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Abstract

Federated Learning (FL) enables geographically distributed clients to collabora-
tively train machine learning models by sharing only their local models, ensuring
data privacy. However, FL is vulnerable to untargeted attacks that aim to degrade
the global model’s performance on the underlying data distribution. Existing de-
fense mechanisms attempt to improve FL’s resilience against such attacks, but their
effectiveness is limited in practical FL environments due to data heterogeneity.
On the contrary, we aim to detect and remove the attacks to mitigate their impact.
Generalization contribution plays a crucial role in distinguishing untargeted attacks.
Our observations indicate that, with limited data, the divergence between embed-
dings representing different classes provides a better measure of generalization
than direct accuracy. In light of this, we propose a novel robust aggregation method,
FedGraM, designed to defend against untargeted attacks in FL. The server main-
tains an auxiliary dataset containing one sample per class to support aggregation.
This dataset is fed to the local models to extract embeddings. Then, the server
calculates the norm of the Gram Matrix of the embeddings for each local model.
The norm serves as an indicator of each model’s inter-class separation capability
in the embedding space. FedGraM identifies and removes potentially malicious
models by filtering out those with the largest norms, then averages the remaining
local models to form the global model. We conduct extensive experiments to
evaluate the performance of FedGraM. Our empirical results show that with limited
data samples used to construct the auxiliary dataset, FedGraM achieves exceptional
performance, outperforming state-of-the-art defense methods.

1 Introduction

Federated Learning (FL) has gained significant traction for its ability to enable distributed machine
learning without direct data sharing. This offers improved privacy, reduced communication costs, and
scalability [23, 21, 18, 20]. However, FL’s decentralized nature introduces vulnerabilities [40, 13, 34,
4, 6, 10], making it susceptible to untargeted attacks [3, 11, 30]. Attackers may infiltrate the system
by posing as legitimate clients or hijacking existing clients, aiming to disrupt the training process and
degrade the global model’s generalization performance on the underlying data distribution.
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Figure 1: The norm distribution and the accuracy distribution across clients at the beginning stage of
the training. The Gram matrix norm is calculated as we shown in Section 4 with only 10 data samples.
The accuracy is estimated with 100 data samples. The detailed setting of this demo experiment
are refereed to Section A.5 in appendix. In each figure, we arrange the clients in descending order
based on the corresponding values. Accordingly, with limited data, the Gram matrix norm is a better
indicator to capture the generalization divergence between local models.

Several studies have proposed robust aggregation methods to defend against untargeted attacks in
FL [7, 11, 15]. Most of these approaches aim to improve the FL system’s resilience to adversarial
impact, ensuring the global model remains accurate even when some clients are malicious and
submit manipulated models [37, 33]. However, these methods often fall short in practical scenarios.
Due to data heterogeneity, which introduces discrepancies among clients’ data distribution, the
benign models drift from each other, leading to worse convergence of the global model and more
susceptibility to attacks from malicious clients. Consequently, the global model tends to achieve only
sub-optimal performance under untargeted attacks.

In this paper, we aim to detect and remove malicious clients and fundamentally mitigate the impact
of such attacks. We posit that the primary distinction between malicious and benign models lies in
their contribution: benign models enhance the generalization of the global model, while malicious
models degrade it. Thus, an intuitive approach to identify malicious models is to assess their accuracy
on test data to evaluate generalization performance. However, maintaining a large dataset on the
server is impractical due to privacy concerns. With only limited data, the estimated accuracy is
often insufficient to capture the generalization differences between local models, particularly in
the early stages of training. This constraint raises a critical challenge: How can we estimate the
generalization performance of local models with limited data? Addressing this challenge is
essential for advancing defense strategies in FL.

To overcome this limitation, in this paper, we explore an alternative way of estimating generalization.
In deep learning models, a key function of the representation layers is to separate data belonging
to different classes within the embedding space, facilitating decision-making in subsequent layers.
Compared with accuracy, the divergence between embeddings across classes can be a better estimator
of generalization as it provide a more fine-grained indicator with less data required. We show a demo
experiment result in Figure 1 to demonstrate our insight.

In light of this, we propose a novel robust aggregation named FedGraM to detect and remove the
malicious clients. In FedGraM, the server maintains an auxiliary dataset containing only one data
sample per class. For each local model, the server inputs the dataset to extract the embeddings
through the model’s representation layers. After that, the server normalizes the embeddings and
calculates the product of embeddings and its transpose matrix to obtain the Gram matrix. The norm
of the Gram Matrix captures the inter-class separation ability of the representation layers, reflecting
the generalization property of the model. Subsequently, the server discards the local models with the
highest norms which are possible to be the malicious models, averaging the remaining local models
to generate the global model. We conduct comprehensive evaluations on FedGraM. According to
our experiment results, FedGraM is effective in defending against untargeted attacks with few data
samples maintained by the server. It outperforms state-of-the-art defense methods.

In summary, we make the following contributions:
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• We explore how the behavior of a deep learning model’s representation layers in separating
data representing different classes can serve as a reliable estimate of generalization in
data-limited situations.

• We propose FedGraM, a robust aggregation method for defending against untargeted attacks
in FL. It leverages the embedding Gram Matrix to indicate the generalization performance
of local models. It filters out the local models with the worst generalization performance
which have the potential to be malicious models

• We conduct extensive experiments to evaluate FedGraM. Our empirical results demonstrate
that, with only limited data samples maintained by the server, FedGraM is effective in
defending against untargeted attacks and outperforms state-of-the-art defense methods.

2 Related Work

2.1 Untargeted Attack

A body of research has focused on studying untargeted attacks in FL [8, 35]. These attacks, which
aim to prevent model convergence and threaten the model’s utility on the underlying data distribution,
have garnered significant attention in the research community. According to the capability of the
adversaries, the untargeted attacks can be categorized as model poisoning attacks and data poisoning
attacks. Regarding data poisoning attacks[11, 30],malicious clients set up the wrong label to the
data to manipulate the label distribution. Regarding model poisoning attacks[3, 11, 29, 9], malicious
clients directly manipulate the local models to prevent the convergence of the global model.

2.2 Robust Aggregation

A line of works proposes robust aggregation to defend against untargeted attacks [38, 39, 1, 17, 12, 28].
A major direction of defense is to perform dimension-wised strategy to alleviate the impact of
malicious models[37, 27]. Another direction of works consider the model parameter as a lone vector
and setup strategy to filter malicious models[5, 14, 26]. There are also methods bounding the norm
of model to guarantee the robustness[33, 24]. Some method setup auxiliary dataset on the server to
provide trusted information to support defenses[11, 7]. Our work follows this assumption and relaxes
the requirement of the auxiliary dataset.

3 Background

3.1 Federated Learning

We consider FL is conducted for classification tasks in which the data will be classified into totally K
classes. The goal of FL is to solve the following problem:

min
w

{
J(w) =

1

N

N∑
i=1

Ji(w)

}
(1)

Where w represents the model, and J(w) denotes the global objective function, defined as the average
of the local objective function Ji(w) across all clients. N is the number of the total clients. Further,
we define the local objective of clients as follows:

Ji(w) = E
(x,y)∼Di

[L(F (w;x), y)] (2)

The local objective function for each client is defined as the expectation of loss function over its
corresponding local dataset. Di is the local dataset owned by the i-th client. x and y represent the
feature and the class of a data point randomly sampled from the local dataset. The loss function,
denoted by L, is chosen as Cross Entropy in this paper to evaluate classification performance. F (w;x)
is defined as the function mapping the input feature x to the output, parameterized by the model w.

In general, the deep learning models consist of two main components:(1) representation layers which
transform input from the original feature space to an embedding space, and (2) decision layers, which
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generate a classification decision based on the embeddings for a given learning task. In this paper,
we decompose the model w into two parts. ϕ denotes the representation layers and v denotes the
decision layers. Further, we define F (w;x) as follows:

F (w;x) = g(v; f(ϕ;x)) (3)

Where f is the function that transforms the input from feature space to the embedding space via
the representation layers ϕ. g is the decision function that maps the embeddings to the final results
through the decision layers v.

Generally, FL iteratively performs the following steps to solve the problem:

• Step 1. The server samples a subset of clients and broadcasts the current global model to
these clients.

• Step 2. After receiving the global model, the sampled clients initialize their local models as
the global model. The sampled clients perform a fixed step of stochastic gradient descent to
update their local models towards the local objectives. When local training is finished, the
clients send the local model back to the server.

• Step 3. The server collects the local model from the sampled clients. Then the server
aggregates the local model based on the aggregation algorithm to generate the global model
for the next round of training.

3.2 Threat Model

In this paper, we focus on the scenario in which the FL system faces security threats from malicious
clients. The goal of the malicious clients is to degrade the global model’s generalization performance
on the underlying data distribution, ultimately reducing its accuracy. To achieve this, they compromise
a subset of clients, either by injecting malicious data to perform data poisoning attacks or by
manipulating the updates of the uploaded models to conduct model poisoning attacks. The remaining
clients are benign and participate in local training honestly to support the FL process. The attackers
are colluding and upload malicious models in each communication round to perform attack. The
central server is responsible for defending against these adversarial attacks, typically employing
robust aggregation to mitigate malicious clients’ impact. In the rest of this paper, we refer to the local
models uploaded by malicious clients as malicious models and those uploaded by benign clients as
benign models.

4 Methodology

4.1 FedGraM

FedGraM is a robust aggregation method which supposed to be utilized by the server to defend against
untargeted attacks. In FedGraM, the server maintains an auxiliary dataset to support aggregation. We
denote this dataset as Ds. Considering FL is conducted to solve a K-classes classification task, Ds

contains K data samples, with exactly one data sample for each class. In each communication round,
for each local model received by the server, the server feeds Ds to the model’s representation layers
and obtains the embeddings. The server concatenates K embeddings into an embedding matrix.
Specifically, for the i-th client, its embedding matrix is presented as :

pi,j = f(ϕi;xj) (4)

Pi = [pi,0, pi,1...pi,K−1]
T (5)

Where xj represents the feature of the data sample with class j in Ds. ϕi denotes the representation
layers of the i-th client’s local model. pi,j represents the embedding of xj on the i-th client’s local
model. Pi represents the embedding matrix of the i-th client.

Further, we normalize the embedding matrix so that the Euclidean norm of each row vector equals to
1. After that, we calculate the Gram Matrix of the embeddings. The calculation is formed as:

Gi = PiP
T
i (6)
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Figure 2: The overview of FedGraM. For each uploaded local model, the server feeds the auxiliary
dataset to its representation layers to extract the corresponding embeddings. The server then calculates
the product of the normalized embedding matrix and its transpose to get Gram Matrix. After that, the
server calculates the norm of each Gram Matrix and removes the model with the highest norm. At
the end, the server averages the remaining models to generate the global model.

Where Gi is the Gram Matrix for the i-th client. It is calculated as the product of embedding matrix
pi and its transposed matrix.

Then, the server calculates the Euclidean norm of Gi and records it as the score for the local model
of the i-th client. After calculating all the scores for uploaded local models, the server eliminates the
local models with the highest C scores which have the potential to be malicious models. Then the
server calculates the average of the rest local models as the global model in this communication round.
We have shown the procedure of FedGraM in Figure 2. In our empirical evaluation, we set C = 30%.
In Section 5.3, we have conducted extensive experiments to support our setting and investigate the
impact of C.

4.2 Why FedGraM works

In untargeted attacks, the goal of the malicious clients is to degrade the accuracy of the global model
on underlying data distribution. As they are intended to destroy the generalization of the global
model, the uploaded malicious models are supposed to have a bad generalization performance and
do not contribute to the generalization of the global model. Considering a deep learning model,
inter-class separation is the fundamental function of its representation layers, which supports the
decision-making of the following layers. Within embedding space, these layers cluster data from the
same class while separating data from the different classes, thereby enhancing the classification and
guaranteeing generalization. Therefore, the behavior of the representation layers can serve as an
indicator of generalization performance and help identify the malicious models.

Regarding FedGraM, we consider the Gram Matrix of a certain uploaded local model. For conve-
nience, in this explanation, we drop the subscript of the index of the client. The element in the x-th
row and y-th column of the Gram Matrix G is formed as :

Gx,y = ⟨px, py⟩ = ∥px∥2 · ∥py∥2 · cos(θ) (7)

Where Gx,y denotes the element in the x-th row and y-th column of the matrix G. θ is the angle
between px and py. Since we have done normalization on the embeddings before the calculation of
Gram Matrix, ∥py∥2 and ∥py∥2 always equal to 1. Therefore, Gx,y can be simply formed as:

Gx,y = cos(θ) (8)

Accordingly, Gx,y represents the cosine similarity between the embedding of data with class x and
class y. When x = y, Gx,y lies on the diagonal of the matrix and is always equal to 1. When x ̸= y,
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the off-diagonal elements of G indicate the local model’s ability to separate embeddings with class x
and class y. A lower value of Gx,y reflects better separation between these classes. Thus, the Gram
Matrix captures the ability of the representation layers to achieve inter-class separation within
the embedding space.

In conclusion, FedGraM measures the norm of the Gram Matrix to estimate the generalization perfor-
mance of each uploaded model. A higher norm indicates that the model has a worse generalization
performance. Hence, FedGraM removes the models with the highest norm which are potential to be
the malicious models, and averages the remaining models to aggregate the global model.

4.3 Auxiliary Dataset

In the general framework of FL, the server typically does not have access to any data, which poses
a challenge for FedGraM’s requirement of an auxiliary dataset. To address this, we consider two
solutions. First, when data owners collaborate in FL, one of them could act as the server and collect
a small auxiliary dataset to enable FedGraM. Second, the server could encourage all clients to
contribute to a shared, public auxiliary dataset for FedGraM. This dataset has no specific quality
requirements; ideally, it includes one randomly selected data sample per class. However, in both
approaches, the auxiliary dataset may not cover all classes. We evaluate FedGraM’s performance
under this limitation in Section 5.3.

5 Empirical Evaluation

5.1 Experiment Setting

We introduce a default setting for our experiments; some settings may change in certain experiments.
The FL system involves 500 clients with 10% of clients are malicious clients. In each communication
round, 10% of the clients are randomly selected to participate in the training. We used the Dirichlet
distribution Dir(β) to simulate the data heterogeneity in FL. The experiments were conducted on the
CIFAR10[19] dataset, SVHN[25] dataset, and CIFAR100[19] dataset. The auxiliary dataset Ds is
randomly sampled from the union of the clients’ local dataset and is excluded from the clients’ local
training. We record the highest test accuracy achieved by the global model to reflect the performance
of the methods. The detials of the experiment settings are referred to Section A.4 in appendix.

5.2 Comparison with SOTA defenses

We compare the defending performance of FedGraM with SOTA defense methods. We concentrate
on the performance with different data heterogeneity and with different ratio of malicious clients.
We implement attacks including LIE[3], Fang[11], MinMax[29], MinSum[29], MPAF[9], Label
Flip[11] and Dynamic Label Flip[30] to evaluate the performance of defense methods. We implement
defense methods including Trimean[37], Norm Bound[24], CRFL[33], FLTrust[7], FLAME[26],
RONI[11], Bucket[17], FedRola[36], Krum[5], Bulyan[14], FoundationFL[12], RFA[28], RLR[27]
for comparison. The detailed introduction of attacks and defenses are refereed to Section A.1 and
Section A.2 in appendix.

Different Data Heterogeneity In this experiment, we evaluate the performance of defense methods
with different data heterogeneity. Specifically, we set β ∈ {10, 1, 0.2} to simulate different degrees
of data heterogeneity among clients. Due to page limitations, we only show the performance of
partial defenses in Figure 3. The entire experiment results are referred to Section B.3 in appendix.
Accordingly, FedGraM achieves high accuracy under all attacks in all situations which demonstrates
the effectiveness of FedGraM in defending untargeted attacks. The vulnerability of the attacks is
revealed in their malicious behavior in the embedding space which can be captured by FedGraM.
Therefore, FedGraM can correctly detect and remove malicious models from local models. Mean-
while, the existing defense methods do not achieve satisfactory performance for certain attacks. Due
to data heterogeneity and cross-device scenarios, they may not retain robustness in the experiments.
We also conduct experiments in cross-silo scenario in which we setup the FL system with different
clients number, different participate ratio and different model architecture. The experiment results in
cross-silo is shown in Section B.3.4 in appendix which is also demonstrating the effectiveness and
superiority of FedGraM.
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Figure 3: The experiment results of the comparison between FedGraM and SOTA defenses. We draw
a spider chart for each defense to represent its performance in defending against untargeted attacks.
Each dimension of the map represents the performance of the corresponding defense in defending
a certain type of attack. From the top row to the bottom row, we present the results in CIFAR10,
SVHN, and CIFAR100.

Table 1: The experiment results of the impact of malicious clients ratio in CIFAR10 dataset. We
show the performance(Test accuracy (%)) of FedGraM and existing defense methods with different
malicious clients ratios.

Attacks LIE Fang MinMax
Ratio 15% 10% 5% 15% 10% 5% 15% 10% 5%

Trimean 48.76 57.31 65.61 57.54 65.98 70.40 50.77 61.12 70.74
CRFL 62.65 67.49 71.56 28.19 38.37 67.59 32.67 46.70 68.09
RONI 62.37 67.87 72.84 70.36 74.40 74.21 48.52 64.67 70.61

FedGraM 72.57 72.47 73.91 73.94 73.72 74.16 73.06 72.72 72.98

Different Malicious Clients Ratio We further explore the impact of the ratio of malicious clients.
We set the ratio of malicious clients to 5%, 10%, and 15%. The β are set to 1. The results are shown
in Table 1. The entire version of the results are shown in Section B.4 in appendix. Consequently,
the performance of FedGraM is consistent with the ratio of malicious clients. In most situations,
it performs best among the evaluated defense methods. More importantly, it is obvious that the
performance of other defense methods degrades as the ratio of malicious clients increases. On the
contrary, the performance of FedGraM is not impacted by the ratio of malicious clients. However,
in some situations, FedGraM is worse than other defense methods. In most of these situations,
the FedGraM achieves a similar performance as the best method which can also demonstrate its
effectiveness.

5.3 Ablation Study

The hyperparameter C and the auxiliary dataset Ds are two crucial factors which determine the
effectiveness of FedGraM. We conduct comprehensive evaluations to investigate their impact and
support our hyperparameter setting.
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Figure 4: From lest to right, we show the experiment results of Gram matrix norm distribution,
Fidelity of FedGraM and Impact of C.

Figure 5: The experiment results of the impact of the quality of the auxiliary dataset on the perfor-
mance of FedGraM.

Gram Matrix Norm Distribution To begin with, we show the distribution of the norm of GraM
matrix across clients during the training process. The experiment in conducted under LIE attack with
β = 0.2 in CIFAR10. We show the rank of malicious clients’ norms among all the local models
in Figure 4. The norm are ranked in descending order from bottom to top. The norm of malicious
models always distributed at the largest value which demonstrate the effectiveness of the FedGraM in
distinguishing malicious clients. During the training, the lowest norm of malicious models is ranked
below 30% of the total norm. Therefore, we set C = 30% and filter the local models with the highest
30% norm in each round.

Fidelity of FedGraM With C = 30%, we evaluate the fidelity of FedGraM. Specifically, we estimate
the test accuracy without any attack to reveal the performance of FedGraM and compare it with
FedAvg. The experiment are conducted in CIFAR10 with β = 1 and the result is shown in Figure 4.
The experiment results in more dataset with other situation of data heterogeneity is shown in Section
B.1 in appendix. Accordingly, the similar accuracy curves have demonstrated that FedGraM does not
sacrifice much utility of the model for robustness. A potential reason for this is that filter a part of
local models can be treated as setting a lower client sample rate in each communication round which
would bring significant convergence and generalization loss demonstrated by [22] .

Impact of C Further, we investigate the impact of C to the defending performance of FedGraM. We
set C ∈ {20%, 30%, 40%}. We set β = 1. The results in CIFAR10 dataset are shown in Figure 4.
We show an entire version of results in Section B.2 in appendix. Accordingly, while C = 40%, an
excessive number of local models were removed which led to performance degradation in all datasets.
FedGraM has shown similar performances with C = 20% and C = 30%. However, under certain
situations, C = 20% is insufficient to defend against attacks. As a result, setting C = 30% is the
safest choice to guarantee robustness. Although there might not be that many malicious clients in the
FL system, appropriately removing some local models can mitigate potential threats. Consequently,
our experiment results support our setting of C = 30%.
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Quality of Auxiliary dataset Finally, we investigate the impact of the quality of the auxiliary dataset
maintained by the server on the performance of FedGraM. We consider the practical scenario in
which the server only has a subset of the classes. Specifically, for CIFAR10 and SVHN, we simulate
the situations in which the auxiliary dataset includes full labels, 50% labels, and 30% labels. For
CIFAR100, we simulate the situations in which the auxiliary dataset includes full labels, 50% labels,
and 10% labels. We set β = 0.2. According to the results shown in Figure 5, FedGraM can retain
robustness with a subset of classes under certain attacks. However, it is obvious that without the
integrity of class distribution, FedGraM is insufficient to defend against MinSum attack in all datasets.
A potential reason is that, with incomplete classes, FedGraM cannot capture the entire behavior of
the local models in the embedding space, leading to its poor performance in distinguishing malicious
models. In practical application scenarios, we encourage the server to collect the full classes of data
as much as possible to ensure robustness.

6 Limitation

Given sufficient knowledge of FedGraM, malicious clients may attempt to deploy adaptive attacks
to bypass its defense mechanisms. In this section, we analyze this potential threat and evaluate the
robustness of FedGraM against such adaptive attacks.

Ideally, the adaptive attack covers two property. First, the malicious model should output random
embeddings for all input data to evade detection by FedGraM. Secondly, the embeddings of data
within the same class should also be orthogonal, thereby destroying any meaningful clustering in the
embedding space. Inspired by [32], we design an adaptive attack in which malicious clients train their
local models to enforce pure uniformity in the embedding space, entirely disregarding the objective
of correct classification. Specifically, malicious clients follow the same local training procedure as
benign clients but replace the standard Cross Entropy loss with the following loss function:

L(w) = log E
x1,x2∼Di

[e−∥f(ϕ;x1)−f(ϕ;x2)∥2
2 ] (9)

where the model is optimized to maximize the distance between embeddings of any pair of data
points, thereby achieving pure uniformity in the embedding space.

Table 2: Performance of FedGraM under adaptive attacks.

Dataset β FedGraM-AVG FedGraM-Trim

CIFAR10
10 22.04% 72.25%
0.2 40.50% 65.77%

SVHN
10 34.95% 93.20%
0.2 43.63% 92.14%

CIFAR100
10 5.39% 42.65%
0.2 11.71% 37.82%

Furthermore, we evaluate the perfor-
mance of FedGraM under adaptive at-
tacks. Since FedGraM functions as a
detection mechanism, it can be com-
bined with any aggregation method to
enhance the overall robustness of the sys-
tem. To this end, we employ FedAvg and
Trimean as aggregation methods follow-
ing FedGraM’s detection phase. The ex-
perimental results are summarized in Ta-
ble 2. Our findings indicate that adaptive
attacks indeed undermine the robustness
of FedGraM to some extent. However,
while adaptive attacks enable malicious models to evade detection by FedGraM, they simultaneously
amplify the divergence between malicious and benign models. This divergence makes the impact of
adaptive attacks more detectable and mitigable through classical statistical-based robust aggregation
methods. Specifically, when Trimean is applied after FedGraM detection, the global model’s accuracy
remains largely unaffected, demonstrating the resilience of this combined approach. In conclusion,
although adaptive attacks pose a challenge to FedGraM’s detection capabilities, their impact can
be effectively mitigated by integrating robust aggregation methods. This suggests that even if ma-
licious models bypass detection, the system can still maintain its robustness through subsequent
statistical-based aggregation techniques.
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7 Conclusion

We propose a novel robust aggregation method named FedGraM to defend against untargeted
attacks in FL. In FedGraM, the server maintains an auxiliary dataset to support the aggregation.
In each communication round, the server feeds the dataset to received local models to extract the
corresponding embeddings. The server multiplies the embedding matrix and its transpose matrix
to obtain the Gram Matrix. The norm of Gram Matrix captures the capability of the local model’s
representation layers in inter-class separation in embedding space. It is an important property
supporting the generalization of the deep learning model. The server filters out the local models with
the highest norm of Gram Matrix which are potential to be the malicious models. The remaining
local models are averaged to generate the global model. We have conducted extensive experiments
to evaluate the performance of FedGraM. As our empirical results show, FedGraM is effective in
defending against untargeted attacks with limited data samples on the server. It is comprehensive to
defend all the evaluated attacks and outperforms SOTA defense methods.
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A Additional Experiment Setting

A.1 Evaluated Attacks

A.1.1 LIE

LIE[3] is a common untargeted attack that aims to prevent the convergence of the global model.
Adversaries set up a desired aggregated direction on parameter space which is inverse to the direction
of convergence. By crafting values between the mean and the desired direction, the malicious model
appears closer to the mean than some benign models that are at the extremes of the distribution.
This allows attackers to bypass defense methods and prevent the convergence of the global model.
Formally, the attacks can be expressed as:

zmax = maxz(ϕ(z) <
n−m− s

n−m
), s =

⌊n
2
+ 1

⌋
−m (10)

wm
i,j = mean(wb

i,j)− zmax · std(wb
i,j) (11)

Where n and m represent the number of total clients and malicious clients respectively. ϕ(z) is the
Cumulative Standard Normal Function. wb

i,j and wm
i,j are the j-th parameter of the local updates

of the i-th benign client and malicious client respectively. The mean and the standard deviation of
benign clients can be captured by malicious clients leveraging some hijack tools. They can also be
simulated by the malicious clients themselves.

A.1.2 Fang

Fang[11] is a model poisoning attack where adversaries manipulate local updates to steer the global
model towards the inverse direction of convergence. Fang is designed with specific attacks tailored
to different aggregation algorithms to ensure their stealthiness. Empirical results demonstrate that
attacks designed for certain aggregation algorithms can be transferred to others with minimal loss
of utility. Therefore, in this paper, we employ the Fang attack tailored for the Trimmed Mean
aggregation.

Specifically, considering the j-th dimension of the model parameters, sj is set up to represent
the changing direction of the global model. sj = 1(orsj = −1) means that the j-th dimension
of the parameter increases(decreases) upon the previous iteration. wmax,j and wmin,j denote the
maximum and minimum of the j-th dimension of the local updates on benign clients, i.e., wmax,j =
max

{
wb

1,j , w
b
2,j , ..., w

b
m,j

}
and wmin,j = min

{
wb

1,j , w
b
2,j , ..., w

b
m,j

}
The j-th dimension of the

malicious model is formed as:

wm
i,j ∈ [wmax,j , b · wmax,j ] (sj = −1, wmax,j > 0) (12)

wm
i,j ∈ [wmax,j , wmax,j/b] (sj = −1, wmax,j ≤ 0) (13)

wm
i,j ∈ [wmin,j/b, wmin,j ] (sj = 1, wmin,j > 0) (14)

wm
i,j ∈ [b · wmin,j , wmin,j ] (sj = 1, wmin,j ≤ 0) (15)

Where the j-th dimension of the malicious model wm
i,j is randomly sampled in a fixed range deter-

mined by wmax,j , wmin,j and sj .

A.1.3 MinMax & MinSum

MinMax and MinSum are model poisoning attacks proposed by [29]. They formulate the objective of
untargeted attacks as an optimization problem and crafts malicious models by solving this problem.
MinMax and MinSum are designed to solve the following optimization problem to construct the
malicious models:

argmax
γ

max
i

∥∥wm − wb
i
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2
≤ max

i,j

∥∥wb
i − wb

j

∥∥
2

(16)
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∥∥
2

(17)

wm = wb − γ · wp, wp = − wb

∥wb∥2
, wb = favg(w

b
i )

i

(18)
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(16) is the objective of MinMax attack, and (17) is the objective of MinSum attack. favg denotes the
standard aggregation algorithm FedAvg. These attack aim to generate a malicious update that is close
to benign updates, and meanwhile, points in the inverse direction to the benign updates.

A.1.4 Label Flip & Dynamic Label Flip

Label Flip[11] and Dynamic Label Flip[30] are data poisoning attacks that manipulate the data set of
the malicious clients to impact the performance of the global model. Specifically, Label Flip flips the
label of each training instance. It flip a label l as L− l − 1, where L is the number of classes in the
classification problem and l = 0, 1, ..., L− 1. In Dynamic Label Flip, the malicious clients compute
a surrogate model, using the available benign data, and flip the label to the least probable label.

A.1.5 MPAF

MPAF[9] introduces a novel FL attack method that does not require local data or relies on any
system-level information. Unlike traditional poisoning attacks that depend on controlling real clients,
MPAF effectively misguides the global model towards a poorly performing "baseline model" by
injecting fake clients and constructing model updates in a specific direction. The effectiveness of
this method lies in the fact that all fake clients consistently send updates towards the same target (the
baseline model), ensuring high consistency. This results in the cumulative effect of the shift over
multiple training rounds, making it difficult to eliminate, even in the presence of robust aggregation
and pruning defense mechanisms. Consequently, this attack achieves a stable and potent poisoning
effect.

A.1.6 Scaling

Scaling[2] is a classic backdoor attack targeted at federated learning. Malicious clients reduplicate
their local training data. A part of local data is embedded with triggers and assigned new labels.
Subsequently, these clients train using both the vanilla data and the poisoned data. The resulting local
model is further scaled to amplify its impact.

A.1.7 DBA

DBA[34] is a sophisticated adversarial strategy targeting federated learning systems, where multiple
participants collaboratively train a shared machine learning model without sharing their raw data.
Unlike traditional backdoor attacks that operate in centralized settings, DBA leverages the distributed
nature of federated learning to implant backdoors into the global model. In this attack, malicious
clients introduce poisoned data or model updates during local training, embedding hidden triggers that
cause the global model to exhibit attacker-desired behaviors when specific patterns (e.g., certain pixel
arrangements or keywords) are present. By distributing the backdoor task across multiple clients,
DBA makes the attack more stealthy and harder to detect compared to centralized backdoor attacks.
Defending against DBA requires robust aggregation techniques, anomaly detection mechanisms,
and advanced privacy-preserving methods to ensure the integrity and security of federated learning
systems.

A.2 Evaluated Defenses

A.2.1 Trimean

Trimmed Mean[37] is an adaptation of the traditional Byzantine algorithm in FL. In Trimmed Mean,
for each dimension of the global model, after receiving local updates from clients, the server excludes
the largest and smallest k values of the dimension and calculates the average of the remaining values
to determine the dimension’s result. While Trimmed Mean sacrifices some model utility, it has been
empirically shown to effectively defend against basic poisoning attacks.

A.2.2 Norm Bound

Namely, Norm Bound aims to limit the behavior of the clients by bounding the vector norm of the
local updates. [24, 30, 31] Specifically, Norm Bound can be treated as a variation of FedAvg since it
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induces a norm clipping before calculating the average of clients’ local updates. It forms as:

w =
1

n

n∑
i=1

Clip(wi) (19)

Clip(wi) = wi ·min(1,
∥wi∥2
p

) (20)

Accordingly, the norm of local updates is bounded by p. In practice, p can be statically determined
before learning or dynamically estimated during the training. The norm is usually estimated as
Euclidean norm. Norm Bound is widely used in practice. It is efficient to defend against model
poisoning attacks. The implementation of Norm Bound is simple as it can be combined with other
cryptographic tools to enhance the privacy preservation of FL.

A.2.3 CRFL

CRFL[33] is an FL framework that focuses on ensuring robustness during both the training and
inference phases. In CRFL, which operates on the server side, the framework computes the average
of local updates similar to FedAvg. Moreover, it then clips the global model parameters to ensure
their norm is bounded. Additionally, CRFL adds isotropic Gaussian noise directly to the aggregated
global model parameters. Formally, the norm clipping and noise injection can be expressed as:

Clip(w) = w ·min(1,
∥w∥2
ρ

) (21)

Perturb(w) = w + ϵ, ϵ ∼ N (0, σ2I) (22)

Where w is the global model. Clip bound the norm of global model w by ρ. The noise added by
Perturb is sampled on Gaussian distribution N (0, σ2I). ρ and σ can be dynamically tuned during
the training. During the inference phase, the server will smooth the final model with randomized
parameter smoothing and make the final prediction based on the parameter-smoothed model. The-
oretically, CRFL guarantees that the trained global model would be certifiably robust against the
backdoor as long as the backdoor is within certain certified bounds.

A.2.4 FLTrust

In FLTrust[7], the server itself collects a clean small training dataset (called root dataset) for the
learning task and maintains a model (called server model) based on it to bootstrap trust. In each
iteration, the server first assigns a trust score to each local model update from the clients, where a
local model update has a lower trust score if its direction deviates more from the direction of the
server model update. Then, the server the magnitudes of the local model updates such that they lie in
the same hyper-sphere as the server model update in the vector space.

A.2.5 RONI

In RONI[11], we compute the impact of each local model on the error rate for the validation dataset
and remove the local models that have large negative impact on the error rate. Specifically, suppose
we have an aggregation rule. For each local model, we use the aggregation rule to compute a global
model when the local model is included and a global model when the local model is excluded. We
compute the error rates of the global models on the validation dataset. We define the error rate impact
of a local model as the deviation between the accuracy of two global models. A larger error rate
impact indicates that the local model increases the error rate more significantly if we include the local
model when updating the global model. We remove the local models that have the largest error rate
impact, and we aggregate the remaining local models to obtain an updated global model.

A.2.6 FLAME

FLAME[26] is a robust aggregation method. FLAME leverages HDBSCAN based on the cosine
similarity between clients’ local updates to cluster the local model and detect malicious models.
It also conducts norm clipping and adds noise to the aggregation results to further enhance the
robustness of the FL system.
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A.2.7 Bucket

Bucket[17] is a robust aggregation method. To aggregate the uploaded local models, Bucket splits
the local models into several buckets. Each bucket computes the average of the local models in the
bucket to represent the bucket. After that, the higher-level aggregation method is applied to the bucket
models. In our experiment, we set the size of the bucket to 2 and used Trimean as the aggregation
method for bucket models.

A.2.8 Krum

Krum[5] is an aggregation rule proposed to define against Byzantine attacks in FL. The objective of
Krum is to select the most reliable gradient update from the gradient vectors submitted by n clinets,
thereby mitigating the impact of up to f Byzantine nodes. To achieve this, Krum computes a score
for each client’s gradient update w, which is defined as the sum of squared distances between its
gradient update and those of its n− f − 2 nearest neighboring clients. Subsequently, the client with
the lowest score is chosen as the aggregation output. This score for the i-th client can be expressed as
follows:

s(i) =
∑
j∈Ni

∥wi − wj∥2, (23)

where Ni is the set of indices of the n− f − 2 nearest neighbors of wi. In addition, this paper also
proposed Multi-Krum, which is an extension of Krum, by selecting multiple reliable gradient updates
instead of a single one to enhance the stability of the aggregation result.

A.2.9 Bulyan

Bulyan[14] is a Byzantine-resilient aggregation rule designed to address the security vulnerabilities
inherent in high-dimensional spaces, where malicious clients may exploit the dimensionality curse to
cause Stochastic Gradient Descent (SGD) to converge to ineffective suboptimal solutions. Bulyan
builds upon an existing Byzantine-resilient aggregation rule (e.g., Krum, Brute, or GeoMed) and
introduces a two-step process. First, the method iteratively applies the base aggreation rule to select
θ = n− 2f gradient updates. In each iteration, the gradient updates closest to the current output of
the base rule is identified, added to a selection set Ss, and removed from the received set Sr. This
process continues until the size of Ss reaches θ. Second, for each coordinate component i of the
gradient update, Bulyan computes the median of the θ selected gradients and averages the β = θ−2f
closest coordinates to this median, producing the final aggregated gradient. This coordinate-wise
approach ensures that each component of the output is dominated by a majority of non-Byzantine
contributions. The resulting gradient G for the i-th coordinate can be expressed as follows:

G[i] =
1

β

∑
X∈M [i]

X[i], (24)

where M [i] denotes the β-nearest gradients to the median in the i-th coordinate dimension. Bulyan
significantly reduces the poisoning effect of Byzantine attacks through recursive selection and
coordinate-level averaging.

A.2.10 FedRola

FedRoLA[36] addresses the vulnerability of FL to model poisoning attacks by proposing a layer-based
aggreation defense mechanism. The core innovation of FedLoRA lies in leveraging the characteristics
of DNN layers to detect malicious clients through similarity analysis while minimizing the false
rejection rate of benign updates. First, FedLoRA dynamically identifies the most sensitive layers
in the DNN for detecting malicious behavior. Then, for these selected layers, it introduces Layer
Alignment Similarity Index (LASI) and Peer Consensus Similarity Index (PCSI) to analyze the
anomaly of malicious updates at the layer-wise level. The LASI is derived by computing the cosine
similarity between i-th client’s l-th layer-wise updates wt

i,l and the global model’s l-th updates:

LASIi,l =
⟨wt

i,l, ŵ
t
l ⟩

∥wt
i,l∥ · ∥ŵt

l∥
, (25)

where t is the global communction round, ⟨·⟩ and ∥ · ∥ respectively denotes the inner product and the
edclidean norm. The PCSI is derived by computing the cosine similarity between i-th client’s l-th
layer-wise updates wt

i,l and other clinets’ l-th updates:
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PCSIi,l =
1

|N t| − 1

∑
j∈Nt

j ̸=i

⟨wt
i,l, w

t
j,l⟩

∥wt
i,l∥ · ∥wt

j,l∥
, (26)

where N t is the set of clinet at t global communction round and |N t| is the number of clients.
Additionally, FedRoLA employs a layer-wise weighted voting mechanism to compute a suspicion
score for each client. If the score exceeds a predefined threshold, the client is flagged as potentially
malicious and assigned a lower discount factor. Finally, the global aggregation is performed by
adjusting the weights of client updates based on their respective discount factors:

wt =
∑
i∈Nt

αi · wt
i , (27)

where αi the weight of i-th client. Through layer-wise detection and global weighted aggregation,
FedLoRa effectively improves the robustness against model poisoning.

A.2.11 FoundationFL

FoundationFL[12] proposes a simple but effective defense framework for FL. The core idea is
to enhance existing classical Byzantine-robust aggregation methods (such as Trimmed-mean and
Median) by introducing synthetic updates, rather than designing entirely new aggregation rules. In
each global communication round, the server automatically generates synthetic updates that resemble
real client updates and aggregates them together using robust aggregation. It works well because
the synthetic updates help reduce the variance among all updates, which makes it easier for robust
aggregation rules to identify and filter out malicious updates, especially in scenarios with highly
heterogeneous (Non-IID) data distributions.

A.2.12 RFA

RFA[28] is a robust framework for FL designed to address issues caused by malicious attacks
while protecting data privacy. Its core approach replaces the weighted average aggregation used in
traditional FL with the geometric median. The geometric median minimizes the sum of the Euclidean
distances from all client updates to aggregation point, finding a compromise point that remains
reliable even when up to 50 % of the updates are anomalous. The calculation process of geometric
median v∗ can be expressed as:

v∗ = argmin
v

m∑
i=1

αi∥v − wi∥, (28)

where m is the number of clients and αi is the aggregation weight of the i-th client. RFA relies on
the smoothed Weiszfeld algorithm, which iteratively calls a secure average protocol to gradually
approximate the geometric median. In each iteration, weights are dynamically adjusted based on the
distance between the device updates and the current estimated point, automatically assigning lower
weights to anomalous updates.

A.2.13 RLR

RLR[27] is a defense mechanism that dynamically adjusts the server’s learning rate based on the
signs of updates. The core of the RLR involves analyzing the signs of client updates to dynamically
adjust the server’s learning rate. Specifically, the server introduces a learning threshold θ, and for
each dimension, it calculates the i-th absolute value S of the sum of the update signs at t-th global
communication round:

Si =

∣∣∣∣∣ ∑
k∈Nt

sgn(∆k
t,i)

∣∣∣∣∣ , (29)

where Nt is the number of clients, ∆k
t,i is the k-th client’s updates and sgn is the sign function. if the

Si is greater than or equal to θ, the learning rate remains positive (normal optimization); if it is less
than θ, the learning rate becomes negative (reverse optimization, increasing the loss of the malicious
task). This can be expressed as:

ηi =

{
η if Si ≥ θ,

−η if Si < θ.
(30)
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Finally, the server aggregates the global model based on the adjusted learning rate. In this way,
RLR can automatically mitigate the impact of malicious updates, steering the model away from the
malicious target and toward the honest target.

A.3 Dataset

A.3.1 CIFAR10

The CIFAR10[19] dataset is a popular benchmark dataset used for image classification tasks. It
consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class. The classes are:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The dataset is commonly
used to evaluate machine learning algorithms, particularly in the field of deep learning, for image
classification tasks.

A.3.2 SVHN

The SVHN[25] dataset is a real-world image dataset containing over 600,000 labeled digit images
extracted from Google Street View, commonly used for digit recognition and image classification
tasks. It includes 32x32 pixel images with digits 0-9, available in both cropped (single-digit) and
full-image formats, making it ideal for developing and testing algorithms in real-world, noisy settings.

A.3.3 CIFAR100

The CIFAR100[19] dataset is similar in structure to CIFAR10 but is more challenging. It also consists
of 60,000 32x32 color images, but these images are divided into 100 fine-grained classes. These 100
classes are further grouped into 20 superclasses, providing a hierarchical structure. For example,
the superclass "aquatic mammals" includes classes like beaver, dolphin, and otter. Like CIFAR10,
CIFAR100 is split into 50,000 training images and 10,000 test images. The increased number of
classes and finer granularity make CIFAR-100 a more complex dataset, often used to evaluate the
performance of more advanced models.

A.4 Default experiment setting

We implement FedGraM and existing defense methods in Python using popular deep learning
framework PyTorch. We simulate both cross-device FL and cross-silo FL. In cross-device FL, the FL
system includes 500 clients with 10% of clients are randomly sampled to participate in the training in
each communication round. We set model architecture as ResNet 8[16] and perform 2000 rounds
of training for cross-device. In cross-silo FL, the FL system includes 50 clients with all the clients
participating in the training in each communication round. We set model architecture as ResNet
18[16] and perform 1000 rounds of training for cross-silo. In both FLs, we set batch size to 32 and set
learning rate to 0.1. We leverage Stochastic Gradient Descent(SGD) as the optimizer of the training.

A.5 Demo experiment setting

In demo experiment, we adopt MinSum attack towards FL system in CIFAR10 with β = 0.2. We set
FedAvg as the aggregation method and record the local models in the 5-th communication round.
Separately, we estimate the test accuracy and the Gram matrix norm of each local models. We arrange
the clients in descending order based on the corresponding values and show the distribution of norm
and accuracy in Figure 1. The Gram matrix is calculated on 10 data samples with one data sample for
each class. The test accuracy is calculated on 100 data samples with 10 data samples for each class.
The other setting of the experiment follows the default setting.

B Additional Experiment Results

B.1 Fidelity of FedGraM

In this experiment, we aim to evaluate the performance of FedGraM without any attack. As FedGraM
removes partial local updates per communication round, it may cause performance sacrifice. Specifi-
cally, we estimate the test accuracy of the global model train with FedAvg, and FedGraM to compare
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Figure 6: Experiment results of Fidelity of FedGraM. We show the accuracy curves of FedGraM and
FedAvg.

our method and standard aggregation method in FL. The experiments are conducted on CIFAR10,
SVHN, and CIFAR100 dataset. We set the concentration parameter β to {10, 1, 0.2} to simulate the
different situations of NonIID. The experiment results are shown in Figure 6.

Aligned with the results we showed in the main paper, the FedGraM’s performance is similar to the
FedAvg’s performance in all the situations. Intuitively, FedGraM removes part of the local models in
each communication round which may influence the convergence and the generalization of the global
model. In fact, such impact is negligible. A potential reason for this phenomenon is that removing
partial local models can be treated as a degradation of the client sample rate in each communication
round. As the previous study demonstrated, such degradation would only have a tiny influence on the
convergence.

B.2 Impact of C

We conduct experiments to determine the hyperparameter C. We set C ∈ {20%, 30%, 40%}. For
NonIID simulation, we set β = 1. We conduct the experiments in CIFAR10, SVHN and CIFAR100.
We setup LIE, Fang, MinMax, and MinSum as the untargeted attacks. The results are shown in Table
3. Accordingly, while C = 40%, an excessive number of local models were removed which led to
performance degradation in all datasets. FedGraM has shown similar performances with C = 20%
and C = 30%. However, under certain situations, C = 20% is insufficient to defend against attacks.
As a result, setting C = 30% is the safest choice to guarantee robustness. Although there might
not be that many malicious clients in the FL system, appropriately removing some local models can
mitigate potential threats.

B.3 Comparison with existing defense methods under different data heterogeneity

B.3.1 Cross-device CIFAR10

We show the comparison results in cross-device scenario in CIFAR10 dataset. Specifically, the
performance of evaluated defense methods under LIE, Fang, Label Flip and Dynamic Label Flip are
shown in Table 4. The performance under MinMax, MinSum, and MPAF attacks are shown in Table
5. FedGraM has a good performance in the comparison. Under all kinds of untargeted attacks, it can
successfully defend the attacks and maintain the test accuracy of the global model at a high level.
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Table 3: The entire experiment results of the impact of C.

Dataset CIFAR10 SVHN CIFAR100
C 20% 30% 40% 20% 30% 40% 20% 30% 40%

LIE 71.67% 72.47% 72.01% 91.82% 91.27% 91.13% 43.49% 43.37% 43.11%
Fang 73.81% 73.72% 72.80% 93.56% 93.62% 93.06% 44.02% 44.65% 44.00%

MinMax 72.47% 72.72% 72.53% 93.73% 93.51% 93.61% 42.40% 44.02% 43.73%
MinSum 72.57% 71.26% 69.45% 92.26% 93.34% 92.95% 40.71% 43.59% 40.58%

Although it is not the best under some situations, it is close to the best which can also demonstrate its
effectiveness.

Table 4: The experiment results of Comparison between FedGraM and existing defense methods
in CIFAR10 dataset with cross-device setting under LIE, Fang, Label Flip and Dynamic Label Flip
attacks.

Attack LIE Fang LF DLF
β 10 1 0.2 10 1 0.2 10 1 0.2 10 1 0.2

FedAvg 67.64 66.68 60.55 39.02 38.69 27.62 73.14 71.29 68.10 74.01 73.40 69.82
Trimean 57.64 57.31 43.77 68.34 65.98 54.77 72.74 72.37 66.47 73.10 71.72 65.46

NormBound 67.60 66.70 60.42 69.10 68.23 62.04 72.99 71.92 68.83 74.63 73.22 69.24
CRFL 68.74 67.49 60.85 43.97 38.37 28.43 74.90 74.49 69.54 75.14 74.73 69.42

FLTrust 42.18 39.42 27.18 40.22 37.04 26.76 44.16 34.72 30.40 41.48 36.48 28.33
FLAME 69.32 70.01 62.55 72.25 72.20 68.69 72.23 70.76 67.90 72.22 70.54 67.61
RONI 68.90 67.86 62.46 73.99 74.33 68.28 73.62 72.71 68.63 73.07 74.10 69.66
Bucket 64.76 63.93 55.59 57.32 55.05 47.30 73.02 73.39 67.65 73.97 73.20 69.72

FedRoLa 74.49 74.26 70.23 74.27 73.56 69.58 72.02 71.22 67.57 73.96 73.39 69.63
MultiKrum 63.79 63.17 54.38 72.51 71.89 66.84 71.06 71.05 65.78 72.65 71.36 68.23

Bulyan 42.03 39.99 30.70 68.54 66.11 49.89 67.27 65.47 47.91 67.21 65.99 50.25
FoundationFL 66.07 64.00 54.97 72.59 71.46 62.88 72.52 71.21 64.17 72.88 72.43 63.65

RFA 70.53 69.69 66.26 72.17 71.20 66.72 70.56 68.43 63.51 71.26 70.54 66.71
RLR 67.70 67.29 61.17 39.06 37.76 27.74 72.05 71.20 67.75 73.63 72.20 68.92

FedGraM 73.62 72.47 70.43 74.48 73.72 69.60 72.62 71.71 67.99 73.88 73.70 70.75

B.3.2 Cross-device SVHN

We show the comparison results in cross-device scenario in SVHN dataset. Specifically, the per-
formance of evaluated defense methods under LIE, Fang, Label Flip and Dynamic Label Flip are
shown in Table 6. The performance under MinMax, MinSum, and MPAF attacks are shown in Table
7. Accordingly, FedGraM’s performance in SVHN is better than its performance in CIFAR10 as it
achieve the best accuracy in more situations. SVHN is an easier classification task compared with
CIFAR10 which further facilitate the robustness of FedGraM.

B.3.3 Cross-device CIFAR100

We show the comparison results in cross-device scenario in SVHN dataset. Specifically, the per-
formance of evaluated defense methods under LIE, Fang, Label Flip and Dynamic Label Flip are
shown in Table 8. The performance under MinMax, MinSum, and MPAF attacks are shown in Table
9. CIFAR100 classification is the most difficult task among all the evaluated three tasks. As shown
in our results, many defense methods fall short in defending in CIFAR100. However, our method
FedGraM is still effectiveness. Only few methods can be effective as FedGraM in defending all kinds
of attacks under all the NonIID situations.
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Table 5: The experiment results of Comparison between FedGraM and existing defense methods in
CIFAR10 dataset with cross-device setting under MinMax, MinSum, and MPAF attacks.

Attack MinMax MinSum MPAF
β 10 1 0.2 10 1 0.2 10 1 0.2

FedAvg 49.78 48.57 39.57 23.64 18.00 17.15 29.97 28.48 25.91
Trimean 65.32 61.12 54.08 67.34 66.01 57.91 61.65 58.43 50.61

NormBound 64.41 62.92 52.31 23.12 12.36 18.48 31.44 30.24 23.45
CRFL 59.77 46.70 38.68 26.00 20.49 19.44 29.56 29.53 26.58

FLTrust 24.48 19.06 17.57 41.14 36.86 27.40 32.64 32.13 30.59
FLAME 70.47 69.97 67.73 71.97 70.77 65.81 72.26 70.96 68.66
RONI 65.88 62.97 50.46 22.31 23.33 18.03 36.13 33.01 30.04
Bucket 52.28 50.99 43.19 50.25 50.96 35.8 46.93 42.91 36.71

FedRoLa 75.12 73.83 70.31 74.72 74.08 70.32 65.22 63.35 57.24
MultiKrum 73.38 72.60 69.70 16.99 15.34 13.49 72.96 72.20 68.91

Bulyan 69.25 66.93 54.47 43.51 50.38 33.51 68.37 67.24 52.98
FoundationFL 67.75 65.12 56.75 35.65 39.48 29.87 64.49 62.12 50.45

RFA 73.44 72.38 66.92 12.52 11.68 12.77 68.02 67.34 61.68
RLR 49.68 47.14 40.33 23.94 19.96 15.13 29.75 28.99 24.51

FedGraM 74.49 72.72 69.46 72.25 71.26 64.90 74.24 73.41 69.56

Table 6: The experiment results of Comparison between FedGraM and existing defense methods in
SVHN dataset with cross-device setting under LIE, Fang, Label Flip and Dynamic Label Flip attacks.

Attack LIE Fang LF DLF
β 10 1 0.2 10 1 0.2 10 1 0.2 10 1 0.2

FedAvg 91.41 91.22 89.22 19.63 19.69 19.62 92.65 92.59 91.27 92.93 93.02 92.68
Trimean 87.84 86.37 75.62 92.37 91.51 84.23 92.39 92.48 91.81 92.54 92.68 91.62

NormBound 90.70 90.64 88.49 91.76 91.71 90.27 92.15 92.03 91.92 93.31 93.23 92.66
CRFL 91.81 91.84 90.31 19.72 19.61 19.71 93.26 93.33 92.92 93.63 93.48 92.77

FLTrust 63.37 45.98 34.20 62.54 45.97 20.01 50.29 50.31 23.4 26.95 48.9 26.99
FLAME 91.44 91.98 88.98 93.13 93.26 92.70 93.03 93.09 92.72 93.05 93.14 92.80
RONI 91.73 91.55 89.76 19.66 21.75 19.65 93.41 93.29 92.20 93.7 93.74 93.57
Bucket 90.26 89.73 86.22 85.58 85.20 67.97 93.21 93.47 92.43 93.57 93.36 92.90

FedRoLa 93.33 93.53 93.16 93.68 93.30 92.90 93.56 93.31 92.42 93.36 93.43 93.02
MultiKrum 90.48 89.08 87.50 93.16 93.18 92.30 92.98 92.76 91.71 93.25 93.60 92.92

Bulyan 62.35 58.72 24.08 91.87 90.99 86.07 91.31 91.17 84.51 91.64 90.78 86.81
FoundationFL 91.32 90.43 86.55 92.82 92.28 90.22 92.87 92.58 91.36 93.41 93.26 90.85

RFA 92.71 92.73 91.93 92.56 92.64 92.27 92.38 92.51 91.03 93.22 93.29 92.23
RLR 91.31 91.26 89.62 19.64 19.69 19.77 91.98 91.57 90.88 92.21 91.87 90.52

FedGraM 92.12 91.27 91.35 93.67 93.62 93.23 93.57 93.46 93.22 93.72 93.51 92.90

B.3.4 Cross-silo

We also evaluate the performance of FedGraM in cross-silo scenario. To distinguish from cross-device
scenario, we make two main modifications of the experiment setting. Firs,t we change the model
architecture from ResNet8[16] to ResNet18[16] as in cross-silo scenarios, the client is expected to
equip a better hardware device to perform local training. Second, all the clients will be selected to
participate in the training in each communication round as the client should have better equipment to
guarantee communication with the server. The experiments are conducted in CIFAR10 dataset and
SVHN dataset. We set β ∈ {10, 1, 0.2}. Besides FedGraM, we implement other 6 methods including
FedAvg, Trimean, NormBound, CRFL, FLTrust, and RONI. We implement LIE attack, Fang attack,
MinMax attack, and MinSum attack to evaluate the robustness. The experiments are shown in Table
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Table 7: The experiment results of Comparison between FedGraM and existing defense methods in
SVHN dataset with cross-device setting under MinMax, MinSum, and MPAF attacks.

Attack MinMax MinSum MPAF
β 10 1 0.2 10 1 0.2 10 1 0.2

FedAvg 79.34 66.85 43.09 19.76 20.1 19.60 21.62 20.64 19.59
Trimean 89.62 87.07 79.61 92.19 91.21 87.10 88.36 87.37 79.42

NormBound 89.99 88.33 81.72 19.58 23.27 20.20 19.97 20.51 19.59
CRFL 85.03 76.17 43.31 19.76 19.92 19.84 20.26 20.24 19.59

FLTrust 19.59 19.58 19.58 50.45 36.37 42.17 6.69 6.69 6.69
FLAME 92.73 92.70 92.50 93.05 93.47 91.54 93.06 93.29 92.63
RONI 92.99 91.23 34.36 21.29 19.60 19.84 23.50 21.85 19.61
Bucket 84.43 74.74 55.33 84.55 56.19 20.49 63.62 59.13 33.17

FedRoLa 93.41 93.41 93.24 93.61 94.01 93.36 89.65 88.36 82.95
MultiKrum 93.12 92.96 92.98 19.58 19.58 19.58 93.12 93.00 92.67

Bulyan 91.93 91.27 86.77 66.21 73.85 22.88 91.67 91.44 84.35
FoundationFL 91.02 90.17 83.04 22.70 19.77 19.59 90.85 90.09 86.45

RFA 92.65 92.62 91.55 19.59 19.58 19.58 90.44 89.16 87.31
RLR 80.33 63.89 47.32 19.58 19.58 19.57 20.07 20.21 19.64

FedGraM 93.88 93.51 93.08 93.80 93.34 92.67 93.26 93.50 93.26

Table 8: The experiment results of Comparison between FedGraM and existing defense methods in
CIFAR100 dataset with cross-device setting under LIE, Fang, Label Flip and Dynamic Label Flip
attacks.

Attack LIE Fang LF DLF
β 10 1 0.2 10 1 0.2 10 1 0.2 10 1 0.2

FedAvg 33.93 33.68 32.66 6.19 6.04 2.43 44.77 44.04 43.48 45.03 43.52 43.14
Trimean 20.01 17.77 9.56 30.45 25.66 8.39 43.00 40.89 25.95 42.04 40.09 26.28

NormBound 33.16 32.81 33.10 6.11 4.05 1.87 43.85 43.54 42.07 45.11 43.18 41.22
CRFL 33.79 34.46 32.73 5.93 5.48 2.32 44.72 44.38 42.99 43.23 43.40 43.10

FLTrust 7.25 6.27 5.53 9.33 7.00 6.97 6.17 6.22 6.08 5.24 7.08 6.08
FLAME 33.56 36.38 33.33 42.40 42.77 40.80 42.72 42.14 41.34 43.08 41.78 40.63
RONI 35.02 35.88 31.6 43.92 44.29 41.63 43.59 43.76 42.29 43.96 43.42 43.50
Bucket 27.95 27.03 20.48 14.15 13.53 7.46 42.48 43.86 39.33 43.24 43.79 36.96

FedRoLa 45.30 44.69 43.71 45.49 45.18 43.33 42.79 42.98 40.93 44.31 43.95 42.40
MultiKrum 28.93 26.69 25.83 42.08 41.13 40.47 40.37 40.49 39.83 41.66 41.87 40.22

Bulyan 9.92 7.29 3.79 31.16 27.25 11.41 30.36 25.35 9.67 30.72 25.33 10.54
FoundationFL 28.07 27.98 21.77 34.87 32.78 27.11 37.59 37.72 31.74 37.66 36.39 28.66

RFA 38.12 38.18 37.12 38.74 38.69 37.44 38.16 37.86 36.72 39.40 39.19 37.31
RLR 33.79 33.19 32.82 6.94 7.04 2.21 43.68 42.77 42.12 43.60 43.35 42.16

FedGraM 43.46 43.37 42.60 45.26 44.65 43.67 44.88 43.70 43.32 45.15 43.93 42.87

11 and Table 10. Accordingly, some existing defense methods have shown their effectiveness in
cross-silo scenarios. Especially for FLTrust, it is weak to defend against any attack in the cross-device
scenarios but robust to defend LIE, Fang and MinMax attack in the cross-silo scenario. A potential
reason is that in cross-device scenarios, the local models of the clients are intermittently participating
in the communication round whereas the root model is trained in each communication round. The
training of local models and the root model is inconsistent, leading to that the root model can not
serve as the standard of local models. In cross-silo scenarios, both the local models and the root
model participate in each communication round and the root model can be a good standard for local
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Table 9: The experiment results of Comparison between FedGraM and existing defense methods in
CIFAR100 dataset with cross-device setting under MinMax, MinSum, and MPAF attacks.

Attack MinMax MinSum MPAF
β 10 1 0.2 10 1 0.2 10 1 0.2

FedAvg 14.71 15.95 13.9 1.77 1.99 2.18 3.73 3.77 4.18
Trimean 23.82 23.71 15.97 31.15 25.52 9.15 23.23 24.49 15.73

NormBound 13.7 13.07 12.42 2.25 1.91 1.80 3.95 3.93 3.98
CRFL 7.69 9.21 7.00 1.98 1.66 1.77 3.52 4.04 3.95

FLTrust 2.56 3.03 2.33 5.92 6.62 5.56 5.89 5.47 5.39
FLAME 24.74 29.55 26.41 39.17 40.84 37.37 43.08 42.41 41.16
RONI 33.94 31.66 32.32 4.45 3.54 2.89 9.53 7.63 7.59
Bucket 16.29 17.42 16.79 8.99 9.15 5.23 9.32 9.78 8.85

FedRoLa 46.13 45.63 43.94 44.19 45.3 43.63 20.27 21.85 20.93
MultiKrum 42.77 41.86 40.56 1.61 1.69 1.51 42.29 40.97 39.97

Bulyan 33.27 28.34 11.18 9.63 6.8 3.75 32.29 27.41 10.39
FoundationFL 28.61 30.14 24.09 3.51 5.85 6.86 26.65 26.81 20.53

RFA 42.19 41.45 39.85 1.78 1.35 1.24 24.77 26.32 23.53
RLR 15.45 16.25 15.05 1.86 1.67 1.98 4.20 3.72 3.96

FedGraM 44.88 44.02 43.81 42.90 43.59 37.76 45.23 44.85 43.70

Table 10: The experiment results of Comparison between FedGraM and existing defense methods in
CIFAR10 dataset in cross-silo scenario

CIFAR10 (Cross-Silo)
Attack β FedAvg Trimean NormBound CRFL FLTrust RONI FedGraM

LIE
10 80.42 77.30 78.67 79.20 78.89 79.06 79.21
1 79.23 74.60 77.37 77.71 77.42 77.75 78.35

0.2 71.07 50.08 71.13 71.32 72.39 71.92 71.63

Fang
10 65.17 76.20 50.10 43.82 63.08 64.72 78.74
1 58.44 74.26 38.40 38.75 74.93 80.42 78.59

0.2 32.99 60.05 23.69 22.53 67.35 65.27 67.86

MinMax
10 72.32 77.93 76.89 68.11 79.72 57.00 79.04
1 65.59 75.29 67.70 66.34 78.30 49.52 78.26

0.2 56.68 61.59 45.46 47.88 70.28 37.71 69.53

MinSum
10 13.06 77.15 28.67 82.97 17.03 25.56 78.74
1 15.70 73.35 17.29 77.90 16.63 23.45 76.27

0.2 13.80 61.65 13.30 57.58 14.80 18.75 75.39

models. Regarding the performance of FedGraM, its robustness is retained and the performance of
FedGraM is still ranked as the highest level.

B.4 Comparison with existing defense methods under different malicious client ratio

We show the entire experiment results for the impact of malicious clients ratio. We implement
Trimean, Norm Bound, CRFL, FLTrust, RONI, and FedAvg. We applied 4 untargeted attacks
including LIE, Fang, MinMax, and MinSum. The experiments are conducted in CIFAR10 dataset,
SVHN dataset, and CIFAR100 dataset. We set β = 1. The results in CIFAR10 dataset, and SVHN
dataset are shown in Table 12. The experiment results are aligned with the results we show in the main
paper. Accordingly, the performance of FedGraM is consistent with the ratio of the malicious clients.
For most situations, FedGraM achieves the best performance among evaluated defense methods.
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Table 11: The experiment results of Comparison between FedGraM and existing defense methods in
SVHN dataset in cross-silo scenario

SVHN (Cross-Silo)
Attack β FedAvg Trimean NormBound CRFL FLTrust RONI FedGraM

LIE
10 94.88 93.53 94.19 94.18 94.21 94.44 93.34
1 94.58 93.21 94.16 94.46 94.41 94.33 93.85

0.2 93.72 90.02 93.66 93.30 19.64 92.55 92.79

Fang
10 19.59 93.60 19.59 19.66 89.87 19.74 94.34
1 87.43 93.99 85.45 73.24 91.37 19.79 94.45

0.2 19.12 90.28 9.69 10.59 92.44 19.54 93.81

MinMax
10 91.00 93.41 91.19 88.99 87.64 87.50 94.32
1 84.06 92.88 89.63 80.52 91.13 86.57 94.29

0.2 76.08 8614 80.27 64.02 89.23 86.11 92.71

MinSum
10 20.68 94.03 95.10 95.52 19.58 19.58 93.81
1 19.58 93.42 98.63 22.27 19.71 19.62 92.54

0.2 19.61 91.49 26.51 94.63 19.65 19.47 89.66

Table 12: The experiment results of the impact of malicious clients ratio. We record the highest
accuracy(%) achieved by the global model during the training to reflect the performance of each
defense method.

CIFAR10

Attacks LIE Fang MinMax MinSum
Ratio 15% 10% 5% 15% 10% 5% 15% 10% 5% 15% 10% 5%

FedAvg 59.74 66.68 72.58 29.52 39.68 68.40 52.38 48.57 62.02 18.08 18.00 30.69
Trimean 48.76 57.31 65.61 57.54 65.98 70.40 50.77 61.12 70.74 58.25 66.01 69.98

NormBound 60.45 66.70 69.93 48.99 68.23 71.09 51.68 62.92 71.50 17.46 12.36 33.25
CRFL 62.65 67.49 71.56 28.19 38.37 67.59 32.67 46.70 68.09 15.51 20.49 47.38

FLTrust 38.76 39.42 37.14 39.17 37.04 32.90 18.09 19.06 20.32 37.89 36.86 36.17
RONI 62.37 67.87 72.84 70.36 74.40 74.21 48.52 64.67 70.61 19.6 25.07 69.03

FedGraM 72.57 72.47 73.91 73.94 73.72 74.16 73.06 72.72 72.98 63.26 71.26 73.29

SVHN

Attack LIE Fang MinMax MinSum
Ratio 15% 10% 5% 15% 10% 5% 15% 10% 5% 15% 10% 5%

FedAvg 89.32 91.22 93.13 19.58 19.69 91.18 78.71 66.85 87.34 19.58 20.10 23.89
Trimean 82.41 86.37 90.89 86.61 91.54 92.70 76.54 87.07 91.54 87.27 91.21 92.66

NormBound 88.44 90.64 92.77 74.37 91.71 93.02 83.83 91.62 91.62 19.59 23.27 22.03
CRFL 19.58 91.84 93.84 19.58 19.61 91.44 19.58 76.17 91.01 19.61 19.92 20.03

FLTrust 36.55 45.98 44.88 56.00 45.97 52.72 19.58 19.58 19.58 41.04 36.37 48.67
RONI 91.21 91.55 93.22 19.64 21.75 93.20 36.87 91.23 93.15 19.59 19.60 20.99

FedGraM 93.26 91.27 92.30 84.64 93.62 93.25 93.56 93.51 93.66 85.77 93.34 93.74

More importantly, it is obvious that the performance of other defense methods degrades as the ratio
of malicious clients increases. On the contrary, the performance of FedGraM is not impacted by
the ratio of malicious clients. However, in some situations, FedGraM is worse than other defense
methods. In most of these situations, the FedGraM achieves a similar performance as the best method
which can also demonstrate its effectiveness. In SVHN dataset while 15% of clients are malicious
clients who launch Fang attack on the FL system, the accuracy of FedGraM is obviously lower than
Trimean’s accuracy. We treat this as the drawback of FedGraM as it does perform well in some
specific scenarios. We hope to improve its performance in the future work.
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B.5 Performance Against Backdoor Attack

Table 13: The experiment results for performance against backdoor attacks. Different from the
previous experiment, in this experiment, we record the main task accuracy and the backdoor accuracy
of the final model.

Dataset β Attack
Trimean FedGraM

Main Acc Backdoor Acc Main Acc Backdoor Acc

CIFAR10

10
Scaling 74.86 3.662.53 75.49 2.20
DBA 73.83 2.74 75.22 2.28

1
Scaling 73.75 3.66 73.56 2.82
DBA 71.89 4.38 74.40 2.47

0.2
Scaling 67.00 2.80 70.44 3.00
DBA 61.51 9.15 70.03 4.42

SVHN

10
Scaling 93.46 0.42 93.52 0.49
DBA 92.87 1.20 93.82 0.40

1
Scaling 93.46 0.78 93.83 0.40
DBA 93.27 0.72 93.84 0.60

0.2
Scaling 93.47 0.81 93.37 0.56
DBA 91.08 1.71 93.19 0.54

CIFAR100

10
Scaling 43.56 0.28 45.22 0.14
DBA 42.70 0.31 45.11 0.38

1
Scaling 40.88 0.44 45.10 0.17
DBA 38.94 0.26 43.75 0.70

0.2
Scaling 22.59 1.57 44.20 0.52
DBA 20.89 3.64 43.70 0.28

We also conduct experiments to evaluate the performance of FedGraM against backdoor attacks.
It is worth noting that FedGraM is not designed to defend against backdoor attacks. We aim to
evaluate its potential in defending the back door attacks. Specifically, we implement two backdoor
attacks including Scaling and DBA[34]. We compare the performance of FedGraM with Trimean
and NormBound. The experiments are conducted in CIFAR10, SVHN, and CIFAR100. We set
β ∈ {10, 1, 0.2}. The experiment results are shown in Table ??. We record the main task accuracy
and the backdoor accuracy of the final model. The main task accuracy is the accuracy estimated on the
regular test set. The backdoor accuracy is estimated on the data with triggers. Accordingly, FedGraM
has shown its basic ability to defend against backdoor attacks in comparison with NormBound and
Trimean. A potential reason for its robustness against the backdoor is that both DBA and Scaling
attack demands to scale the local models to make sure the backdoor can be successfully injected into
the global model. Such scaling may affect the embedding space of the local models which can be
captured by FedGraM. As a result, FedGraM can detect malicious models with a backdoor injected.
In this experiment, we only test the performance of FedGraM under simple backdoor attacks. We are
exploring extending this backdoor robustness to more powerful attacks in our future work.

B.6 Computation overhead on server

We simply evaluate the computation overhead of FedGraM to the server. We record the extra
computation overhead of FedGraM compared with FedAvg. We run our experiment on the workstation
with Intel(R) Xeon(R) Gold 6226R CPU and NVIDIA A100 GPU. For CIFAR10 classification, the
average extra time consumption for FedGraM is 692.49 ms and the average memory consumption is
30MB.
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C Impact Statement

The proposed method FedGraM is an robust aggregation method in Federated Learning which
supposed to enhance the robustness of FL against malicious clients. We believe FedGraM has positive
impact to the society that it can be utilized in a wide range research filed to guarantee the robustness.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have reflected the main claims in our methodology and empirical evalua-
tions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have discussed the limitation of the paper in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper has clearly stated the methodology for reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The paper does not provide data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper has provided the detailed setting of all the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not provide error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper has provided information on the computer resources and the hard-
ware environment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: paper discuss potential positive societal impacts of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Assets are the license and terms of use explicitly mentioned and properly
respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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