
ar
X

iv
:2

50
5.

13
80

4v
1

 [
cs

.C
R

]
 2

0
M

ay
 2

02
5

QUT-DV25: A Dataset for Dynamic Analysis of
Next-Gen Software Supply Chain Attacks

Sk Tanzir Mehedi
QUT, Brisbane, Australia, QLD 4000
tanzir.mehedi@hdr.qut.edu.au

Raja Jurdak
QUT, Brisbane, Australia, QLD 4000

r.jurdak@qut.edu.au

Chadni Islam
ECU, Joondalup, Australia, WA 6027

c.islam@ecu.edu.au

Gowri Ramachandran
QUT, Brisbane, Australia, QLD 4000
g.ramachandran@qut.edu.au

Abstract

Securing software supply chains is a growing challenge due to the inadequacy of
existing datasets in capturing the complexity of next-gen attacks, such as multiphase
malware execution, remote access activation, and dynamic payload generation.
Existing datasets, which rely on metadata inspection and static code analysis, are
inadequate for detecting such attacks. This creates a critical gap because these
datasets do not capture what happens during and after a package is installed. To
address this gap, we present QUT-DV25, a dynamic analysis dataset specifically
designed to support and advance research on detecting and mitigating supply chain
attacks within the Python Package Index (PyPI) ecosystem. This dataset captures
install and post-install-time traces from 14,271 Python packages, of which 7,127
are malicious. The packages are executed in an isolated sandbox environment using
an extended Berkeley Packet Filter (eBPF) kernel and user-level probes. It captures
36 real-time features, that includes system calls, network traffic, resource usages,
directory access patterns, dependency logs, and installation behaviors, enabling the
study of next-gen attack vectors. ML analysis using the QUT-DV25 dataset identified
four malicious PyPI packages previously labeled as benign, each with thousands
of downloads. These packages deployed covert remote access and multi-phase
payloads, were reported to PyPI maintainers, and subsequently removed. This
highlights the practical value of QUT-DV25, as it outperforms reactive, metadata,
and static datasets, offering a robust foundation for developing and benchmarking
advanced threat detection within the evolving software supply chain ecosystem.

1 Introduction

The exponential growth of Open-Source Software (OSS) has introduced significant cybersecurity
challenges, particularly in detecting sophisticated software supply chain attacks targeting ecosystems
like PyPI [1, 2]. PyPI hosts over 620,000 packages and facilitates billions of daily downloads,
underscoring its central role in modern software development [3, 4]. However, its open nature and
rapid scalability have made it a prime target for adversaries [5]. As of July 2024, 1.2% of total
PyPI packages have been identified as malicious, highlighting growing security concerns [6, 7, 8, 9].
These attacks are becoming more common as multi-stage threats that exploit vulnerabilities in OSS,
including typosquatting, malware execution, remote access, and dynamic payload generation [10,
11, 12]. Such threats compromise the core security principles of confidentiality, integrity, and
availability [2, 13]. Existing defense mechanisms, such as host-based firewalls and signature or rule-
based malware scanners, struggle to counter these threats due to their inability to adapt to evolving,
multi-stage adversarial tactics and their limited capacity for granular behavioral code analysis [14,
15, 16]. As a result, Malicious Detection Systems (MDS) have emerged as critical safeguards for the
OSS ecosystem, using ML methods to identify and mitigate next-gen attacks [17, 18, 19].

Preprint.

https://arxiv.org/abs/2505.13804v1

The effectiveness of MDSs relies on their detection performance metrics, which require evaluation
against comprehensive datasets containing both benign and malicious package behaviors [17, 5].
Widely adopted metadata and static dataset benchmarks, such as the PyPI Malware Registry [20],
Backstabber’s Knife Collection [21], DataDog [22], and PyPIGuard [23], have served as standards for
MDS validation. However, recent studies highlight critical limitations in these datasets [5, 24]. For
instance, metadata datasets capture only package details like descriptions and author profiles, while
static datasets focus on code attributes such as function signatures and import statements, without
executing packages during installation or post-installation [17, 5]. This omission severely limits their
ability to detect dynamic threats such as typosquatting, remote access activation, and install-time-
specific payload generation [14, 15, 16]. Hybrid datasets, which combine static and metadata features,
partially address some threats but still fail to detect most of these threats, as they lack visibility into
complex behaviors that occur during install-time and post-install-time [19, 24]. These limitations
in existing datasets undermine the reliability of performance metrics, raising concerns about the
generalizability of MDS evaluations to next-gen OSS supply chain attacks.

To address these challenges, this study introduces the QUT-DV25 dataset, specifically designed to
facilitate dynamic analysis of next-gen OSS software supply chain attacks within the PyPI ecosystem.
QUT-DV25 captures behavioral traces from 14,271 Python packages, 7,127 of which exhibit malicious
behavior, through install and post-install-time in a controlled, isolated sandbox environment using
an extended Berkeley Packet Filter (eBPF) kernel and user-level probes. This tool enables real-
time tracing without kernel modification and supports flexible, programmable monitoring in C
or Python [25]. The dataset records 36 real-time features for each package, including system
calls, network traffic, resource consumption, directory access patterns, dependency resolution, and
installation behaviors. These features enable comprehensive analysis of dynamic attack vectors such
as multiphase malware execution, remote access activation, and post-install-time-specific payload
generation. A detailed characterization of the dataset’s structure, threat coverage, and example is
also provided. Furthermore, the performance of MDSs is evaluated based on this dataset as a binary
classification task using multiple supervised ML methods. By bridging the gap between static and
dynamic analysis, QUT-DV25 empowers cybersecurity researchers to develop robust defenses against
evolving OSS supply chain threats. The dataset and code are publicly available on QUT-DV251,
ensuring reproducibility and enabling further research. The key contributions of this study include:

• A controlled, isolated testbed framework to generate and collect datasets by installing
and executing packages and capturing behaviors such as typosquatting, dynamic payload
generation, and multiphase malware execution.

• QUT-DV25, a dataset of 14,271 packages, including 7,127 malicious ones, with 36 features
across six categories that capture install-time and post-install-time behaviors previously
unexplored for malicious package detection.

• A first-hand evaluation of four popular machine learning methods on the proposed dataset is
also provided as a baseline for further research.

This study is organized as follows: Section 2 reviews existing datasets. Section 3 outlines the dataset
construction and details of the dataset. Section 4 presents technical validation and benchmarks.
Section 5 discusses limitations and usage examples, and Section 6 addresses safety and ethical
considerations. Finally, Section 7 concludes the study and outlines future directions.

2 Existing Datasets
The effectiveness of MDS datasets depends on two factors: coverage of modern threats and diversity
of benign behaviors to reduce false positives [5]. Datasets lacking realistic adversarial contexts risk
misleading evaluations [24]. Existing benchmarks are categorized as metadata, static, hybrid, and
dynamic, each with limitations in modeling next-gen multi-stage attacks.

Metadata datasets: Metadata datasets focus on static, non-execution-based features such as package
names, descriptions, version histories, and author profiles [17, 26, 27]. These datasets are widely
adopted in MDSs due to their computational efficiency and ease of analysis, enabling rapid screening
of large package repositories [17]. For example, Guo et al. [20] proposed the PyPI Malware Registry
dataset, and Marc et al. [21] proposed the Backstabber’s Knife Collection dataset to flag suspicious
packages based on anomalies such as mismatched author credentials or irregular update patterns.
However, metadata datasets fail to capture dynamic behaviors-such as system interactions during

1Dataset: https://doi.org/10.7910/DVN/LBMXJY and package list: https://qut-dv25.dysec.io

2

https://doi.org/10.7910/DVN/LBMXJY
https://qut-dv25.dysec.io

install-time or post-install-time-that are critical for detecting sophisticated threats like typosquatting,
multiphase malware execution, and dynamic payload generation [14, 15, 16]. Attackers can exploit
this limitation by crafting packages with plausible metadata while embedding malicious logic that
activates post-deployment [24]. Consequently, MDSs relying solely on metadata suffer from high
false positive rates, as benign packages with irregular metadata are misclassified, and malicious ones
evade detection through metadata obfuscation [18].

Static datasets: Static datasets analyze code attributes such as function signatures, import statements,
and control flow structures to identify malicious patterns without executing packages [5, 18, 28].
Datasets such as DataDog [22], developed by Datadog Security Labs, detect known threats-including
hardcoded backdoors and command-and-control (C2) functionalities, matching code artifacts against
curated malicious signature patterns. These datasets excel at identifying obvious malicious code
and are computationally lightweight, making them scalable for large-scale repository scans [18, 28].
Static analysis, however, cannot detect install-time and post-install-time-specific threats such as
multi-stage malware or environment-triggered malicious behavior [5]. For instance, a package with
innocuous static code may execute a hidden script during installation to exfiltrate sensitive data
scenario invisible to static inspection [29, 30, 14]. Additionally, techniques like code obfuscation or
encryption easily bypass static detection, as they mask malicious intent until installation [31].

Hybrid datasets: Hybrid datasets integrate metadata and static code features to balance efficiency
and depth, aiming to detect threats that evade single-mode analysis [19, 24]. For example, Samaana
et al. [5] developed a hybrid dataset by combining metadata attributes with static code features to
improve malicious package detection. Similarly, the PyPIGuard dataset, proposed by Iqbal et al. [23],
combines package metadata with static code attributes to flag packages that may appear benign in
isolation but exhibit suspicious patterns when analyzed holistically. This dataset improves detection of
contextual threats, such as dependency confusion attacks, where malicious packages mimic legitimate
names but contain altered code [24]. Despite their advantages, hybrid datasets remain limited by their
lack of install-time behavioral data. For instance, they cannot model indirect dependency hijacking
or post-deployment behaviors [14]. Advanced threats like polymorphic malware, which alters its
code or behavior based on environmental cues, further evade hybrid detection due to the absence
of dynamic execution traces [32]. These gaps undermine hybrid datasets’ ability to address multi-
stage attacks, where malicious activity unfolds progressively across install-time and post-install-time
phases. Table 1 presents the existing datasets for detecting malicious packages in PyPI.

eBPF-based dynamic datasets: eBPF offers a powerful framework for real-time system monitoring,
providing fine-grained visibility into install-time and post-install-time behaviors with low over-
head [33, 25]. This capability has been used in security applications, such as ransomware detection
through system call trace analysis and network anomaly identification [34, 35]. However, existing
eBPF-based implementations predominantly rely on rule-based threat detection methodologies. For
instance, Higuchi and Kobayashi [36] developed a ransomware detection system using eBPF-traced
system call patterns, while Zhuravchak and Dudykevych [34] employed predefined behavioral rules
for real-time ransomware analysis. Such rule-based approaches, though effective for known threats,
lack adaptability to zero-day attacks due to their dependence on static signatures.

To enhance flexibility, tools like bpftrace, bpftool, and bcc-tools extend eBPF’s utility by
enabling dynamic tracing of low-level kernel and user-space events without kernel modifications [33].
These tools support programmable tracing in C or Python, facilitating the extraction of behavioral
signals such as system calls, network traffic, resource consumption, and directory access patterns [25].
While these traces provide a foundation for behavioral analysis, current ML-based MDS often lack
datasets that capture such dynamic, real-time system-level behaviors.

Table 1: Existing datasets for PyPI malicious package detection.

Datasets Detect
manipulate
metadata

Detect
encoding
technique

Dynamic
payload

generation

Detect
typo-

squatting

Remote
access

activation

Detect
indirect de-
pendencies

Metadata [20]
Static [22]
Hybrid [23]
QUT-DV25

Note: Malicious package detection - possible, partially possible, not possible.

3

3 QUT-DV25 Dataset Construction

In this section, we first discuss the testbed configuration, followed by the dataset collection methodol-
ogy and an overview of the dataset, including feature sets.

3.1 Testbed Configuration

The experimental testbed setup involves 16 Raspberry Pi devices DRPi = {dk}16k=1, each running
Ubuntu 24.4 LTS with Python 3.8-3.12 in isolated virtualized environments. A private network
Npriv = {Router,Switch,Raspberry Pi} ensures secure traffic flow. Behavioral monitoring is imple-
mented using eBPF integrated into the Linux kernel K = v6.8.0-1012-raspi, with real-time tracing
tools Tbcc = {bcc-tools, bpftool, bpftrace}. Figure 1 shows a visualization of the isolated testbed
configuration. To validate and scale the resulting dataset for ML, a high-performance computing
cluster CHPC = {ck}mk=1 is employed, where each node features 16-core CPUs, NVIDIA A100
GPUs, and 128 GB of RAM.

192.168.0.5*

192.168.0.1

TruNETs
Router Switch

Firewall

Mobile
Network

Inbound
Traffic

Outbound
Traffic C

on
tro

lle
r

19
2.

16
8.

0.
2 Controlled

Traffic

RPIs Cluster

Tr
af

fic
 Is

ol
at

io
n

Zo
ne

FirewallFi
re

w
al

l

Secure SSL
Connection

Controlled
Traffic

Figure 1: The isolated testbed configuration visualization for QUT-DV25.

3.2 Collection Methodology

We propose the QUT-DV25 Dataset Framework, a structured methodology for constructing a dataset
that captures both install-time and post-install-time behaviors of software packages. This framework
is designed to meet the growing need for dynamic datasets in detecting multi-stage, next-gen software
supply chain attacks, particularly within ecosystems such as PyPI. The framework systematically
integrates three phases: (i) dataset collection, (ii) labeling and validation, and (iii) trace extraction, as
illustrated in Figure 2.

Phase (i) Dataset Collection Phase (ii) Dataset Labeling and Validation Phase (iii) Trace Extraction

Staticdata

Combined
Dataset

Benign or
Malicious?

No

Scripts

QUT-DV25
Dataset

Isolated
Env with RPIs

eBPF Program
Linux Kernel

Install
Packages

Scripts

Similarity
Algorithms

 Similarity ≥
threshold

No

Yes

Malicious
and

Counterpart
Benign

Packages

C
ou

nt
er

pa
rt

B
en

ig
n

C
ol

le
ct

io
n

Malicious Package
Incidents or Info

Search

NoData
Found?

Malicious
Packages Dataset

Yes

Check
Different
Sources

M
al

ic
io

us
 P

ac
ka

ge
 C

ol
le

ct
io

n

Scripts

Tr
ac

es

Metadata

Existing
Validator

Figure 2: The overall framework for collecting the QUT-DV25 dataset.

Dataset collection: In the absence of a centralized repository of malicious PyPI packages, we
collect data from multiple threat intelligence sources denoted by S = {S1, . . . , SK}, where each
Sk corresponds to a source such as GitHub advisories or malware databases, and K is the total
number of such sources. The combined set of malicious packages is defined as M =

⋃K
k=1 Sk =

{(ni
m, vim)}Ni=1, where ni

m and vim denote the name and version of the i-th malicious package
and N is the total number of malicious samples collected. To enable comparative analysis and

4

support downstream classification tasks, we extract benign counterparts by defining the universe of
benign packages as U = {(nj

b, v
j
b)}Mj=1, where nj

b and vjb denote the name and version of the j-th
benign package, and M is the total number of benign packages. We apply similarity algorithms
sim(ni

m, nj
b) ∈ [0, 1] to compute name-based similarity between malicious and benign packages.

For each malicious package, we form a candidate set Ci = {(nj
b, v

j
b) ∈ U | sim(ni

m, nj
b) ≥ τ},

where τ ∈ [0, 1] is a similarity threshold. If Ci ̸= ∅, we select the most similar benign package
(n∗i

b , v∗ib) = argmax(nb,vb)∈Ci sim(ni
m, nb) and fetch the release date r∗ib . The final similarity score

is recorded as s∗i = sim(ni
m, n∗i

b). Then, construct the final malicious-benign dataset Dmb =
{(ni

m, vim, n∗i
b , v∗ib , r∗ib , s∗i) | s∗i ≥ τ} which serves as input for validation and dynamic trace

extraction phases. Algorithm 1 outlines the process for retrieving counterpart benign packages.

Algorithm 1: Lexical Similarity-Based Benign Package Retrieval

Input: Malicious setM = {(ni
m, vim)}Ni=1; benign universe U = {(nj

b, v
j
b)}

M
j=1; threshold τ ∈ [0, 1]

Output: Malicious-benign dataset Dmb = {(ni
m, vim, n∗i

b , v∗ib , r∗ib , s∗i)}
1 Precondition: Similarity metric; PyPI API accessible
2 foreach (ni

m, vim) ∈M do
3 Ci ← {(nj

b, v
j
b , sij) | (n

j
b, v

j
b) ∈ U , sij = sim(ni

m, nj
b) ≥ τ}

4 if Ci ̸= ∅ then
5 (n∗i

b , v∗ib , s∗i)← argmax Ci

6 r∗ib ← QueryPyPI(n∗i
b)

7 Dmb ← Dmb ∪ {(ni
m, vim, n∗i

b , v∗ib , r∗ib , s∗i)}
8 end
9 end

10 Export Dmb to file
11 Postcondition: Only pairs with s∗i ≥ τ retained

Dataset labeling and validation: For each package (n, v) ∈ Dmb, where n and v denote
the package name and version respectively, a set of external threat intelligence validators V =
{VirusTotal,NDV,Snyk} is queried. Each validator returns a label labelk(n, v) ∈ {0, 1,⊥}, in-
dicating whether the package is malicious (1), benign (0), or inconclusive (⊥). The final label
is determined as follows: Label(n, v) = 1 (malicious) if at least two validators return 1, i.e.,∑

k∈V I[labelk(n, v) = 1] ≥ 2; Label(n, v) = 0 (benign) only if all validators agree the package
is benign, i.e.,

∑
k∈V I[labelk(n, v) = 0] = |V|. If neither condition holds, due to inconclusive

results, the label is assigned through manual inspection: Label(n, v) = ManualInspect(n, v). The
validated dataset is defined as Dvalid = {(n, v,Label(n, v)) | (n, v) ∈ Dmb}.

In parallel, metadata features X (n, v) (e.g., author, version history, description) and static features
Y(n, v) (e.g., import statements, function definitions) are extracted for each package. These are
combined to construct the final labeled dataset Dfinal = {(n, v,Label(n, v),X (n, v),Y(n, v)) |
(n, v) ∈ Dvalid}. The dataset Dvalid serves as the input to the next trace extraction step, while Dfinal

is used as a benchmark for evaluating existing MDS methods.

Trace extraction: The validated package set Dvalid = {(nj , vj ,Label(nj , vj))}mj=1 serves as input
for this phase. Each package archive is denoted by πj = (nj , vj) ∈ Dvalid, and it is deployed to
a uniformly random device dk = f(πj) from the set of Raspberry Pi devices DRPi = {dk}nk=1.
Two binary indicators are defined: Deploy(πj , dk) and Install(πj , dk), which take the value 1 if the
transfer and installation of πj on dk succeed, respectively. In cases where Install(πj , dk) = 0, partial
installation of dependencies is occasionally observed. These cases form a subset Dpartial ⊂ Dvalid
and are of particular interest, as malicious payloads may persist through successfully installed
subcomponents. Additionally, dependency resolution may implicitly introduce malicious variants:
a benign package version vj of nj may cause the installation of a related version v′j such that
(nj , v

′
j) ∈ Dvalid and Label(nj , v

′
j) = Malicious. To account for such behavioral variability, these

cases are retained for analysis.

During the install-time and post-install-time of these packages, eBPF captures kernel and user-level
event sequences. post-install-time tracing executes for a fixed duration ∆ = 120 s, producing a
sequence Trace(πj , dk) ∈ S∗, where S∗ denotes the space of trace sequences. The trace extraction
function Extract(πj , dk) yields Trace(πj , dk) if both deployment and installation succeed, i.e.,

5

Algorithm 2: QUT-DV25 Dynamic Trace Extraction
Input: Validated dataset Dvalid = {(n, v,Label(n, v))}mj=1; Raspberry Pi devices DRPi = {dk}nk=1

Output: Traces T = {Tj}mj=1

1 Precondition: Each dk runs an isolated Python 3.8–3.12 environment with eBPF support.
2 Definitions:
3 f : Dvalid → DRPi (uniform random device assignment)
4 Deploy(πj , dk) = 1 iff package πj is successfully transferred to dk
5 Install(πj , dk) = 1 iff package πj installs successfully on dk
6 Trace(πj , dk) ∈ S∗ captures the eBPF event sequence during install-time and post-install-time (120s)
7 Extract(πj , dk) = Trace(πj , dk) if Deploy(πj , dk) = 1 ∧ Install(πj , dk) = 1, else ∅
8 for j ← 1 to m do
9 dk ← f(πj)

10 if Deploy(πj , dk) = 0 or Install(πj , dk) = 0 then
11 Tj ← ∅
12 continue
13 end
14 Tj ← Trace(πj , dk)
15 end
16 return T = {Tj}mj=1

Deploy(πj , dk) = Install(πj , dk) = 1; otherwise, it returns the empty set ∅. If Extract(πj , dk) = ∅,
the environment on dk is reset, and the process repeats with the same package until a valid trace
is collected. The resulting valid trace is denoted Tj = Trace(πj , dk), and the complete trace set is
given by T = {Tj}mj=1. This trace set provides isolated and reproducible dynamic behavioral profiles
for each package, supporting subsequent analysis (cf. Algorithm 2).

3.3 QUT-DV25 Data Records

This study analyzes a corpus of |Dvalid| = 14, 271 Python packages, of which 7, 127 are la-
beled as malicious. Approximately 88% of these packages yielded successful installations, i.e.,
Install(πj , dk) = 1, while the remaining packages triggered direct install-time anomalies, such as sys-
tem crashes, infinite loops, forced shutdowns, or authentication prompts-despite Install(πj , dk) = 0.
To characterize behavioral variability across the dataset, a classification function Classify(πj) ∈
B = {normal, compatibility, system} is introduced, mapping each package πj to a behavioral cate-
gory based on its install-time and post-install-time outcomes in the isolated environment. Table 2
summarizes the characteristics of packages during install-time and post-install-time analysis.

Table 2: Characteristics of packages during install-time and post-install-time analysis.

Install-time and post-install-time characteristics Malicious Benign

Normal: Successfully installed, metadata issues, setup/wheel issues 6,864 6,905
Compatibility: Mismatch, version issues, auth, naming, module issues 236 202
System: Freezing, infinity waiting, looping, shutdown, prerequisites 27 37

Total: 7,127 7,144

Feature sets and annotations: To analyze install-time and post-install-time behaviors comprehen-
sively, the system is instrumented using eBPF-based monitoring, which enables real-time capture
of both kernel-space and user-space activity for each execution trace Tj ∈ T . The feature set for
each trace is denoted as Tj = {F (i)

j }qi=1, where each F
(i)
j corresponds to a category of behavioral

signals derived from eBPF probes. The observed traces are categorized into six primary trace types
F , mapping the raw trace Tj into structured components F (i)

j , each capturing a distinct dimension of
install-time or post-install-time activity. Table 3 summarizes these eBPF-derived feature sets for each
package πj , describing their analytical focus and relevance to threat detection.

These features collectively define the vectorized representation Tj = Φ(Tj) ∈ Rq , where Φ denotes
the eBPF-based feature extraction operator and q represents the dimensionality across all trace types.
Unlike static or metadata-based approaches, this approach captures latent behaviors that manifest

6

Table 3: Definitions of eBPF-based feature sets for package πj .

Feature Sets Description

F
(ft)
j = FiletopTraces(πj) File I/O process; detects abnormal file access or missing files.

F
(it)
j = InstallTraces(πj) Dependency logs; indirect malicious installs.

F
(ot)
j = OpensnoopTraces(πj) File open attempts; flags access to protected directories.

F
(tt)
j = TCPTraces(πj) TCP flows; identifies connections to suspicious endpoints.

F
(st)
j = SysCallTraces(πj) System call activity; indicates sabotage or privilege misuse.

F
(pt)
j = PatternTraces(πj) Behavioral sequences; detects loops, or payload triggers.

only during install-time and post-install-time, allowing for the detection of advanced threats such as
ransomware, backdoors, and privilege escalation. A detailed description of QUT-DV25 feature types,
along with representative examples, is provided in Appendix Table 6.

4 Technical Validation and Benchmarks of QUT-DV25

This section presents the technical validation and performance benchmarking of candidate ML models
for MDS, using the proposed QUT-DV25 dataset.

Data preparation: The trace set T = {Tj}mj=1 underwent preprocessing to ensure compatibility
with ML models. Duplicate packages were removed, incomplete traces discarded, and all installations
were aligned to a uniform directory structure across devices to eliminate identifier bias. Each trace
Tj ∈ T was transformed into a feature vector xj ∈ Rd, where categorical features were encoded as
n-gram [37] frequency vectors ϕcat(Tj) → Rdc , and numerical features were scaled via min-max
normalization: x′

j,i = (xj,i −min(xi))/(max(xi)−min(xi)), for all i in numerical features [38].
The final feature vector is xj = [ϕcat(Tj), ϕnum(Tj)] ∈ Rd, suitable for training ML models.

Feature extraction and selection: From the trace set T , 62 candidate features were extracted,
forming the set CF = {fi}62i=1, where each fi denotes an attribute derived from the traces. To
eliminate redundancy, features with a Pearson correlation coefficient [39] |rij | > 0.50 for any
pair (fi, fj) ∈ CF were pruned, resulting in an independent feature subset IDF ⊂ CF with
|IDF | = 40. For each feature f ∈ IDF , an importance score IMSm(f) ∈ [0, 1] was com-
puted using each model m ∈ M = {RF,DT,SVM,GB}. The selected engineered feature set was
defined as SEF = {f ∈ IDF | maxm∈M IMSm(f) > 0.08}, yielding |SEF | = 36, which
corresponds to a 58% reduction in the original feature set. Models were trained with the follow-
ing hyperparameters: RF with n_estimators=100 and max_depth=8; DT with max_depth=8
and min_samples_split=10; SVM with a linear kernel; and GB with n_estimators=100,
max_depth=5, and learning_rate=0.1. The dataset D was divided into training, validation,
and testing subsets in the ratio Dtrain : Dval : Dtest = 70:15:15. Five-fold stratified cross-validation
was employed for hyperparameter tuning, and final evaluation was conducted on Dtest.

4.1 Experiments with ML Models

Each model m ∈ M was evaluated using accuracy A, precision P , recall R, and F1-score F1,
capturing overall detection correctness, robustness to false positives/negatives, and class imbalance.

Feature set performance analysis: The impact of trace-derived feature subsets T = {Tj}mj=1 and
their union CombinedTraces = ∪ T on model performance was evaluated, as presented in Table 4.
For each model m ∈ M , features from CombinedTraces consistently yielded the highest perfor-
mance (e.g., ARF = 95.99%, PRF = 96.00%, F1,RF = 66.47%), outperforming any individual trace
subset Tj ∈ T . This improvement is attributed to feature complementarity: FiletopTraces captures
resource I/O patterns; OpensnoopTraces, file access anomalies; TCPTraces, suspicious netflows;
SysCallTraces, syscall anomalies; and PatternTraces, multi-stage attack sequences. Although
InstallTraces alone show limited discriminative power (ARF = 69.45%, F1,RF = 66.47%) due
to overlapping installation metadata, their inclusion in CombinedTraces enhanced attack coverage.

For standalone trace evaluation, performance varied across trace subsets Tj ∈ T . PatternTraces
demonstrated the highest effectiveness (ARF = 94.62%, F1,RF = 94.61%), reflecting its capacity

7

to capture high-level behavioral signatures. SysCallTraces achieved strong performance (ARF =
88.51%), while FiletopTraces and TCPTraces showed moderate results (ARF = 92.01% and
ARF = 83.74%, respectively). InstallTraces remained the least informative (ARF = 69.45%),
reinforcing their limited standalone utility. These findings highlight that combining heterogeneous
trace types enables cross-domain behavioral reasoning and maximizes detection capability.

Table 4: Performance of ML models across features: bold indicates the best, ↑ second-best, ↓
third-best, and underline denotes the lowest value.

Metrics Filetop Install Opensnoop TCP SysCall Pattern Combined

R
F

A 92.01 69.45 93.55 83.74 88.51 94.62 95.99
P 92.10 80.28 93.62 83.74 88.51 94.95 96.00
R 92.01 69.45 93.55 83.74 88.51 94.62 95.99
F1 92.00 66.47 93.55 83.74 88.51 94.61 96.02

D
T

A 86.87 69.50 91.35 81.13 88.41 94.62 ↓ 94.02
P 86.87 80.84 91.36 81.21 88.41 94.95 ↓ 94.36
R 86.87 69.50 91.35 81.13 88.41 94.62 ↓ 94.02
F1 86.87 66.43 91.35 81.11 88.41 94.61 ↓ 94.28

SV
M

A 89.77 68.65 80.05 80.47 85.56 94.53 95.28 ↑
P 89.85 80.65 81.65 80.55 85.57 94.87 95.30 ↑
R 89.77 68.65 80.05 80.47 85.56 94.53 95.28 ↑
F1 89.76 65.39 79.79 80.46 85.56 94.52 95.23 ↑

G
B

A 87.38 67.16 91.54 80.47 85.61 94.58 94.11
P 87.42 79.31 91.67 80.72 85.62 94.88 94.42
R 87.38 67.16 91.54 80.47 85.61 94.58 94.61
F1 87.38 63.39 91.53 80.43 85.61 94.57 94.35

Comparison with baseline datasets: An effective MDS dataset must balance accuracy, efficiency,
and generalization. The proposed QUT-DV25 was compared against two ML-based baselines: (i)
MetadataDataset, based on the method by Halder et al. [17], and (ii) StaticDataset, following
the approach of Samaana et al. [5]. To ensure fairness, the original models, feature selection strategies,
and hyperparameters were applied to features derived from the common corpus. As shown in Table 5,
QUT-DV25 with CombinedTraces and RF achieved the highest performance across all metrics:
ARF = 95.99% and F1,RF = 96.02%. Confusion matrix analysis further confirms its robustness
with TPR = 96.36%, TNR = 98.26%, FPR = 1.74%, and FNR = 3.64%.

Table 5: Performance comparison with existing datasets; bold indicates the overall best values.

Dataset M A (%) F1 (%) TPR (%) TNR (%) FPR (%) FNR (%)

Metadata
Dataset [20]

RF 84.44 84.81 82.98 86.10 13.90 17.02
DT 83.93 84.36 82.26 85.76 14.24 17.74

SVM 80.47 81.60 77.26 84.59 15.41 22.74
GB 83.46 84.25 80.52 87.04 12.96 19.48

Static
Dataset [22]

RF 95.14 95.24 93.37 97.06 2.94 6.63
DT 95.14 95.29 92.45 98.20 1.80 7.55

SVM 95.32 95.30 96.01 94.65 5.35 3.99
GB 94.90 95.08 92.06 98.19 1.81 7.94

QUT-DV25

RF 95.99 96.02 95.26 96.77 3.23 4.74
DT 94.02 94.28 90.48 98.26 1.74 9.52

SVM 95.28 95.23 96.36 94.24 5.76 3.64
GB 94.11 94.35 90.71 98.16 1.84 9.29

In contrast, MetadataDataset exhibited high false positives (FPR = 13.90%), attributable
to its dependence on superficial package attributes, leading to poor generalization. Similarly,
StaticDataset lacked install-time and post-install-time features, resulting in elevated false neg-
atives (FNR = 6.63%). Both baselines struggled with previously unseen samples. QUT-DV25
outperforms both meta and static dataset baselines across A, F1, and confusion matrix dimensions.

This dataset also enables the distinction between benign and malicious system call patterns [40].
By facilitating the differentiation of these patterns, it supports a more robust evaluation of their

8

discriminative power in classification tasks. Notably, the RF classifier trained on this dataset flagged
6 benign packages Bflagged ⊂ Dtest from PyPI as malicious. Manual analysis confirmed malicious
behaviors (e.g., data exfiltration, port scanning, socket proxy, remote access), leading to the removal
of 4 packages. The remaining 2 exhibited dual-use traits ϕ(Tj) ∈ SEF , including socket proxying
and NetCat bundling, highlighting QUT-DV25’s sensitivity to repurposable behaviors. These findings
demonstrate the dataset’s real-world effectiveness with low FNR and high precision.

5 Technical Limitations and Other Applications

Technical limitations: The performance of MDS depends on the quality and representativeness
of the proposed dataset D, where each sample comprises install-time and post-install-time traces
Tj ∈ T . These traces may include noise that obscures discriminative patterns. To mitigate this, all Tj

were collected using eBPF within isolated Linux-based sandboxes, ensuring clean environments but
introducing a platform dependency and setup overhead. To prevent inconsistencies due to dependency
reuse, each package was installed in a fresh virtual environment. The extracted feature vectors
ϕ(Tj) = xj ∈ Rd were high-dimensional, increasing dataset processing complexity. Dimensionality
reduction techniques were applied to obtain a selected embedding SEFj ⊂ Rd, which preserves rele-
vant semantics while improving efficiency. Since D is collected from PyPI packages, generalization
to other ecosystems (e.g., NPM) may require retraining or domain adaptation. Furthermore, reliance
on ϕ(Tj) may limit detection of delayed or obfuscated threats. To address this, future work will
incorporate runtime traces and extend ϕpost-install-time(T

>120s
j) to enhance dataset detection robustness.

Other applications of QUT-DV25: The proposed dataset enables training ML models for malicious
package detection using user and system-level traces and modeling multi-stage attacks such as
dynamic payload execution and covert remote access. It also supports feature attribution studies for
understanding behavioral indicators of compromise and provides a benchmark for evaluating dynamic
detection systems. With eBPF-collected behavioral data from 14,271 PyPI packages, QUT-DV25
offers a practical foundation for advancing dynamic malware analysis in software supply chains. This
study benefits society by enhancing software supply chain security and leading to the removal of four
previously undetected malicious PyPI packages. However, techniques like eBPF tracing, while safely
handled in controlled environments here, could pose risks if misused for surveillance or exploitation.

6 Safety and Ethical Discussion

All benign packages used in this study were collected from publicly available Python packages in
the PyPI repository. and all malicious packages collected from different publicly available websites
based on a details security report. No user-generated or private data were included in the dataset D,
ensuring compliance with privacy norms and ethical research standards. The dynamic analysis was
conducted in isolated, networked-controlled sandboxes to prevent accidental propagation of malicious
behavior and ensure containment. The eBPF monitored only user and kernel-level behaviors Tj ∈ T
within controlled environments, without logging personal or sensitive content. Also, the dataset D
and feature extraction function ϕ(Tj) were designed solely for research purposes to advance open
malware detection techniques. To discourage misuse, any release of D or ϕ(Tj) will undergo related
institutional review and include documentation outlining ethical usage guidelines.

7 Conclusion and Future Works

Existing software supply chain security benchmarks fail to capture evolving threats such as typosquat-
ting, delayed payloads, and covert remote access. To address this gap, QUT-DV25 is introduced as a
dynamic analysis dataset constructed in a controlled sandbox environment using eBPF kernel and
user-level probes. The dataset models real-world PyPI packages by capturing 36 features, including
system calls, network activity, and installation traces, across 14,271 packages, of which 7,127 exhib-
ited malicious characteristics. In contrast to static and metadata-based datasets that focus on only
surface-level attributes, QUT-DV25 reflects modern attack behaviors observed during install-time and
post-install-time. Comparative evaluation demonstrates superior performance in modeling complex,
dynamic threat vectors. QUT-DV25 serves as a modern benchmark for dynamic malware detection
and contributes to the advancement of next-gen supply chain threat defenses. Future work includes
extending the dataset to other ecosystems and integrating ML frameworks for automated threat
hunting across the open-source software supply chain ecosystem.

9

References
[1] Synopsys Software Integrity Group. 2024 open source security and risk analysis (ossra) report, 2024.

Accessed: December 15, 2024.

[2] HIPAA Journal. Open source security risks, 2025. Accessed: January 1, 2025.

[3] Python Software Foundation. Pypi - the python package index, 2025. Accessed: July 2, 2024.

[4] PyPI Stats. Pypi download statistics, 2025. Accessed: July 2, 2024.

[5] Haya Samaana, Diego Elias Costa, Emad Shihab, and Ahmad Abdellatif. A machine learning-based
approach for detecting malicious pypi packages. arXiv preprint arXiv:2412.05259, 2024.

[6] Snyk Security. Snyk security - vulnerability database and security insights, 2025. Accessed: May 18,
2024.

[7] National Institute of Standards and Technology (NIST). National vulnerability database (nvd), 2025.
Accessed: June 1, 2024.

[8] VirusTotal. Virustotal - free online virus, malware and url scanner, 2024. Accessed: July 12, 2024.

[9] Synopsys Software Integrity Group. Black duck software composition analysis, 2024. Accessed: December
15, 2024.

[10] Ori Abramovsky. Detecting malicious packages on pypi: Malicious package on pypi use phishing
techniques to hide its malicious intent. https://blog.checkpoint.com/2023/03/18/detecting-malicious-
packages-on-pypi-malicious-package-on-pypi-use-phishing-techniques-to-hide-its-malicious-intent/, 2023.
Accessed: July 12, 2024.

[11] The Hacker News. Pypi attack exploiting chatgpt and claude, 2024. Accessed: December 8, 2024.

[12] Checkmarx Security Research. Typosquatting attack on ’requests’: One of the most popular python
packages. https://zero.checkmarx.com/typosquatting-attack-on-requests-one-of-the-most-popular-python-
packages-3b0a329a892d, 2024. Accessed: December 6, 2024.

[13] William Enck and Laurie Williams. Top five challenges in software supply chain security: Observations
from 30 industry and government organizations. IEEE Security & Privacy, 20(2):96–100, 2022.

[14] Xiaoyu Zheng, Chao Wei, Shuo Wang, Yuyang Zhao, Peng Gao, Yuhong Zhang, Ke Wang, and Hao Wang.
Towards robust detection of open source software supply chain poisoning attacks in industry environments.
arXiv preprint arXiv:2409.09356, 2024.

[15] Checkpoint Research. Detecting malicious packages on pypi: Example of the ’phpass’ package dynamically
generating payloads, 2024. Accessed: June 3, 2024.

[16] Lukas Martini. Psa: There is a fake version of this package on pypi with malicious code, 2019. Accessed:
June 3, 2024.

[17] Sajal Halder, Michael Bewong, Arash Mahboubi, Yinhao Jiang, Md Rafiqul Islam, Md Zahid Islam,
Ryan HL Ip, Muhammad Ejaz Ahmed, Gowri Sankar Ramachandran, and Muhammad Ali Babar. Malicious
package detection using metadata information. In Proceedings of the ACM Web Conference 2024 (WWW

’24), page 11, 2024.

[18] Jukka Ruohonen, Kalle Hjerppe, and Kalle Rindell. A large-scale security-oriented static analysis of
python packages in pypi. arXiv preprint arXiv:2107.12699, 2021.

[19] Anusha Damodaran, Fabio Di Troia, Visaggio Aaron Corrado, Thomas H. Austin, and Mark Stamp. A
comparison of static, dynamic, and hybrid analysis for malware detection. arXiv:2203.09938, 2022.

[20] Wenbo Guo, Zhengzi Xu, Chengwei Liu, Cheng Huang, Yong Fang, and Yang Liu. An empirical study
of malicious code in pypi ecosystem. In Proceedings of the 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 166–177. IEEE, 2023. Dataset available at https:
//github.com/lxyeternal/pypi_malregistry.

[21] Marc Ohm, Henrik Plate, Andreas Sykosch, and Michael Meier. Backstabber’s knife collection: A
review of open source software supply chain attacks. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 23–43. Springer, 2020. Dataset available at
https://github.com/cybersecsi/Backstabbers-Knife-Collection.

10

https://github.com/lxyeternal/pypi_malregistry
https://github.com/lxyeternal/pypi_malregistry
https://github.com/cybersecsi/Backstabbers-Knife-Collection

[22] DataDog Security Labs. Malicious software packages dataset. https://github.com/DataDog/
malicious-software-packages-dataset, 2023. Accessed: July 31, 2024.

[23] Tahir Iqbal, Guowei Wu, Zahid Iqbal, Muhammad Bilal Mahmood, Amreen Shafique, and Wenbo Guo. Pyp-
iguard: A novel meta-learning approach for enhanced malicious package detection in pypi through static-
dynamic feature fusion. Journal of Information Security and Applications, 90:104032, 2025. Dataset avail-
able at https://github.com/tahir-biit/PyPiGuard/blob/main/pypiguard%20dataset.csv.

[24] Amir Afianian, Salman Niksefat, Hamid Reza Shahriari, and Rasool Jalili. Malware dynamic analysis
evasion techniques: A survey. ACM Computing Surveys, 52(6):1–28, 2020.

[25] Asaf Eitani. Detecting ebpf malware with tracee. Aqua Security Blog, 2023.

[26] Ethan Bommarito and Michael Bommarito. An empirical analysis of the python package index (pypi).
arXiv preprint arXiv:1907.11073, 2019.

[27] Kai Gao, Weiwei Xu, Wenhao Yang, and Minghui Zhou. PyRadar: Towards automatically retrieving and
validating source code repository information for PyPI packages. arXiv preprint arXiv:2404.16565, 2024.

[28] Junan Zhang, Kaifeng Huang, Bihuan Chen, Chong Wang, Zhenhao Tian, and Xin Peng. Malicious
package detection in npm and pypi using a single model of malicious behavior sequence. arXiv preprint
arXiv:2309.02637, 2023.

[29] Jukka Ruohonen, Kalle Hjerppe, and Kalle Rindell. A large-scale security-oriented static analysis of
python packages in pypi. In Proceedings of the 18th Annual International Conference on Privacy, Security
and Trust (PST), pages 1–10. IEEE, 2021.

[30] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for malware detection. In
Proceedings of the 23rd Annual Computer Security Applications Conference (ACSAC), pages 421–430,
2007.

[31] Duc-Ly Vu, Zachary Newman, and John Speed Meyers. A benchmark comparison of python malware
detection approaches. arXiv preprint arXiv:2209.13288, 2022.

[32] Ax Sharma. New ’pymafka’ malicious package drops cobalt strike on macos, windows,
linux. https://www.sonatype.com/blog/new-pymafka-malicious-package-drops-cobalt-strike-on-macos-
windows-linux, 2022. Accessed: June 3, 2024.

[33] Dave Bogle. eBPF: A new frontier for malware. Red Canary Blog, 2023.

[34] Danyil Zhuravchak and Valerii Dudykevych. Real-time ransomware detection by using ebpf and natural
language processing and machine learning. In 2023 IEEE 5th International Conference on Advanced ICT,
2023.

[35] Jinghao Jia, YiFei Zhu, Dan Williams, Andrea Arcangeli, Claudio Canella, Hubertus Franke, Tobin
Feldman-Fitzthum, Dimitrios Skarlatos, Daniel Gruss, and Tianyin Xu. Programmable system call security
with ebpf. arXiv preprint arXiv:2302.10366, 2023.

[36] Kosuke Higuchi and Ryotaro Kobayashi. Real-time defense system using ebpf for machine learning-based
ransomware detection method. In 2023 Eleventh International Symposium on Computing and Networking
Workshops, pages 213–219, 2023.

[37] M. Z. Masud, S. Sahib, M. F. Abdollah, S. R. Selamat, and R. Yusof. An evaluation of n-gram system call
sequence in mobile malware detection. ARPN Journal of Engineering and Applied Sciences, 11(5):3122–
3126, 2016.

[38] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, New York, NY, 2nd edition, 2009.

[39] Karl Pearson. Note on regression and inheritance in the case of two parents. Proceedings of the Royal
Society of London, 58:240–242, 1895.

[40] Sk Tanzir Mehedi, Chadni Islam, Gowri Ramachandran, and Raja Jurdak. Dysec: A machine learning-based
dynamic analysis for detecting malicious packages in pypi ecosystem. arXiv preprint arXiv:2503.00324,
March 2025.

11

https://github.com/DataDog/malicious-software-packages-dataset
https://github.com/DataDog/malicious-software-packages-dataset
https://github.com/tahir-biit/PyPiGuard/blob/main/pypiguard%20dataset.csv

A Supplementary Material

Table 6: Detailed description of QUT-DV-25 features with examples.

Feature Name Description Examples
Package_Name Package Name and Version 1337z-4.4.7, 1337x-1.2.6

Filetop Traces

Read_Processes Processes in reading pip reads setup.py for metadata
Write_Processes Processes in writing writes to site-packages and cached .whl
Read_Data_Transfer Reading data transfer pip reads .whl file from PyPI via HTTPS
Write_Data_Transfer Writing data transfer pip writes downloaded .whl into the local
File_Access_Processes Processes in access files Accesses _init_.py during installation

Install Traces

Total_Dependencies Total number of dependencies 2 (attrs-24.2.0; beautifulsoup4-0.1)
Direct_Dependencies List of direct dependencies 1 (beautifulsoup4-0.1)
Indirect_Dependencies List of indirect dependencies 1 (attrs-24.2.0)

Opensnoop Traces

Root_DIR_Access Root directory access 2 (/root/.ssh/authorized_keys)
Temp_DIR_Access Temp directory access 15 (/tmp/pip-wheel-pzrcqrtt/htaces.whl)
Home_DIR_Access Home directory access 55 (/home/Analysis/Env/1337z-4.4.7.)
User_DIR_Access User directory access 226 (/usr/lib/python3.12/lib-dynload)
Sys_DIR_Access System directory access 12 (/sys/kernel/net/ipv4/ip_forward)
Etc_DIR_Access Etc directory access 116 (/etc/host.conf, /etc/nftables.conf)
Other_DIR_Access Access to other directories 17 (/proc/sys/net/ipv4/conf, /.ssh)

TCP Traces

State_Transition TCP lifecycle transitions {CLOSE -> ->: 15, SYN_SENT}
Local_IPs_Access Access to local IP addresses 2 (192.168.0.51, 192.168.0.1)
Remote_IPs_Access Access to remote IP addresses 2 (151.101.0.223, 3.164.36.120)
Local_Port_Access Access to local ports 3 (52904, 53158, 34214)
Remote_Port_Access Access to remote ports 3 (443, 23, 6667)

SysCall Traces

IO_Operations I/O operations performed ioctl, poll, readv
File_Operations File-related system calls open, openat, creat
Network_Operations Network-related operations socket, connect, accept
Time_Operations Time-based operations clock_gettime, timer_delete
Security_Operations Security-related sys calls getuid, setuid, setgid
Process_Operations Process management sys calls fork, vfork, clone

Pattern Traces

Pattern_1 File metadata retrieval newfstatat→openat→fstat
Pattern_2 Reading data from a file read→pread64→lseek
Pattern_3 Writing data to a file write→pwrite64→fsync
Pattern_4 Network socket creation socket→bind→listen
Pattern_5 Creating a new process fork→execve→wait4
Pattern_6 Memory mapping mmap→mprotect→munmap→no-fd
Pattern_7 File descriptor management dup→dup2→close→stdout
Pattern_8 Inter-process communication pipe→write→read→pipe-fd
Pattern_9 File locking fcntl→lockf→close→file-fd
Pattern_10 Error handling open→read→error=ENOENT→no-fd

Labels Classification level [1,0]

12

	Introduction
	Existing Datasets
	QUT-DV25 Dataset Construction
	Testbed Configuration
	Collection Methodology
	QUT-DV25 Data Records

	Technical Validation and Benchmarks of QUT-DV25
	Experiments with ML Models

	Technical Limitations and Other Applications
	Safety and Ethical Discussion
	Conclusion and Future Works
	Supplementary Material

