
ar
X

iv
:2

50
5.

13
15

3v
1

 [
cs

.D
C

]
 1

9
M

ay
 2

02
5

Prink: ks-Anonymization for Streaming Data in
Apache Flink

Philip Groneberg1, Saskia Nuñez von Voigt1[0009−0001−2163−8359],
Thomas Janke1[0009−0009−6021−9817], Louis Loechel1[0000−0002−5877−3706],

Karl Wolf1[0000−0003−4607−782], Elias Grünewald2[0000−0001−9076−9240], and
Frank Pallas3[0000−0002−5543−0265]

1 Technische Universität Berlin, Germany
2 Charité – Universitätsmedizin Berlin, Germany

3 Paris Lodron Universität Salzburg, Austria

Preprint (2025-05-19) before final copy-editing of the accepted
peer-reviewed paper to appear in the Proceedings of the

20th International Conference on
Availability, Reliability and Security (ARES’25).

Abstract. In this paper, we present Prink, a novel and practically ap-
plicable concept and fully implemented prototype for ks-anonymizing
data streams in real-world application architectures. Building upon the
pre-existing, yet rudimentary CASTLE scheme, Prink for the first time
introduces semantics-aware ks-anonymization of non-numerical (such as
categorical or hierarchically generalizable) streaming data in a informa-
tion loss-optimized manner. In addition, it provides native integration
into Apache Flink, one of the prevailing frameworks for enterprise-grade
stream data processing in numerous application domains.
Our contributions excel the previously established state of the art for
the privacy guarantee-providing anonymization of streaming data in that
they 1) allow to include non-numerical data in the anonymization pro-
cess, 2) provide discrete datapoints instead of aggregates, thereby facil-
itating flexible data use, 3) are applicable in real-world system contexts
with minimal integration efforts, and 4) are experimentally proven to
raise acceptable performance overheads and information loss in realistic
settings. With these characteristics, Prink provides an anonymization
approach which is practically feasible for a broad variety of real-world,
enterprise-grade stream processing applications and environments.

Keywords: data stream anonymization · Flink · k-anonymity · privacy
engineering

1 Introduction

Stream processing is a core paradigm underlying many modern, enterprise-grade
application architectures. From smart energy infrastructures over nearly real-
time traffic monitoring and optimization to assistive environments, data are
increasingly processed and used on the fly and in real-time while flowing through
stream processing pipelines without ever being permanently persisted at all. At
the same time, respective applications often collect and process personal and
sometimes highly sensitive data, calling for appropriate anonymization.

https://arxiv.org/abs/2505.13153v1

2 P. Groneberg et al.

A widely used approach for privacy protection is k-anonymity [41], which
ensures that each entry within a group of k entries is indistinguishable from the
others. Extensions such as ℓ-diversity [26] and t-closeness [25] further mitigate
risks related to attribute disclosure. These approaches are particularly prominent
in scenarios where detailed individual-level data are not needed, but group-
level patterns must be preserved. Energy district management serves as a prime
example where such privacy guarantees are essential. Here, the focus is not on
individual household consumption, but on understanding broader usage patterns
across neighborhoods or similar households.

An alternative fundamental concept, differential privacy [13], provides strong
mathematical semantic privacy guarantees by adding calibrated noise to the
data. While differential privacy provides privacy guarantees beyond the ones
of k-anonymity, it introduces noise into data, i.e., specific energy consumption
values are inherently uncertain, making stable trend analysis more difficult. For
instance, when forecasting energy demand, fluctuations caused by differential
privacy could obscure real consumption patterns, leading to suboptimal infras-
tructure planning. In contrast, k-anonymity preserves data consistency, ensuring
that neighborhood-level energy statistics remain reliable over time, which is cru-
cial for energy management.

Despite its advantages, traditional k-anonymity methods were not designed
for streaming environments, where data must be anonymized in nearly real time.
Stream-specific adaptations of k-anonymity, such as ks-anonymity [9, 36], present
a promising prospect by achieving privacy guarantees comparable to their non-
streaming counterparts but often focus on numerical values, limiting their ap-
plicability to data sets that also contain categorical or hierarchical attributes.
Additionally, enterprise-grade systems require efficient, low-latency processing to
handle large data volumes without significant performance overhead. These fac-
tors are critical for driving the practical adoption of advanced privacy-preserving
schemes and for shaping potential regulatory requirements for their implemen-
tation in real-world systems [33].

To overcome these limitations and advance the practical applicability of
guarantee-providing anonymization schemes in stream-based application archi-
tectures, we make the following contributions:

– We present Prink, a privacy-preserving stream anonymization framework
that extends the pre-existing CASTLE algorithm and implementation for
ks-anonymization with -diversity to support categorical and hierarchical gen-
eralization, along with the ability to handle multiple sensitive attributes in
l-diversity.

– We propose a novel scheme for semantics-aware information loss scheme
in the anonymization of non-numerical streaming data, incorporating the
support for dynamic generalization trees.

– We introduce a concept for distributing CASTLE’s clustering approach across
multiple nodes while preserving k− and l-guarantees to achieve the scalabil-
ity required in real-world streaming applications.

Prink: ks-Anonymization for Streaming Data in Apache Flink 3

– We provide an open-source implementation designed to seamlessly integrate
these functionalities into real-world use cases, employing the established and
highly scalable stream-processing framework Apache Flink4.

– We conduct an experimental evaluation to assess the performance overheads,
focusing on latency in realistic settings, demonstrating the practical viability
of our approach.

The structure of this paper is as as follows. In Section 2, we introduce rel-
evant background and related work. Our general approach and the details of
our stream-specific anonymization scheme for non-numerical data are provided
in Section 3. Our evaluation and results are presented in Section 4 and further
discussed in Section 5, before we conclude our paper in Section 6.

2 Background and Related Work

In the following, we provide relevant preliminaries for advanced anonymization
in streaming architectures.

2.1 Anonymization Techniques and Anonymity Guarantees

To assure the privacy of individuals in the processing of data referring to them,
different anonymization techniques are used. These techniques mostly include
perturbation, generalization or basic data reduction [19, 27, 28, 5], and provide
some level of anonymization. To make these levels measurable and more usable,
and to avoid unexpected privacy violations resulting from outlier datapoints,
anonymity guarantees such as k-anonymity [41], ℓ-diversity [26] or t-closeness
[25] have been established, particularly for publicly releasing static data sets for
onward use. These provide very specific and exact levels of anonymity, guaran-
teeing, for instance, that at least k individuals are indistinguishable from each
other in the anonymized data set or that each generalized cluster contains at
least ℓ different values for the sensitive attribute.

Since all anonymization techniques reduce or alter the original data, some
information is necessarily lost during the anonymization process. To not only pro-
vide anonymity guarantees, but also maintain the value of shared, anonymized
data (e.g., for subsequent analytics), advanced techniques such as range aggre-
gation for numerical data (assigning distinct values to value ranges) and hierar-
chical generalization [29, 30, 38, 37] for non-numerical data are used instead of,
for instance, removing attributes completely. These techniques provide not just
the requirements for the mentioned privacy guarantees, but also try to keep the
resulting information loss as low as possible.

Having been established in the 2000s, most respective techniques only work
on static data sets such as census data [41, 26]. Further related work applied
such techniques to big data architectures [39, 40] including domain hierarchy
approaches [7]. For settings with dynamic data, such as frequently updated
4 https://flink.apache.org/

4 P. Groneberg et al.

databases or even continuous data streams, however, they cannot be applied
without breaking the to-be provided guarantees. Given that such data-intensive
settings particularly shape the collection, processing and use of personal data
today, alternative approaches are needed.

2.2 Anonymity Guarantees for Dynamic and Streaming Data

To provide anonymity guarantees and techniques that minimize information loss
for dynamic and streaming data, new solutions needed to be created. Respec-
tive approaches can be categorized into those following the notion of differential
privacy and those adapting pre-existing concepts from k-anonymity (and exten-
sions) to stream-specific givens.

With differential privacy [13, 14], dynamic and streaming data are typically
handled through aggregation and noising, ensuring that the impact of individual
data points on results remains within specified boundaries.5 In global differential
privacy, a trusted centralized entity holds all raw data and processes queries
by providing noisy results, such as sums, counts, or averages. The added noise
is calibrated based on the sensitivity of a query and the differential privacy
parameter ε that defines the privacy guarantee. Use cases for global differential
privacy span a wide range of application, including statistical databases (e.g., for
census data [1]), privacy-preserving social network analysis [21], or large-scale
trip data analysis [6], often extending to advanced types of aggregations like
graph metrics [23] or geospatial analyses [6].

In local differential privacy [14, 22], data are not transmitted in their raw form
to a trusted curator but are instead locally anonymized by adding noise before
being released. This local noise addition ensures that individual data entries
remain private. Data structures such as Bloom filters [16] and FM sketches [31]
enable differentially private aggregations, including popularity statistics [10] and
cardinality estimations [31]. Local differential privacy is particularly useful for
scenarios where many users must report their data to an untrusted party while
preserving privacy, such as in location-based services [3, 24], smart metering [15],
and large-scale telemetry data collection [11].

Although differential privacy provides strong privacy guarantees, it inher-
ently limits the use of the resulting data—especially in the case of local dif-
ferential privacy. This limitation arises because the data can only be processed
in ways that were anticipated and planned for before implementing a specific,
carefully chosen differential privacy mechanism. Additionally, achieving reason-
able data utility with differential privacy often requires large volumes of data,
further restricting its practical applicability. Moreover, advanced differential pri-
vacy mechanisms that extend beyond numerical data are frequently less reusable
and necessitate extensive customization for each use case, sometimes introducing
unforeseen and non-obvious re-identification risks [20].

5 Specifically, differential privacy guarantees that the probabilities of outcomes, such
as aggregation results, remain nearly identical for two neighboring data sets that
differ by only one data point.

Prink: ks-Anonymization for Streaming Data in Apache Flink 5

Proposals for adapting established approaches of k-anonymity (and exten-
sions) to the specifics of data streams, in turn, initially were of theoretical na-
ture and came without [9, 2] or with only rudimentary prototype implementa-
tions [36]. Only recently, research on integrating them into real-world streaming
systems has gained momentum [34]. Respective endeavors have, however, so far
focused on smaller and non-distributed systems, leaving important streaming
frameworks such as Kafka or Apache Flink unsupported.

Existing concepts and implementations merely focus on generalizing numer-
ical and occasionally categorical data for anonymization purposes [4]. In reality,
however, the data to be anonymized also comprises non-numerical attributes.
Different from established k/ℓ/t-schemes for static data, these are so far not
properly covered by existing stream-focused anonymization schemes, especially
with regard to the reduction of information loss.

Within these limitations, however, the CASTLE algorithm [9] has established
as the prevailing approach for k-anonymizing data streams over alternative ones
such as KIDS [43] or K-VARP [32]. CASTLE adapts “traditional” concepts of k-
anonymity and l-diversity to the paradigm of stream processing, enriches them
with the possibility to additionally noise the data [36], and provides flexible
adaptations to use case-specific givens (e.g., timeout constraints). Besides, it has
been proven to be on par with state-of-the art non-streaming algorithms for k-
anonymization in matters of privacy metrics [8]. CASTLE has thus been chosen
as the starting point for our endeavor. Its underlying clustering approach will
be introduced in some more detail in Section 2.4.

2.3 Apache Flink

Apache Flink is a powerful streaming framework designed for distributed and
stateful data processing over continuous streams. Its versatile Source, Process,
and Sink architecture supports a wide range of streaming use cases.

The Source component defines the input of the data stream, which can orig-
inate from systems like Apache Kafka, Cassandra, external APIs, or even static
data collections. Once ingested, the data flows into the Process phase, where
various processing, analytics, and manipulations are performed using defined
process functions. These functions operate in a specified sequence to transform
the data. After processing, the data exits the framework through the Sink, which
could involve logging, further streaming via Kafka, storage in Cassandra, or in-
tegration with other systems to handle the output data.

Flink is designed for performance and scalability, operating at in-memory
speeds and compatible with containerized environments like Docker, making
it suitable for diverse production scenarios. Major companies, including Ama-
zon (Kinesis Data Analytics), Comcast (real-time event stream processing), and
Uber (AthenaX), rely on Flink. Its robust and efficient design solidifies its posi-
tion as a leading streaming framework, demanding regulatory requirements like
data minimization.

6 P. Groneberg et al.

2.4 Data Cluster Anonymization – CASTLE

CASTLE [9] anonymizes streaming data in a guarantee-providing manner by
clustering incoming data tuples based on their quasi-identifiers until a threshold δ
is reached, and then anonymizes these clusters through generalization [9, 35].
The parameter δ sets the maximum delay a data tuple can experience before
it must be released. If a tuple reaches a delay of δ − 1, it is published with its
corresponding cluster to ensure timely processing.

To achieve ks-anonymity, CASTLE ensures that each cluster contains at least
k individuals before generalization. The same applies to ℓ-diversity, where the
diversity of each sensitive attribute in a cluster is checked before generalization.
It is possible that a data tuple belongs to a cluster that has not yet reached
the required size of k different individuals when it is about to expire. In such
cases, CASTLE merges this cluster with another to ensure the anonymity con-
straint while minimizing overall information loss. Conversely, if a cluster is too
large (exceeding 2k individuals), it is split into two smaller clusters to reduce
information loss while maintaining privacy guarantees.

To preserve as much information as possible–or, vice versa, to minimize the
information loss introduced–in this clustering process, a concept called enlarge-
ment value is used: Each possible generalization will result in a specific amount
of information loss. When a new data tuple needs to be assigned to a cluster, the
additional information loss a tuple would introduce to a given cluster is quanti-
fied. This amount of increased information loss is called enlargement value and
is used to determine the optimal cluster for a new data tuple. The newly ar-
riving tuple is then assigned to the cluster with the smallest enlargement value,
balancing privacy and data utility. Noteworthily, tuples remain in their original
form until a cluster is to be released as ks-anonymized output. Only then is the
actual generalization applied and the whole cluster is released.

While these mechanisms are suitable for numerical data, CASTLE currently
lacks proper loss calculations for non-numerical attributes. Categorical data, such
as ‘Country’ or ‘Workplace’ can only be fully retained (loss = 0) or completely
redacted (loss = 1), preventing more flexible generalization. Introducing proper
loss metrics (and respective generalization capabilities) for such non-numerical
attributes to the pre-existing CASTLE algorithm is therefore one of the core
contributions herein.

3 Proposal: Prink

For our practical implementation called Prink (Privacy Preserving Flink), we
chose the streaming framework Apache Flink. It offers scalability, fail-safety,
and robust stream processing capabilities, making it an ideal choice for integrat-
ing anonymization techniques. Prink was implemented almost entirely within a
single Flink ProcessFunction, which simplifies integration into existing or new
projects. This approach allows users to easily incorporate Prink at any desired
point in their data stream processing pipeline.

Prink: ks-Anonymization for Streaming Data in Apache Flink 7

Apache Flink Data Stream

Data Source

Rule Source

CastleFunction
KeyedBroadcast
ProcessFunction

Sink

Apache Flink Class Prink Class

TupleTupleTuple

TupleTupleCastleRule

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

TupleTupleGeneralizer

TupleTupleGeneralizer

TupleTupleGeneralizer

...
...

Fig. 1. Prink Architecture in the context of Apache flink data streaming infrastructure.

Prink’s architecture consists of the following core components, depicted in
Figure 1:

– Rule Broadcasting : Dynamically updates rules for data processing during
runtime.

– CastleFunction: The main processing unit responsible for anonymization and
interaction with the Flink data stream.

– Cluster Logic: Manages groups of data tuples and applies generalization.

3.1 Rule Broadcasting and CastleFunction

Prink uses Flink’s native Tuple implementation as input and output formats.
Tuples support flexible structures with up to 25 attributes of varying data types,
making them ideal for dynamic and diverse data streams. This allows Prink
to adapt to missing rules or varying input sizes without requiring significant
preprocessing.

Prink achieves dynamic flexibility in data stream anonymization through its
integration of CastleRule objects and Domain Generalization Hierarchies (DGH).
The combination of these components ensures that Prink can dynamically adapt
to changes in data structures, privacy requirements, and evolving data streams,
maintaining both scalability and minimal information loss.

Dynamic adjustments to generalization rules are facilitated by CastleRule ob-
jects, which are transmitted via a broadcast stream. Each CastleRule specifies
how an attribute should be generalized, including configurations for loss met-
rics and sensitive attribute flags. This mechanism allows Prink to accommodate
runtime changes in data structures and privacy needs, ensuring operational flex-
ibility and adaptability. To implement these updates efficiently, Prink leverages
Apache Flink’s KeyedBroadcastProcessFunction rather than a standard Process-
Function. This specialized function supports two parallel input streams: one for
the main data tuples and another for rule updates. By design, it ensures effi-
cient propagation of runtime rule changes across the system while maintaining
the essential keying of data tuples to their respective data subjects. This keying

8 P. Groneberg et al.

mechanism is critical for preserving ks-anonymity and l-diversity guarantees. Ad-
ditionally, the architecture supports parallel execution, allowing Prink to scale
efficiently for larger data sets and modern containerized environments.

Unlike static data sets, streaming data often introduces new values or re-
quires updates to the attributes being generalized. Prink addresses these chal-
lenges through a twofold approach. First, DGHs are instantiated at the cluster
level rather than being static global structures. Each CASTLE cluster generates
its own DGH instance at creation, ensuring relevance to the current data con-
text. Outdated hierarchies are replaced as clusters are released, enabling efficient
adaptation without the need to re-evaluate existing clusters.

Second, Prink extends DGHs dynamically in real-time. Incoming data tu-
ples can carry hierarchical information within their attributes, such as a value
“Paris” and its corresponding hierarchy ([“Paris”, “France”, “EU”]). When new
relationships are identified, missing nodes and branches are seamlessly added to
the DGH of the active cluster. This allows the hierarchy to evolve alongside the
data stream, supporting the dynamic nature of streaming scenarios. By inte-
grating these capabilities, Prink maintains consistent and contextually relevant
hierarchies, even in rapidly changing data environments.

To ensure efficient generalization and minimal information loss, each dynam-
ically created DGH node tracks the number of data tuples it covers. A node
is considered to cover a tuple if its value matches the node or any of its de-
scendants in the hierarchy. This mechanism enables Prink to calculate optimal
generalizations for each cluster, maintaining consistent results while minimizing
information loss. By combining the flexibility of dynamic rule updates through
CastleRule with the adaptability of DGHs, Prink provides a robust and scalable
anonymization solution tailored to the complexities of real-time data streams.

3.2 Cluster Logic

Within the CastleFunction, data tuples are grouped into Cluster objects based on
generalization rules. For that, the bestSelection function finds the best cluster for
the new data tuple by leveraging the forementioned concept of enlargement value.
Each cluster contains generalizers tailored for different data types, implemented
via a BaseGeneralizer interface. This modular design simplifies the addition
of new generalization strategies, ensuring extensibility for future requirements.
Finally, after δ tuples were gathered, in the delayConstraint function, the first
data tuple’s cluster gets generalized and published.

Semantic Generalization Metrics CASTLE’s [9] existing loss metrics for nu-
merical values are insufficient for capturing the complexities of non-numerical,
hierarchically generalizable data. Unlike numerical values, non-numerical at-
tributes cannot be easily ordered or bounded, making traditional numerical
approaches inapplicable. Instead, the calculation of information loss for non-
numerical data must be grounded in the structure provided by DGHs, which
leverage the inherent categorical and hierarchical relationships between values.

Prink: ks-Anonymization for Streaming Data in Apache Flink 9

To address this, we adopt a semantic approach to generalization that mini-
mizes information loss while preserving the relationships between non-numerical
data points. Simple numerical mappings often fail in this regard, as they disre-
gard the semantic connections between values. For example, a naive mapping of
country/state attributes to numerical values based on their order of appearance
loses the semantic relationships, such as the grouping of France and Spain un-
der “EU” or Florida and Virginia under “US”. By using DGHs, we address this
issue by grouping non-numerical values into higher-order categories, preserving
their semantic structure. To ensure the quality of generalization, we apply infor-
mation loss metrics tailored to these hierarchies, minimizing disruption to data
semantics while maintaining robust anonymization.

The Generalized Loss Metric (GLM), one of the wider used information loss
metrics, calculates the information loss by assessing the generalization level of
a value within the DGH. Formally, the GLM for non-numerical, i.e., categorical
attributes, is defined as:

GLM(u) =
Mp − 1

M − 1
, (1)

where Mp represents the number of leaf nodes covered by the current generaliza-
tion node u, and M is the total number of leafs in the hierarchy. In contrast, for a
continuous attribute a, the information loss resulting from generalizing its value
using an interval I = [l, u] within its domain [L,U] is calculated as (u−l)/(U−L),
reflecting the proportion of the domain covered by the generalized interval.

Another metric employed is the Normalized Certainty Penalty (NCP), which
evaluates information loss by considering the proportion of values generalized
within the hierarchy. For non-numerical data, NCP is calculated as

NCPCat(G) =

{
0, card(u) = 1
card(u)/ |ACat| , otherwise

(2)

where card(u) is the number of leaf nodes that are present in the sub-tree of
node u, and |ACat| represents the total number of unique categorical values in
the data set. If card(u) = 1, the information loss is zero, as no generalization
is required. By normalizing the information loss relative to the total attribute
diversity, NCP provides a nuanced assessment of the impact of generalization.

Additionally, Prink introduces a dynamic loss metric, the Per Record Request
Metric (PRL) [17, 12], which adapts to real-time data distributions by factoring
in the frequency with which values appear in the stream. The calculation is based
on the Requested Number Count (RNC), which tracks the number of times a
value from the DGH has been requested. For each generalized node, the total
RNC is computed by summing the counts of all its leaf nodes. This total is then
divided by the overall number of requests to the DGH, yielding an information
loss value that reflects the relative weight of each leaf node. More formally:

PRL(G) =

{
0, card(u) = 1
RNC(u)/RNC(root(u)), otherwise

, (3)

10 P. Groneberg et al.

where u is the current generalization node. This metric ensures that frequent val-
ues are generalized less, preserving their semantic weight. The PRL dynamically
aligns information loss calculations with the data distribution, making it effective
in ks settings. To stay adaptable, RNC values are periodically cleared, reflecting
evolving weights of attributes. This is especially valuable in dynamic data flows,
where value frequencies fluctuate over time. By preserving more information for
frequent values, the PRL minimizes information loss while maintaining privacy
guarantees.

By introducing these three loss metrics to the CASTLE-based anonymization
of data streams, Prink achieves a robust, context-aware approach to generalizing
also non-numerical data, enabling Prink to maintain strong privacy guarantees
while minimizing information loss.

Attribute Weights in Information Loss Calculation In Prink, assigning a
data tuple to a cluster involves evaluating the information loss for each potential
cluster and selecting the one with the lowest average information loss. To provide
greater flexibility and align the anonymization process with application-specific
priorities, Prink allows the use of attribute weights, implemented as information
loss multipliers ranging between 0 and 1.

By default, all attributes have equal weight, meaning their contributions to
the total information loss are uniform. In scenarios where certain attributes are
more critical for preserving data utility, weights can be adjusted to amplify or
reduce their influence. This adjustment of weights, however, is not required for
the functionality of Prink; the system operates effectively even without changing
the default weights.

When weights are specified, the information loss for each attribute is scaled
by its multiplier. Attributes with larger weights (closer to 1) have a higher impact
on the total information loss, reducing their likelihood of being generalized.
Conversely, attributes with smaller weights (closer to 0) contribute less to the
total information loss, making their generalization more likely.

For instance, in cases where attributes are crucial for downstream analy-
sis, assigning higher weights ensures their preservation with minimal generaliza-
tion. Even if these attributes typically show low information loss under uniform
weighting, the applied multipliers prioritize them during the clustering process.

This mechanism ensures that the anonymization process can be tailored to
the specific requirements of different use cases. Attribute weights enable the
prioritization of certain data characteristics, balancing the trade-off between
privacy and utility. Since adjusting the weights is optional, Prink still provides
a fine-grained and flexible approach for a wide range of scenarios, even without
modifications to the default weights.

Design Choices and Extensibility To maintain simplicity, all configuration
parameters for Prink can be set either through the constructor of the Keyed-
BroadcastProcessFunction or via rule broadcasting during runtime, ensuring
minimal user interaction and reducing the risk of misconfiguration.

Prink: ks-Anonymization for Streaming Data in Apache Flink 11

Prink’s architecture is designed for extensibility. By leveraging the BaseGen-
eralizer interface, developers can add new generalization methods without mod-
ifying existing code. This flexibility is especially valuable for advanced privacy
guarantees like l-diversity across multiple attributes [18]. By ensuring that each
sensitive attribute satisfies the l-diversity requirement independently, Prink can
provide robust privacy protection for data sets containing multiple sensitive di-
mensions. Additionally, Flink’s fail-safety mechanisms ensure no data loss during
system failures, enhancing the reliability of Prink in production environments.

4 Evaluation

In the following we describe our experimental setup including the details of the
data sets and the system environment configurations. We investigate the impact
of our proposal Prink on latency and information loss.

4.1 Influencing Factors

Before detailing the experimental setup and results, we discuss the factors that
influence Prink’s performance and information loss to provide a comprehensive
understanding. These factors range from the type of streamed data and rule sets
used to specific parameter configurations within Prink.

Parameters Prink provides a range of parameters to adjust its functionality to
suit specific application needs. Below is an overview of the key parameters and
their impact:

Parameter k: Defines the minimum number of distinct individuals required to
ensure k-anonymity, rather than just the number of data tuples. This core pa-
rameter directly impacts information loss: as k increases, more tuples need to be
generalized, which can lead to higher information loss. Additionally, k interacts
with other parameters like δ and β, influencing their effects on performance and
information loss.

Parameter ℓ: Specifies the minimum number of distinct sensitive attribute values
required to satisfy ℓ-diversity. Although less influential than k, ℓ still plays a
significant role in determining both performance and information loss.

Number of sensitive Attributes: Prink supports multiple sensitive attributes for ℓ-
diversity. An increased number of sensitive attributes requires additional checks,
affecting performance. It may also lead to larger generalizations if additional
tuples are needed to meet diversity requirements, though this is often dictated
by the attribute with the fewest diverse values.

12 P. Groneberg et al.

Parameter δ: Determines how many tuples are retained within Prink before
generalization. This parameter significantly affects the number of clusters created
and the system’s overall performance. A low data flow rate can increase the
retention time of tuples, impacting throughput. Since δ must always be at least
as large as k, its configuration is critical for maintaining both performance and
anonymization guarantees.

Parameter β: Limits the number of clusters that can exist simultaneously. While
it has minimal impact on information loss, it influences performance by reducing
the overhead caused by managing an excessive number of clusters. Balancing this
parameter ensures efficient cluster management.

Generalization Rules The choice of generalization rules primarily depends on
the data types of quasi-identifiers, such as integers, floats, or categorical values.
However, several aspects can be adjusted to influence the results. A key fac-
tor is the type of generalizer used, as quasi-identifiers can often be generalized
in multiple ways—for example, converting a postal code (integer) to a broader
district or suppressing its last digits. The choice of generalizer directly impacts
information loss and data clustering, as highlighted in previous sections. Prop-
erly matching generalizers to specific quasi-identifiers is thus crucial for effective
anonymization.

Another key consideration is the approach used for calculating information
loss, which directly impacts generalization and cluster enlargement. Generaliza-
tion rules specify this method, and their configuration can greatly influence the
final outcome. The Generalized Loss Metric (GLM) is a common default choice
and often provides a solid baseline. However, when applied correctly, the Nor-
malized Certainty Penalty (NCP) can produce more optimal results, offering im-
proved information preservation while still meeting anonymization requirements.
For the purpose of this evaluation, we have left the default values unchanged to
avoid introducing any fine-tuning that could affect the consistency of the results.

4.2 Data Set

To evaluate Prink, we use the publicly available ASHRAE - Great Energy Pre-
dictor III data set from the Kaggle challenge.6 This data set contains meter
readings from over one thousand buildings across various sites worldwide. We
chose this dataset specifically because it aligns well with our running example of
energy district management, where the goal is to anonymize data at the group
level (e.g., neighborhood-level energy usage patterns) while preserving relevant
aggregate information.

For our analysis, we merge the training data, building metadata, and weather
information into a single data set, focusing exclusively on electricity meter read-
ings and buildings with a given year and floor count. This preprocessing results
in a data set consisting of 321, 728 data tuples representing hourly electricity
6 https://www.kaggle.com/competitions/ashrae-energy-prediction

Prink: ks-Anonymization for Streaming Data in Apache Flink 13

Table 1. ASHRAE electricity meter readings data set.

Attribute Type Range Unique values

building_id int [565, 655] 89
timestamp str [2016-01-01 01:00, 2016-12-31 23:00] 8736
meter_reading float [0.0, 2293.88] 124957
primary_use str Categorical (DGH) 7
square_feet int [387, 420885] 89
year_built float [1903.0, 2016.0] 58
floor_count float [1.0, 14.0] 13
air_temperature float [1.1, 35.0] 59
cloud_coverage float [0.0, 9.0] 4
dew_temperature float [−9.4, 17.8] 49
precip_depth_1_hr float [−1.0, 8.0] 4
sea_level_pressure float [1007.8, 1031.7] 228
wind_direction float [0.0, 360.0] 37
wind_speed float [0.0, 12.9] 24

smart meter readings from 89 unique buildings, spanning the period from Jan-
uary 1, 2016, to December 31, 2016. We detail our selected quasi-identifier in
Table 1. Specifically, the building_id is used as the unique identifier providing
ks-anonymity, while meter_reading serves as the sensitive variable. Although
we evaluate only one data set, the use of different quasi-identifiers allows us to
cover a variety of data distributions and to access Prink’s capability to generalize
different attribute types. Several factors related to the data structure influence
the performance and the resulting information loss.

One critical factor is the number of quasi-identifiers in the data set. Each
additional quasi-identifier increases the complexity of achieving generalization,
as all data tuples within a cluster must share the same generalized values for these
attributes. This often leads to greater information loss, despite Prink’s mitigation
efforts through its enlargement value concept. Another important aspect is the
uniformity of data tuples. More uniform tuples require less generalization to
meet ks-anonymity, reducing information loss. While this characteristic cannot
be controlled in real-world data sets like our evaluation data set, it remains an
important consideration in evaluating Prink’s performance. Lastly, the ratio of
individuals to total number of data tuples significantly impacts both information
loss and scalability. Within a cluster, only one tuple per individual contributes
to meeting ks-anonymity, so additional tuples from the same individual may
require more generalization, increasing information loss. Furthermore, in parallel
execution, Apache Flink ensures that all tuples from a single data subject are
processed by the same node, which can limit scalability if the number of data
subjects is small.

14 P. Groneberg et al.

Terraform

t3.large
Client

Producer Consumerdata set

t3.large

Prink
 𝑘 = {5, 10, 20, 40, 80}
 𝛿 = {1250, 5000, 20000}
ℓ = {0, 2, 4, 8}
 𝛽 = {321728}

Fig. 2. Benchmarking experiment architecture diagram

4.3 Experimental Setup

We now proceed to outline the design considerations, configurations, and au-
tomation processes for the benchmarking experiment. An abstract overview is
provided in Figure 2, which will be further detailed in the following section.

The primary objective of the experiment design is to minimize complexity
and eliminate uncontrolled interferences wherever possible. Prink, the system
under test (SUT), is deployed on a dedicated virtual machine. A benchmark-
ing client is used to generate load for the SUT, functioning both as a producer
and a consumer. This setup not only simplifies deployment but also closely mir-
rors real-world architectures, where containerization—most commonly through
Docker—is a standard practice.

The benchmarking client, implemented in Go, serves as the load generator
for Prink. It operates using a configuration YAML file and an example data
set. The YAML file specifies key attributes such as networking ports, addresses,
and input/output file paths. Upon initialization, the benchmarking client loads
configuration variables from the config.yaml file along with the evaluation data
set. It begins by launching a single goroutine to sequentially publish each data
tuple to Prink. Each published message includes the exact data tuple values, a
unique message ID, and an outgoing timestamp (ts). Messages are retained in
Prink until the specified anonymity guarantees are met, as determined by its
configuration and incoming message flow. Once these conditions are satisfied,
the processed messages are returned to the client. A second goroutine then logs
the incoming timestamp (te) and appends the processed messages to the result
log for further analysis.

To evaluate Prink, the SUT, we conducted benchmarking experiments using
60 distinct parameter configurations, varying key parameters (k, δ, ℓ and β as
described in Section 4.1 and summarized in Figure 2). Each configuration was
deployed on two AWS t3.large virtual machines (VMs) using an automated
Terraform script. This script handled resource provisioning, Prink configuration,
Docker container deployment, and retrieval of results. To ensure robust evalua-

Prink: ks-Anonymization for Streaming Data in Apache Flink 15

5 10 20 40 80
k

0.0

0.2

0.4

0.6

0.8

1.0

In
fo

rm
at

io
n

L
os

s

(a) δ1250

5 10 20 40 80
k

(b) δ20000

Columns
square_feet
air_temperature

cloud_coverage
dew_temperature

sea_level_pressure
wind_direction

wind_speed

Fig. 3. Evaluation of accuracy through the information loss of attributes.

tion, each configuration was tested three times, totaling 180 distinct benchmark-
ing runs. All code and deployment scripts for this evaluation are available in a
dedicated GitHub repository7.

4.4 Evaluation Metrics

Information Loss Information loss reduction is one of the core requirements of
Prink. For the metric itself, the evaluation will use the information loss metrics
explained in Section 3.2. For our evaluation, we use the Generalized Loss Met-
ric for the calculation of the overall information loss. We calculate the average
information loss across all clusters per attribute.

Performance To ensure Prink’s practical viability as an anonymization solu-
tion, its performance must be evaluated in terms of latency and its impact on
overall application speed. This evaluation focuses on two key aspects of latency.

First, we evaluate the end-to-end latency, which we define as the total time
a data tuple spends within Prink before being released back into the main data
stream. This latency is determined by calculating as the difference between the
timestamp when a tuple enters Prink via the socket and the timestamp when
the tuple is returned from Prink through the same socket: te− ts. Notably, since
this measurement is performed on the client side, the recorded latency includes
network transmission time.

Second, we perform a more detailed analysis of Prink’s internal processing
times, focusing on key operations. This includes measuring time spent in critical
functions such as the bestSelection process, where a tuple is assigned to the

7 https://github.com/PrivacyEngineering/prink-benchmark

16 P. Groneberg et al.

most suitable cluster based on minimal information loss, and the delayConstraint
function, which is activated when δ is exceeded, ensuring timely publication
of the cluster containing the oldest data tuple. Furthermore, we measure the
waitTime between these operations, during which a tuple remains idle, awaiting
publication.

Unlike the end-to-end latency measurement, this in-depth analysis is con-
ducted entirely within Prink itself. Consequently, the results are unaffected by
network transmission times, offering a clearer and more precise assessment of
Prink’s internal processing performance. By differentiating between external and
internal contributors to latency, this approach provides a holistic evaluation of
the system’s overall efficiency.

4.5 Results

Information Loss In Figure 3, we present the average information loss for each
attribute across different k values, with l = 1 held constant, and note that no
attribute weights were specified, meaning all attributes have equal weight. While
it is possible to assign weights to individual attributes, our experiment treats all
attributes equally, resulting in generalization being applied uniformly based on
the information loss they contribute.

The left-hand Figure 3 (a) illustrates results for δ = 1250, while the right-
hand Figure 3 (b) corresponds to δ = 20, 000. An information loss of 0.0 indicates
that no generalization was necessary, and thus no information loss occurred.
Conversely, an information loss of 1.0 signifies maximum loss, where the attribute
was fully generalized.

Regardless of the attribute, the information loss increases as k grows. This
trend is expected, as a higher k requires more distinct individuals—in this case,
building IDs with varying attribute values within a cluster–to be generalized.
This pattern is consistent for both δ = 1250 and δ = 20, 000, although the
overall information loss is lower for δ = 20, 000.

The attribute with the highest information loss is square_feet, which can
be explained by its exceptionally large range ([387, 420885]) and relatively few
unique values (89). These characteristics often result in extensive generalization
into large intervals. Notably, the ranking of attributes by information loss varies
between the two δ values. For example, sea_level_pressure shows minimal
information loss at δ = 1250, yet significantly higher loss at δ = 20, 000. This
variation underscores how higher δ values influence generalization strategies dif-
ferently. When assigning a data tuple to a cluster, the total information loss
across all attributes is calculated, which can lead to discrepancies in attribute-
specific generalization. If a particular attribute is more critical for subsequent
analysis and requires less generalization, this can be effectively managed by as-
signing it a higher weight.

Performance In Figure 4, we present the average end-to-end latency, the total
time a data tuple spends in Prink before being returned to the main data stream.

Prink: ks-Anonymization for Streaming Data in Apache Flink 17

5 10 20 40 80
k

0

500

1000

1500

2000

2500

3000

la
te

nc
y

[s
]

δ1250

δ5000

δ20000

l1

l2

l4

l8

Fig. 4. Evaluation of end-to-end latency, i.e., total time a data tuple spends
within Prink

As expected, a higher δ leads to increased latency, with a δ of 1250 resulting
in the lowest latency and a δ of 20, 000 producing the highest. This occurs
because δ directly affects the release timing: with δ = 1250, the cluster containing
the oldest tuple is released after processing 1250 data tuples, whereas higher δ
values increase the waiting time before a tuple is published. Interestingly, latency
decreases with higher values of k and l, a trend observed across all parameter
settings. Higher k values result in fewer but larger clusters, which reduces the
number of information loss calculations for each arriving tuple. Additionally,
when a cluster is released, more tuples are released simultaneously compared to
configurations with smaller clusters. Together, these effects significantly reduce
the overall processing time per tuple.

Prink’s internal processing times are depicted in Figure 5, highlighting the
time spent in the bestSelection and delayConstraint functions, along with the
waitTime between these two operations. The x-axis represents various parameter
configurations, including three different values for δ, k, and l. The y-axis shows
the aggregated execution time in milliseconds on a logarithmic scale. Among the
three components, the bestSelection consistently exhibits the lowest execution
time, while the waitTime is the longest, highlighting the impact of δ. As δ
increases, the execution time across all functions rises, a trend that reflects the
extended waiting period imposed by higher δ values. The bestSelection function
shows the shortest execution times, decreasing further with larger k. This aligns
with the observations in Figure 4, as higher k reduces the number of clusters,
thereby minimizing the frequency of information loss calculations. Conversely,
the delayConstraint function demonstrates longer execution times as k increases.
This is due to the formation of fewer but larger clusters at higher k values,
requiring more time for generalization because of the greater number of tuples
within each cluster. The execution time is measured as the interval between the

18 P. Groneberg et al.

initiation of delayConstraint and the publication of the final tuple in the cluster.
Consequently, the extended processing of these larger clusters leads to a higher
average execution time.

l1l2l4
k5

l8 l1l2l4
k10

l8 l1l2l4
k20

l8 l1l2l4
k40

l8 l1l2l4
k80

l8 l1l2l4
k5

l8 l1l2l4
k10

l8 l1l2l4
k20

l8 l1l2l4
k40

l8 l1l2l4
k80

l8 l1l2l4
k5

l8 l1l2l4
k10

l8 l1l2l4
k20

l8 l1l2l4
k40

l8 l1l2l4
k80

l8

Parameters

100

101

102

103

104

105

106

E
xe

cu
ti

on
T

im
e

[m
s]

δ1250

δ5000

δ20000bestSelection

waitTime

delayConstraint

Fig. 5. Evaluation of internal processing times, focusing on key functions: bestSelection,
delayConstraint, and waitTime (the interval between these operations).

5 Discussion & Future Work

In this section, we discuss the results in terms of the interaction between perfor-
mance, utility, and privacy, accessing their impact on the approach’s applicability
and efficiency. We also address privacy considerations and limitations.

Trade-off between Anonymity, Utility and Performance The results
highlight the inherent trade-offs between achieving high levels of anonymity,
ensuring low latency, and preserving data utility. In particular, while increasing
k provides stronger anonymity guarantees, it also results in higher information
loss, as larger clusters require more generalization to ensure indistinguishability
among individuals. This interdependency between k and information loss aligns
with intuitive expectations and underscores the challenge of maintaining utility
as privacy constraints become more stringent.

Our experimental results also reveal an additional dynamic introduced by
ks-anonymization: for the same k, different δ values lead to varying levels of
information loss and latency. In fact, a higher δ allows for better generalizations,
resulting in lower information loss as clusters can accumulate more tuples over
time. However, this comes at the cost of increased latency, as tuples spend more
time “waiting” before being published. Conversely, smaller δ values prioritize
lower latency but may result in higher information loss due to smaller clusters

Prink: ks-Anonymization for Streaming Data in Apache Flink 19

and less effective generalization. This interplay introduces δ as a new “tuning
parameter”, offering flexibility to balance the competing demands of privacy,
utility, and performance in stream-based applications.

Practical Feasibility The integration of ks-anonymity into a Flink-based stream
processing architecture has proven feasible by our implementation, with the sys-
tem demonstrating the ability to balance these competing goals to some extent.
However, achieving optimal performance across all three dimensions—anonymity,
latency, and utility—remains a complex challenge, as improving one often comes
at the cost of the others. These findings highlight the importance of context-
specific configurations and the careful adjustment of parameters such as k and
δ to meet the needs of different use cases.

Future improvements to Prink could enhance both its accessibility and ef-
ficiency. To improve accessibility, Prink could be offered as a packaged Java
library via a dependency system, eliminating the need for manual integration.
Performance gains could be achieved by caching information loss calculations,
reducing redundant computations for unchanged clusters. Another key challenge
is dynamic rule updates, as clusters depend on their initialized rule sets to main-
tain privacy guarantees, complicating seamless rule changes.

Similar to Gal et al. [18], incorporating weighted sensitive attributes could
further minimize information loss while preserving required privacy levels. In ad-
dition, optimal information loss and utility should be investigated across various
business domains. Addressing the anonymization of data sets with numerous
sensitive features (e.g., in the medical context), and semi- or non-structured
data present another challenge. Extending Prink to support additional privacy-
preserving techniques and metrics [42] further strengthen its effectiveness, par-
ticularly in scenarios where adversarial risks are high.

Privacy Considerations and Limitations of Prink Although ks-anonymity
ensures that every released cluster contains at least k distinct individuals, the
general limitations of k-anonymity still apply. One key issue is that its provided
privacy guarantees are not independent of an attacker’s background knowledge.
If an adversary has external knowledge about the data set, a re-identification of
individuals might be possible despite the anonymization.

Another challenge arises from how generalization is applied dynamically.
Since CASTLE adapts its generalization strategies based on the current data
structure, the same individual may be generalized differently across time win-
dows. If an attribute remains unchanged but its generalization fluctuates due to
temporary data gaps, it could introduce inconsistencies that might be exploited.

6 Conclusion

In summary, this paper presents an effective solution for privacy-preserving
data anonymization in stream-based applications. We propose adaptations of

20 P. Groneberg et al.

ks-anonymity tailored for non-numerical streaming data, addressing challenges
related to dynamic generalization and privacy guarantees. Our approach intro-
duces a novel, semantics-aware information loss scheme and supports scalable,
distributed anonymization. We also provide a practical implementation, Prink,
based on the Apache Flink framework, and demonstrate its performance through
a thorough evaluation. By overcoming key limitations of current anonymization
techniques, our work enhances the applicability of privacy-preserving methods
to real-world scenarios while maintaining strong privacy protections.

References

1. Abowd, J.M.: The us census bureau adopts differential privacy. In: SIGKDD ’18:
Proceedings of the 24th ACM International Conference on Knowledge Discovery
and Data Mining. pp. 2867–2867 (2018)

2. Al-Zobbi, M., Shahrestani, S., Ruan, C.: Experimenting sensitivity-based
anonymization framework in apache spark. Journal of Big Data 5, 1–26 (2018)

3. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-
indistinguishability: Differential privacy for location-based systems. In: CCS ’13:
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. pp. 901–914 (2013)

4. Apuan, D.A.: Landscape data transformation: Categorical descriptions to numeri-
cal descriptors. International Journal of Agricultural and Biosystems Engineering
5(9), 512–515 (2011)

5. Ashkouti, F., Sheikhahmadi, A., et al.: Di-mondrian: Distributed improved mon-
drian for satisfaction of the l-diversity privacy model using apache spark. Informa-
tion Sciences 546, 1–24 (2021)

6. Bassolas, A., Barbosa-Filho, H., Dickinson, B., Dotiwalla, X., Eastham, P., Gal-
lotti, R., Ghoshal, G., Gipson, B., Hazarie, S.A., Kautz, H., et al.: Hierarchical
organization of urban mobility and its connection with city livability. Nature com-
munications 10(1), 4817 (2019)

7. Bazai, S.U., Jang-Jaccard, J., Alavizadeh, H.: Scalable, high-performance, and gen-
eralized subtree data anonymization approach for apache spark. Electronics 10(5),
589 (2021)

8. Brunn, C., Nuñez von Voigt, S., Tschorsch, F.: Analyzing continuous ks-
anonymization for smart meter data. In: DPM ’23: Proceedings of 18th Inter-
national Workshop on Data Privacy Management. Lecture Notes in Computer
Science, vol. 14398, pp. 272–282. Springer (2023). https://doi.org/10.1007/978-3-
031-54204-6_16

9. Cao, J., Carminati, B., Ferrari, E., Tan, K.L.: Castle: Continuously anonymizing
data streams. IEEE Transactions on Dependable and Secure Computing 8(3), 337–
352 (2010)

10. Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivastava, D., Wang, T.: Privacy at
scale: Local differential privacy in practice. In: SIGMOD ’18: Proceedings of the
2018 International Conference on Management of Data. pp. 1655–1658 (2018)

11. Ding, B., Kulkarni, J., Yekhanin, S.: Collecting telemetry data privately. Advances
in Neural Information Processing Systems 30 (2017)

12. Domingo-Ferrer, J., Mateo-Sanz, J.M.: Resampling for statistical confidentiality in
contingency tables. Computers & Mathematics with Applications 38(11-12), 13–32
(1999)

Prink: ks-Anonymization for Streaming Data in Apache Flink 21

13. Dwork, C.: Differential privacy. In: ICALP’06: Proceedings of the 33rd Interna-
tional Colloquium on Automata, Languages and Programming. pp. 1–12. Springer
(2006). https://doi.org/10.1007/11787006_1

14. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science 9(3–4), 211–407
(2014)

15. Eibl, G., Engel, D.: Differential privacy for real smart metering data. Computer
Science-Research and Development 32, 173–182 (2017)

16. Erlingsson, Ú., Pihur, V., Korolova, A.: Rappor: Randomized aggregatable privacy-
preserving ordinal response. In: CCS ’14: Proceedings of the 21st ACM SIGSAC
Conference on Computer and Communications Security. pp. 1054–1067. ACM
(2014). https://doi.org/10.1145/2660267.2660348

17. Gadad, V., Sowmyarani, C.: A novel utility metric to measure information loss
for generalization and suppression techniques in privacy preserving data publish-
ing. In: CSITSS ’19: Proceedings of the 4th International Conference on Compu-
tational Systems and Information Technology for Sustainable Solution. pp. 1–5.
IEEE (2019)

18. Gal, T.S., Chen, Z., Gangopadhyay, A.: A privacy protection model for patient data
with multiple sensitive attributes. International Journal of Information Security
and Privacy 2(3), 28–44 (2008). https://doi.org/10.4018/JISP.2008070103

19. Gruschka, N., Mavroeidis, V., Vishi, K., Jensen, M.: Privacy issues and data protec-
tion in big data: a case study analysis under gdpr. In: Big Data ’18: Proceedings of
the 2018 IEEE International Conference on Big Data. pp. 5027–5033. IEEE (2018)

20. Houssiau, F., Rocher, L., de Montjoye, Y.A.: On the difficulty of achieving differ-
ential privacy in practice: user-level guarantees in aggregate location data. Nature
communications 13(1), 29 (2022)

21. Jiang, H., Pei, J., Yu, D., Yu, J., Gong, B., Cheng, X.: Applications of differential
privacy in social network analysis: A survey. IEEE Transactions on Knowledge and
Data Engineering 35(1), 108–127 (2021)

22. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What
can we learn privately? SIAM Journal on Computing 40(3), 793–826 (2011)

23. Kasiviswanathan, S.P., Nissim, K., Raskhodnikova, S., Smith, A.: Analyzing graphs
with node differential privacy. In: TCC ’13: Proceedings of the 10th Theory of
Cryptography Conference. pp. 457–476. Springer (2013)

24. Kim, J.W., Edemacu, K., Kim, J.S., Chung, Y.D., Jang, B.: A survey of differ-
ential privacy-based techniques and their applicability to location-based services.
Computers & Security 111, 102464 (2021)

25. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity
and l-diversity. In: ICDE ’07: Proceedings of the 23rd International Con-
ference on Data Engineering. pp. 106–115. IEEE Computer Society (2007).
https://doi.org/10.1109/ICDE.2007.367856

26. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-
Diversity: Privacy beyond k-Anonymity. In: ICDE ’06: Proceedings of the
22nd International Conference on Data Engineering. pp. 24–24 (2006).
https://doi.org/10.1109/ICDE.2006.1

27. Majeed, A., Lee, S.: Anonymization techniques for privacy preserving data pub-
lishing: A comprehensive survey. IEEE access 9, 8512–8545 (2020)

28. Marques, J.F., Bernardino, J.: Analysis of data anonymization techniques. In:
IC3K ’20: Proceedings of the 12th International Joint Conference on Knowl-
edge Discovery, Knowledge Engineering and Knowledge Management. pp. 235–241.
SCITEPRESS (2020). https://doi.org/10.5220/0010142302350241

22 P. Groneberg et al.

29. Martínez, S., Sánchez, D., Valls, A.: Towards k-anonymous non-numerical data via
semantic resampling. In: IPMU ’12: Proceedings of the 14th International Con-
ference on Information Processing and Management of Uncertainty in Knowledge-
Based Systems. Communications in Computer and Information Science, vol. 300,
pp. 519–528. Springer (2012). https://doi.org/10.1007/978-3-642-31724-8_54

30. Martínez, S., Sánchez, D., Valls, A.: A semantic framework to pro-
tect the privacy of electronic health records with non-numerical at-
tributes. Journal of Biomedical Informatics 46(2), 294–303 (2013).
https://doi.org/https://doi.org/10.1016/j.jbi.2012.11.005, https://www.
sciencedirect.com/science/article/pii/S1532046412001797

31. Nuñez von Voigt, S., Tschorsch, F.: Rrtxfm: Probabilistic counting for differentially
private statistics. In: TPSIE ’19: Proceedings of the 1st Workshop on Trust and
Privacy Aspects of Smart Information Environments. vol. 573, pp. 86–98. Springer
(2019). https://doi.org/10.1007/978-3-030-39634-3_9

32. Otgonbayar, A., Pervez, Z., Dahal, K., Eager, S.: K-varp: K-anonymity for varied
data streams via partitioning. Information Sciences 467, 238–255 (2018)

33. Pallas, F., Koerner, K., Barberá, I., Hoepman, J.H., Jensen, M., Narla, N.R.,
Samarin, N., Ulbricht, M.R., Wagner, I., Wuyts, K., Zimmermann, C.: Privacy en-
gineering from principles to practice: A roadmap. IEEE Security & Privacy 22(2),
86–92 (2024). https://doi.org/10.1109/MSEC.2024.3363829

34. Pallas, F., Legler, J., Amslgruber, N., Grünewald, E.: Redcastle: practically
applicable ks-anonymity for iot streaming data at the edge in node-red. In:
M4IoT@Middleware 2021: Proceedings of the 8th International Workshop on Mid-
dleware and Applications for the Internet of Things. pp. 8–13. ACM (2021).
https://doi.org/10.1145/3493369.3493601

35. Qing-jiang, K., Xiao-hao, W., Jun, Z.: The (p, α, k) anonymity model
for privacy protection of personal information in the social networks. In:
ITAIC ’11: Proceedings of the 6th IEEE Joint International Information
Technology and Artificial Intelligence Conference. vol. 2, pp. 420–423 (2011).
https://doi.org/10.1109/ITAIC.2011.6030363

36. Robinson, A., Brown, F., Hall, N., Jackson, A., Kemp, G., Leeke, M.:
Castleguard: Anonymised data streams with guaranteed differential privacy.
In: 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Com-
puting, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on
Cloud and Big Data Computing, Intl Conf on Cyber Science and Tech-
nology Congress (DASC/PiCom/CBDCom/CyberSciTech). pp. 577–584 (2020).
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00102

37. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression (1998)

38. Simi, M., Nayaki, K., Elayidom, M.: An extensive study on data anonymiza-
tion algorithms based on k-anonymity. IOP Conference Series: Materials Sci-
ence and Engineering 225, 012279 (08 2017). https://doi.org/10.1088/1757-
899X/225/1/012279

39. Sopaoglu, U., Abul, O.: A top-down k-anonymization implementation for apache
spark. In: Big Data ’17: Proceedings of the 2017 IEEE international conference on
big data. pp. 4513–4521. IEEE (2017)

40. Suneetha, V., Suresh, S., Jhananie, V.: A novel framework using apache spark for
privacy preservation of healthcare big data. In: ICIMIA ’20: Proceedings of the 2nd
International Conference on Innovative Mechanisms for Industry Applications. pp.
743–749. IEEE (2020)

Prink: ks-Anonymization for Streaming Data in Apache Flink 23

41. Sweeney, L.: k-anonymity: A model for protecting privacy. International journal of
uncertainty, fuzziness and knowledge-based systems 10(05), 557–570 (2002)

42. Wagner, I., Eckhoff, D.: Technical privacy metrics: a systematic survey. ACM Com-
puting Surveys (Csur) 51(3), 1–38 (2018)

43. Zhang, J., Yang, J., Zhang, J., Yuan, Y.: Kids: K-anonymization data stream base
on sliding window. In: ICFFC ’10: Proceedings of the 2nd International Conference
on Future Computer and Communication. vol. 2, pp. V2–311. IEEE (2010)

