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Abstract—In the age of cloud computing, data privacy pro-
tection has become a major challenge, especially when sharing
sensitive data across cloud environments. However, how to
optimize collaboration across cloud environments remains an
unresolved problem. In this paper, we combine federated learning
with large-scale language models to optimize the collaborative
mechanism of AI systems. Based on the existing federated
learning framework, we introduce a cross-cloud architecture in
which federated learning works by aggregating model updates
from decentralized nodes without exposing the original data.
At the same time, combined with large-scale language models,
its powerful context and semantic understanding capabilities
are used to improve model training efficiency and decision-
making ability. We’ve further innovated by introducing a secure
communication layer to ensure the privacy and integrity of model
updates and training data. The model enables continuous model
adaptation and fine-tuning across different cloud environments
while protecting sensitive data. Experimental results show that
the proposed method is significantly better than the traditional
federated learning model in terms of accuracy, convergence speed
and data privacy protection.

Index Terms—Cross-cloud environment, Data privacy protec-
tion, Federated learning, Large-scale language models

I. INTRODUCTION

In the field of cross-cloud data privacy protection, the
combination of Federated Learning (FL) and Large Language
Models (LLMs) has gradually become a hot topic. As data pri-
vacy and security concerns become more and more important,
traditional centralized data storage and processing methods are
increasingly being questioned. Traditional Al training methods
often rely on centralizing all data stored on a single server or
data center for processing [1].

This centralized data processing model is prone to the risk
of data leakage and privacy violations, especially in the face
of sensitive data, such as medical and health records, financial
information and personal privacy data, and the centralized
storage and sharing method can be attacked or misused during
data processing [2].

Therefore, how to carry out efficient Al training under the
premise of ensuring data privacy and security has become
the focus of current research. In order to solve this problem,
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federated learning emerged as an emerging distributed learning
method, which effectively avoids the risk of data leakage and
protects the privacy of data by training the model on the
local device and sharing only model updates (such as weights,
gradients, etc.) instead of the original data [3].

The key benefits of federated learning are that it reduces
data transfer through local computation, ensuring the privacy
of each data source while still maintaining the accuracy
and performance of the model. Especially in a distributed
environment, federated learning can not only conduct data
analysis without violating privacy protection regulations, but
also has strong scalability and flexibility, and can be widely
used in multi-party collaboration scenarios [4, 5].

Notwithstanding the burgeoning advancements in large-
scale language models (LLMs) across diverse domains [6—13],
particularly within the realms of natural language processing
and generative tasks [14-18], a notable caveat exists: the
training of these intricate models necessitates substantial com-
putational resources and considerable data processing capabil-
ities. Single-cloud platforms often face computing resource
bottlenecks and latency issues, which cannot meet the high-
performance requirements of LLMs training. In this context,
cross-cloud federated training has become a new solution [19].

Cross-cloud federated training coordinates the computing
resources of multiple cloud platforms and makes full use of
the advantages of different cloud environments to complete
large-scale model training tasks collaboratively. This cross-
cloud architecture can distribute data and computing resources
across multiple cloud platforms, effectively reducing the com-
puting pressure on a single platform while improving resource
utilization and training efficiency.

The advantageous resources of different cloud platforms can
be fully integrated, and the latency and bottlenecks caused by
insufficient resources on a single platform can be reduced [20],
thereby accelerating the process of model training. In addition,
cross-cloud federated training not only reduces the cost of
training by sharing computing load among multiple platforms,
but also avoids excessive centralized processing in the data set,
further improving the level of data privacy protection [21].
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Compared with a single cloud platform, cross-cloud training
can more flexibly adjust resource allocation, further improve
training efficiency, and reduce overall costs while ensuring
data security.

With cross-cloud training, data privacy protection and effi-
cient computing are guaranteed, especially when dealing with
large-scale models, which can effectively solve the problem
of computing bottlenecks and latency. The system using cross-
cloud architecture can not only improve the collaboration abil-
ity of large-scale language models (LLMs) between different
cloud platforms.

However, the training process of Al systems [22-27], pro-
motes the research and application of cross-cloud data privacy
protection technology based on federated learning. With the
continuous improvement of cloud computing infrastructure
and the maturity of federated learning frameworks, cross-cloud
federated training is expected to become one of the mainstream
methods for Al model training.

II. RELATED WORK

Lin et al. [28] point out that although LLMs excel in tasks
such as code understanding, high-quality code data often has
commercial or sensitive value, limiting its availability in open
source Al projects. To solve this problem, the authors propose
a governance framework with federated learning as the core,
which aims to promote the joint development and maintenance
of open-source Al code models while ensuring data privacy
and security.

Lazaros et al. [29] emphasize that federated learning not
only enables multi-party collaboration while preserving pri-
vacy, but also transforms Internet of Things (IoT) systems
into more collaborative, privacy-preserving and flexible frame-
works. The study provides insight into understanding the role
of federated learning in collaborative intelligence.

Yao et al. [30] discussed the challenges of fine-tuning and
cued learning in federated settings, analyzed the challenges of
model convergence and high communication costs caused by
data heterogeneity, and proposed potential directions for future
research.

Tao et al. [31] proposed the FLFT approach, which aims
to address the challenges of fine-tuning large-scale pre-trained
language models in a distributed environment. FLFT incor-
porates federated learning (FL) strategies that allow multiple
participants to share model update information while protect-
ing data privacy, enabling collaborative fine-tuning.

Mawela et al. [32] proposed a web-based federated learning
(FL) automation solution that aims to simplify the deployment
and management of FL tasks. The system provides a user-
friendly web interface with support for FedAvg algorithms,
allowing users to configure parameters for FL tasks through
an intuitive interface, reducing reliance on programming and
network architecture.

Vadisetty et al. [33] proposed an Al-generated privacy pro-
tection protocol for cross-cloud data sharing and collaboration.
The core innovation of this research lies in the design of a
set of protocol frameworks that combine federated learning,
differential privacy, dynamic encryption, and context-aware
policies, aiming to improve the privacy and security of data
collaboration in a multi-cloud environment.

Yang et al. [34] proposed a novel cross-cloud data privacy
protection framework that aims to address data privacy and
security issues when training large-scale language models
(LLMs) in multi-cloud environments. The framework uses a
federated learning (FL) approach that combines homomorphic
encryption, dynamic model aggregation techniques, and cross-
cloud data orchestration solutions to enhance security, effi-
ciency, and scalability.

I1I. METHODOLOGIES

A. Federated Learning and Large-scale language models

First, let’s review the traditional federated learning architec-
ture. In standard federated learning, multiple edge nodes, such
as compute nodes in different cloud environments, train the
model locally and then aggregate their updated information
(rather than raw data) to a central server. Set the local loss
function for each node to Equation 1:
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where w; is the model parameter of the ¢-th node, z;, and
Yi,n are the features and labels of the n-th sample on node i,
respectively, and f(-) is the model prediction function, £(-) is
the loss function, and N; is the number of local samples of
node 1.

The goal of federated learning is to optimize the global
model by aggregating local updates, and the global update
rule is Equation (2):
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where wgt) is the model parameter of the ¢-th node after the

t-th round of training, IV is the total number of samples of
all nodes, and K is the number of nodes participating in the
training.

The formula aggregates the model updates of each node
through the weighted average, so as to obtain the optimization
of the global model. In this process, the original data is not
directly transmitted or exposed, ensuring the privacy of the
data.

In the existing federated learning framework, we combine
large-scale language models (LLMs) to enhance the training
efficiency and decision-making ability of the model.



Suppose we have a pre-trained model based on LLMs that
is capable of extracting contextual and semantic feature infor-
mation. The way we introduce LLMs in federated learning is
by utilizing LLMs for feature augmentation when training a
local model on each node. Set the output of LLMs to Equation
3:

Zim = LLM(z; 1), (1)

where z; ,, is the context feature of the LLM output. These
features are then fed into the local model of node ¢ for training,
which in turn updates the local parameter w;. Specifically, the
local training objective function is Equation (4):
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By introducing LLMs, we are not only able to leverage the
local data of each node for model training, but also improve the
model’s ability to understand the context and semantics of the
data, thereby enhancing the performance of the global model.
The addition of LLM enables the model to better capture
the deep relationships in the data when dealing with complex
tasks.

B. Secure communication layer

To further enhance privacy, we introduce a secure commu-
nication layer into the model that encrypts model updates and
training data to ensure that sensitive information is not exposed
during federated learning.

Specifically, we encrypt the model update information of
each node through Homomorphic Encryption. Suppose the
cryptographic update information of node ¢ is Equation (5):

w; = Enc(w;), ®)
where Enc(-) indicates an encryption operation.

The encrypted model update information will be aggregated
on the server side, and the global model will be updated to
Equation (6) through the decryption operation:
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By introducing homomorphic encryption, we ensure that
the data itself is encrypted even during the transmission of
model updates, preventing malicious nodes or attackers from
accessing the model parameters, thus effectively protecting the
user’s data privacy.

Finally, we adapted and fine-tuned the model across clouds.
Whenever a model is migrated from one cloud node to another,
we retrain the model through an adaptation layer to adapt to the
data characteristics in the new environment. Set the migrated
model to Equation (7):

w' = w+ Aw, (N

where w’ is the fine-tuned model parameter, and Aw is the
parameter update obtained during the fine-tuning process.

By fine-tuning across clouds, we are able to ensure that the
migration of models between different cloud platforms does
not result in performance degradation, while maintaining the
versatility and adaptability of the models.

IV. EXPERIMENTS
A. Experimental setup

The experiment uses the Google Cloud BigQuery dataset,
which contains diverse data from real-world business scenar-
ios, including financial, medical, social media, and geographic
information, which has high practical application value. The
dataset includes structured and semi-structured data that mim-
ics multiple data formats in the real world, and some of
the data involves sensitive information, such as personally
identifiable information and transaction records, making it
suitable for studying how to protect data privacy across cloud
environments.

We will use the following four advanced comparison meth-
ods including:

o FedAvg (Federated Averaging): FedAvg is a classic feder-
ated learning method that aggregates the updated average
of the local model into a global model. It is one of the
most commonly used benchmarking methods in federated
learning.

« DP-FL (Differential Privacy Federated Learning): DP-FL.
combines differential privacy technology with federated
learning to add noise to the transmitted model updates
during model training, thereby further improving data
privacy protection capabilities.

e SMC-FL (Secure Multi-Party Computation Federated
Learning): SMC-FL combines federated learning and
secure multi-party computation (SMC) technology to en-
sure the security of model updates through cryptographic
computing without directly exposing data to participants
in the collaborative learning process.

o HE-FL (Homomorphic Encryption Federated Learning):
HE-FL uses homomorphic encryption technology to en-
sure that data is computed and model trained in an
encrypted state. This approach protects the privacy of the
data, especially when dealing with highly sensitive data,
such as medical or financial data.

B. Experimental analysis

Figure 1 illustrates the privacy protection effect of dif-
ferent approaches under different privacy budgets (epsilon).
As can be seen in Figure 1, the privacy protection effect
of all methods improves as epsilon increases. FedAvg has
shown stable privacy protection effect, and gradually improves
with the increase of epsilon. DP-FL performs well in terms
of privacy protection, but it fluctuates slightly compared to



FedAvg, indicating that there is a certain instability between
privacy and accuracy in the differential privacy mechanism.
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Fig. 1: Differential Privacy Effectiveness Comparison for
Different Methods

The curve of SMC-FL is relatively smooth, indicating that
secure multi-party computation provides a relatively balanced
privacy protection effect. Although HE-FL provides a high
privacy protection effect, it is highly volatile, which reflects
that homomorphic encryption may affect the performance and
stability of the model while improving privacy protection. Our
'Ours’ method performed best of all methods, and its privacy
protection improved rapidly with the addition of epsilon,
showing that our method has a good balance between privacy
protection and model accuracy.

As can be seen in Figure 2, the convergence speed (the
number of iterations required to reach 85% accuracy) gen-
erally decreases for all methods as the number of hidden
cells increases. The 'Ours’ method has the best convergence
speed under all hidden unit configurations, and the number
of iterations required is significantly less than that of other
methods, indicating that it performs well in training efficiency.
In contrast, FedAvg and HE-FL require more training cycles,
especially in larger hidden unit configurations, showing slower
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Fig. 2: Convergence Speed Comparison for Different Methods

As can be seen from Figure 3, as the learning rate gradually
increases from 0.001 to 0.05, the training time of most meth-
ods decreases significantly, indicating that a higher learning
rate helps to accelerate model convergence.

In contrast, FedAvg and DP-FL have a longer training time
when the learning rate is low, but the convergence speed is
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Fig. 3: Training Time Comparison for Different Methods

significantly improved after a moderate increase in the learning
rate. SMC-FL and HE-FL were more sensitive to changes in
learning rate, and when the learning rate was too high (0.1),
the training time increased, reflecting the instability of training.

V. CONCLUSION

In conclusion, by combining federated learning and large-
scale language models, the cross-cloud collaborative training
framework proposed in this study achieves the highest privacy
protection effect in the differential privacy test, with the least
iteration rounds, the fastest convergence, and the shortest
and most stable training time under different learning rates,
which is better than existing methods. As for the future, it
can focus on dynamic privacy budget scheduling, adaptive
communication compression strategies, and deep integration
with trusted execution environment and hardware security
module.
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