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Abstract

Federated Learning with client-level differential privacy (DP) provides a promising
framework for collaboratively training models while rigorously protecting clients’
privacy. However, classic approaches like DP-FedAvg struggle when clients have
heterogeneous privacy requirements, as they must uniformly enforce the strictest
privacy level across clients, leading to excessive DP noise and significant model
utility degradation. Existing methods to improve the model utility in such hetero-
geneous privacy settings often assume a trusted server and are largely heuristic,
resulting in suboptimal performance and lacking strong theoretical underpinnings.
In this work, we address these challenges under a practical attack model where
both clients and the server are honest-but-curious. We propose GDPFed, which
partitions clients into groups based on their privacy budgets and achieves client-
level DP within each group to reduce the privacy budget waste and hence improve
the model utility. Based on the privacy and convergence analysis of GDPFed,
we find that the magnitude of DP noise depends on both model dimensionality
and the per-group client sampling ratios. To further improve the performance of
GDPFed, we introduce GDPFed+, which integrates model sparsification to elimi-
nate unnecessary noise and optimizes per-group client sampling ratios to minimize
convergence error. Extensive empirical evaluations on multiple benchmark datasets
demonstrate the effectiveness of GDPFed+, showing substantial performance gains
compared with state-of-the-art methods.

1 Introduction

Traditional centralized Machine Learning (ML) frameworks require collecting all training data at
a single node (e.g., a central server), raising significant privacy concerns. To mitigate this issue,
Federated Learning (FL) [37] has emerged as a distributed ML paradigm that enables model training
directly on decentralized data sources without transferring raw data. In FL, multiple local clients
(e.g., edge devices) collaboratively train a shared global model under the coordination of a central
server. Specifically, in each training round, the server sends the global model to a subset of clients,
who update it using their private data. These model updates are then transmitted to the server, which
aggregates them to refine the global model. This process continues until the global model converges.

Although the FL paradigm keeps sensitive training data on clients, recent studies have shown that
adversaries can still infer private information through well-crafted inference attacks [17, 39, 43,
51, 61]. To mitigate privacy risks, differential privacy (DP) [14], a widely adopted standard for
incorporating formal privacy guarantees, has been integrated into the FL algorithm [38]. In the
context of FL, DP can be applied at two distinct protection levels: record-level DP, which protects
individual data points within a client’s dataset, and client-level DP, which protects the participation
of a client (i.e., the client’s entire dataset). This work focuses on achieving client-level differentially
private FL (DPFL), as it typically yields better model utility than its record-level counterpart in
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cross-device settings [25]. In the literature, client-level DPFL is implemented using the Gaussian
mechanism [14], where each client’s local model update is perturbed by adding calibrated Gaussian
noise scaled according to a uniform privacy budget ϵ across all clients [5, 7, 25, 29, 50]. A smaller ϵ
provides stronger privacy guarantees but requires injecting larger noise, which consequently leads to
more severe model utility degradation. These perturbed model updates are typically aggregated using
secure aggregation (e.g., [8]), which cryptographically ensures that the server can only access their
sum without observing individual contributions. This dual protection yields a differentially private
aggregated model update that prevents client-level privacy inference even with an adversarial server.

However, in practice, clients often have heterogeneous privacy preferences, necessitating support for
heterogeneous DP (HDP) [26, 33]. In the literature, Liu et al. [32] formally introduced the problem
of FL with heterogeneous DP (HDPFL), where each client naturally has an individual privacy budget
reflecting their privacy needs. In this setting, ensuring record-level HDP is relatively straightforward,
and numerous studies have proposed to improve model utility [7, 33, 35, 36, 48, 58]. In contrast,
client-level HDPFL remains under-explored. To achieve client-level DP with heterogeneous privacy
requirements, conventional approaches such as DP-FedAvg [38] must satisfy the most stringent
privacy budget among all clients, which severely limits overall model utility. A more practical
alternative partitions clients into groups and enforces client-level DP at the group level. To improve
the model utility in this scenario, recent efforts include manually adjusting per-group client sampling
ratios [29], adjusting training rounds per group [11], and mitigating the influence of noisy per-group
updates [32]. However, these approaches assume a fully trusted server, which is often unrealistic in
settings that are vulnerable to privacy inference attacks. Moreover, they primarily rely on heuristic
methods without rigorous theoretical analysis to optimize the privacy-utility trade-off.

In this work, we aim to optimize the model utility in client-level HDPFL under a strong attack model
where both the clients and the server are adversaries. We propose GDPFed, a novel client-level
HDPFL approach in which clients are grouped by their privacy budgets, with client-level DP achieved
at a group-wise level using each group’s minimum privacy budget rather than the global minimum.
This design enables higher model utility while respecting heterogeneous privacy preferences. Building
on this, we theoretically investigate how to maximize model utility in GDPFed while maintaining
rigorous privacy guarantees. Through privacy and convergence analysis, we identify two key factors
that influence convergence errors under fixed privacy budgets: (1) model dimensionality, as DP
noise must be added to each model parameter, increasing total noise with model size; and (2) per-
group client sampling ratios, which has a privacy amplification effect on the guarantees. To reduce
dimensionality-induced noise, we incorporate model sparsification into GDPFed, which eliminates
less significant model parameters for each group with minimal utility drop. We then optimize the
per-group client sampling ratios towards minimizing the convergence error, which extends GDPFed
to GDPFed+ with improved model utility. In summary, we make the following contributions:

• We propose GDPFed, a novel client-level DPFL algorithm for environments where both server
and clients are honest-but-curious. GDPFed is specifically designed to improve model utility when
clients have heterogeneous privacy preferences. By achieving client-level DP at a group-wise level,
our approach mitigates privacy budget waste inherent in HDP settings, improving the model utility.
GDPFed builds upon FedAvg framework, enabling seamless integration into existing FL systems.

• To further improve the model utility, while preserving the privacy guarantees, we propose GDPFed+,
which integrates per-group model sparsification into GDPFed and optimizes the per-group client
sampling ratios to minimize the impact of DP noise on the model utility. To the best of our
knowledge, this is the first work that optimizes client sampling ratios to enhance the privacy-utility
trade-off in client-level HDP settings.

• We conduct extensive empirical evaluations on multiple benchmark datasets of DPFL, thoroughly
comparing our methods against state-of-the-art baseline methods. The results consistently demon-
strate that GDPFed outperforms DP-FedAvg in HDP settings, while GDPFed+ further improves
the model utility under the same privacy guarantee.

2 Preliminary and Related Work

Attack Model. To achieve client-level DP, the literature typically assumes that the adversary is
either honest-but-curious clients [7, 29, 32, 38] or, in a stronger setting, both the clients and the
server [16, 25, 27, 50]. The adversary follows the prescribed FL protocol but remains curious about a
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target client’s private data and attempts to infer it from shared messages. In this work, we consider
the latter, more challenging one.

Federated Learning and FedAvg. In a typical FL system, a set of n clients aim to collaboratively
train a shared global model θ ∈ Rd in an iterative manner under the coordination of a central
server. Generally, the FL problem can be formulated as minθ(1/n)

∑n
i=1 fi(θ), where fi(θ) =

E(z,y)∈Di
l(θ; z, y) represents the local learning objective of client i. Here, l(·) is the loss function,

and (z, y) is a datapoint sampled from the local dataset Di of client i. The classic method to solve the
FL problem is known as Federated Averaging (FedAvg) [37]. Specifically, in each training round t, the
server randomly selects a set of r clients St with a client sampling ratio q ∈ (0, 1] without replacement
to participate in the local training. Each client i ∈ St then downloads the latest global model θt−1

from the server, refines the model for τ iterations towards optimizing its local objective to obtain an
updated local model θti and then sends its local model updates ∆t

i = θti − θt−1 back to the server.
The server refines the global model by averaging the local updates as θt = θt−1 + (1/r)

∑
i∈St ∆t

i.
This process repeats for enough T rounds to ensure that the global model converges. Since the server
receives individual model updates from clients in each round, it poses a significant privacy risk, as a
curious server can infer sensitive information from these updates.

Differential Privacy. The DP mechanism [14, 41], especially the Gaussian mechanism (see the
formal definition in Lemma 6), has been employed as a rigorous approach for mitigating privacy
threats in FL [13, 25, 50]. We give the formal definition of classic (ϵ, δ)-DP in Definition 1.
Definition 1 ((ϵ, δ)-DP [14]). Given privacy budget ϵ > 0 and failure parameter 0 ≤ δ < 1, a
randomized mechanism M satisfies (ϵ, δ)-DP if for any two adjacent datasets D,D′, any subset of
outputs O ⊆ range(M) satisfies Pr[M(D) ∈ O] ≤ eϵ Pr[M(D′) ∈ O] + δ.

In this work, as we consider client-level DP, we define the adjacent datasets by adding or removing
the entire local dataset of a client in FL. The privacy budget ϵ defines the upper bound on privacy
loss in a DP mechanism. A smaller ϵ indicates stronger privacy protection but requires injecting
more intense noise into the learning process, which can significantly impact model performance.
Additionally, the failure parameter δ quantifies the probability that the DP guarantee may be violated.
When δ = 0, the formulation (ϵ, δ)-DP simplifies to pure DP.

The standard (ϵ, δ)-DP provides a relatively loose composition bound, making it unsuitable for
accurately tracking the cumulative privacy loss in complex iterative algorithms. Therefore, in this
work, we adopt Rényi DP (RDP) [41], a relaxed variant of (ϵ, δ)-DP, to better quantify privacy loss
over multiple rounds in DPFL. We provide the formal definition of RDP and its related properties
used in this work in Appendix A.

Client-level DP-FedAvg. Compared with record-level DP [2, 33, 34, 54], which aims to protect
every individual record in a client’s dataset, client-level DP hides a single client’s overall contribution.
To achieve client-level DP under our attack mdoel, one can use DP-FedAvg [38]: before transmitting
the local model update ∆t

i to the server at round t, each selected client clips its model update with a
clipping threshold C, and adds small amount of DP noise drawn from N

(
0, C2σ2/r · Id

)
, where σ2

is the noise multiplier. Notably, the noise multiplier σ2 must be carefully calibrated to ensure that
DP-FedAvg satisfies (ϵ, δ)-DP after T training rounds. Theoretical analyses establish the relationship
σ2 = Ω(q2/ϵ) [1, 42], implying that satisfying a smaller privacy budget ϵ necessitates injecting
larger noise. Furthermore, DP-FedAvg benefits from privacy amplification via client subsampling [6],
where in each client is independently selected with probability q in every training round.

After perturbing their updates locally, clients encrypt these noisy updates using a secure aggregation
protocol (e.g., [8]) and send them to the server. Secure aggregation is a commonly used practice in
client-level DPFL [16, 25, 27, 50], ensuring that a curious server only observes the aggregated sum
of clients’ updates, without access to individual contributions. In this setting, the aggregated model
update received by the server is already perturbed with Gaussian noise N

(
0, C2σ2 · Id

)
. Finally,

the global model is refined with the perturbed aggregated updates. If the server is assumed to be
trusted [11, 29, 32], these model clipping and perturbation operations can be directly applied to the
aggregated model update on the server side to prevent clients from inferring private information. We
present the detailed DP-FedAvg algorithm in Algorithm 2 in Appendix B.3.

The noise applied to model updates inherently reduces the utility of the global model. To mitigate this
issue, numerous methods have been proposed, including model update regularization [5, 13, 50] to
ensure more robust local updates, optimized client sampling [12, 47, 52] to select more informative
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clients, and sparsification [13, 25] to remove unnecessary noise. However, these methods consider a
homogeneous DP setting, where all clients share the same privacy preference. In contrast, an HDP
setting where clients have heterogeneous privacy preferences is more realistic and better aligned with
practical deployment scenarios.

FL with Heterogeneous Privacy Preferences. In practice, clients often have diverse privacy
requirements due to varying policies or individual preferences, making it essential to consider FL
under HDP [26]. Liu et al. [32] first formalized the problem of HDPFL, allowing each client to
specify a unique privacy budget that reflects their preferences. In this setting, record-level HDP is
straightforward to implement by calibrating the DP noise individually per client [7, 32, 33, 35, 48, 58].
For example, Boenisch et al. [7] proposed IDP-FedAvg, which assigns data sampling ratios and
clipping thresholds based on each record’s privacy budget. However, achieving client-level HDP,
where the goal is to protect a single client’s contribution from being inferred, poses greater challenges.

Standard approaches such as DP-FedAvg [38] in this heterogeneous setting have to calibrate noise to
satisfy the most stringent privacy requirement among clients, leading to excessive noise for clients
with more relaxed privacy preferences and thus poor model utility [29]. A more privacy-efficient
approach is to partition clients into groups based on their privacy budgets and ensure client-level DP
within each group [11, 29, 32]. For instance, Kiani et al. [29] proposed a dynamic HDPFL framework
where clients in different groups consume less privacy budget in early training rounds. Note that this
method also proposes the formulation of client sampling ratio optimization, but does not address
it in its design. Instead, they manually tune each group’s sampling ratio, limiting the method’s
theoretical rigor. Another related method, Projected Federated Averaging (PFA) [32], retains updates
from groups with high privacy budgets while projecting updates from low-budget groups onto the
principal subspace learned from the high-budget group. Compared to PFA, our method improves the
privacy-utility trade-off through both theoretical analysis and optimization techniques.

3 Federated Learning with Heterogeneous Group Client-Level DP

Problem Formulation. In this work, we consider an HDPFL setting where each client has its own
privacy budget ϵi, ∀i ∈ [n]. The objective is to collaboratively train a global model with satisfactory
utility while respecting each client’s privacy preference. To achieve this, our proposed method,
GDPFed, partitions all clients into M groups G1,G2, . . . ,GM based on their privacy budgets. Note
that the FL problem now is formalized as minθ

∑
m∈[M ] ωm

∑
i∈Gm

fm,i(θ), where fm,i(θ) is the
local learning objective of client i in Gm and ωm is a reweighting parameter for each group. In each
training round t of GDPFed, the server samples a subset of rm clients St

m from each group m ∈ [M ]
where the number of sampled clients rm in group m is determined by the client sampling ratio qm
and calculated as rm = qm|Gm|. To achieve client-level DP within each group, every local model
update in group m is perturbed by adding Gaussian noise drawn from N (0, C2σ2

m/rm · Id) after
clipping with clipping threshold C. Note that the noise multiplier σ2

m is set to satisfy the minimum
privacy budget within each group, denoted by ϵm = min{ϵm,i}i∈Gm , to ensure that clients’ privacy
losses are smaller than their budgets. Consequently, selected clients send the perturbed local updates
via secure aggregation. One can follow the approach in [9, 25] to implement secure aggregation, and
we note that designing a novel secure aggregation protocol is beyond the scope of this paper. The
server receives the model update summation from each group and aggregates them with reweighting
parameters to refine the global model. This process will repeat for T rounds to ensure that the global
model achieves sufficient utility.

Privacy Analysis of GDPFed. We provide per-group privacy guarantees of GDPFed in Theorem 1.
Theorem 1 (Per-Group Privacy Guarantees of GDPFed). Suppose clients in group m are sam-
pled without replacement with probability qm at each round. For any ϵm < 2 log(1/δ) and
δ ∈ (0, 1), GDPFed satisfies (ϵm, δ)-DP for clients in group m after T rounds if σ2

m ≥
7q2mT (ϵm + 2 log(1/δ))/ϵ2m.

Proof. The detailed proof is provided in Appendix C.

Remark 1. This relation helps quantify the required magnitude of DP noise with key parameters to
maintain the desired privacy guarantee. Notably, σ2

m exhibits a negative correlation with the privacy
budget ϵm: as ϵm increases, the acceptable privacy leakage tolerance grows, thereby reducing the
required noise variance. Conversely, σ2

m is quadratically and positively correlated with the client
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sampling rate qm as a higher sampling ratio increases a client’s participation frequency, thereby
elevating the risk of privacy leakage and necessitating stronger noise injection. The noise level also
grows linearly with the number of rounds T , reflecting the cumulative privacy loss over time. In
practice, one may choose the exact lower bound value that minimizes the magnitude of DP noise.

In addition to the per-group privacy guarantees provided by GDPFed, we also establish its overall pri-
vacy guarantee. To this end, we first present the principle of parallel composition for DP mechanisms,
as stated in Lemma 1.
Lemma 1 (Parallel Composition of DP [32, 60]). Let Mm : Dm → Rd be a randomized mechanism
that satisfies (ϵm, δ)-DP, where {Dm}m∈[M ] are disjoint subsets of the domain D. Then, any
randomized function applied to the sequence {Mm}m∈[M ] satisfies (maxm∈[M ] ϵm, δ)-DP.

That is, if the input domain is partitioned into disjoint subsets independently of the actual data, and
each subset is protected using a DP mechanism, the overall privacy guarantee is determined solely by
the weakest guarantee (i.e., the highest privacy budget) among the individual mechanisms. Using
Lemma 1, we can easily establish the overall privacy guarantee of GDPFed as in Theorem 2.
Theorem 2 (Privacy Guarantee of GDPFed). If each group m ∈ [M ] in GDPFed selects the noise
multiplier σ2

m satisfies Theorem 1, then after T training rounds, the GDPFed satisfies {(ϵm, δ)}m∈[M ]

heterogeneous group-wise DP and (maxm∈[M ] ϵm, δ)-DP.
Remark 2. It is clear that mini∈[n] ϵi ≤ maxm∈[M ] mini∈Gm

ϵi ≤ maxi∈[n] ϵi where the two
equalities hold under the homogeneous DP setting. Compared with DP-FedAvg, which guarantees a
(mini∈[n] ϵi, δ)-DP for each client in the system, GDPFed achieves a weaker guarantee. Nevertheless,
both approaches ensure that any client’s privacy budget is not violated. Importantly, GDPFed relaxes
the guarantee for clients with looser privacy requirements, potentially improving the utility of the
resulting global model.

Analyzing DP Noise. Building upon the privacy analysis of GDPFed, we now conduct a detailed
investigation of the factors that influence the magnitude of the DP noise applied to the model updates,
aiming to derive further insights for improving model utility. In GDPFed, we leverage the Gaussian
mechanism to impose noise for each group, drawn from the distribution N (0, (C2σ2

m/rm) · Id),
thereby ensuring (ϵm, δ)-DP. The expected squared ℓ2-norm of the total noise applied to aggregated
model updates (denoted as Λm) received by the server is Λm = d · C2σ2

m, for group m. Substituting
σ2
m with its lower bound from Theorem 1, we obtain Λm = 7dq2mT (ϵm + 2 log(1/δ))C2/ϵ2m. We

focus on analyzing the influence of two critical parameters, d and qm, on the magnitude of DP noise,
as other parameters are typically fixed in a given HDPFL system. Specifically, properly adjusting d
and qm can effectively reduce the amount of noise under the same privacy guarantee. If model utility
is preserved in the process, this can potentially lead to improved overall performance.

a) Reducing d. Modern neural network architectures (e.g., ResNet [21]) are typically designed
with millions of parameters to ensure strong generalization capability. This results in a large model
dimensionality d, which in turn significantly increases the magnitude of DP noise. To reduce d,
existing works consider low-rank decomposition [18, 59, 62] or structured pruning [22, 23]. However,
these methods suffer from significant utility loss [25]. Moreover, they alter the model architecture,
which poses challenges for model aggregation in FL. A more effective approach is to retain the
original architecture while reducing the number of active parameters, a technique known as model
sparsification [31] (also known as unstructured pruning). This strategy selectively eliminates a subset
of model parameters, which directly reduces DP noise while preserving both the original network
architecture and model performance, leveraging the natural redundancy present in DNNs.

b) Adjusting qm. Regarding qm, directly reducing it leads to a smaller magnitude of DP noise injected
into model updates for group m. Intuitively, it is desirable to reduce the sampling probability for
groups with tighter privacy requirements (i.e., smaller ϵm), as these groups demand lower privacy loss.
In practice, privacy-sensitive clients indeed prefer to participate less frequently in training, reducing
their exposure to potential inference attacks [33]. However, this approach degrades global model
performance if insufficient clients participate in local training. Assuming a minimum participation
ratio q is required (i.e., in expectation, qn clients are selected for local training in each round of
GDPFed), clients with larger privacy budgets should participate more frequently, as their model
updates contain less noise. Yet, excessive participation frequency also increases DP noise under
the same privacy guarantee. Consequently, there exists an optimal set of client sampling ratios that
balances these competing factors while satisfying both participation and privacy constraints.
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4 Sparsification-Amplified GDPFed with Optimal Client Sampling

In this section, we further improve the model utility of GDPFed by integrating sparsification tech-
niques and deriving the optimal per-group client sampling ratios. This improved version of GDPFed
is referred to as GDPFed+, as detailed in Algorithm 1.

Algorithm 1 GDPFed+: Sparsification-Amplified
GDPFed with Optimal Client Sampling

Require: Optimal client sampling ratio {qm}Mm=1;
training rounds T ; local iteration τ ; local learn-
ing rate η; clipping threshold C; noise multipliers
{σ2

m}Mm=1; reweighting parameters {ωm}Mm=1; top-
k parameter {km}Mm=1;

Ensure: Global model θT

1: Initialization: Randomly initialize θ0 ∈ Rd

2: for t = 0 to T−1 do
3: for group m = 1 to M do
4: Sample rm = qm|Gm| clients St

m from Gm
5: Broadcast θt to all clients in St

m

6: for client i ∈ St
m in parallel do

7: for s = 0 to τ−1 do
8: Compute a mini-batch gradient gt,sm,i

9: θt,s+1
m,i ← θt,sm,i − ηgt,sm,i

10: end for
11: ∆̂t

m,i ← θt,τm,i − θt

12: ∆̄t
m,i ← ∆̂t

m,i ×min(1, C/∥∆̂t
m,i∥2)

13: ∆t
m,i ← ∆̄t

m,i +N (0, (C2σ2
m/rm) · Id)

14: yt
m,i ← Encrypt(∆t

m,i) via secure aggre-
gation and send yt

m,i to the server
15: end for
16: ȳt

m ←
∑

i∈St
m
yt
m,i

17: ỹt
m ← Topk(ȳ

t
m, km)

18: end for
19: θt+1 ← θt +

∑
m∈[M ] ωmỹt

m

20: end for
21: return θT

GDPFed with Per-group Sparsification. To
achieve client-level DP under our attack model,
sampled clients in each group add a small amount
of noise to the model updates (line 13 in Algo-
rithm 1) and send them to the server via secure
aggregation (line 14). The secure aggregation
ensures the server only receives the sum of model
updates from each group, as well as the summed
noise (line 16). Here, per-group DP perturba-
tion is applied over the entire parameter space
(i.e., Rd) of model updates. In other words, all
parameters are subjected to perturbation regard-
less of their importance. However, prior stud-
ies have shown that neural networks typically
exhibit substantial parameter redundancy, with
many parameters contributing negligibly to the
task [19, 20, 31]. Under DP settings, perturb-
ing unimportant parameters introduces redundant
noise, unnecessarily degrading model utility.

A practical remedy is model sparsification, which
removes unimportant parameters from model up-
dates along with their associated noise. Specifi-
cally, a top-k sparsifier, denoted as Topk(·), is ap-
plied to retain only the k ∈ [0, d] most important
parameters. Note that k = 0 corresponds to elim-
inating all parameters, while k = d indicates no
sparsification. The detailed algorithm of Topk(·)
is provided in Algorithm 3 in Appendix B.3. In
this work, we adopt a widely-used and straightfor-
ward criterion for identifying important parame-
ters—their absolute magnitude [19, 25, 56, 57].
It should be noted that sparsification must be applied after DP perturbation to preserve the desired
(ϵ, δ)-DP guarantee, as ensured by the post-processing property of DP given as in Lemma 2.

Lemma 2 (Post-Processing of DP [14]). Let M be a randomized mechanism that satisfies (ϵ, δ)-DP.
Then, for any (possibly randomized) mapping g, the composed function g ◦M also satisfies (ϵ, δ)-DP.

Technically, in training round t, the server applies the Topk(·) sparsifier to the per-group model
updates summation ȳt

m using a group-specific sparsification parameter km, resulting in sparsified
updates ỹt

m (line 17). These sparsified updates are then aggregated with reweighting parameters to
refine the global model (line 19).

Bounded Sparsification Error. To reflect varying privacy preferences, it is desirable to assign
distinct sparsification parameters (i.e., k1, k2, . . . , kM ) to different groups. Intuitively, groups with
stricter privacy requirements should be assigned more aggressive sparsification to mitigate the larger
DP noise added to their updates. However, Topk(·) is not without cost since using a smaller km
means that more parameters are removed, which can potentially lead to a non-negligible loss in utility.
To formally quantify this relationship, we introduce Lemma 3, which characterizes the approximation
error introduced by the Topk(·) sparsifier.

Lemma 3 (Bounded Sparsification). Given a vector x ∈ Rd and a sparsification parameter k ∈ [d].
The Topk(·) holds that E∥Topk(x)− x∥2 ≤ ϕ∥x∥2, where ϕ is a sparsification error coefficient.

It is evident that a smaller k results in a larger ϕ, thereby leading to a greater sparsification error.
Therefore, km should be carefully selected in order to successfully leverage its benefit. In the
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literature, ϕ is typically set to 1− k/d [25, 57] or (1− k/d)2 [49] to measure the sparsification error.
In this work, we choose ϕ = (1− k/d)2 as it provides a tighter bound.

Convergence Analysis of GDPFed. We now present a detailed convergence analysis of the
sparsification-amplified GDPFed. In the following, we present several important assumptions that
help us conduct the convergence analysis.

Assumption 1 (L-Smoothness). The local objective fm,i(·) of each client i ∈ Gm in any group
m ∈ [M ], is L-smooth with constant L > 0; i.e., for all x, y ∈ Rd, ∥∇fm,i(x)−∇fm,i(y)∥ ≤
L ∥x− y∥ , which implies fm,i(x)− fm,i(y) ≤ ∇fm,i(x)

⊤(y − x) + (L/2) ∥x− y∥2.

Assumption 2 (Unbiased Gradient and Bounded Variance). For each client i ∈ Gm in any
group m ∈ [M ], the stochastic gradient gm,i(x) ∈ Rd satisfies: E[gm,i(x)] = ∇fm,i(x) and
E ∥[gm,i(x)]j − [∇fm,i(x)]j∥2 ≤ ζ2m,i,∀j ∈ [d], where the expectation is over mini-batch sampling.

Assumption 3 (Bounded Dissimilarity). There exist two constants β2 ≥ 1 and κ2 ≥ 0 such that∑M
m=1 ωm

∑
i∈Gm

∥∇fm,i(x)∥2 ≤ β2∥
∑M

m=1 ωm

∑
i∈Gm

∇fm,i(x)∥2 + κ2. If all local objective
functions are identical, the inequality holds with β2 = 1 and κ2 = 0.

Note that Assumption 1 and Assumption 2 are commonly used in the theoretical analysis of distributed
learning systems [25, 44, 57]. In particular, Assumption 2 bounds the coordinate-wise variance of
local gradients [24]. Meanwhile, Assumption 3 captures inter-client heterogeneity in FL [4, 15, 28].
With the above assumptions, we provide the convergence result of GDPFed under the general
non-convex setting in Theorem 3.

Theorem 3 (Convergence Result of GDPFed). Let θ0 be the initial point and f∗ be the optimal ob-
jective value. Assume the learning rate satisfies η ≤ min{1/

(
4Lβ2 (τ + 1) + 8Lτβ2

)
, 1/(16τL)},

then the sequence of outputs θt generated by GDPFed satisfies:

1

T

T−1∑
t=0

∥∥∇f(θt)∥∥2 ≤
8
(
f(θ0)− f∗

)
ηTτ

+ µ1κ
2 + µ2

M∑
m=1

ωm(ϕm + 1)dζ2m + µ3

M∑
m=1

kmω
2
mC

2σ2
m

rmqm
,

where µ1 = 4Lητ + 4Lη + 64L, µ2 = 32Lητ + Lη + Lη/τ , µ3 = 4L/ητ , ϕm = (1 − km/d)
2,

and ζ2m = (1/|Gm|)
∑

i∈Gm
ζ2m,i.

Proof. The detailed proof is given in Appendix D.

Remark 3. If ϕm = 0, ∀m ∈ [M ], meaning no sparsification is applied, the first three terms on
the right-hand side of the convergence bound correspond to the optimization error of FedAvg. In
particular, the third term captures group-wise heterogeneity in model updates, which are influenced
by the group-wise sparsification parameters km. Specifically, applying more aggressive sparsification
(i.e., smaller km) increases the heterogeneity among per-group model updates. However, as reflected
in the final term of the bound, a smaller km reduces the privacy error introduced by DP, confirming
our analysis in Section 3. This highlights a fundamental trade-off: selecting an appropriate km is
crucial for balancing sparsification and privacy errors, thereby minimizing the overall convergence
error. Hence, by directly minimizing the errors in the third and last terms that are related to km, we
obtain we obtain a coarse closed-form expression for the optimal sparsification level for the group
m: k∗m/d = 1− 2ωmσ

2
m/(ητµ4r

2
m), ∀m ∈ [M ], where µ4 = 32ητ + η + η/τ . At this case, ϕ∗m is

given by ϕ∗m = 4ω2
mσ

4
m/(ητµ4r

2
m)2 (see the sketch of the derivation in Appendix E). This yields a

tighter upper bound for the convergence error.

Optimal Client Sampling Ratios. Building on the convergence analysis of sparsification-amplified
GDPFed, we now discuss how to determine the optimal client sampling ratio for each group. To
ensure that the global model trained by GDPFed converges to a better optimum, it is desirable
to minimize the true gradient of the objective function (i.e., the left-hand side of the convergence
result). However, directly minimizing this function is typically infeasible in practice, as ∇f(θt) is a
high-dimensional, non-convex function. An alternative approach is optimizing its upper bound (i.e.,
the right-hand side of the convergence bound), which approximates optimizing the objective function.
Notably, only the third and last terms in the bound are influenced by the client sampling ratios. This
leads to the constrained minimization problem formulated in Problem 1.
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Problem 1 (Optimal Sampling Ratios for GDPFed). The optimal per-group sampling ratios
{qm}m∈[M ] for GDPFed are obtained by solving the following constrained optimization problem:

min
{qm}m∈[M]

∑
m∈[M ]

ωm

(
µ4(1 + ϕ∗m) + µ5

(
1−

√
ϕ∗m
)
ωmσ

2
m

r2m

)

s.t. rm = qm|Gm|,
∑

m∈[M ]

rm = qn,

where µ4 = 32ητ + η + η/τ and µ5 = 4/(ητ). The formulation sketch is provided in Appendix F.

Remark 4. The optimal sparsification error coefficient ϕ∗m is defined as given in Remark 3. If there is
no sparsification applied, then ϕ∗m = 0, ∀m ∈ [M ]. The noise multiplier σ2

m required to satisfy the
(ϵm, δ)-DP for group m is derived in Theorem 1. All parameters in Problem 1 are now the settings of
the system, except for the decision variables. Therefore, the optimal client sampling ratios for each
group in GDPFed can be efficiently obtained by solving this minimization problem. As Problem 1 is a
non-convex optimization problem, one can resort to existing solvers in practice, such as optimization
libraries in Python (e.g., scikit-learn [46]), to obtain a feasible solution.

With the optimal client sampling ratios derived from solving Problem 1, which minimizes the
convergence upper bound in Theorem 3, GDPFed+ converges to a better minimum than GDPFed,
thereby enhancing model utility. Importantly, GDPFed+ still satisfies the per-group privacy guarantees
in Theorem 1, the overall privacy guarantee in Theorem 2, and the convergence bound in Theorem 3.

5 Empirical Evaluation

Table 1: Configurations for each dataset.

Dataset n T C (ϵ1, ϵ2, ϵ3) (q1, q2, q3)-q (%)

FMNIST 6, 000 50 1.5 (0.5, 1.5, 3.0) (0.69, 1.89, 3.42)-2
SVHN 6, 000 100 1.0 (0.5, 1.5, 3.0) (1.66, 4.67, 8.68)-5

Shakespeare 714 50 1.0 (0.5, 1.5, 3.0) (4.79, 9.83, 15.21)-10
CIFAR-10 600 100 1.5 (2.0, 6.0, 12.0) (3.61, 9.62, 16.77)-10

Datasets and Settings. Our evalua-
tion covers four benchmark datasets
for DPFL: Fashion MNIST (FM-
NIST) [55], SVHN [45], CIFAR-
10 [30], and Shakespeare [10]. Corre-
spondingly, we adopt a 2-layer CNN
for FMNIST, a 3-layer CNN for
SVHN, a ResNet-18 [21] for CIFAR-10, and an LSTM model for Shakespeare. We conduct ex-
periments in cross-device FL settings with n clients. Datasets, excluding Shakespeare, are evenly
partitioned (i.e., IID) across clients; Shakespeare is used in its natural non-IID form. Following
prior works [3, 7, 29] that simulate heterogeneous privacy requirements, clients are assigned to one
of three groups, each associated with a distinct minimum privacy budget (ϵ1, ϵ2, ϵ3). By default,
clients are evenly distributed among three groups. For GDPFed+, the optimal client sampling ratios
(q1, q2, q3) derived by solving Problem 1. By default, the sparsification levels km/d for each group
are (0.7, 0.8, 0.9). We provide detailed empirical observations on the effects of varying sparsification
levels and offer practical suggestions for selecting appropriate sparsification configurations in Ap-
pendix B.4. We summarize the system configurations in Table 1. Detailed experimental settings are
provided in Appendix B.2. All experiments are repeated 3 times with different seeds.

Table 2: Test accuracy of baselines, GDPFed, and GDPFed+ on
each dataset. Results are shown in percentages (%).

Method FMNIST SVHN CIFAR-10 Shakespeare Avg.
P-FedAvg 78.96±0.90 84.13±0.18 56.40±0.34 60.62±0.76 70.03

DP-FedAvg 71.88±0.15 40.80±1.73 32.10±0.34 34.97±0.76 44.94
GDPFed 73.97±0.21 59.11±1.72 34.00±0.44 37.63±0.29 51.18

PFA 73.67±0.28 67.51±0.84 37.17±0.98 36.69±0.21 53.76
IDP-FedAvg 74.80±0.19 66.46±0.98 37.49±0.761 37.26±0.55 54.00
GDPFed+ 75.83±0.47 71.10±0.58 38.78±0.36 42.00±0.45 56.93

Baselines. We compare against
four baselines to demonstrate
the effectiveness of GDPFed+.
Specifically, we include two
important baselines: Pure Fe-
dAvg (P-FedAvg), a non-private
FL case that represents the
upper bound of model utility,
and client-level DP-FedAvg (DP-
FedAvg), which enforces the
strictest privacy requirement across all clients. Moreover, our comparisons include IDP-FedAvg [7]
and PFA [32] (see the rationale behind selecting these methods in Appendix B.2).

Experimental Results. We begin by presenting the convergence curves of representative methods in
Figure 1 and the corresponding test accuracies in Table 2. As shown in Figure 1, DP-FedAvg suffers
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Figure 1: Convergence comparison between P-FedAvg, DP-FedAvg, GDPFed, and GDPFed+.

from substantial performance degradation compared to P-FedAvg, due to applying the strictest privacy
level uniformly across all clients. In contrast, GDPFed, which enforces group-level DP guarantees,
consistently converges to better optima across all datasets by reducing the noise magnitude for
clients with looser privacy requirements. Building upon this, GDPFed+ further integrates model
sparsification with optimal per-group client sampling ratios, resulting in enhanced performance and
achieving the highest test accuracies on all datasets. Moreover, GDPFed+ exhibits a more stable
convergence process compared to other baselines. As shown in Table 2, GDPFed+ outperforms two
competitive baselines, PFA and IDP-FedAvg, with average accuracy gains of +3.17% and +2.93%,
respectively. These results demonstrate the empirical effectiveness of GDPFed+ in enhancing model
utility while preserving client-level HDP guarantees.

Table 3: Detailed noise multipliers
and Λ for different methods.

Method σ2 / (σ2
1 , σ

2
2 , σ

2
3) Λ

DP-FedAvg 2.26 5.09
GDPFed (2.26, 0.90, 0.53) 2.77

GDPFed-op (1.42, 0.87, 0.70) 0.57
GDPFed+ (1.42,0.87,0.70) 0.49

Noise Analysis. Then, we analyze why our proposed methods
achieve better performance. Specifically, we compute the total
amount of noise (measured as the expectation of the squared
ℓ2-norm and denoted by Λ) added to the global model updates.
In Table 3, we report the noise multipliers and corresponding
Λ values for DP-FedAvg, GDPFed, GDPFed-op (GDPFed with
only optimized client sampling ratios), and GDPFed+ on the
FMNIST dataset as an example. Comprehensive results are
provided in Table 5 in Appendix B.4. As shown in the table, GDPFed reduces the total noise by nearly
half compared to DP-FedAvg, as it relaxes the privacy constraints for clients with looser requirements.
GDPFed-op further significantly decreases Λ by adjusting the noise multipliers based on optimized
client sampling ratios. Finally, GDPFed+ achieves the smallest Λ by additionally applying model
sparsification to eliminate noise associated with less informative model parameters. These results
highlight the effectiveness of our design in reducing DP noise to improve the privacy-utility trade-off.

Additional Results and Discussions. We present more results in Appendix B.4. Specifically, we
illustrate how the optimal client sampling ratios vary with different privacy budget settings (Figure 2).
We also report the performance of our methods under various degrees of non-IIDness (Table 7).
Moreover, we examine the impact of different distributions of client privacy preferences (Table 8). In
addition, we analyze how the key DP-related parameters such as ϵ (Table 9) and C (Table 10) affect
model performance. Finally, we discuss the broader impact of our work in Appendix B.5.

6 Conclusion and Future Work

In this work, we explore the challenges of achieving client-level DP in heterogeneous privacy settings.
Unlike classic methods that must satisfy the strictest privacy requirements across all clients, we
propose GDPFed, which partitions clients into groups to ensure group-level DP guarantees. To further
enhance the utility of GDPFed, we introduce GDPFed+, which integrates model sparsification and
optimal client sampling ratios. GDPFed+ preserves the same privacy guarantees as GDPFed while
achieving significant utility improvements, as demonstrated both theoretically and empirically.

We discuss some promising directions for future research. First, it would be desirable to incorporate
the degree of data heterogeneity within each group into Problem 1. While we empirically demonstrate
that GDPFed and GDPFed+ perform well under non-IID data, a biased sampling of clients that over-
or under-represents certain privacy groups could potentially exacerbate model bias in non-IID settings.
Second, although we derive the theoretically optimal sparsification levels in Remark 3, using this
closed-form solution in practice can be challenging due to its dependence on unknown parameters
and Lemma 3 does not precisely capture the sparsification error of Topk(·). Co-designing the optimal
sparsification levels and client sampling ratios is an important direction for future work.
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han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018. 8

[11] Ajesh Koyatan Chathoth, Abhyuday Jagannatha, and Stephen Lee. Federated intrusion detection for iot
with heterogeneous cohort privacy. arXiv preprint arXiv:2101.09878, 2021. 2, 3, 4

[12] Wenlin Chen, Samuel Horvath, and Peter Richtarik. Optimal client sampling for federated learning. arXiv
preprint arXiv:2010.13723, 2020. 3

[13] Anda Cheng, Peisong Wang, Xi Sheryl Zhang, and Jian Cheng. Differentially private federated learning
with local regularization and sparsification. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10122–10131, 2022. 3, 4

[14] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations and
Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014. 1, 2, 3, 6, 14

[15] El Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guirguis, Lê-Nguyên Hoang,
and Sébastien Rouault. Collaborative learning in the jungle (decentralized, byzantine, heterogeneous,
asynchronous and nonconvex learning). Advances in neural information processing systems, 34:25044–
25057, 2021. 7

[16] Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Helen Möllering, Thien Duc
Nguyen, Phillip Rieger, Ahmad-Reza Sadeghi, Thomas Schneider, Hossein Yalame, et al. Safelearn:
Secure aggregation for private federated learning. In 2021 IEEE Security and Privacy Workshops (SPW),
pages 56–62. IEEE, 2021. 2, 3

[17] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC conference on computer
and communications security, pages 1322–1333, 2015. 1

[18] Yuanxiong Guo, Rui Hu, and Yanmin Gong. Agent-level differentially private federated learning via
compressed model perturbation. In 2022 IEEE Conference on Communications and Network Security
(CNS), pages 127–135. IEEE, 2022. 5

10



[19] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015. 6

[20] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient
neural network. Advances in neural information processing systems, 28, 2015. 6

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
5, 8

[22] Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey. IEEE
transactions on pattern analysis and machine intelligence, 46(5):2900–2919, 2023. 5

[23] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for deep
convolutional neural networks acceleration. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4340–4349, 2019. 5

[24] Rui Hu, Yanmin Gong, and Yuanxiong Guo. Federated learning with sparsification-amplified privacy
and adaptive optimization. In Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, 2021. 7

[25] Rui Hu, Yuanxiong Guo, and Yanmin Gong. Federated learning with sparsified model perturbation:
Improving accuracy under client-level differential privacy. IEEE Transactions on Mobile Computing, 2023.
2, 3, 4, 5, 6, 7, 16, 21

[26] Zach Jorgensen, Ting Yu, and Graham Cormode. Conservative or liberal? personalized differential privacy.
In 2015 IEEE 31St international conference on data engineering, pages 1023–1034. IEEE, 2015. 2, 4

[27] Swanand Kadhe, Nived Rajaraman, O Ozan Koyluoglu, and Kannan Ramchandran. Fastsecagg: Scalable
secure aggregation for privacy-preserving federated learning. arXiv preprint arXiv:2009.11248, 2020. 2, 3

[28] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-robust learning on heterogeneous datasets
via bucketing. arXiv preprint arXiv:2006.09365, 2020. 7

[29] Shahrzad Kiani, Nupur Kulkarni, Adam Dziedzic, Stark Draper, and Franziska Boenisch. Differentially
private federated learning with time-adaptive privacy spending. In The Thirteenth International Conference
on Learning Representations, 2025. 2, 3, 4, 8, 15

[30] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. University of Toronto, 2009.
8

[31] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989. 5, 6

[32] Junxu Liu, Jian Lou, Li Xiong, Jinfei Liu, and Xiaofeng Meng. Projected federated averaging with
heterogeneous differential privacy. Proceedings of the VLDB Endowment, 15(4):828–840, 2021. 2, 3, 4, 5,
8, 15

[33] Junxu Liu, Jian Lou, Li Xiong, Jinfei Liu, and Xiaofeng Meng. Cross-silo federated learning with
record-level personalized differential privacy. In Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, page 303–317, New York, NY, USA, 2024. Association for
Computing Machinery. 2, 3, 4, 5

[34] Ken Liu, Shengyuan Hu, Steven Z Wu, and Virginia Smith. On privacy and personalization in cross-silo
federated learning. Advances in neural information processing systems, 35:5925–5940, 2022. 3

[35] Jiating Ma, Yipeng Zhou, Qi Li, Quan Z Sheng, Laizhong Cui, and Jiangchuan Liu. The power of bias:
Optimizing client selection in federated learning with heterogeneous differential privacy. arXiv preprint
arXiv:2408.08642, 2024. 2, 4

[36] Saber Malekmohammadi, Yaoliang Yu, and Yang Cao. Noise-aware algorithm for heterogeneous differen-
tially private federated learning. In Proceedings of the 41st International Conference on Machine Learning,
pages 34461–34498. PMLR, 2024. 2

[37] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR, 2017. 1, 3, 16

11



[38] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. In International Conference on Learning Representations, 2018. 1, 2, 3, 4, 16

[39] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended
feature leakage in collaborative learning. In 2019 IEEE symposium on security and privacy (SP), pages
691–706. IEEE, 2019. 1

[40] Thomas Minka. Estimating a dirichlet distribution, 2000. 18

[41] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations symposium
(CSF), pages 263–275. IEEE, 2017. 3, 14

[42] Ilya Mironov, Kunal Talwar, and Li Zhang. Rényi differential privacy of the sampled gaussian mechanism.
arXiv preprint arXiv:1908.10530, 2019. 3

[43] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning:
Passive and active white-box inference attacks against centralized and federated learning. In 2019 IEEE
symposium on security and privacy (SP), pages 739–753. IEEE, 2019. 1

[44] Yurii Nesterov et al. Lectures on convex optimization. Springer, 2018. 7

[45] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and
unsupervised feature learning, page 4. Granada, 2011. 8

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.
Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. 8

[47] Monica Ribero and Haris Vikalo. Communication-efficient federated learning via optimal client sampling.
arXiv preprint arXiv:2007.15197, 2020. 3

[48] Xiaoying Shen, Hang Jiang, Yange Chen, Baocang Wang, and Le Gao. Pldp-fl: Federated learning with
personalized local differential privacy. Entropy, 25(3):485, 2023. 2, 4

[49] Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung, and Simon See. Understanding top-k sparsification in
distributed deep learning. arXiv preprint arXiv:1911.08772, 2019. 7

[50] Yifan Shi, Yingqi Liu, Kang Wei, Li Shen, Xueqian Wang, and Dacheng Tao. Make landscape flatter in
differentially private federated learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 24552–24562, 2023. 2, 3

[51] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pages 3–18.
IEEE, 2017. 1

[52] Lin Wang, YongXin Guo, Tao Lin, and Xiaoying Tang. DELTA: Diverse client sampling for fasting
federated learning. Advances in Neural Information Processing Systems, 36, 2024. 3

[53] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled rényi differential privacy
and analytical moments accountant. In The 22nd international conference on artificial intelligence and
statistics, pages 1226–1235. PMLR, 2019. 14

[54] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek, and
H Vincent Poor. Federated learning with differential privacy: Algorithms and performance analysis. IEEE
transactions on information forensics and security, 15:3454–3469, 2020. 3

[55] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017. 8

[56] Jiahao Xu, Zikai Zhang, and Rui Hu. Detecting backdoor attacks in federated learning via direction
alignment inspection. arXiv preprint arXiv:2503.07978, 2025. 6

[57] Jiahao Xu, Zikai Zhang, and Rui Hu. Achieving byzantine-resilient federated learning via layer-adaptive
sparsified model aggregation. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), pages 1508–1517, 2025. 6, 7

[58] Ge Yang, Shaowei Wang, and Haijie Wang. Federated learning with personalized local differential privacy.
In 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS), pages
484–489. IEEE, 2021. 2, 4

12



[59] Da Yu, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Do not let privacy overbill utility: Gradient embedding
perturbation for private learning. In International Conference on Learning Representations, 2021. 5

[60] Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. Differentially private model
publishing for deep learning. In 2019 IEEE symposium on security and privacy (SP), pages 332–349.
IEEE, 2019. 5

[61] Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-Yu Duan. Fine-tuning global model via data-free
knowledge distillation for non-iid federated learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 10174–10183, 2022. 1

[62] Yingxue Zhou, Steven Wu, and Arindam Banerjee. Bypassing the ambient dimension: Private {sgd} with
gradient subspace identification. In International Conference on Learning Representations, 2021. 5

13



A Additional Background

In this section, we provide additional background which are related to our paper. First, we introduce
the formal definition of RDP as in Definition 2.
Definition 2 ((α, ρ)-RDP [41]). Given controlling parameter α > 1 and privacy parameter
ρ ≥ 0, a randomized mechanism M satisfies (α, ρ)-RDP if for any two adjacent datasets
D,D′, the Rényi α-divergence between M(D) and M(D′) satisfies Dα[M(D)∥M(D′)] :=
(1/(α− 1)) logE

[
(M(D)/M(D′))

α] ≤ ρ(α).

Useful Definitions and Lemmas. We present several key definitions and lemmas related to DP and
RDP, which will be helpful in deriving our main results later in the paper. We begin by introducing
the transition from RDP to (ϵ, δ)-DP for any δ > 0 can be achieved using the following Lemma 4.
Lemma 4 (Converting RDP to (ϵ, δ)-DP [41]). If the randomized mechanism M satisfies (α, ρ(α))-
RDP, then it also satisfies (ρ(α) + log(1/δ)/(α− 1), δ)-DP.

Next, we present the composability property of RDP as in Lemma 5.
Lemma 5 (RDP Composition [41]). For two randomized mechanisms M1 satisfies (α, ρ1)-RDP and
M2 satisfies (α, ρ2)-RDP, their composition M1 ◦M2 satisfies (α, ρ1 + ρ2)-RDP.

Then, we introduce the concept of ℓ2-sensitivity (as defined in Definition 3), which quantifies the
maximum impact that an individual’s data can have on a query function h(·) in the worst-case
scenario.
Definition 3 (ℓ2-Sensitivity [14]). Let h : D → Rd be a query function over a dataset. The ℓ2-
sensitivity of h is defined as ψ(h) := supD,D′∈D ∥h(D)−h(D′)∥2 whereD andD′ are two adjacent
datasets.

With ℓ2-sensitivity, we introduce the Gaussian Mechanism (as in Lemma 6) which is used for DP
mechanisms in our work.
Lemma 6 (Gaussian Mechanism [41]). Let h : D → Rd be a query function with ℓ2-sensitivity ψ(h).
The Gaussian mechanism M = h(D) +N (0, σ2ψ(h)2 · Id) satisfies (α, α/2σ2)-RDP.

Finally, we discuss how RDP behaves when combined with a subsampling mechanism, as described
in Lemma 7.
Lemma 7 (RDP for Subsampling Mechanism [53]). For a Gaussian mechanism M and any m-
datapoints dataset D, define M◦ SUBSAMPLE as 1) subsample without replacement B datapoints
from the dataset (denote q = B/m as the sampling ratio); and 2) apply M on the subsampled
dataset as input. Then if M satisfies (α, ρ(α))-RDP with respect to the subsampled dataset for all
integers α ≥ 2, then the new randomized mechanism M◦ SUBSAMPLE satisfies (α, ρ′(α))-RDP
with respect to D, where

ρ′(α) ≤ 1

α− 1
log

(
1 + q2

(
α

2

)
min{4(eρ(2) − 1), 2eρ(2)}

+

α∑
j=3

qj
(
α

j

)
2e(j−1)ρ(j)

)
.

If σ2 ≥ 0.7 and α ≤ (2/3)σ2ψ2(h) log(1/qα(1 + σ2)) + 1, M ◦ SUBSAMPLE satisfies
(α, 3.5q2α/σ2)-RDP.
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B Additional Contents

B.1 Notation Table
Table 4: Notation Table

Symbol Description

n Total number of clients in the FL system
q/qm Global client sampling ratio / client sampling ratios for m
r/rm Total selected clients for local training / total selected clients for local training for group m
St/St

m The set of selected clients at round t / the set of selected clients at round t for group m
Di Local dataset of client i
l(·) Loss function used for training
d Model dimensionality
θt Global model parameters at round t

θti/θ
t
m,i Local model of client i at round t / local model of client i from group m at round t

∆t
i/∆

t
m,i Local model update of client i at round t / local model update of client i from group m at round t

T Total number of training rounds
τ Local iterations
η Local learning rate

ϵ/ϵm Privacy budget / group-level privacy budget for group m
δ Failure parameter
C Clipping threshold

σ2/σ2
m Noise multiplier / noise multiplier for group m

ωm Reweighting parameter for group m
M Toal number of groups
Gm Client group m

Λ/Λm The expected squared ℓ2-norm of noise / the expected squared ℓ2-norm of noise for group m
km Sparsification parameter for group m
ϕm Sparsification error parameter for group m
ϕ∗m Optimal sparsification error parameter for group m as given in Remark 3
L Smoothness parameter as given in Assumption 1
ζ2m,i Coordinate-wise variance as given in Assumption 2

β2 and κ2 Dissimilarity parameters as given in Assumption 3

B.2 Additional Experimental Settings

Hardware Settings. All experiments were conducted on a Linux-based internal compute cluster
equipped with 8 NVIDIA RTX A6000 GPUs (each with 49 GB of memory) and AMD EPYC 7763
64-core CPUs. The system runs Ubuntu 20.04.6 LTS. Model training was primarily GPU-accelerated.
The cluster is self-hosted and not based on any commercial cloud provider. Overall, the experiments
consumed approximately one week of cumulative GPU time.

Detailed Baseline Settings. We identify three works that are closely related to our study: IDP-
FedAvg [7], PFA [32], and Time Adaptive HDPFL [29]. Among these, we include IDP-FedAvg and
PFA in our comparisons. To ensure a fair comparison, we re-implement both methods on top of our
GDPFed framework.

• For IDP-FedAvg, originally designed for record-level HDPFL, we adapt it to the client-level
HDPFL setting by following the methodology in [29]. Notably, while [29] only implements the
Scale variant of IDP-FedAvg, we implement both the Scale and Sample variants, as described in
the original IDP-FedAvg paper. We also follow the original codebase to calculate the per-group
clipping thresholds and client sampling ratios. Specifically, for FMNIST, SVHN, CIFAR-10,
and Shakespeare, the per-group clipping thresholds used are (1.15, 1.51, 2.12), (0.35, 0.53, 0.81),
(0.72, 1.03, 1.55), and (0.73, 1.02, 1.52), respectively. The corresponding client sampling ratios
(%) are (0.82, 2.80, 2.38), (4.07, 4.93, 6.00), (6.09, 11.11, 12.80), and (10.51, 7.49, 12.00).

• For PFA, the original implementation considers only two groups. Since our setting involves three
privacy groups, we adapt it accordingly: we treat the group with the highest privacy budget as the
public group (as in PFA), the group with the lowest privacy budget as the private group (whose
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updates are projected onto the public subspace), and retain the median privacy group as-is for direct
aggregation.

• Time-Adaptive HDPFL considers a setting in which clients dynamically control their privacy
budget expenditure across training rounds. Specifically, clients are constrained to spend less privacy
budget in earlier rounds and more in later rounds. The authors also formulate an optimization
problem to determine per-group client sampling ratios that minimize the error between the perturbed
global model update and an unbiased estimate of the true global model update. However, they
do not explicitly solve this optimization problem. Instead, they manually tune the per-group
sampling ratios based on empirical observations, which limits the theoretical rigor of their approach.
Furthermore, as their experiments are conducted under a different system configuration from ours,
we cannot directly adapt their fine-tuned per-group client sampling ratios. Therefore, we are unable
to include Time-Adaptive HDPFL in our evaluation.

More Training Settings. In all experiments, local clients use stochastic gradient descent (SGD) as the
optimizer with a learning rate of η = 0.1 and a decay ratio of 0.99. For the FMNIST, SVHN, CIFAR-
10, and Shakespeare datasets, the momentum values are set to 0.0, 0.0, 0.5, and 0.9, the local training
iterations τ are 5, 25, 5, and 30, and the batch sizes are 10, 10, 50, and 4, respectively. We set the
uniform DP failure parameter as δ = 1/n1.1, following the recommendation in [25, 38]. To reweight
the per-group model updates, we set the reweighting parameter ωm = (1/qn) · r2m/

∑
m∈[M ] r

2
m for

all m ∈ [M ]. This reweighting strategy prioritizes groups with higher expected client participation
and helps reduce the total noise added to the aggregated model. Note that to ensure a fair comparison,
we adopt this reweighting parameter for all group-based methods, including PFA, IDP-FedAvg,
GDPFed, and GDPFed+. For additional implementation details, please refer to our released code.

B.3 Details of Algorithms

Algorithm 2 DP-FedAvg
Require: Model dimension d, client sampling ra-

tio q, number of training rounds T , local itera-
tion τ , local learning rate η, clipping threshold
C, noise multiplier σ2

Ensure: Global model θT

1: Initialization: Randomly initialize θ0 ∈ Rd

2: for t = 0 to T−1 do
3: Sample r = qn clients St at random with-

out replacement
4: Broadcast θt to all clients in St

5: for each client i ∈ St in parallel do
6: for s = 0 to τ−1 do
7: Compute mini-batch gradient gt,si

8: θt,s+1
i ← θt,si − ηgt,s

i

9: end for
10: ∆̂t

i ← θt,τi − θt

11: ∆̄t
i ← ∆̂t

i ×min(1, C/∥∆̂t
i∥2)

12: ∆t
i ← ∆̄t

i +N (0, (C2σ2/r) · Id)
13: yt

i ← Encrypt(∆t
i) via secure aggre-

gation and send yt
i to the server

14: end for
15: ȳt ← (1/r)

∑
i∈St y

t
i

16: θt+1 ← θt + ȳt

17: end for
18: return θT

Algorithm 3 Top-k Sparsifier Topk(·)
Require: Vector x ∈ Rd, top-k parameter k ∈

[1, d]
Ensure: Binary mask mk ∈ {0, 1}d
1: Initialization: Initialize mk← 0 ∈ {0, 1}d
2: Compute absolute values: aj ← |xj | for all

j ∈ [1, d]
3: Sort indices π such that aπ(1) ≥ aπ(2) ≥
· · · ≥ aπ(d)

4: for j = 1 to k do
5: [mk]π(j) ← 1
6: end for
7: return mk⊙ x

We present the classical DP-FedAvg algorithm [38] in Algorithm 2. DP-FedAvg is a differentially
private variant of the standard FedAvg algorithm [37], designed to incorporate DP guarantees into the
FL process. In our work, we adopt secure aggregation as the default setting for transmitting clients’
model updates to the server, ensuring that individual updates remain confidential.

We also provide the detailed Topk(·) procedure in Algorithm 3. Specifically, given an input vector,
Topk(·) first sorts all elements by their absolute values and retains only the top-k elements. The
remaining entries are set to zero, resulting in a sparsified output vector.
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Table 5: Noise multipliers (σ2 or (σ2
1 , σ

2
2 , σ

2
3)) and noise magnitude (Λ) across different datasets and

methods.

Method FMNIST SVHN CIFAR-10 Shakespeare
DP-FedAvg 2.26 / 5.09 13.20 / 13.20 3.52 / 7.91 17.14 / 17.14

GDPFed (2.26, 0.90, 0.53) / 2.77 (13.20, 2.50, 1.16) / 5.62 (3.52, 0.95, 0.49) / 3.72 (17.14, 3.26, 1.41) / 7.27
GDPFed-op (1.42, 0.87, 0.70) / 0.57 (2.38, 2.29, 2.23) / 0.75 (0.98, 0.91, 0.83) / 0.64 (4.45, 3.18, 2.46) / 0.93
GDPFed+ (1.42,0.87,0.70) / 0.49 (2.38,2.29,2.23) / 0.65 (0.98,0.91,0.83) / 0.56 (4.45,3.18,2.46) / 0.79

B.4 Additional Empirical Results
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Figure 2: Optimal client sampling ratios under
varying ϵ1. Ratios adjust dynamically to satisfy the
global constraint with fixed ϵ2 and ϵ3.

Dynamics of Client Sampling Ratios. We
demonstrate how the optimal client sampling ra-
tios dynamically adjust in response to varying pri-
vacy budgets, as dictated by our optimization for-
mulation in Problem 1. Specifically, we conduct
test on the FMNIST and CIFAR-10 datasets. In
both cases, we fix the privacy budgets for Group
2 and Group 3 as ϵ2 = 1.5 and ϵ3 = 3.0 for FM-
NIST and ϵ2 = 6.0 and ϵ3 = 12.0 for CIFAR-10,
respectively, and vary ϵ1 to examine how the opti-
mal sampling ratios evolve. The resulting trends
are illustrated in Figure 2.

Across both datasets, we observe a consistent pattern governed by the optimization objective. When ϵ1
is small, the corresponding sampling ratio q1 decreases to accommodate the stronger noise required
for stricter privacy. As ϵ1 increases, q1 rises accordingly, while q2 and q3 adjust downward to
maintain the global constraint

∑
m∈[M ] rm = qn. Notably, when ϵ1 = ϵ2 = 1.5 for FMNIST and

ϵ1 = ϵ2 = 6.0 for CIFAR-10, Groups 1 and 2 yield nearly identical optimal sampling ratios.

More Results of Noise Multipliers and Total Amount of Noise. We present the detailed noise
multipliers σ2 or (σ2

1 , σ
2
2 , σ

2
3) and the total noise magnitude Λ added to the global model update in

Table 5. As expected, DP-FedAvg applies the most stringent noise due to the need to satisfy the
strictest client-level privacy constraint, resulting in a large noise multiplier and a correspondingly
high total noise, which severely degrades model utility. In contrast, our proposed method, GDPFed,
reduces the noise multipliers for groups with looser privacy requirements, thereby decreasing the
overall noise. By further optimizing client sampling ratios, GDPFed-op achieves an even lower noise
magnitude. Finally, GDPFed+, which additionally incorporates sparsification, achieves the smallest
total noise among all methods, offering the best trade-off between privacy and utility.

Optimal Sparsification Levels. We conduct extensive experiments to investigate how different
sparsification levels affect model utility. Specifically, we report the test accuracies of GDPFed-op
(with the full sparsification level (1.0, 1.0, 1.0) or one can say no sparsification is applied) and
GDPFed+ under various sparsification configurations in Table 6. GDPFed-op is used as the baseline,
and the relative differences in accuracy for each configuration are highlighted—positive values are
shown in blue to indicate improvements, while negative values are shown in red to reflect degradations.

Our results reveal that moderate sparsification levels, such as (0.9, 0.9, 0.9) and (0.7, 0.8, 0.9),
can lead to performance improvements across multiple datasets. In contrast, overly aggressive
sparsification (e.g., (0.1, 0.1, 0.1)) significantly degrades performance, particularly on complex
datasets such as SVHN and CIFAR-10. Notably, GDPFed+ with the sparsification level (0.1, 0.3, 0.5)
yields only a minor performance drop of −0.30% compared to GDPFed-op, and clearly outperforms
configurations like (0.3, 0.3, 0.3) and (0.1, 0.1, 0.1). This supports our intuition that groups with
stricter privacy requirements should adopt more aggressive sparsification, while groups with looser
privacy constraints can retain more parameters.

Based on these results, we observe that the optimal performance is achieved when GDPFed+ uses the
sparsification level (0.7, 0.8, 0.9); therefore, we adopt it as the default configuration in our subsequent
experiments. For other datasets not evaluated in this work, we recommend starting with (0.7, 0.8, 0.9)
and gradually adjusting the sparsification levels to balance utility and privacy based on task-specific
characteristics.
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Table 6: Test accuracy (%) of GDPFed+ under various sparsification levels. The configuration
(1.0, 1.0, 1.0) (GDPFed-op) is used as the baseline. The relative accuracy difference compared to the
baseline is shown in parentheses: blue indicates improvement, and red indicates degradation.

Sparsification Level FMNIST SVHN CIFAR-10 Shakespeare Average
(1.0, 1.0, 1.0) 75.65±0.53 70.85±0.57 38.04±0.46 41.68±0.44 56.56

(0.9, 0.9, 0.9) 75.89±0.53 (+0.24) 71.04±0.60 (+0.19) 38.69±0.33 (+0.65) 41.94±0.42 (+0.26) 56.89 (+0.33)
(0.7, 0.7, 0.7) 75.79±0.44 (+0.14) 70.79±0.41 (−0.06) 38.40±0.42 (+0.36) 41.90±0.34 (+0.22) 56.72 (+0.16)
(0.5, 0.5, 0.5) 75.37±0.41 (−0.28) 70.39±0.65 (−0.46) 38.53±0.74 (+0.49) 41.40±0.26 (−0.28) 56.42 (−0.14)
(0.3, 0.3, 0.3) 74.92±0.02 (−0.73) 68.94±1.29 (−1.91) 37.50±0.05 (−0.54) 40.33±0.73 (−1.35) 55.42 (−1.14)
(0.1, 0.1, 0.1) 72.37±0.35 (−3.28) 61.65±2.10 (−9.20) 35.19±1.58 (−2.85) 36.13±0.12 (−5.55) 51.34 (−5.22)

(0.7, 0.8, 0.9) 75.83±0.47 (+0.18) 71.10±0.58 (+0.25) 38.78±0.36 (+0.74) 42.00±0.45 (+0.32) 56.93 (+0.37)
(0.5, 0.7, 0.9) 75.79±0.49 (+0.14) 71.17±0.58 (+0.32) 38.63±0.28 (+0.59) 41.98±0.42 (+0.30) 56.89 (+0.33)
(0.3, 0.5, 0.7) 75.62±0.43 (−0.03) 70.83±0.45 (−0.02) 38.69±0.18 (+0.65) 41.83±0.30 (+0.15) 56.74 (+0.18)
(0.1, 0.3, 0.5) 75.52±0.27 (−0.13) 70.14±0.76 (−0.71) 38.38±0.77 (+0.34) 40.98±0.38 (−0.70) 56.26 (−0.30)

Table 7: Test accuracy (%) under different heterogeneity levels (α). The last column shows the
average accuracy across all data settings.

Method α=0.3 α=0.5 α=0.7 α=0.9 IID Average
P-FedAvg 49.17±0.58 51.14±0.45 52.55±0.29 53.35±0.55 56.40±0.34 52.52

DP-FedAvg 26.18±1.18 28.66±1.80 29.43±0.92 31.21±0.23 32.10±0.27 29.52
IDP-FedAvg 27.23±1.78 29.93±1.27 31.22±0.46 33.21±0.43 37.49±0.76 31.82
GDPFed+ 28.59±0.71 32.02±0.57 34.43±0.94 35.58±0.78 38.78±0.36 33.88

More Experiments on HDPFL with Heterogeneous Data. We conduct additional experiments to
evaluate the performance of our method under HDPFL with heterogeneous data settings. Specifically,
we consider the CIFAR-10 dataset and use the Dirichlet distribution [40] to simulate non-IID data
across clients, controlled by the non-IIDness parameter α. A larger α corresponds to lower data
heterogeneity, and vice versa. We experiment with α = 0.9, 0.7, 0.5, and a more extreme case of
α = 0.3. The results are presented in Table 7. As α increases (i.e., the data becomes more IID), the
accuracy of all methods improves accordingly. Notably, GDPFed+ consistently outperforms both
DP-FedAvg and IDP-FedAvg, achieving an average improvement of +2.06% across all cases. These
results demonstrate the effectiveness of GDPFed+ in enhancing model utility under heterogeneous
data distributions in client-level HDPFL.

Impact of Privacy Preference Distribution. In our default setting, we assume a uniform client
distribution across groups such that |G1| = |G2| = |G3| with ϵ1 < ϵ2 < ϵ3. To further evaluate
the robustness and effectiveness of our method, we examine three alternative privacy preference
distributions. These scenarios vary the proportion of clients in (G1,G2,G3) as follows: (1) 1 : 4 : 1–
the moderate privacy group G2 comprises 4/6 of clients, while the strictest G1 and loosest G3 groups
each contain 1/6; (2) 3 : 2 : 1–the strictest privacy group G1 holds the largest share with 3/6 of
clients, G2 contains 2/6 and G3 contains 1/6; (3) 1 : 2 : 3–the loosest privacy group G3 comprises
3/6 of clients, G1 contains 1/6 and G3 includes 2/6.

These distributions reflect realistic deployment scenarios where privacy needs are not evenly dis-
tributed among users. The corresponding results are shown in Table 8. Across all four datasets
and under all tested distributions, GDPFed+ consistently outperforms DP-FedAvg. These findings
demonstrate the strong performance and adaptability of GDPFed+ under varying privacy preference
distributions, further supporting its practicality for real-world FL systems.

It is worth noting that GDPFed+ experiences a slight performance drop under the 3 : 2 : 1 setting,
compared with other settings. It is reasonable as GDPFed is designed to reduce the privacy budget
waste, and in the 3 : 2 : 1 setting, such waste is inherently not significant. From another perspective,
the performance decline is primarily due to the increased number of clients from the strictest group,
which requires adding more noise. For example, on CIFAR-10, GDPFed+ samples 14 clients from
the strict group under the 3 : 2 : 1 distribution, compared to only 7 under the balanced 2 : 2 : 2
setting. This behavior is driven by the influence of rm in the optimization objective of Problem 1.
Nevertheless, even in this challenging case, GDPFed+ still achieves substantial improvements over
DP-FedAvg, further demonstrating its effectiveness.

18



Table 8: Test accuracy (%) under different privacy preference distributions. The last column shows
the average accuracy across all group settings.

Dataset Method 1 : 4 : 1 2 : 2 : 2 3 : 2 : 1 1 : 2 : 3 Average

FMNIST DP-FedAvg 71.59±0.46 71.88±0.15 71.75±0.58 71.89±0.51 71.78
GDPFed+ 76.06±0.38 75.83±0.47 74.50±0.34 76.77±0.42 75.79

SVHN DP-FedAvg 40.76±1.58 40.80±1.73 40.10±1.59 40.73±1.43 40.60
GDPFed+ 72.02±0.74 71.10±0.58 65.81±1.17 75.02±0.60 71.49

CIFAR-10 DP-FedAvg 33.47±0.87 32.10±0.27 33.53±0.62 33.24±0.72 33.09
GDPFed+ 38.90±0.19 38.78±0.36 35.95±1.14 40.64±0.33 38.57

Shakespeare DP-FedAvg 31.48±3.29 31.48±2.85 31.11±3.43 30.99±3.14 31.27
GDPFed+ 42.36±0.40 42.00±0.45 39.47±0.60 43.61±0.43 41.86

Table 9: Test accuracy (%) under different privacy budget scales. The last column reports the average
accuracy.

Dataset Method 0.5× 0.75× 1.0× 1.25× 1.5× Average

FMNIST DP-FedAvg 57.72±1.83 68.87±0.55 71.88±0.15 73.76±0.39 74.99±0.29 69.44
GDPFed+ 74.87±0.63 75.55±0.41 75.83±0.47 75.97±0.42 76.01±0.30 75.65

SVHN DP-FedAvg 18.14±0.31 25.20±1.95 40.80±1.73 55.26±1.27 63.52±1.19 40.58
GDPFed+ 57.93±1.55 67.54±0.94 71.10±0.58 72.90±0.73 74.03±0.75 68.70

CIFAR-10 DP-FedAvg 24.20±0.67 29.63±0.65 32.10±0.27 35.06±0.57 36.89±0.70 31.58
GDPFed+ 32.96±0.67 36.84±0.12 38.78±0.36 39.60±0.16 40.16±0.11 37.27

Shakespeare DP-FedAvg 13.12±8.03 27.10±1.51 31.48±2.85 34.73±0.68 35.98±0.26 28.88
GDPFed+ 37.60±0.57 41.11±0.17 42.00±0.45 42.27±0.59 42.55±0.63 41.51

Experiments on Various Privacy Budgets. We investigate how varying the per-group privacy bud-
gets affects the performance of GDPFed+. Specifically, we scale the default privacy budget settings
for each dataset for each group using multiplicative factors: 0.5×, 0.75×, 1.0×, 1.25×, and 1.5×.
For example, under the 0.5× setting, the privacy budgets for FMNIST become (0.25, 0.75, 1.50),
which is 0.5× (0.5, 1.5, 3.0). The results across all datasets are summarized in Table 9.

GDPFed+ consistently outperforms DP-FedAvg across all settings, with particularly notable gains
when the privacy budgets are more restrictive (e.g., 0.5× and 0.75×). As the scale increases, both
methods exhibit improved performance due to the relaxation of privacy constraints, though GDPFed+
maintains a clear advantage throughout. One key observation is that the utility gap between GDPFed+
and DP-FedAvg becomes smaller at larger scales. This is because higher scaling leads to larger per-
group privacy budgets, which in turn require less noise to satisfy the privacy guarantees. Consequently,
the model utility of GDPFed+ becomes closer to that of DP-FedAvg in such cases.

Impact of Clipping Threshold on Model Utility. We now analyze the influence of the clipping
threshold C on model utility. Increasing C results in less aggressive clipping of local model updates,
but also amplifies the magnitude of the noise required to satisfy differential privacy constraints.

We evaluate the impact of larger clipping thresholds by scaling C using multiplicative factors: 1.25×
and 1.5×. The results, presented in Table 10, indicate that as C increases, the performance of DP-
FedAvg degrades significantly, particularly on FMNIST and SVHN datasets. In contrast, our method,
GDPFed+, exhibits only minor fluctuations in performance under each setting, demonstrating strong
robustness. Notably, on SVHN, GDPFed+ achieves an average test accuracy of 70.26%, representing
a substantial improvement of +37.39% over DP-FedAvg. This performance gain is largely attributed
to the use of optimized client sampling ratios, which yield more favorable noise multipliers for each
privacy group. These results further underscore the effectiveness and practical resilience of GDPFed+
under varying clipping thresholds.

B.5 Broader Impacts

This work addresses the challenge of client-level HDPFL, where individual clients have their privacy
preferences. While our proposed method, GDPFed+, effectively reduces the noise added to the global
model and improves utility under strict privacy constraints, it assumes that clients’ privacy budgets are
externally specified and fixed. In real-world deployments, however, determining an adequate privacy
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Table 10: Test accuracy (%) under different clipping thresholds C. The last column reports the
average accuracy.

Dataset Method 1.0× 1.25× 1.5× Average

FMNIST DP-FedAvg 71.88±0.15 68.35±0.60 63.62±1.23 67.95
GDPFed+ 75.83±0.47 75.58±0.60 74.49±0.81 75.30

SVHN DP-FedAvg 40.80±1.73 31.69±2.74 26.11±2.34 32.87
GDPFed+ 71.10±0.58 70.63±0.46 69.05±0.73 70.26

CIFAR-10 DP-FedAvg 32.10±0.27 32.11±0.31 31.10±0.82 31.77
GDPFed+ 38.78±0.36 38.29±0.69 37.50±0.39 38.19

Shakespeare DP-FedAvg 31.48±2.85 29.36±2.11 25.76±0.64 28.87
GDPFed+ 42.00±0.45 42.61±0.22 42.33±0.16 42.31

level ϵi for each individual i ∈ [n] is non-trivial and often subject to misunderstanding or misuse. To
ensure the ethical application of our method, the assignment of individual privacy guarantees must be
transparent, informed, and not subject to coercion.

While our work improves the privacy-utility trade-off in HDPFL, it also highlights the importance of
coupling technical advances with social mechanisms to promote responsible, equitable, and informed
use of DP in practice.
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C Proof of Theorem 1

CREDITS: our proof follows the proof of Theorem 1 in [25].

Proof. Suppose the client is sampled without replacement with probability qm at each round for each
group m ∈ [M ]. By Lemma 6 and Lemma 7, the t-th round of GDPFed satisfies (αm, ρt(αm))-RDP
for each group m, where

ρt(α) =
3.5q2mαm

σ2
m

, (1)

if σ2
m ≥ 0.7 and αm ≤ 1 + (2/3)C2σ2

m log(1/qmαm(1 + σ2
m)). Then by Lemma 5, each group

in GDPFed satisfies (αm, Tρt(αm))-RDP after T rounds of training. Next, in order to guarantee
(ϵm, δ)-DP according to Lemma 4, we need

3.5q2mTαm

σ2
m

+
log(1/δ)

αm − 1
≤ ϵm. (2)

Suppose αm and σm are chosen such that the conditions for Equation (1) are satisfied. Choose
αm = 1 + 2 log(1/δm)/ϵm and rearrange the inequality in Inequality (2), we need

σ2
m ≥ 7q2mT (ϵm + 2 log(1/δ))

ϵ2m
. (3)

Then, using the constraint on ϵ concludes the proof.

D Proof of Convergence Bound of Sparsification-Amplified GDPFed

D.1 Useful Lemmas

Lemma 8. Given any two vectors a, b ∈ Rd,

2 ⟨a, b⟩ ≤ α ∥a∥2 + 1

α
∥b∥2 ,∀ α > 0.

Lemma 9. Given any two vectors a, b ∈ Rd,

∥a+ b∥2 ≤ (1 + δ) ∥a∥2 + (1 + δ−1) ∥b∥2 ,∀ δ > 0.

Lemma 10. Given arbitrary set of n vectors {ai}ni=1, ai ∈ Rd,∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
2

≤ n

n∑
i=1

∥ai∥2 .

D.2 Proof of Theorem 3

Notations. We let ∇fm,i(θ
t,s
m,i) represent the local gradient for client i in group m so that

E[gt,s
m,i] = ∇fm,i(θ

t,s
m,i). For ease of expression, we let dt

m,i = (1/τ)
∑τ−1

s=0 g
t,s
m,i and

ht
m,i = (1/τ)

∑τ−1
s=0 ∇fm,i(θ

t,s
m,i), and Et[d

t
i] = ht

i. We have the update rule θt+1 =

θt − (1/
∑M

j=1 rj)
∑M

m=1 ωm(yt
m ⊙ mkt

m), where ωm is a reweighting parameter and yt
m =
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∑
i∈St

m
∆t

m,i. More specifically:

1∑M
j=1 rj

M∑
m=1

ωm(yt
m ⊙mkt

m) =

M∑
m=1

1∑M
j=1 rj

ωm(yt
m ⊙mkt

m)

≤
M∑

m=1

1

rm
ωm(yt

m ⊙mkt
m)

=

M∑
m=1

ωm
1

|Sm|

(∑
i∈Sm

(
ητTopkm

(dt
m,i) + Topkm

(bt
m,i)

))

=

M∑
m=1

ωm
1

|Sm|

(∑
i∈Sm

ητTopkm
(dt

m,i) +
∑
i∈Sm

Topkm
(bt

m,i)

)

=

M∑
m=1

ωm
1

|Sm|
∑
i∈Sm

ητTopkm
(dt

m,i) +

M∑
m=1

ωm
1

|Sm|
∑
i∈Sm

Topkm
(bt

m,i).

Proof. With Assumption 1, we have

f(θt+1)− f(θt) ≤ Et⟨∇f(θt), θt+1 − θt⟩+ L

2
Et∥θt+1 − θt∥2

≤ Et

〈
∇f(θt),−

M∑
m=1

ωm∆̃t
m

〉
+
L

2
Et∥θt+1 − θt∥2

= −Et

〈
∇f(θt),

M∑
m=1

ωm

 1

|Sm|
∑
i∈Sm

ητTopkm
(dt

m,i) +
1

|Sm|
∑
j∈Sm

Topkm
(bt

m,j)

〉
︸ ︷︷ ︸

T1

+
L

2
Et∥θt+1 − θt∥2︸ ︷︷ ︸

T2

.

To solve T1, we have

T1 = −Et

〈
∇f(θt),

M∑
m=1

ωm

|Sm|
∑
i∈Sm

(
ητTopkm

(dt
m,i)

)〉
− Et

〈
∇f(θt),

M∑
m=1

ωm

|Sm|
∑
i∈Sm

Topkm
(bt

m,i)

〉

= −Et

〈
∇f(θt),

M∑
m=1

ωm

|Sm|
∑
i∈Sm

(
ητTopkm

(dt
m,i) + ητdt

m,i − ητdt
m,i

)〉

= −Et

〈
∇f(θt),

M∑
m=1

ωm

|Sm|
∑
i∈Sm

(
ητdt

m,i

)〉
+ Et

〈
∇f(θt),

M∑
m=1

ωm

|Sm|
∑
i∈Sm

(
ητdt

m,i − ητTopkm
(dt

m,i)
)〉

= −ητ

〈
∇f(θt),

M∑
m=1

ωmEt

[
1

|Sm|
∑
i∈Sm

dt
m,i

]〉
+ ητEt

〈
∇f(θt),

M∑
m=1

ωm

|Sm|
∑
i∈Sm

(
dt
m,i − Topkm

(dt
m,i)

)〉

= −ητEt

〈
∇f(θt),

M∑
m=1

ωm

|Gm|
∑
i∈Gm

ht
m,i

〉
︸ ︷︷ ︸

A1

+ ητEt

〈
∇f(θt),

M∑
m=1

ωm

|Sm|
∑
i∈Sm

(
dt
m,i − Topkm

(dt
m,i)

)〉
︸ ︷︷ ︸

A2

.

For A1, we have
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A1 = −ητ
2

∥∥∇f(θt)∥∥2 − ητ

2

∥∥∥∥∥
M∑

m=1

ωm

|Gm|
∑
i∈Gm

ht
m,i

∥∥∥∥∥
2

+
ητ

2

∥∥∥∥∥∇f(θt)−
M∑

m=1

ωm

|Gm|
∑
i∈Gm

ht
m,i

∥∥∥∥∥
2

= −ητ
2

∥∥∇f(θt)∥∥2 + ητ

2

∥∥∥∥∥∇f(θt)−
M∑

m=1

ωm

|Gm|
∑
i∈Gm

1

τ

τ−1∑
s=0

∇fm,i(θ
t,s
m,i)

∥∥∥∥∥
2

= −ητ
2

∥∥∇f(θt)∥∥2 + ητ

2

∥∥∥∥∥
M∑

m=1

ωm

|Gm|
∑
i∈Gm

∇fm,i(θ
t)−

M∑
m=1

ωm

|Gm|
∑
i∈Gm

1

τ

τ−1∑
s=0

∇fm,i(θ
t,s
m,i)

∥∥∥∥∥
2

= −ητ
2

∥∥∇f(θt)∥∥2 + ητ

2

∥∥∥∥∥
M∑

m=1

ωm

|Gm|
∑
i∈Gm

1

τ

τ−1∑
s=0

(
∇fm,i(θ

t)−∇fm,i(θ
t,s
m,i)

)∥∥∥∥∥
2

≤ −ητ
2

∥∥∇f(θt)∥∥2 + ητ

2

M∑
m=1

ωm

|Gm|
∑
i∈Gm

1

τ

τ−1∑
s=0

∥∥∇fm,i(θ
t)−∇fm,i(θ

t,s
m,i)

∥∥2
≤ −ητ

2

∥∥∇f(θt)∥∥2 + ητL2

2

M∑
m=1

ωm

|Gm|
∑
i∈Gm

1

τ

τ−1∑
s=0

∥∥θt − θt,sm,i

∥∥2 ,
where the first inequality holds according to Lemma 10 and the last inequality holds according to
Assumption 1.

For A2, we have

A2 = ητEt

〈
∇f(θt),

M∑
m=1

ωm

|Sm|
∑
i∈Sm

(
dt
m,i − Topkm

(dt
m,i)

)〉

≤ ητ

2
Et

γ ∥∥∇f(θt)∥∥2 + γ−1Et

∥∥∥∥∥
M∑

m=1

ωm

|Sm|
∑
i∈Sm

(
dt
m,i − Topkm

(dt
m,i)

)∥∥∥∥∥
2


≤ ητ

2

(
γ
∥∥∇f(θt)∥∥2 + γ−1Et

[
M∑

m=1

ωm

|Sm|
∑
i∈Sm

∥∥dt
m,i − Topkm

(dt
m,i)

∥∥2])

≤ ητγ

2

∥∥∇f(θt)∥∥2 + ητ

2γ
Et

[
M∑

m=1

ωmϕm
|Sm|

∑
i∈Sm

∥∥dt
m,i

∥∥2]

≤ ητγ

2

∥∥∇f(θt)∥∥2 + ητ

2γ

M∑
m=1

ωmϕm
|Gm|

∑
i∈Gm

Et

∥∥dt
m,i

∥∥2 ,
where the first inequality follows Lemma 8, the second inequality follows Lemma 10, and the third
inequality holds with bounded sparsification (Lemma 3) and ϕm = (1− k/d)

2.

Plugging A1, A2 back to T1, we have

T1 ≤ −ητ
2

∥∥∇f(θt)∥∥2 + ητL2

2

M∑
m=1

ωm

|Gm|
∑
i∈Gm

1

τ

τ−1∑
s=0

∥∥θt − θt,sm,i

∥∥2 + ητγ

2

∥∥∇f(θt)∥∥2 + ητ

2γ

M∑
m=1

ωmϕm
|Gm|

∑
i∈Gm

Et

∥∥dt
m,i

∥∥2
=
ητ(γ − 1)

2

∥∥∇f(θt)∥∥2 + ητL2

2

M∑
m=1

ωm

|Gm|
∑
i∈Gm

1

τ

τ−1∑
s=0

∥∥θt − θt,sm,i

∥∥2 + ητ

2γ

M∑
m=1

ωmϕm
|Gm|

∑
i∈Gm

Et

∥∥dt
m,i

∥∥2 .
For T2, we have
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T2 =
L

2
Et

∥∥∥∥∥∥
M∑

m=1

ωm

 1

|Sm|
∑
i∈Sm

ητTopkm
(dt

m,i) +
1

|Sm|
∑
j∈Gm

Topkm
(bt

m,j)

∥∥∥∥∥∥
2

=
Lη2τ2

2
Et

∥∥∥∥∥
M∑

m=1

ωm

|Sm|
∑
i∈Sm

(
Top+m,k

(
dt
m,i

)
− dt

m,i + dt
m,i

)∥∥∥∥∥
2

+
L

2

∥∥∥∥∥∥
M∑

m=1

ωm

|Sm|
∑
j∈Gm

Topkm
(bt

m,j)

∥∥∥∥∥∥
2

≤ Lη2τ2

2
Et

[
M∑

m=1

ωm

|Sm|
∑
i∈Sm

∥∥(Topkm

(
dt
m,i

)
− dt

m,i + dt
m,i

)∥∥2]+ L

2

∥∥∥∥∥∥
M∑

m=1

ωm

|Sm|
∑
j∈Gm

Topkm
(bt

m,j)

∥∥∥∥∥∥
2

≤ Lη2τ2Et

[
M∑

m=1

ωm

|Sm|
∑
i∈Sm

∥∥(Topkm

(
dt
m,i

)
− dt

m,i

)∥∥2]+ Lη2τ2Et

[
M∑

m=1

ωm

|Sm|
∑
i∈Sm

∥∥dt
m,i

∥∥2]

+
L

2

∥∥∥∥∥∥
M∑

m=1

ωm

|Sm|
∑
j∈Gm

Topkm
(bt

m,j)

∥∥∥∥∥∥
2

≤ Lη2τ2Et

[
M∑

m=1

ωmϕm
|Sm|

∑
i∈Sm

∥∥dt
m,i

∥∥2]+ Lη2τ2Et

[
M∑

m=1

ωm

|Sm|
∑
i∈Sm

∥∥dt
m,i

∥∥2]+ L

2

∥∥∥∥∥∥
M∑

m=1

ωm

|Sm|
∑
j∈Gm

Topkm
(bt

m,j)

∥∥∥∥∥∥
2

= Lη2τ2Et

[
M∑

m=1

ωm (ϕm + 1)

|Sm|
∑
i∈Sm

∥∥dt
m,i

∥∥2]+ L

2

∥∥∥∥∥∥
M∑

m=1

ωm

|Sm|
∑
j∈Gm

Topkm
(bt

m,j)

∥∥∥∥∥∥
2

,

where the first inequality follows Lemma 10, the second inequality follows Lemma 9, the third
inequality follows Lemma 3.

Combine T1 and T2, we have

T1 + T2 ≤ ητ(γ − 1)

2

∥∥∇f(θt)∥∥2 + ητL2

2

M∑
m=1

ωm

|Gm|
∑
i∈Gm

1

τ

τ−1∑
s=0

∥∥θt − θt,sm,i

∥∥2 + ητ

2γ

M∑
m=1

ωmϕm
|Gm|

∑
i∈Gm

Et

∥∥dt
m,i

∥∥2
+ Lη2τ2Et

[
M∑

m=1

ωm (ϕm + 1)

|Sm|
∑
i∈Sm

∥∥dt
m,i

∥∥2]+
∥∥∥∥∥∥

M∑
m=1

ωm

|Sm|
∑
j∈Gm

Topkm
(bt

m,j)

∥∥∥∥∥∥
2

≤ ητ(γ − 1)

2

∥∥∇f(θt)∥∥2 + ητL2

2

M∑
m=1

ωm

|Gm|
∑
i∈Gm

1

τ

τ−1∑
s=0

∥∥θt − θt,sm,i

∥∥2

+ 2Lη2τ2
M∑

m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

Et

∥∥dt
m,i

∥∥2
︸ ︷︷ ︸

B1

+
L

2

∥∥∥∥∥∥
M∑

m=1

ωm

|Sm|
∑
j∈Gm

Topkm
(bt

m,j)

∥∥∥∥∥∥
2

,

if γ ≥ ϕm/ [2Lτη(ϕm + 1)].
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Consequently, for B1, we have

B1 =

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

Et

∥∥dt
m,i − ht

m,i + ht
m,i

∥∥2
≤ 2

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

Et

(∥∥dt
m,i − ht

m,i

∥∥2 + ∥∥ht
m,i

∥∥2)

= 2

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

Et

(∥∥dt
m,i − ht

m,i

∥∥2 + ∥∥ht
m,i −∇fm,i(θ

t) +∇fm,i(θ
t)
∥∥2)

≤ 2

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

Et

(∥∥dt
m,i − ht

m,i

∥∥2 + 2
∥∥ht

m,i −∇fm,i(θ
t)
∥∥2 + 2

∥∥∇fm,i(θ
t)
∥∥2)

≤ 2

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

Et

[∥∥dt
m,i − ht

m,i

∥∥2 + 2
∥∥ht

m,i −∇fm,i(θ
t)
∥∥2]

+ 4

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

∥∥∇fm,i(θ
t)
∥∥2 ,

where these inequalities follows Lemma 9.

Given that

Et

∥∥dt
m,i − ht

m,i

∥∥2 = Et

∥∥∥∥∥1τ
τ−1∑
s=0

(
gt,s
m,i −∇fi(θt,sm,i)

)∥∥∥∥∥
2

≤ 1

τ

τ−1∑
s=0

Et

∥∥gt,s
m,i −∇fi(θt,sm,i)

∥∥2 ≤ 1

τ

τ−1∑
s=0

dζ2m,i = dζ2m,i,

where the first inequality follows Lemma 10 and the second inequality follows Assumption 2, we
have

B1 ≤ 2

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

Et

[
ζ2m,i + 2

∥∥ht
m,i −∇fm,i(θ

t)
∥∥2]+ 4

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

∥∥∇fm,i(θ
t)
∥∥2

≤ 2

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

(
ζ2m,i +

2L2

τ

τ−1∑
s=0

Et

∥∥θt − θt,sm,i

∥∥2)+ 4

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

∥∥∇fm,i(θ
t)
∥∥2

≤ 2

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

ζ2m,i +
4L2

τ

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

τ−1∑
s=0

Et

∥∥θt − θt,sm,i

∥∥2
+ 4

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

∥∥∇fm,i(θ
t)
∥∥2 .

Plugging B1 back, we have

T1 + T2 ≤ ητ(γ − 1)

2

∥∥∇f(θt)∥∥2 + 4Lη2τ2
M∑

m=1

ωm(ϕm + 1)

|Gm|
∑
i∈Gm

dζ2m,i

+

(
ητL2

2
+

4L2

τ
2Lη2τ2

)
1

τ

τ−1∑
s=0

M∑
m=1

ωm(ϕm + 1)

|Gm|
∑
i∈Gm

Et

∥∥θt − θt,sm,i

∥∥2
︸ ︷︷ ︸

C1

+ 8Lη2τ2
M∑

m=1

ωm(ϕm + 1)

|Gm|
∑
i∈Gm

∥∥∇fm,i(θ
t)
∥∥2 + L

2

∥∥∥∥∥∥
M∑

m=1

ωm

|Sm|
∑
j∈Gm

Topkm
(bt

m,j)

∥∥∥∥∥∥
2

.
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For C1, we first handle

Et

∥∥θt − θt,sm,i

∥∥2 = Et

∥∥∥θt,s−1
m,i − θt − ηgt,s−1

m,i + η∇fm,i(θ
t,s−1
m,i )− η∇fm,i(θ

t,s−1
m,i ) + η∇fm,i(θ

t)− η∇fm,i(θ
t)
∥∥∥2

= Et

∥∥∥θt,s−1
m,i − θt − η∇fm,i(θ

t,s−1
m,i ) + η∇fm,i(θ

t)− η∇fm,i(θ
t)
∥∥∥2 + η2

∥∥∥gt,s−1
m,i −∇fm,i(θ

t,s−1
m,i )

∥∥∥2
≤
(
1 +

1

2τ − 1

)
Et

∥∥∥θt,s−1
m,i − θt

∥∥∥2 + 2τη2
∥∥∥∇fm,i(θ

t,s−1
m,i ) +∇fm,i(θ

t)−∇fm,i(θ
t)
∥∥∥2 + dη2ζ2m,i

≤
(
1 +

1

2τ − 1

)
Et

∥∥∥θt,s−1
m,i − θt

∥∥∥2 + 4τη2L2
∥∥∥θt,s−1

m,i − θt
∥∥∥2 + 4τη2

∥∥∇fm,i(θ
t)
∥∥2 + dη2ζ2m,i

=

(
1 +

1

2τ − 1
+ 4τη2L2

)
Et

∥∥∥θt,s−1
m,i − θt

∥∥∥2 + 4τη2
∥∥∇fm,i(θ

t)
∥∥2 + dη2ζ2m,i.

Therefore, we have

C1 =

M∑
m=1

ωm(ϕm + 1)

|Gm|
∑
i∈Gm

Et

∥∥θt − θt,sm,i

∥∥2
≤

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

((
1 +

1

2τ − 1
+ 4τη2L2

)
Et

∥∥∥θt,s−1
m,i − θt

∥∥∥2 + 4τη2
∥∥∇fm,i(θ

t)
∥∥2 + dη2ζ2m,i

)

=

(
1 +

1

2τ − 1
+ 4τη2L2

) M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

Et

∥∥∥θt,s−1
m,i − θt

∥∥∥2 + 4τη2
M∑

m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

∥∥∇fm,i(θ
t)
∥∥2

+ dη2
M∑

m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

ζ2m,i

≤
(
1 +

1

τ − 1

) M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

Et

∥∥∥θt,s−1
m,i − θt

∥∥∥2 + 4τη2
M∑

m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

∥∥∇fm,i(θ
t)
∥∥2

+ dη2
M∑

m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

ζ2m,i,

when η ≤ 1/3τL.

Unrolling the recursion, we obtain the following

C1 ≤
s−1∑
h=0

(
1 +

1

τ − 1

)h
(
4τη2

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

∥∥∇fm,i(θ
t)
∥∥2 + dη2

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

ζ2m,i

)

≤ (τ − 1)

((
1 +

1

τ − 1

)τ

− 1

)(
4τη2

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

∥∥∇fm,i(θ
t)
∥∥2 + dη2

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

ζ2m,i

)

≤ (4τ − 4)

(
4τη2

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

∥∥∇fm,i(θ
t)
∥∥2 + dη2

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

ζ2m,i

)

≤ (4τ − 4)4τη2
M∑

m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

∥∥∇fm,i(θ
t)
∥∥2 + (4τ − 4)dη2

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

ζ2m,i,

where the fourth inequality holds since
(
1 + 1

τ−1

)τ
≤ 5 when τ > 1.
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Plugging C1 back and rearranging, we have

T1 + T2 ≤
[
ητ(γ − 1)

2
+ β2

[(
ητL2

2
+

4L2

τ
2Lη2τ2

)
(4τ − 4)4τη2 + 8Lη2τ2

]] ∥∥∇f(θt)∥∥2
+

[(
ητL2

2
+

4L2

τ
2Lη2τ2

)
(4τ − 4)4τη2 + 8Lη2τ2

]
κ2

+

[
4Lη2τ2 +

(
ητL2

2
+

4L2

τ
2Lη2τ2

)
(4τ − 4)η2

]
d

M∑
m=1

ωm (ϕm + 1)

|Gm|
∑
i∈Gm

ζ2m,i

+
L

2

∥∥∥∥∥∥
M∑

m=1

ωm

|Sm|
∑
j∈Gm

Topkm
(bt

m,j)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
D1

.

For D1, we have

E

∥∥∥∥∥∥
M∑

m=1

ωm

|Sm|
∑
j∈Sm

Topkm
(bt

m,j)

∥∥∥∥∥∥
2

= E

 M∑
m=1

ω2
m

|Sm|2

∥∥∥∥∥∥
∑
j∈Sm

Topkm
(bt

m,j)

∥∥∥∥∥∥
2
 = E

 M∑
m=1

ω2
m

|Sm|2
∑
j∈Sm

∥∥Topkm
(bt

m,j)
∥∥2

= E

 M∑
m=1

ω2
m

|Sm|2
∑
j∈Sm

∥∥N (
0, C2σ2

m/rm · Ik
)∥∥2

=

M∑
m=1

kmω
2
mC

2σ2
mE

[
1

|Sm|2

]

=

M∑
m=1

kmω
2
mC

2σ2
m

r2m
.

Plugging D1 back, and if η ≤ min{1/
[
4Lβ2 (τ + 1) + 8Lτβ2

]
, 1/(16τL)}, we have

f(θt+1)− f(θt) ≤ −1

8
ητ
∥∥∇f(θt)∥∥2 + (Lη2τ2

2
+
Lτη2

2
+ 8Lητ

)
κ2

+

(
4Lη2τ2 +

2

16
Lτη2 +

1

8
Lη2

)
d

M∑
m=1

ωm(ϕm + 1)

|Gm|
∑
i∈Gm

ζ2m,i

+
L

2

M∑
m=1

kmω
2
mC

2σ2
m

r2m
.

Let ζ2m := 1
|Gm|

∑
i∈Gm

ζ2m,i, rearranging and summing it form t = 0 to t = T − 1 and dividing by
T , one yields

1

T

T−1∑
t=0

∥∥∇f(θt)∥∥2 ≤ 8(f(θ0)− f∗)

ηTτ
+ (4Lητ + 4Lη + 64L)κ2

+

(
32Lητ + Lη +

Lη

τ

) M∑
m=1

ωm(ϕm + 1)dζ2m

+
4L

ητ

M∑
m=1

kmω
2
mC

2σ2
m

r2m
.

which concludes the proof.
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E Sketch of Deriving Optimal Sparsification Levels

We start with simplifying the last two terms of the convergence bound of sparsification-amplified
GDPFed.(

32Lητ + Lη +
Lη

τ

) M∑
m=1

ωm(ϕm + 1)dζ2m +
4L

ητ

M∑
m=1

kmω
2
mC

2σ2
m

r2m

≤
(
32Lητ + Lη +

Lη

τ

) M∑
m=1

ωm(ϕm + 1)dC2 +
4L

ητ

M∑
m=1

kmω
2
mC

2σ2
m

r2m

⇒
(
32ητ + η +

η

τ

) M∑
m=1

ωm(ϕm + 1) +
4

ητ

M∑
m=1

αmω
2
mσ

2
m

r2m

⇒
M∑

m=1

((
32ητ + η +

η

τ

)
ωm(1 + (1− αm)2) +

4

ητ

αmω
2
mσ

2
m

r2m

)
= f(k1, k2, . . . , kM ),

where the first inequality holds as ζ2m ≤ C2. Therefore, take the derivation of f(k1, k2, . . . , kM )
with respect to k1, k2, . . . , kM and set the gradient to 0, we can easily get

k∗m/d = 1− 2ωmσ
2
m

ητr2m
(
32ητ + η + η

τ

) ,
which concludes the sketch.

F Formulation of Problem for Optimal Client Sampling Ratios

Note that in the following formulation process, we use the optimal sparsification level for each group
as we derived in Remark 3. With the last two terms in the convergence bound shown in Theorem 3,
we can simplify it as:

(
32Lητ + Lη +

Lη

τ

) M∑
m=1

ωm(ϕ∗m + 1)dζ2m +
4L

ητ

M∑
m=1

k∗mω
2
mC

2σ2
m

r2m

≤
(
32Lητ + Lη +

Lη

τ

) M∑
m=1

ωm(ϕ∗m + 1)dC2 +
4L

ητ

M∑
m=1

k∗mω
2
mC

2σ2
m

r2m

⇒
(
32ητ + η +

η

τ

) M∑
m=1

ωm(1 + ϕ∗m) +
4

ητ

M∑
m=1

(1−
√
ϕ∗m)ω2

mσ
2
m

r2m

⇒ µ4

M∑
m=1

ωm(1 + ϕ∗m) + µ5

M∑
m=1

(1−
√
ϕ∗m)ω2

mσ
2
m

r2m

⇒
M∑

m=1

ωm

(
µ4(1 + ϕ∗m) + µ5

(1−
√
ϕ∗m)ωmσ

2
m

r2m

)
,

where the first inequality holds as ζ2m ≤ C2. Consequently, we have

min
{qm}m∈[M]

M∑
m=1

ωm

(
µ4(1 + ϕ∗m) + µ5

(1−
√
ϕ∗m)ωmσ

2
m

r2m

)
s.t. rm = qm|Gm|,

∑
m∈[M ]

rm = qn,

which finished the formulation.
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