fact 2.1 and on the bound on the number of iterations, it

is simple to argue that the following event holds w.p. ≥ 1− ξ:

E := in each iteration of Algorithm 2 we have ∥N∥ ≤ cR2 = cκ

which follows from the fact that in each iteration the upper bound on the largest eigenvalue of Σ is at
most κ = R2. We continue our analysis conditioning on E holding.

The analysis begins with the following lemma, that shows that under E we have that in each iteration
the eigenvalues of Σ decrease. Its proof is very similar to the proof in Kamath et al. (2019) and so it
is deferred to Appendix C.
Lemma 3.4. Given X = {X1, ..., Xn} ⊂ Rd, C > 0, c > 0, 0 < η < 1, 0 < ψ < 1, and κ ≥ 1 s.t.
I ⪯ Σ ⪯ κI where Σ = 1

nXX
T . Let V ← Span({vi : λi ≥ ψκ}) of the largest eigenvalues of the

noisy Σ̃ and let Π = ηΠV +ΠV ⊥ . Given that: n ≥ Ω
(
m
√

dT
ρ ln(T/ξ)

)
Then:

(1− 1

η2ψ − c
· 1
κ
)I ⪯ ΠΣΠ ⪯ (η2 + ψ + 2c)κI

In particular, if κ > C for some C then: I ⪯ 1
(1− 1

η2ψ−c
)
ΠΣΠ ⪯ η2+ψ+2c

(1− 1
C(η2ψ−c)

)
κI .

Corollary 3.5. Given X = {X1, ..., Xn} ⊂ Rd and κ ≥ 1 s.t. I ⪯ Σ ⪯ κI where Σ = 1
nXX

T .
Let V,Π be as in Algorithm 2, and set η = 1/2, ψ = 1/10m, c = 1/80m and C = 640m in Lemma 3.4.
Then w.p. ≥ 1− ξ: (

1− 80m · 1
κ

)
I ⪯ ΠΣΠ ⪯

(
1

4
+

1

8m

)
κI

In particular, if κ > C then: I ⪯ 8
7ΠΣΠ ⪯ 3

7κI .

Based on Corollary 3.5 we can bound the number of iterations of the algorithm.

Corollary 3.6. Algorithm 2 has T = log7/3

(
( 1
1−α )R2

640m

)
iterations.

Proof. The algorithm halts when ( 37 )
T
(

1
1−α

)
κ ≤ C = 640m so: T ≥ log3/7

(
640m

( 1
1−α )κ

)
=

log7/3

(
( 1
1−α )R2

640m

)
.

1Note that the privacy of Algorithm 1 holds for any input X with bounded L2-norm, regardless of X being
subsamplable or not.
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With Π reducing the largest eigenvalues of Σ from κ to 3κ/7, we now proceed and bound the radius of
all datapoints by from R to

√
3/7R. This is where our analysis diverges from the analysis in Kamath

et al. (2019). Whereas Kamath et al rely on the underlying Gaussian distribution to argue they have
no outliers, we have to deal with outliers. For our purpose, a datapoint x is an outlier if the shrinking
function S (Step 10 in Algorithm 2) reduces the norm of Πx since ∥Πx∥ >

√
3/7R. In the following

claims we argue that all outliers lie in Ptail (Definition 3.2), and moreover, that by shrinking the
outliers we do not alter the second moment matrix all too much. We begin by arguing that there aren’t
too many outliers.
Claim 3.7. Analogously to Definition 3.2, fix any m′ ≥ m and define Ptail(m

′) = {x ∈ X : ∃u ∈
Rd : (xTu)2 > m′(1 + α) 1n

∑
i(x

T
i u)

2}. Then it holds that

Pr
x∈RX

[x ∈ Ptail(m
′)] ≤ β + β2

m′ .

Proof sketch. The proof applies the (m,α, β)-subsamplability property: if a point violates the bound,
it would contradict subsamplability with non-negligible probability. A simple union bound and tail
approximation then yield the claimed bound. Full details are deferred to Appendix C.2.

Lemma 3.8. Let X be a (m,α, β)-subsamplable with β ≤ α

4(1+α) log( R2

(1+α)m
)
. Let P = X \ Ptail.

Then:
∀u ∈ Rd :

1

n

∑
x∈P
⟨x, u⟩2 ≥ (1− α) 1

n

∑
x∈X
⟨x, u⟩2

Proof sketch. We partition the tail points according to the magnitude of their contribution and apply
Claim 3.7 to bound the measure of each bucket. Summing across buckets shows that the overall loss
from removing the tail points is small. Full proof is deferred to Appendix C.3.

Lemma 3.9. At each iteration t of Algorithm 2, only points belonging to Ptail are subjected to
shrinking, given that α < 1/2, ψ = 1

10m and c = 1
80m .

Proof sketch. The proof uses induction over iterations. Shrinking happens only if a point’s mass in
a low-eigenvalue subspace is too large. By carefully tracking how shrinking operates and applying
Weyl’s theorem and Lemma 3.8, we show that only initially bad points (i.e., those in Ptail) can cause
such violations. Full proof appears in Appendix C.4.

Corollary 3.10. In all iterations of the algorithm it holds that Σ ⪰ I , namely, that the least eigenvalue
of the second moment matrix of the input is ≥ 1.

Proof sketch. We argue by induction that removing or shrinking tail points preserves a spectral lower
bound. Using Lemma 3.8 and the shrinkage structure from Lemma 3.9, the transformation at each
step maintains the least eigenvalue above 1. Full proof is provided in Appendix C.5.

Proof of Theorem 3.3. First we argue that Algorithm 1 is ρ-zCDP. Given two neighboring data sets
X , X ′ of size n which differ in that one contains Xi and the other contains X ′

i , the covariance matrix
of these two data sets can change in Spectral norm by at most:

∥ 1
n
(XiX

T
i −X ′

iX
′T
i )∥2 ≤

1

n
∥(Xi−X ′

i)(Xi−X ′
i)
T ∥2 ≤

1

n
∥(Xi−X ′

i)∥2∥(Xi−X ′
i)
T ∥2 ≤

(2R)2

n

Since Algorithm 1 invokes T calls to Algorithm 2 each preserving ρ/T -zCDP, thus the privacy
guarantee of Algorithm 1 follows from sequential composition of zCDP.

We now turn to proving the algorithm’s utility. From Claim 3.7 we conclude that |Ptail| is indeed at
most (β+β

2

m )-fraction of |X|. We prove by recursion that: (1− γ)Σeff ⪯ Σ̃ ⪯ (1 + γ)Σ.

Stopping Rule: Let XT be the input at the final iteration T and let P = X \ Ptail. Denote Σ(·) as
the second moment matrix operator. We know that throughout the algorithm, the points from P were
not shrunk. Moreover, Corollary 3.10 assures that the least eigen value of Σ(X) is ≥ 1. Additionally,
our bound on n yields that when κ ≤ C then the noise matrix N we add satisfy that ∥N∥2 ≤ γ w.p.
≥ 1− ξ. It thus follows that (1− γ)Σ(XT ) ⪯ Σ+N ⪯ (1 + γ)Σ(XT ) as required.
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Recursive Step: Let Xt be the input at iteration t ≤ T . Then, by Lemma 3.4, we have:
I ⪯ Σ

(
8
7ΠX

t
)
⪯ 3

7κI . Lemma 3.9 ensures that S(ΠXt) shrinks only points from Ptail and
so Corollary 3.10 assures that the eigenvalue is ≥ 1 throughout the recursive iterations. Hence, by
the inductive hypothesis, our recursive call returns Σrec such that:

(1− γ)Σeff

(√
8

7
ΠXt

)
⪯ Σrec ⪯ (1 + γ)Σ

(√
8

7
ΠXt

)
,

which implies:

(1− γ)Σeff(X
t) ⪯ 7

8
Π−1ΣrecΠ

−1 ⪯ (1 + γ)Σ(Xt).

Proving the required for any intermediate iteration of Algorithm 2.

4 Applications: Coping with Outliers

4.1 Input Drawn from ‘Nice’ Distributions

First, we show our algorithm returns an approximation of the 2nd-moment matrix when the input is
drawn from a distribution D. Throughout this section, we apply the Matrix-Bernestein Inequality.
Fact 4.1. Let Z be the sum ofm i.i.d. matrices Z =

∑
i Zi, whose mean is 0 and have norm bounded

by ∥Zi∥ ≤ R almost surely. Then, denoting σ2 = ∥E[ZZT ]∥, it holds that

Pr[∥Z∥ > t] ≤ 2d exp

(
−t2/2

σ2 +Rt/3

)
We can apply Fact 4.1 above to measure how well the sample covariance estimator approximates
the true covariance matrix of a general distribution using the following claim (proof deferred to
Appendix C.6.)
Claim 4.2. Let D be a distribution on Rd with a finite second moment Σ. Consider a random vector
y chosen by drawing x ∼ D and then multiplying y = Σ−1/2x. Suppose that ∥y∥ ≤M1 a.s. that we
also have a bound ∥E[(yT y)yyT ]∥ ≤ M2. Fix α, β > 0. If we draw m = max

{
2M2

α2 ,
2(1+M2

1 )
3α

}
·

ln(4d/β) examples from D and compute the empirical second moment matrix Σ̂, then w.p. ≥ 1− β it
holds that

∥Σ−1/2Σ̂Σ−1/2 − I∥2 ≤ α

Recall that we (1± γ)-approximate the 2nd-moment matrix of the input w.p.≥ 1− ξ. Thus, we need
the input itself to be a (1± γ)-approximation of the 2nd-moment matrix of the distribution. (We can
then apply Fact A.3 to argue we get a 1±O(γ) approximation of the distribution’s second moment
matrix.) This means our algorithm requires

m(γ, ξ) +O

(
m(α, β)

γ

√
d

ρ
· log( R

λmin
) log(log( R

λmin
)/ξ)

)
(1)

for α = 1/2 and β = O( 1
log(R/λmin)

) in order to return a (1±O(γ))-approximation of the 2nd moment
of the distribution w.p. ≥ 1−O(ξ). In Appendix D we give concrete examples of distributions for
which this bound is applicable, including (bounded) heavy-tail distributions.

4.2 Distributional Input with Outliers

Next, we consider an application to our setting, in which we take some well-behaved distribution D
and add to it outliers. Consider D to be a distribution that for any γ, ξ > 0 is m(γ, ξ)-subsamplable
for m = O(d ln(

d/ξ)
γ2 ). We consider here inputs that are composed of (1− η)-fraction of good points

and η-fraction of outliers. We thus denote the second moment matrix of the input as

Σ = (1− η)ΣD + ηΣout

We assume throughout that the least eigenvalue of ΣD is λmin. Our goal is to return, w.h.p. (≥ 1− ξ)
an approximation of ΣD using a DP algorithm.
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Inapplicability of Brown et al. (2023). The work of Brown et al. (2023) shows that if the input
has λ-bounded leverage scores, namely, if ∀x, xT ( 1nXX

T )−1x ≤ λ, then they recover the second
moment of the input with O(λ

√
d
ϵ ) overhead to the sampling complexity. However, in this case one

can set outliers so that their leverage scores is R2
/λmin (provided the input has L2-norm bound of

R). We argue that the algorithm of Brown et al. (2023) is unsuited for such a case. Indeed, the
algorithm of Brown et al. (2023) has an intrinsic “counter” of outliers (referred to as score), which
when reached O(1/ϵ) causes the algorithm to return ‘Failure’.2 So either it holds that η is so small
that the overall number of outliers is a constant (namely, ηn = O(1/ϵ)), or we set the bound on the
leverage scores to be R2/λmin and suffer the cost in sample complexity.

A Private Learner. Suppose η is very small. In this case we can simply take some off-the-shelf
(ϵ, δ)-DP algorithm with sample complexity m(γ, ξ, ϵ, δ) that approximates the second moment
matrix, and run in over a subsample of m points out of that input. In order for this to work we require
that η would be smaller than O( ξ

m(γ,ξ,ϵ,δ) ), so that a subset of size m would be clean of any outliers.

Subsample and Aggregate. The framework of Subsample and Aggregate (Nissim et al., 2007)
is in a way a ‘perfect fit’ for the problem: we subsample t datasets of size m(γ, ξ) each, and then
wisely aggregate the (majority of the) t results into one. However, in order for this to succeed, it
is required that most of the t subsamples are clean of outliers. In other words, we require that the
probability of a dataset to be clean ought to be > 1/2, namely - (1− η)m(γ,ξ) > 1/2 or alternatively
that η = O( 1

m(γ,ξ) ), which in our case means η = O( γ2

d log(d/ξ) ). We analyze this paradigm as part of
the subsample-and-aggregate baseline we establish (Appendix A), and the subsample-and-aggregate
baseline requires

Õ

(
d ·m(γ, ξ)

ϵγ

)
= Õ

(
d2 log(d/β)

ϵγ3

)
in order to return a (1±O(γ))-approximation of the 2nd moment of the distribution w.p. ≥ 1−O(ξ).

Our Work. Our work poses an alternative to the above mentioned techniques. Rather than having
n < 1

m(γ,ξ) , we have a slightly more delicate requirement. We require that there exists α = 1/2 and

β ≤ 1
12 log( R

λmin
)

such that η = O( β

m(α, β2 )
). (In particular, for the given D it implies that we require

that η = O( 1
d log(d) log(R/λmin)

), which is considerably higher value than in the case of subsample

and aggregate discussed above.) This way, we can argue that w.p. ≥ 1− β
2 it holds that a subsample

of size m(α, β2 ) contains only points from D and that w.p. ≥ 1− β
2 that sample is ‘good’ in the sense

that its empirical second moment satisfy Σ̂ ≈ ΣD.

However, we also require that the subsample of size m(α, β2 ) would satisfy that its empirical second
moment matrix Σ̂ satisfies that (1 − 1

2 )Σ ⪯ Σ̂ ⪯ (1 + 1
2 )Σ since we set α = 1

2 . As Σ̂ ≈ ΣD it
follows that it suffices to require that

(1− 1

8
)[(1− η)ΣD + ηΣout] ⪯ ΣD ⪯ (1 +

1

8
)[(1− η)ΣD + ηΣout]

Some arithmetic shows that the upper bound is easily satisfied when η
1−η ≤

1
8 (which clearly holds

for our value of η), yet the lower bound requires that we have

Σout ⪯ (
1

7η
+ 1)ΣD = O(1/η)ΣD

Under these two conditions, our work returns w.p. 1 − O(ξ) a matrix Σ̃ that satisfies that
Σ̃ ⪰ (1−O(γ))ΣD, with sample complexity of

O

(
m(γ, ξ) +

m(α, β2 )

γ

√
d·log(R/λmin)

ρ log( log(
R/λmin)
ξ )

)
= O

(
d log(d/ξ)

γ2 +
d3/2 log(d) log3/2(R/λmin) log(

log(R/λmin)

ξ )

γ
√
ρ

)
2Moreover, in their algorithm, this ‘score’ intrinsically cannot be greater than k = O(1/ϵ) as they use a

particular bound of the form ek/ϵ.

9



Acknowledgments

We thank the anonymous reviewers for multiple helpful suggestions as to improving the paper. O.S.
is funded by ISF Grant no. 2559/20.

References
Aden-Ali, I., Ashtiani, H., and Kamath, G. On the sample complexity of privately learning un-

bounded high-dimensional gaussians. In Feldman, V., Ligett, K., and Sabato, S. (eds.), Pro-
ceedings of the 32nd International Conference on Algorithmic Learning Theory, volume 132
of Proceedings of Machine Learning Research, pp. 185–216. PMLR, 16–19 Mar 2021. URL
https://proceedings.mlr.press/v132/aden-ali21a.html.

Alabi, D., Kothari, P. K., Tankala, P., Venkat, P., and Zhang, F. Privately estimating a gaussian:
Efficient, robust, and optimal. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, STOC 2023, pp. 483–496, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9781450399135. doi: 10.1145/3564246.3585194. URL https://doi.org/
10.1145/3564246.3585194.

Amin, K., Dick, T., Kulesza, A., Munoz, A., and Vassilvitskii, S. Differentially private covari-
ance estimation. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/4158f6d19559955bae372bb00f6204e4-Paper.pdf.

Ashtiani, H. and Liaw, C. Private and polynomial time algorithms for learning gaussians and beyond.
In Loh, P.-L. and Raginsky, M. (eds.), Proceedings of Thirty Fifth Conference on Learning Theory,
volume 178 of Proceedings of Machine Learning Research, pp. 1075–1076. PMLR, 02–05 Jul
2022. URL https://proceedings.mlr.press/v178/ashtiani22a.html.

Biswas, S., Dong, Y., Kamath, G., and Ullman, J. Coinpress: Practical private mean and covari-
ance estimation. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 14475–14485. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/a684eceee76fc522773286a895bc8436-Paper.pdf.

Brown, G., Hopkins, S., and Smith, A. Fast, sample-efficient, affine-invariant private mean and
covariance estimation for subgaussian distributions. In Neu, G. and Rosasco, L. (eds.), Proceedings
of Thirty Sixth Conference on Learning Theory, volume 195 of Proceedings of Machine Learning
Research, pp. 5578–5579. PMLR, 12–15 Jul 2023. URL https://proceedings.mlr.press/
v195/brown23a.html.

Bun, M. and Steinke, T. Concentrated differential privacy: Simplifications, extensions, and lower
bounds. Cryptology ePrint Archive, Paper 2016/816, 2016. URL https://eprint.iacr.org/
2016/816.

Dong, W., Liang, Y., and Yi, K. Differentially private covariance revisited. In Koyejo,
S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.), Advances
in Neural Information Processing Systems, volume 35, pp. 850–861. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
057405fd73dd7ba7f32a7cb34fb7c7f5-Paper-Conference.pdf.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrating noise to sensitivity in private
data analysis. In Halevi, S. and Rabin, T. (eds.), Theory of Cryptography, pp. 265–284, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-32732-5.

Dwork, C., Talwar, K., Thakurta, A., and Zhang, L. Analyze gauss: optimal bounds for privacy-
preserving principal component analysis. In Shmoys, D. B. (ed.), Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pp. 11–20. ACM, 2014.

10

https://proceedings.mlr.press/v132/aden-ali21a.html
https://doi.org/10.1145/3564246.3585194
https://doi.org/10.1145/3564246.3585194
https://proceedings.neurips.cc/paper_files/paper/2019/file/4158f6d19559955bae372bb00f6204e4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4158f6d19559955bae372bb00f6204e4-Paper.pdf
https://proceedings.mlr.press/v178/ashtiani22a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/a684eceee76fc522773286a895bc8436-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/a684eceee76fc522773286a895bc8436-Paper.pdf
https://proceedings.mlr.press/v195/brown23a.html
https://proceedings.mlr.press/v195/brown23a.html
https://eprint.iacr.org/2016/816
https://eprint.iacr.org/2016/816
https://proceedings.neurips.cc/paper_files/paper/2022/file/057405fd73dd7ba7f32a7cb34fb7c7f5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/057405fd73dd7ba7f32a7cb34fb7c7f5-Paper-Conference.pdf


Kamath, G., Li, J., Singhal, V., and Ullman, J. Privately learning high-dimensional distributions. In
Beygelzimer, A. and Hsu, D. (eds.), Proceedings of the Thirty-Second Conference on Learning
Theory, volume 99 of Proceedings of Machine Learning Research, pp. 1853–1902. PMLR, 25–28
Jun 2019. URL https://proceedings.mlr.press/v99/kamath19a.html.

Kamath, G., Mouzakis, A., Singhal, V., Steinke, T., and Ullman, J. A private and computationally-
efficient estimator for unbounded gaussians. In Loh, P.-L. and Raginsky, M. (eds.), Proceedings of
Thirty Fifth Conference on Learning Theory, volume 178 of Proceedings of Machine Learning
Research, pp. 544–572. PMLR, 02–05 Jul 2022. URL https://proceedings.mlr.press/
v178/kamath22a.html.

Kothari, P., Manurangsi, P., and Velingker, A. Private robust estimation by stabilizing convex
relaxations. In Loh, P.-L. and Raginsky, M. (eds.), Proceedings of Thirty Fifth Conference on
Learning Theory, volume 178 of Proceedings of Machine Learning Research, pp. 723–777. PMLR,
02–05 Jul 2022. URL https://proceedings.mlr.press/v178/kothari22a.html.

Mahpud, B. and Sheffet, O. A differentially private linear-time fptas for the minimum enclosing
ball problem. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 31640–31652. Curran As-
sociates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/cd830afc6208a346e4ec5caf1b08b4b4-Paper-Conference.pdf.

Nissim, K. and Stemmer, U. Clustering algorithms for the centralized and local models. In Janoos,
F., Mohri, M., and Sridharan, K. (eds.), Proceedings of Algorithmic Learning Theory, volume 83
of Proceedings of Machine Learning Research, pp. 619–653. PMLR, 07–09 Apr 2018. URL
https://proceedings.mlr.press/v83/nissim18a.html.

Nissim, K., Raskhodnikova, S., and Smith, A. D. Smooth sensitivity and sampling in private data
analysis. In Johnson, D. S. and Feige, U. (eds.), Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pp. 75–84. ACM, 2007.

Nissim, K., Stemmer, U., and Vadhan, S. Locating a small cluster privately. In Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
SIGMOD/PODS’16, pp. 413–427. ACM, June 2016. doi: 10.1145/2902251.2902296. URL
http://dx.doi.org/10.1145/2902251.2902296.

Tao, T. Topics in Random Matrix Theory. Graduate studies in mathematics. American Mathematical
Soc., 2012. ISBN 9780821885079. URL https://books.google.co.il/books?id=Hjq_
JHLNPT0C.

11

https://proceedings.mlr.press/v99/kamath19a.html
https://proceedings.mlr.press/v178/kamath22a.html
https://proceedings.mlr.press/v178/kamath22a.html
https://proceedings.mlr.press/v178/kothari22a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/cd830afc6208a346e4ec5caf1b08b4b4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/cd830afc6208a346e4ec5caf1b08b4b4-Paper-Conference.pdf
https://proceedings.mlr.press/v83/nissim18a.html
http://dx.doi.org/10.1145/2902251.2902296
https://books.google.co.il/books?id=Hjq_JHLNPT0C
https://books.google.co.il/books?id=Hjq_JHLNPT0C


A Baseline

In this section, we provide a baseline for the problem of 2nd-moment estimation using subsample
and aggregate framework (Nissim et al. (2007)).

In this baseline, we work with the following notion of a convex semimetric space. The key property
to keep in mind is that for semimetric spaces, we only have an approximate triangle inequality, as
long as the points are significantly close to one another.

Definition A.1. Let Y be a convex set and let dist : Y × Y → R≥0. We say (Y, dist) is a convex
semimetric space if there exist absolute constants t ≥ 1, ϕ ≥ 0, and r > 0 such that for every k ∈ N
and every Y, Y1, Y2, . . . , Yk ∈ Y , the following conditions hold:

1. dist(Y, Y ) = 0 and dist(Y1, Y2) ≥ 0.

2. Symmetry. dist(Y1, Y2) = dist(Y2, Y1).

3. t-approximate r-restricted triangle inequality. If both dist(Y1, Y2), dist(Y2, Y3) ≤ r, then

dist(Y1, Y3) ≤ t · (dist(Y1, Y2) + dist(Y2, Y3)).

4. Convexity. For all α ∈ ∆k,

dist

(∑
i

αiYi, Y

)
≤
∑
i

αidist(Yi, Y ).

5. ϕ-Locality. For all α, α′ ∈ ∆k,

dist

(∑
i

αiYi,
∑
i

α′
iYi

)
≤
∑
i

|αi − α′
i|
(
ϕ+max

i,j
dist(Yi, Yj)

)
.

where ∆k denotes the k-dimensional probability simplex. When r is unspecified, we take it to mean
r =∞ and refer to it as a t-approximate triangle inequality.

The following technical lemma (whose proof appears in Appendix C in Ashtiani & Liaw (2022)) is
helpful for learning second moment matrices.

Lemma A.2. Let Sd be the set of all d× d positive definite matrices. For A,B ∈ Sd, let

dist(A,B) = max{∥A−1/2BA−1/2 − I∥, ∥B−1/2AB−1/2 − I∥}.

Then (Sd, dist) is a convex semimetric which satisfies a (3/2)-approximate 1-restricted triangle
inequality and 1-locality.

Based on Lemma A.2, the following distance function forms a semimetric space for positive definite
matrices:

dist(Σ1,Σ2) =

{
max(∥Σ−1/2

2 Σ1Σ
−1/2
2 − Id∥, ∥Σ−1/2

1 Σ2Σ
−1/2
1 − Id∥) if rankΣ1 = rankΣ2 = d

∞ otherwise

Fact A.3. Let A,B be d × d matrices and suppose that ∥A−1/2BA−1/2 − I∥ ≤ γ ≤ 1/2. Then
∥B−1/2AB−1/2 − I∥ ≤ 4γ
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Algorithm 3 Baseline DP Second Moment Estimation
Input: a set of n points X ⊆ Rd, subsamplability parameters m,α, β, error parameter ξ ∈ (0, 1),
privacy parameters ϵ, δ.

1: Randomly split X into T = ⌊n/m⌋ subgroups X1, . . . , XT of size m.
2: for t ∈ [T ] do
3: Σt ← 1

mXtX
T
t

4: end for
5: for t ∈ [T ] do
6: qt ← 1

T |{t
′ ∈ [T ] : dist(Σt,Σt′) ≤ 2α

1−α}|
7: end for
8: Q← 1

T

∑
t∈[T ] qt

9: Z ∼ TLap(2/T , ϵ, δ)
10: Q̃← Q+ Z
11: if Q̃ < 0.8 + 2

Tϵ ln(1 +
eϵ−1
2δ ) then

12: fail and return ⊥
13: end if
14: for t ∈ [T ] do
15: wt = min(1, 10max(0, qt − 0.6))
16: end for
17: Σ̂←

∑
t∈[T ] wtΣt/

∑
t∈[T ] wt

18: N ∼ N (0, 1)d×d
19: η ← α

48C(
√
d+
√

ln(4/β))
{C some large constant}

20: return Σ̃ = Σ̂1/2(I + ηN)(I + ηN)T Σ̂1/2

Lemma A.4. (Utility Analysis) Let Σ = 1
nXX

T and set η = α

48C(
√
d+
√

ln(4/ξ))
for a sufficiently

large constant C > 0. Then w.p. ≥ 1 − ξ Algorithm 3 returns Σ̃ such that dist(Σ, Σ̃) ≤ 2α given
that:

n ≥ 10m

ϵ
ln(1 +

eϵ − 1

2δ
) and m ≥ 2βn

ξ

Proof. Indeed, we have that

∥Σ̂−1/2Σ̃Σ̂−1/2 − I∥ = ∥(I + ηN)(I + ηN)T − I∥
≤ 2η∥N∥+ η2∥NNT ∥

≤ 2ηC(
√
d+

√
ln(4/ξ)) + η2(C(

√
d+

√
ln(4/ξ)))2

where we used the fact that ∥N∥ ≤ C(
√
d+

√
ln(4/ξ)) w.p. ≥ 1− ξ/2. Applying η as defined in the

lemma gives that:
∥Σ̂−1/2Σ̃Σ̂−1/2 − I∥ ≤ α/12

Following from Fact A.3 we have that:

∥Σ̃−1/2Σ̂Σ̃−1/2 − I∥ ≤ α/3

So we have that dist(Σ̃, Σ̂) ≤ α/3.

Now we show that dist(Σ, Σ̂) ≤ α w.p. ≥ 1− ξ/2:
Based on the subsamplability assumption, we know that w.p. ≥ (1− β)T :

∀t ∈ [T ] : dist(Σt,Σ) ≤ α
It means that w.p. ≥ (1− β)T all t ̸= t′ ∈ [T ] satisfy:{

dist(Σt,Σ) ≤ α
dist(Σt′ ,Σ) ≤ α

=⇒ dist(Σt,Σt′) ≤
2α

1− α

Hence w.p. ≥ (1− β)T ≥ e−
2βn
m ≥ 1− ξ/2 all t ∈ [T ] satisfy:

qt =
1

T

∣∣∣∣{t′ ∈ [T ] : dist(Σt,Σt′) ≤
2α

1− α

}∣∣∣∣ = 1
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Finally, Q = 1 > 0.8 + 2
Tϵ ln(1 +

eϵ−1
2δ ) w.p. ≥ 1 − ξ/2 and therefore the algorithm does not fail

w.p. ≥ 1− ξ.

Now obviously dist(Σ, Σ̂) ≤ α since Σ̂ is a weighted average of Σt.

So we have that dist(Σ̃, Σ̂) ≤ α/3 and dist(Σ, Σ̂) ≤ α w.p. ≥ 1− ξ. Applying the 3/2-approximate
triangle inequality for the dist function, we get:

∥Σ−1/2Σ̃Σ−1/2 − I∥ ≤ 3

2
(α+

α

3
) = 2α

Lemma A.5. (Privacy Analysis) Suppose that:

n ≥ 800m ·

(
max

{√
2d(d+ 1/η2)

ϵ
,
8d
√

ln(2/δ)

ϵ
,
8 ln(2/δ)

ϵ
,
12
√
d ln(2/δ)

ϵη

})
Then Algorithm 3 is (2ϵ, 4eϵδ)-DP.

Proof. By basic composition of Truncated Laplace Mechanism and Lemma 3.6 of Ashtiani & Liaw
(2022).

Both Lemma A.4 and Lemma A.5 together imply the following theorem:

Theorem A.6. Let ξ, ϵ, δ be parameters, and let X ⊆ Rd be a (m,α, β)-subsamplable set of n
points. Then, for Algorithm 3, the following properties hold:

1. Algorithm 3 satisfies (2ϵ, 4eϵδ)-Differential Privacy.

2. The algorithm returns Σ̃ such that dist(Σ, Σ̃) ≤ 2α, where Σ = 1
nXX

⊤.

These guarantees hold under the following conditions:

1. The dataset size satisfies:

n ≥ 800m·

(
max

{√
2d(d+ 1/η2)

ϵ
,
8d
√
ln(2/δ)

ϵ
,
8 ln(2/δ)

ϵ
,
12
√
d ln(2/δ)

ϵη
,
ln
(
1 + eϵ−1

2δ

)
80ϵ

})
.

where η = α

48C(
√
d+
√

ln(4/ξ))
for a sufficiently large constant C > 0.

2. The subsamplability parameters satisfy m ≥ 2βn
ξ .

B Finding Initial Parameters

Our recursive algorithm requires as input two parameters that characterize the “aspect ratio” of
the input, namely – Rmax, the maximum distance of any point from the origin, and λmin, the
minimum eigenvalue of the input. These two parameters give us the initial bounds, as they imply
that λminI ⪯ Σ ⪯ R2

maxI . We detail here the algorithms that allow us to retrieve these parameters.
Finding Rmax is fairly simple, as it requires us only to apply off-the-shelf algorithms that find an
enclosing ball of the n input points (Nissim et al. (2016); Nissim & Stemmer (2018); Mahpud &
Sheffet (2022)). Finding the minimal eigenvalue is fairly simple as well, and we use a subsample-
and-aggregate framework. Details follow.

Finding a Covering Radius of The Data
Definition B.1. A 1-cluster problem (Xd, n, t) consists of a d-dimensional domain Xd and parame-
ters n ≥ t. We say that algorithmM solves (Xd, n, t) with parameters (∆, ω, β) if for every input
database S ∈ (Xd)n it outputs, with probability at least 1− β, a center c and a radius r such that: (i)
the ball of radius r around c contains at least t−∆ points from S; and (ii) r ≤ w · ropt, where ropt is
the radius of the smallest ball in Xd containing at least t points from S.
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Theorem B.2 (Nissim & Stemmer (2018)). Let n, t, β, ϵ, δ be s.t.

t ≥ O

(
n0.1 ·

√
d

ϵ
log

(
1

β

)
log

(
nd

βδ

)√
log

(
1

βδ

)
· 9log

∗(2|X|
√
d)

)
There exists an (ϵ, δ)-differentially private algorithm that solves the 1-cluster problem Xd, n, t with
parameters (∆, ω) and error probability β, where ω = O(1) and

∆ = O

(
n0.1

ϵ
log

(
1

βδ

)
log

(
1

β

)
· 9log

∗(2|X|
√
d)

)
In words, there exists an efficient (ϵ, δ)-differentially private algorithm that (ignoring logarithmic
factors) is capable of identifying a ball of radius O(ropt) containing t − Õ(n

0.1

ϵ ) points, provided
that t ≥ Õ(n0.1 ·

√
d/ϵ).

Finding Minimal Eigenvalue The algorithm described in Kamath et al. (2022) (Section 3) privately
estimates all eigenvalues of the second moment matrix of the data. However, for the purpose of
this study, we focus solely on identifying the minimum eigenvalue while maintaining the privacy
guarantees provided by the algorithm. To adapt the algorithm, we modify its structure to prioritize
the computation of the minimum eigenvalue directly, rather than estimating the full spectrum of
eigenvalues. This simplification not only reduces computational overhead but also aligns with the
specific objectives of our work. Below, we detail the adjusted methodology and highlight the changes
made to the original theorem.

Algorithm 4 DP Minimum Eigenvalue Estimator
Input: a set of n points X ⊆ Rd, subsamplability parameters m,α, β, error parameter ξ ∈ (0, 1),
privacy parameters ϵ, δ.

1: Randomly split X into T = ⌊n/m⌋ subgroups X1, . . . , XT of size m.
2: for t ∈ [T ] do
3: Let λtmin be the minimum eigenvalue of 1

mXtX
T
t .

4: end for
5: Ω← {. . . , [(1− α)2, 1− α), [1− α, 1), [1, 1

1−α ), [
1

1−α ,
1

(1−α)2 ), . . . } ∪ {[0, 0]}.
6: Divide [0,∞) into Ω.
7: Run (ϵ, δ)-DP histogram on all λtmin over Ω.
8: if no bucket is returned then
9: return ⊥.

10: end if
11: Let [ℓ, u] be a non-empty bucket returned and set λ̃min ← ℓ.
12: return λ̃min

Theorem B.3. ((Differentially Private EigenvalueEstimator) from Kamath et al. (2022)) For every
ϵ, δ, ξ > 0, the following properties hold for Algorithm 4:

1. The algorithm is (ϵ, δ)-differentially private.

2. The algorithm runs in time poly(n/m, ln(1/ϵξ))

3. if:

n ≥ O
(
m ln(1/δξ)

ϵ

)
and m ≥ 2βn

ln ( 1
1−ξ/2 )

then it outputs λ̃min such that with probability at least 1− ξ, λ̃min ∈ [(1− α)λmin, (1 +
α)λmin] where λmin is the minimum eigenvalue of 1

nXX
T .

Proof. Privacy and running time is proven by the theorem of stability-based private histograms
(See Lemma 2.6 in Kamath et al. (2022)). Now, we move on to the accuracy guarantees. By
subsamplability, with probability at least 1− ξ/2, the non-private estimates of λmin must be within a
factor of (1±α) due to our subsample complexity. Therefore, at most two consecutive buckets would
be filled with λtmin’s. Due to our sample complexity and private histograms utility, those buckets are
released with probability at least (1− ξ/2), which proves our theorem.
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C Missing Proofs

Lemma C.1. (Lemma 3.4 restated.) Given X = {X1, ..., Xn} ⊂ Rd, C > 0, c > 0, 0 < η < 1, 0 <
ψ < 1, and κ ≥ 1 s.t. I ⪯ Σ ⪯ κI where Σ = 1

nXX
T . Let V ← Span({vi : λi ≥ ψκ) and

Π← ηΠV +ΠV ⊥ . Given that: n ≥ O
(
m
√

dT
ρ ln(T/ξ)

)
Then:

(1− 1

η2ψ − c
· 1
κ
)I ⪯ ΠΣΠ ⪯ (η2 + ψ + 2c)κI

In particular, if κ > C for some constant C then:

I ⪯ 1

(1− 1
η2ψ−c )

ΠΣΠ ⪯ η2 + ψ + 2c

(1− 1
C(η2ψ−c) )

κI

Proof. First we prove the upper bound. Note that ∥ΠΣΠ∥2 = ∥Π(Σ̃ − N)Π∥ ≤ ∥ΠΣ̃Π∥ + ∥N∥.
So we bound the two terms separately. Using Fact 2.1 with A = O( 1d ln(

1/ξ)) for sufficiently large
n we get ∥N∥2 ≤ cκ w.p. 1 − ξ/2. Additionally ∥ΠΣ̃Π∥2 ≤ η2∥ΠV Σ̃ΠV ∥ + ∥ΠV ⊥Σ̃ΠV ⊥∥ ≤
η2(κ+ c) + ψκ ≤ (η2 + ψ + c)κ. So overall,

∥ΠΣΠ∥2 ≤ (η2 + ψ + 2c)κ

Next we prove the lower bound. Let u ∈ Sd−1. Our lower bound requires we show that uTΠΣΠu ≥
(1− 1

η2ψ−c ·
1
κ ). We consider two cases:

• Case 1: ∥ΠV u∥2 < 1
η2ψ−c ·

1
κ .

Since ∥ΠV ⊥u∥2 + ∥ΠV u∥2 = 1 we have ∥ΠV ⊥u∥2 > (1− 1
η2ψ−c ·

1
κ ), hence, using the

fact that Σ ⪰ I we have that

uTΠΣΠu ≥ ∥Πu∥2 ≥ ∥ΠV ⊥u∥2 > (1− 1

η2ψ − c
· 1
κ
)

• Case 2: ∥ΠV u∥2 ≥ 1
η2ψ−c ·

1
κ .

Note that uTΠΣΠu = uTΠ(Σ̃−N)Πu = uTΠΣ̃Πu−uTΠNΠu. So we bound each term
separately. We know that

uTΠΣ̃Πu ≥ uTΠV Σ̃ΠV u ≥ η2ψκ∥ΠV u∥2

Additionally, based on the bound on the spectral norm of N we have that uTΠNΠu ≤
cκ∥Πu∥2 ≤ cκ∥ΠV u∥2. So overall:

uTΠΣΠu ≥ (η2ψ − c)κ∥ΠV u∥2 ≥ 1

Claim C.2. (Claim 3.7 restated.) Analogously to Definition 3.2, fix any m′ ≥ m and define
Ptail(m

′) = {x ∈ X : ∃u ∈ Rd : (xTu)2 > m′(1 + α) 1n
∑
i(x

T
i u)

2}. Then it holds that

Pr
x∈RX

[x ∈ Ptail(m
′)] ≤ β + β2

m′ .

Proof. Let x ∈ X be a datapoint and X̂ = {X̂1, . . . , X̂m′} be a subsample of m′ points i.i.d from X .
From subsamplability we know that: Pr[(1−α)Σ ⪯ Σ̂ ⪯ (1+α)Σ] ≥ 1−β where Σ = 1

n

∑
x∈X

xxT

and Σ̂ = 1
m′

∑
i∈[m′]

X̂iX̂
T
i . In other words:

Pr[∀u ∈ Rd : (1− α)uTΣu ≤ uT Σ̂u ≤ (1 + α)uTΣu] ≥ 1− β.

Clearly, if even a single x0 ∈ Ptail(m
′) belongs to X̂ then we’d have that for some direction u we

have
uT Σ̂u =

1

m′

∑
i

(X̂T
i u)

2 ≥ 1

m′ (x
T
0 u)

2 > (1 + α)uTΣu
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contradicting subsamplability. It follows that w.p. ≥ 1− β no point in X̂ belongs to Ptail(m
′). Thus,

if we denote p = Pr
x∈RX

[x ∈ Ptail(m
′)] then we get that 1− β ≤ (1− p)m′

. Using known inequalities

we get e−pm
′ ≥ (1− p)m′ ≥ 1− β ≥ e−β−β2

therefore p ≤ β+β2

m′ .

Lemma C.3. (Lemma 3.8 restated.) LetX be a (m,α, β)-subsamplable with β ≤ α

4(1+α) log( R2

(1+α)m
)
.

Let P = X \ Ptail. Then:

∀u ∈ Rd :
1

n

∑
x∈P
⟨x, u⟩2 ≥ (1− α) 1

n

∑
x∈X
⟨x, u⟩2

Proof. Fix direction u, and denote λP = 1
n

∑
x∈P
⟨x, u⟩2 and λ = 1

n

∑
x∈X
⟨x, u⟩2. Our goal is to prove

that λ− λP ≤ αλ.

Assume that Ptail holds a p-fraction of X , and denote also λtail = 1
|Ptail|

∑
x∈Ptail

⟨x, u⟩2. Hence:

λ = pλtail + λP =⇒ λ− λP = pλtail

which implies that our goal is to prove that pλtail ≤ αλ.

Now split the interval [(1 + α)mλ,R2], the interval of Ptail, into buckets B0, B1, B2, ..., Bk where

Bi =
[
2i(1 + α)mλ, 2i+1(1 + α)mλ

)
and k = log( R2

(1+α)mλ ) ≤ log( R2

(1+α)m ), and clearly we have Pr
x∈X

[⟨x, u⟩2 > m(1+α)λ] = Pr
x∈X

[x ∈
k⋃
i=0

Bi]. Recall that Claim 3.7 implies that for any i we can set m′ = 2im and get:

Pr
x∈X

[x ∈ Bi] ≤
β + β2

2im

Now we can bound pλPtail using Bi:

pλtail ≤
k∑
i=0

Pr
x∈X

[x ∈ Bi] · 2i+1(1 + α)mλ

≤
k∑
i=0

β + β2

2im
· 2i+1(1 + α)mλ ≤ 2β · 2k(1 + α)λ

which is upper bounded by λ for β ≤ α
4(1+α)k .

Lemma C.4. (Lemma 3.9 restated.) At each iteration t of Algorithm 2, only points belonging to Ptail
are subjected to shrinking, given that α < 1/2, ψ = 1

10m and c = 1
80m .

Proof. The proof works by induction on the iterations of the algorithm. Clearly, at t = 0, before the
algorithm begins, no points were subjected to shrinking so the argument is vacuously correct.

Let t ≤ T and let x ∈ Xt denote a point that undergoes shrinking for the first time at iteration t, with
Xt denoting the input of the t-th time we apply Algorithm 2. Our goal is to show that x stems from a
point in Ptail. Since x hasn’t been shrunk prior to iteration t, then there exists some xi in the original
input such that x = Λtxi for the linear transformation Λt = Πt ·Πt−1 · ... ·Π1. Our goal is to show
that xi ∈ Ptail.

We assume x is shrunk at iteration t. This shrinking happens since xTΠV ⊥x > 3
7R

2. With α ≤ 1
2

we have 3
7 ≥

1+α
4 , then it follows that x satisfies:

xTΠV ⊥x >
1

4
(1 + α)R2 =

1

4
(1 + α)κ,

For the given parameters ψ and c, observe that:

xTΠV ⊥x >
1

4
(1 + α)κ > 2m(1 + α)(ψ + c)κ+ cκ.
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Recall that V ⊥ denotes the subspace spanned by all eigenvectors of Σ̃ = Σ +N corresponding to
eigenvalues ≤ ψκ and that ∥N∥ ≤ cκ. Now denote U⊥ the subspace spanned by all eigenvectors of
Σ corresponding to eigenvalues ≤ (ψ + c)κ. By Weyl’s theorem it holds that

xTΠU⊥x ≥ xTΠV ⊥x− cκ ≥ 2m(1 + α)(ψ + c)κ

Thus we infer the existence of u ∈ U⊥ (unit length vector in the direction ΠU⊥x) such that:

(xTu)2 > 2m(1 + α)(ψ + c)κ.

But as U⊥ is spanned by all eigenvalues ≤ (ψ + c)κ of Σ then it holds that 1
n

∑
x∈Xt(x

Tu)2 ≤
(ψ + c)κ, so

(xTu)2 > 2m(1 + α) · 1
n

∑
x∈Xt

(xTu)2 (2)

Now recall that x undergoes shrinking for the first time at iteration t. That means that there exists
some xi in the original input such that x = Λtxi for the linear transformation Λt = Πt ·Πt−1 · ... ·Π1.
Moreover, by the induction hypothesis all points that were shrunk upto iteration t are from Ptail. So
for any point z ∈ Xt \ Ptail it holds that z = Λty for the corresponding y in the original input X . We
get that 1

n

∑
x∈Xt

(xTu)2 ≥ 1
n

∑
x∈Xt\Ptail

(xTu)2 = 1
n

∑
y∈X\Ptail

(yTΛTu)2.

We now apply Lemma 3.8 to infer that

1

n

∑
y∈X\Ptail

(yTΛTu)2 ≥ (1− α) 1
n

∑
y∈X

(yTΛTu)2 ≥ 1

2n

∑
y∈X

(yTΛTu)2

seeing as α ≤ 1/2. Plugging this into Equation (2) we

⟨xi,ΛTu⟩2 = (xTu)2 > m(1 + α) · 1
n

∑
y∈X
⟨y,ΛTu⟩2

which by definition proves that xi belongs to Ptail.

Corollary C.5. (Corollary 3.10 restated.) In all iterations of the algorithm it holds that Σ ⪰ I ,
namely, that the least eigenvalue of the second moment matrix of the input is ≥ 1.

Proof. Again, we prove this by induction of t, the iteration of Algorithm 2. In fact, denoting Xt

as the input of of Algorithm 2 at iteration t, then we argue that the least eigenvalue of the matrix
1
n

∑
x∈Xt\Ptail

xxT is at least 1.

Consider t = 0, prior to the execution of Algorithm 2 even once. Apply Lemma 3.8 with u being
the direction of the least eigenvalue of Σ, and we get that 1

n

∑
x∈X\Ptail

xxT ≥ (1 − α) · 1. Observe

that Algorithm 1 invokes Algorithm 2 on the input multiplied a 1
1−α -factor, and so it holds that

1
n

∑
x∈X0\Ptail

xxT ≥ 1 for X0, the very first input on which Algorithm 2 is run.

Consider now any intermediate t, where we assume that input satisfies 1
n

∑
x∈Xt\Ptail

xxT ≥ 1.

We can apply Lemma 3.4 and Corollary 3.5 solely to the points in Xt \ Ptail and have that
1
n

∑
x∈Xt\Ptail

8
7xΠx

T ≥ 1. Since Lemma 3.9 asserts no point in Xt \ Ptail is shrunk then we get

that the required also holds at the invocation of the next iteration.

Claim C.6. (Claim 4.2 restated.) Let D be a distribution on Rd with a finite second moment Σ.
Consider a random vector y chosen by drawing x ∼ D and then multiplying y = Σ−1/2x. Suppose
that ∥y∥ ≤ M1 a.s. that we also have a bound ∥E[(yT y)yyT ]∥ ≤ M2. Fix α, β > 0. If we draw
m = max

{
2M2

α2 ,
2(1+M2

1 )
3α

}
· ln(4d/β) examples from D and compute the empirical second moment

matrix Σ̂, then w.p. ≥ 1− β it holds that

∥Σ−1/2Σ̂Σ−1/2 − I∥2 ≤ α
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Proof. Denote our sample of drawn points as x1, x2, ..., xm. Define ∀i : yi = Σ−1/2xi so that

E[yiyTi ] = I . This transforms the problem to bounding: ∥Σ̂y − I∥2 ≤ α where Σ̂y = 1
m

m∑
i=1

yiy
T
i .

Now ∥yiyTi ∥2 = ∥yi∥22 ≤M2
1 .

Next, define the random deviation Z of the estimator Σ̂y from the true covariance matrix I:

Z = Σ̂y − I =

m∑
i=1

Zi where Zi =
1

m
(yiy

T
i − I)

The random matrices Zi are independent, identically distributed, and centered. To apply Fact 4.1,
we need to find a uniform bound R for the summands, and we need to control the matrix variance
statistic σ2. First, let us develop a uniform bound on the spectral norm of each summand. We can
calculate that:

∥Zi∥ =
1

m
∥yiyTi − I∥ ≤

1

m
(∥yiyTi ∥+ ∥I∥) ≤

M1 + 1

m

Second, we need to bound the matrix variance statistic σ2 defined in 4.1, with σ2 = ∥E[ZZT ]∥ =
∥
m∑
i=1

E[ZiZTi ]∥. We need to determine the variance of each summand. By direct calculation:

E[ZiZTi ] =
1

m2 E[(yiyTi − I)(yiyTi − I)T ] =
1

m2
(E[yiyTi yiyTi ]− I) ⪯

1

m2 E[yiyTi yiyTi ]

Then we have:

σ2 = ∥
m∑
i=1

E[ZiZTi ]∥ ≤ ∥
m∑
i=1

1

m2 E[yiyTi yiyTi ]∥ ≤
1

m
∥E[(yTi yi)yiyTi ]∥ ≤

M2

m

We now invoke the matrix Bernstein inequality, Fact 4.1:

Pr[∥Σ̂y − I∥2 > α] ≤ 2d · exp
(
− mα2/2

M2 + α(1 +M2
1 )/3

)
which is upper bounded by β given that m ≥ m(α, β) = max

{
2M2

α2 ,
2(1+M2

1 )
3α

}
· ln(4d/β).

D More Applications

D.1 Application: The Uniform Distribution Over Some Convex Ellipsoid

Fix a PSD matrix 0 ⪯ A ⪯ I . Consider the uniform distribution D over the surface of some convex
ellipsoid K = {x ∈ Rd | xTA−1x = 1}. Our goal in this section is to argue that our algorithm is
able to approximate the 2nd moment matrix ΣD. To that end, we want to determine the size m of
a subsample drawn from D, such that with probability at least 1− β: ∥Σ−1/2

D Σ̂DΣ
−1/2
D − I∥2 ≤ α

where ΣD = 1
dA is the second moment of D.

To utilize Claim 4.2, it is necessary to compute the bounds M1 and M2. First, note that if x is
drawn from the surface of K then ∥Σ−1/2

D x∥ =
√
d∥y∥ for unit-length vector y, implying M1 =

√
d.

Second, consider y = Σ
−1/2
D x and observe that:

E[yyT yyT ] = E[Σ−1/2
D xxTΣ−1

D xxTΣ
−1/2
D ] = d2 · E[A−1/2xxTA−1xxTA−1/2]

(∗)
= d2 · E[A−1/2xxTA−1/2] = d2 ·A−1/2 E[xxT ]A−1/2 (∗∗)

= dI

where inequality (∗) follows from the fact that xTA−1x = 1 for all i and equality (∗∗) follows since
E[xixTi ] = 1

dA.

Hence we have ∥E[yiyTi yiyTi ]∥ ≤ d = M2, and we conclude that D is (O
(
d
α2 · ln(4d/β)

)
, α, β)-

subsamplable.
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Recall that we (1± γ)-approximate the 2nd-moment matrix of the input w.p.≥ 1− ξ. Thus, we need
the input itself to be a (1 ± γ)-approximation of the 2nd-moment matrix of the distribution. This
means our algorithm requires

m(γ, ξ) +O

(
m(α, β)

γ

√
d

ρ
· log( 1

λmin
) log(log( 1

λmin
)/ξ)

)
for α = 1/2 and β = O( 1

log(1/λmin)
) in order to return a (1 ± O(γ))-approximation of the 2nd

moment of the distribution w.p. ≥ 1−O(ξ).

Plugging the m(α, β) of D we conclude that in order to return a (1±O(γ))-approximation of the
2nd moment of D w.p. ≥ 1−O(ξ) our sample complexity ought to be

m(γ, ξ) +O

(
m( 12 ,

1
log(1/λmin)

)

γ

√
d

ρ
· log(1/λmin) · log(

log(1/λmin)

ξ
)

)
= Õ

(
d

γ2
+
d3/2

γ
√
ρ

)

While, for comparison, our baseline algorithm requires

Õ

(
d ·m(γ, ξ)

ϵγ

)
= Õ

(
d2

ϵγ3

)
in order to return a (1±O(γ))-approximation of the 2nd moment of the distribution w.p. ≥ 1−O(ξ).

D.2 Examples of Heavy-Tailed Distributions

The above discussion holds for a general distribution. Next we demonstrate our algorithm’s perfor-
mance a few heavy-tailed distributions. However, we also emphasize that many more applications are
possible, since the subsamplability assumption is broad and encompasses a wide range of input distri-
butions. For example, we further analyze datasets drawn from uniform distributions over ellipsoids
and from Gaussian mixtures with stochastic outliers in Appendix D.1 and ?? respectively.

The Truncated Pareto Distribution. Throughout we use the following distribution truncated
Pareto distribution, denoted P6, that is supported on the interval [1, B] for some B > 1 (say B = 10),
and whose PDF is ∝ x−6. Formally, its PDF is

f(x) =

{
5B5

B5−1x
−6 if 1 ≤ x ≤ B

0 if x < 1 or x > B

so that f integrates to 1. Simple calculations show that µ6
def
= E

λ∼P6

[λ] = 5
4 ·

B(B4−1)
B5−1 , that

σ2
6

def
= E

λ∼P6

[λ2] = 5
3 ·

B2(B3−1)
B5−1 and that E

λ∼P6

[λ4] = 5 · B
4(B−1)
B5−1 .

We consider here two distributions composed of a λ ∼ P6 and v ∈R Sd−1. The first is λv, namely a
vector with direction distributed uniformly over the unit sphere and magnitude distributed according
to the P6 distribution; and the second is λ ◦ v, namely a (d + 1)-dimensional vector with first
coordinate drawn from P6, concatenated with a uniformly chosen vector from the unit sphere on the
remaining d coordinates.

The λv Distribution. Define the random variable x = λv, where v is uniformly distributed from
the unit sphere, and λ ∼ P6. Let D be the distribution of x. Our goal is to argue that our algorithm is
able to approximate the 2nd moment matrix ΣD and outperforms the baseline(s). To that end, we
want to determine the size m(α, β) of a subsample drawn from D so that with probability at least
1− β: ∥Σ−1/2

D Σ̂DΣ
−1/2
D − I∥2 ≤ α.

To utilize Claim 4.2, we compute ΣD = E[λv(λv)T ] = E[λ2]E[vvT ] = σ2
6

d I , since E[vvT ] = 1
dI .

It follows that y = Σ
−1/2
D x =

√
d

σ6
λv, so we can bound ∥y∥ =M1

def
= B

√
d

σ6
. Lastly, it is necessary to

20



compute M2. To this end, we evaluate the expectation:

E[Σ−1/2
D xix

T
i Σ

−1
D xix

T
i Σ

−1/2
D ] = E[(

B5 − 1

B2(B3 − 1)
)2 · (3d

5
)2 · λv(λv)T · λv(λv)T ]

=
9d2

25
(

B5 − 1

B2(B3 − 1)
)2 · E[λ4] · E[vvT vvT ]

(∗)
=

9d2

25
(

B5 − 1

B2(B3 − 1)
)2 · E[λ4] · E[vvT ]

(∗∗)
=

9d2

25
(

B5 − 1

B2(B3 − 1)
)2 · 5B

4(B − 1)

B5 − 1
· 1
d
I ≤ 2dI

where (∗) follows from vT v = 1 and (∗∗) holds since E[λ4] = 5B4(B−1)
B5−1 and E[vvT ] = 1

dI . Hence
we have ∥E[yiyTi yiyTi ]∥ ≤ 2d =M2. We now plug-in our values of B, λmin and M and infer this
distribution is m(α, β)-sampleable for m = O(max{ dα2 ,

dB2

α } ln(d/β)). Plugging this into (1) we
conclude that in order to return a (1±O(γ))-approximation of the 2nd moment ofD w.p. ≥ 1−O(ξ)
our sample complexity ought to be

m(γ, ξ)+O

(
m( 12 ,

1
log(Bd) )

γ

√
d

ρ
· log(Bd) · log( log(Bd)

ξ
)

)
= Õ

(
max{ d

γ2
,
dB2

γ
}+ dB2

γ

√
d

ρ

)

While, for comparison, our baseline algorithm requires

Õ

(
d ·m(γ, ξ)

ϵγ

)
= Õ

(
d

ϵ
max{ d

γ2
,
B2d

γ
}
)

in order to return a (1±O(γ))-approximation of the 2nd moment of the distribution w.p. ≥ 1−O(ξ).

The λ ◦ v Distribution. Consider the (d+ 1)-dimensional distribution D where the first coordinate
is drawn from the truncated Pareto distribution P6 and the remaining coordinates are drawn uniformly

over the unit sphere Sd−1: I.e. x =

[
λ
v

]
∼ D. Our goal in this section is to argue that our algorithm

is able to approximate the 2nd moment matrix ΣD. To that end, we want to determine the size m of a
subsample drawn from D, such that with probability at least 1− β: ∥Σ−1/2

D Σ̂DΣ
−1/2
D − I∥2 ≤ α.

First it is easy to see that the L2-norm of any x ∼ D is at most B + 1. Next, we compute ΣD:

ΣD = E[
[
λ
u

] [
λ uT

]
] = E[

[
λ2 λuT

λu uuT

]
] =

[
σ2
6 0

T

0 1
dI

]

It follows that the vector y = Σ
−1/2
D x =

[
σ−1
6 0

T

0
√
dI

] [
λ
u

]
=

[
σ−1
6 λ√
du

]
, so its norm is upper bounded

by M1 =
√
d+ σ−2

6 B2. So now we can evaluate the expectation:

E[yyT yyT ] = E[∥y∥2yyT ] = E[(σ−2
6 λ2 + d)

[
σ−2
6 λ2 σ−1

6

√
dλuT

σ−1
6

√
dλu duuT

]
]

=

[
σ−4
6 E[λ4] + dσ−2

6 E[λ2] 0
0 (σ−2

6 E[λ2] + d)Id

]
=

[
σ−4
6 E[λ4] + d 0

0 (d+ 1)Id

]
= dId+1 +

[
σ−4
6 E[λ4] 0

0 Id

]
seeing as σ−4

6 E[λ4] ≈ 9
5 = O(1) we can infer that M2 = ∥E[yyT yyT ]∥ = O(d).

We now plug-in our values of B, λmin and M and infer this distribution is m(α, β)-samplable
for m = O(max{ dα2 ,

d+B2

α } ln(d/β)). Plugging this into (1) we conclude that in order to return a
(1±O(γ))-approximation of the 2nd moment of D w.p. ≥ 1−O(ξ) our sample complexity ought
to be

m(γ, ξ)+O

(
m( 12 ,

1
log(Bd) )

γ

√
d

ρ
· log(Bd) · log( log(Bd)

ξ
)

)
= Õ

(
max{ d

γ2
,
d+B2

γ
}+ d+B2

γ

√
d

ρ

)
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The analysis suggests we can even set B = O(
√
d) and get a sample complexity of Õ

(
d
γ2 + d3/2

γ
√
ρ

)
.

While, for comparison, our baseline algorithm requires

Õ

(
d ·m(γ, ξ)

ϵγ

)
= Õ

(
d

ϵ
max{ d

γ3
,
B2 + d

γ2
}
)

ifB ≤
√
d

= Õ(
d2

γ3ϵ
)

in order to return a (1±O(γ))-approximation of the 2nd moment of the distribution w.p. ≥ 1−O(ξ).
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