
ar
X

iv
:2

50
5.

12
99

5v
1

 [
cs

.C
R

]
 1

9
M

ay
 2

02
5

ACE: Confidential Computing for Embedded RISC-V Systems

Wojciech Ozga
IBM Research — Zürich

Guerney D. H. Hunt
IBM T.J. Watson Research Center

Michael V. Le
IBM T.J. Watson Research Center

Lennard Gäher
MPI-SWS, Germany

Avraham Shinnar
IBM T.J. Watson Research Center

Elaine R. Palmer
IBM T.J. Watson Research Center

Hani Jamjoom
IBM T.J. Watson Research Center

Silvio Dragone
IBM Research — Zürich

June 10, 2025

1 Abstract

Confidential computing plays an important role in isolating
sensitive applications from the vast amount of untrusted code
commonly found in the modern cloud. We argue that it can
also be leveraged to build safer and more secure mission-
critical embedded systems. In this paper, we introduce the
Assured Confidential Execution (ACE), an open-source and
royalty-free confidential computing technology targeted for
embedded RISC-V systems. We present a set of principles
and a methodology that we used to build ACE and that might
be applied for developing other embedded systems that require
formal verification. An evaluation of our prototype on the first
available RISC-V hardware supporting virtualization indicates
that ACE is a viable candidate for our target systems.

2 Introduction

Building mission-critical systems and confirming their safety
and security properties has become increasingly challeng-
ing, sometimes impossible, because of growing software size,
shrinking budgets, the pressures of time-to-market, and talent
shortages. The growing frequency of cyberattacks [59, 62, 50,
15, 61, 7] confirm the need for a method to increase safety and
security of low-level systems without sacrificing productivity
or increasing development costs.

Evolving demands of the market drive the reuse of soft-
ware and hardware components to accelerate development.
Moreover, different companies deliver hardware and software
components and clients license applications from various ven-
dors. Some vendors may also desire to protect their intellectual
property and sensitive data because the execution environment
is potentially shared with competitors or regulated. In addi-
tion, reasoning about the correctness of the entire system com-
posed of hundreds to thousands of dependencies written and

maintained by a variety of vendors and open-source contribu-
tors is cumbersome if not impossible.

During verification, the interactions between all compo-
nents have to be checked, causing an exponential increase in
cost and time. Consequently, the verification phase may be
shortened or eliminated to meet deadlines or cost targets, leav-
ing unidentified memory safety bugs or security back doors
in the system [45, 42]. We argue that confidential comput-
ing [54, 10, 56, 1, 28] can be leveraged to build safer, more se-
cure, low-level systems by compartmentalizing software into
isolated security domains. The correctness and safety of these
security domains can be then individually assessed due to the
limited and well-defined communication interfaces.

To address the need for confidential computing for embed-
ded systems in regulated environments, we introduce ACE—
a confidential computing technology targeted for the RISC-V
open architecture that enables software compartmentalization
to minimize the number and types of interactions between se-
curity domains to streamline their verification. In contrast to
existing systems, ACE targets systems that operate on limited
power and silicon budget and, due to costs, can run on reg-
ular off-the-shelf processors. Commercial confidential com-
puting implementations for x86 [10, 56], IBM Z [5], or IBM
POWER [28] target primarily high-end processors, typically
used in data centers and cloud computing, while ARM, which
applies to both desktop and embedded processors, incurs ad-
ditional licensing costs and requires additional hardware for
its confidential computing technology [1]. ACE, on the other
hand, aims at broad adoption and is therefore open-source and
royalty-free, making it easily reusable and deployable without
additional licensing costs. The ACE design has already influ-
enced the RISC-V confidential VM extension (CoVE) specifi-
cation [6], broadening its scope to embedded systems.

The goal of ACE is to run safety and security-critical sys-
tems that must conform with regulations [20, 44, 14, 16].
Specifically, these regulations aim at ensuring system correct-

1

https://arxiv.org/abs/2505.12995v1

ness and mandate extensive testing while recommending or
sometimes requiring use of formal methods for specification,
design, verification or testing phases. For example, EAL7, the
most stringent Common Criteria [14] evaluation level, requires
rigorous mathematical proofs of system properties that give
high assurance on a system’s security. Achieving such levels
of certification is challenging because proof sizes are expected
to grow with the square of the specification size [40] that it-
self grows with the size of the codebase. For example, simply
ensuring the memory safety is challenging because a single in-
struction in memory unsafe language can violate this property.

As part of our work on ACE, we developed a set of prin-
ciples and a methodology that we believe are universal and
provide a basis for the design and development of firmware
that requires verification. These principles enable system de-
signers and developers to choose a tradeoff between resources
invested in verification and the obtained assurance level. For
example, they might rely on strongly typed, memory-safe pro-
gramming languages and their compilers for memory safety
while harnessing proper encapsulation techniques with deduc-
tive verification to prove correctness of a small set of tradition-
ally error-prone unsafe operations.

We applied these principles during the design and devel-
opment of ACE, achieving a relatively high level of trust
by design—even before the full formal verification is com-
plete. We defined informal invariants early during the design
phase and aimed for simpler feature-reduced system design
to streamline subsequent verification efforts. We chose the
Rust [41] programming language to benefit from its memory
safety guarantees and rich type system that simplifies reason-
ing about memory ownership [33]. We followed the principle
of encapsulating unsafe code, such as low-level pointer manip-
ulation, within simple, verifiable interfaces, which serve as a
foundation for proving the correctness of higher-level compo-
nents that rely on them. We used RefinedRust [21] to formalize
invariants directly in the Rust code and derive formal represen-
tation that allowed us to prove memory safety of core parts of
the system in the Rocq prover [60], providing initial evidence
for the usefulness of our approach.

To demonstrate maturity and functional readiness of the
ACE implementation, we ran and evaluated multi-processor
Linux-based confidential virtual machines (VMs) on the first
RISC-V hardware available on the market that supports virtu-
alization. The results show that ACE incurs low performance
overhead for process-intensive workloads and up to 50% over-
head for multi-vcpu network intensive workloads.

Our contributions:
• Defined principles and methodology to guide design of

high-assurance embedded systems (§4).
• Designed (§4.2) and implemented (§5) ACE, an open-

source confidential computing for embedded systems for
RISC-V processors with virtualization support.

• Formally proved memory safety of a core part of the ACE
implementation (§5.5).

TSM  
initialization code

trusted  
component- - control flow direction

VU 
 

VS

HS

M

 virtual machine

 TEE security manager

(TSM)

hypervisor

isolation enforced by TSM- untrusted 
component-

RISC-V hardware 
[Processor with root of trust, memory access control, interrupt handler, hypervisor extension]

 TEE virtual machine

(TVM)

3 4

3

2

1

2

Figure 1: High-level overview of ACE, a VM-based confiden-
tial computing architecture for embedded RISC-V processors.
The TSM (➋) leverages hardware features (➊) to multiplex ex-
ecution of different security domains (➌) and (➍) on top of the
same hardware while preserving security guarantees.

• Evaluated ACE on the first RISC-V hardware that imple-
ments the hypervisor extension (§6).

• Extended the RISC-V CoVE specification and patches for
Linux kernel (patches not yet upstreamed).

3 Overview of ACE

The main goal of ACE is to bring confidential computing ca-
pabilities to embedded systems. As in other virtual machine
(VM)-based approaches to confidential computing, the hyper-
visor manages VMs’ lifecycle but is removed from the trusted
computing base (TCB). To achieve the required level of iso-
lation, ACE utilizes software and hardware components to es-
tablish a trusted execution environment (TEE) [22].

Figure 1 shows the high-level overview of the architecture,
which consists of four components: (➊) hardware, (➋) TEE
security manager (TSM), (➌) hypervisor with virtual machines
(VMs), and (➍) TEE virtual machines (TVMs)1. The TSM’s
goal is to isolate security domains from each other. The hyper-
visor and normal VMs constitute one security domain and each
TVM constitutes a distinct security domain. To enforce proper
access control, the TSM relies on controlling hardware com-
ponents. Intuitively, one might think of the TSM as a firewall
that controls all interactions between a TVM and the outside
world. The TSM is a piece of code that switches execution of a
security domain’s (a TVM or a hypervisor) context and ensures
that only allowed information is exchanged. It achieves this by
reconfiguring the hardware to enable proper access controls
and clearing the execution state so that there are no execution
traces left when another security domain resumes.

To maintain full control over the hardware’s state and con-
figuration, the TSM asserts control of the system during the
early boot process and retains its privileged role during the sys-
tem’s lifetime. This role allows it to enforce access controls by

1We follow the nomenclature used in RISC-V CoVE [6] and TDISP [48]
specifications. In literature one can find also terms confidential VMs (CVMs),
secure VMs (SVMs), or enclaves, as well as, security monitor, security man-
ager, or isolation monitor.

2

switching processor privilege modes, applying memory access
controls, and taking control over interrupts.

3.1 Open Source and Compliance
ACE complies with the RISC-V CoVE specification [6] and
builds on top of the canonical architecture [47], which speci-
fies the minimal set of features needed for confidential com-
puting system. The simplicity of this design is intended to
streamline the formal verification process, while compliance
with standards should facilitate faster adoption. The open
source nature of the project should encourage community in-
volvement which may lead to extensions that will enhance per-
formance for specific use cases.

3.2 Threat Model
We assume a software-level adversary whose goal is to com-
promise a victim’s TVM, specifically (1) by tampering with
the integrity of the TVM’s execution by modifying its control
or data flow execution, (2) by reading the protected TVM’s
data, or (3) by impersonating the victim’s TVM to its owner.

We assume an adversary who controls the hypervisor with
root privileges and might run her own TVMs concurrently
and in parallel with the victim’s TVM. She can also fully
control the lifecycle of the victim’s TVM and input data via
hypervisor-controlled registers, shared memory buffers, vir-
tual I/O devices, or the initial TVM’s image state and the flat-
tened device tree (FDT).

We aim to provide security down to the architectural level,
i.e., instruction set architecture (ISA)-level. We assume that
the hardware ACE runs on is correctly implemented [36, 9]
and all micro-architectural traces of executions are correctly
cleared as part of the system’s context switch. We assume soft-
ware in the TVM is correct and bug-free.

We exclude from the threat model physical attacks on
memory, buses, and processors, because of the existence
of well known counter-measures, like fault-detection mecha-
nisms like lockstep, error correction code-protected memory,
or encrypted buses. These technologies can be implemented
separately for target systems exposed to physical adversaries
without requiring changes to the TSM’s implementation.

4 Design
The design principles outlined below arise from the need to
satisfy three competing constraints: resource limitations of
embedded systems, complex security needs of confidential
computing, and tractability of formal verification.

Embedded systems: Embedded systems typically have lim-
ited power and silicon budget and are designed to execute spe-
cific workloads with a fixed and well defined runtime require-
ment. ACE targets mid to high-end systems that in contrast

Implementation

fix  
bugs

System
design Continuous

integration with
verification

simplify
interfaces 

Requirements 
e.g., hardware constraints

& threat model
Informal 

invariants &
specifications
e.g., memory
partitioning

Software
architecture 

e.g., finite state
machine

Modularization 
e.g., page token

Software
development 

(system engineer)

Formal
specifications 
(proof engineer)

Proofs 
(Proof engineer)

Binary 
compilation

Formal model 
& proof checking

Figure 2: Our methodology to develop formally verified low-
level computing systems.

to low-end embedded systems often contain multiple security
domains. These systems can be but are often not Internet-
connected.

Confidential computing: Confidential computing builds from
hardware and firmware components, whose implementation
and composition require rigorous security analysis. While in-
creased complexity of these components might enhance the
performance and capabilities of target systems, it also poses
greater challenges for ensuring desired security.

Formal verification: Formal verification scales best when the
verification can be modularized with clear abstraction bound-
aries, making reasoning about system invariants local. Rea-
soning often becomes easier with simpler representation in-
variants, e.g., low-level memory hacks can complicate verifi-
cation significantly.

Achieving ACE’s goal while satisfying the above con-
straints requires tradeoffs. To navigate these tradeoff decisions
effectively, we define the following guiding principles.
P1: Design a small modular core with minimal hardware re-

quirements that can be extended for more complex use
cases and hardware.

P2: Minimize cross-domain interactions (to make formal ver-
ification achievable)

P3: Encapsulate complex operations with clearly defined
boundaries (modularity, extensibility to satisfy formal
verification requirements)

P4: Treat verification as a first-class citizen—designing and
implementing with verification in the loop, using verifica-
tion considerations to guide the system design (to reduce
verification time, improve coverage).

4.1 Design Methodology
Figure 2 shows our methodology for designing and devel-
oping ACE, consisting of three phases interacting with each
other: system design, implementation, and continuous inte-
gration with proofs. For the remainder of this section we will
focus on the system design decisions, the other two phases in
our process will be discussed in Section 5.

We started our design phase by evaluating the requirements
such as hardware constraints and the threat model (Subsec-
tion 3.2). Those requirements, together with our design prin-

3

ciples, then motivated our key design decisions and high-level
invariants (Subsection 4.2).

4.2 Key Design Choices & Invariants

By adhering to our design principles and applying our method-
ology, we made several key design decisions that make the
ACE design unique. These are (1) prefer commonly used, sim-
ple hardware primitives with easily abstracted functionality,
(2) favor static versus dynamic configurations for simplified
reasoning about system state, (3) avoid unnecessarily complex
interfaces to reduce intermediate states, (4) prioritize simplic-
ity over performance and memory usage to facilitate formal
verification.

Simple hardware and abstractions Since ACE primarily tar-
gets mid- to high-end embedded systems, its design must
support commodity, ideally off-the-shelf hardware. Follow-
ing principle P1, we do not require the presence of sophisti-
cated TEE-optimized hardware components for memory iso-
lation, such as for example RISC-V supervisor domains ac-
cess protection [52] or an interrupt controller that supports in-
terrupts directly injected into TVMs [4]. We aim at design
that builds on a simpler, general-purpose hardware compo-
nents [38, 18, 47] that can be further extended with additional
hardware and software components to improve performance or
support use case-specific features.

We decided to lay the ACE’s design on a virtualization
layer which provides a good abstraction over execution en-
vironment (P3) and is a natural boundary for isolation with
a smaller attack surface (P2) compared with process-based
TEEs [13, 38, 32]. Moreover, the RISC-V hypervisor exten-
sion can be completely emulated in firmware [64], allowing
ACE to potentially run on much simpler hardware at the cost
of reduced performance (P1). However, we expect that most
of the targeted systems will be powerful enough to support a
RISC-V processor with virtualization capabilities, like the hy-
pervisor extension and a two-level address translation memory
management unit (MMU).

Statically partitioned confidential memory. The TSM uses
memory access control hardware to prevent unauthorized ac-
cesses to protected memory regions. Embedded systems usu-
ally run a fixed well-understood set of applications. This
makes them uniquely suited to static memory partitioning be-
cause the memory requirements are predictable.

There are different hardware-based mechanisms used for
memory access control. More complex mechanisms enable
fine (page-level) access control at the cost of more complex
configuration setup and runtime walks. Alternatively, sim-
pler mechanisms generally have a limited number of coarse-
grained access control rules for physical memory but are sim-
ple to set up, implement, and consequently verify.

Following P1 and P2, ACE statically partitions memory into
non-confidential and confidential memory. This is a simple

one-time operation that utilizes simple hardware which per-
forms address range checking. This approach simplifies the
mathematical modeling and verification of the system because
of the simplified ownership reasoning. This simplicity comes
at the cost of potential memory over- or under-allocation. We
argue that this is acceptable for our target systems, because
their resource requirements and applications are known up-
front.

Single-step TVM creation. Existing confidential computing
frameworks are designed to run arbitrary code. As a result,
there is no way to predict the memory requirements on the
system in advance. In addition, to fulfill unknown confidential
memory requirements, existing frameworks allow the dynamic
conversion of free memory from one state to another. This
contributes to the large application binary interface (ABI) be-
tween the hypervisor and the TSM that allows the hypervisor
to construct a TVM in a series of calls to the TSM. These calls
cause the TSM’s size to grow, increasing the TCB. They also
increase the attack surface during the transition from normal
VM to TVM, which makes formal verification more complex.
Multiple calls also result in larger TVM creation latency due
to superfluous context switches between the hypervisor and the
TSM.

Following P2 and P3, ACE requires only a single call from
the hypervisor to create a TVM. In this approach, the hypervi-
sor sets up an instance of a normal VM from a TVM image and
then requests the TSM to promote it to a TVM. This decision
reduces the size of the TSM’s implementation. For example,
there is no need to implement a complex ABI to manage page
table mappings. ACE’s approach is also more secure, because
there is no intermediate (incomplete) state of a TVM that an
adversary might try to rollback to.

There are some disadvantages to this approach. Since the
TSM’s execution is non-uninterruptible, the hardware thread
(hart in RISC-V terminology) is blocked for the time that the
TSM takes to copy a VM to the confidential memory. We ar-
gue, however, that this is acceptable for the targeted systems
that tend to fully initialize early in the boot process because of
auditability and real-time requirements. In other words, TVMs
are created during the system initialization phase to not influ-
ence the system’s execution during the operational phase. Fur-
ther, the targeted embedded systems are not running arbitrary
code at arbitrary points in time. They often start a limited num-
ber of functions that are well understood and run for a long
period of time.

Formal Verification and Rust. Our target systems might op-
erate in regulated industries that require formal proofs. Fig-
ure 3 shows what properties the TSM aims to guarantee.
These are presented in the form of a pyramid: to reason
about properties in one layer, one must first prove the prop-
erties in layers below. ACE assumes the hardware is cor-
rect [36](Subsection 3.2).

The most basic property the TSM implementation needs

4

security 
guarantees

functional correctness

memory safety guarantees

execution safety

e.g., buffer overflows, multi-threaded execution

e.g., page tables correctly configured

e.g., no undefined system states

invariants

e.g., confidentiality of VM data

pr
oo

f d
ep

en
de

nc
ies

hardware properties and correctness e.g., leaks via µ-architectural state

e.g., two VMs cannot access the same page

Figure 3: Pyramid of proof dependencies.

to satisfy is memory safety. Memory safety errors continue
to make up a large part of the security-related bugs [11, 23].
Thus, following P4, we decided to use Rust [41], which aims
to statically rule out memory safety errors, as the implemen-
tation language for the TSM. Rust has a rich type system that
helps to statically eliminate memory-safety issues without get-
ting formal verification engineers involved, thus shifting a sig-
nificant part of the formal verification burden to the compiler.
By applying sound software engineering practices—such as
encapsulating unsafe Rust and creating well-defined abstrac-
tions with the help of modularization (P3)—developers can
gain greater confidence in the correctness of their programs,
even in multi-threaded environments.

While ensuring memory safety eliminates many common
bugs, it is just a step towards our ultimate goal: achieving se-
curity guarantees, as illustrated at the top of the pyramid in
Figure 3. Achieving these security properties requires the high
expressiveness offered by deductive verification frameworks
like the Rocq prover [60] that enable us to formally define
security properties and mechanically prove them. Rust code
can also be formally verified in the Rocq proof assistant using
tools such as RefinedRust [21], with proofs being continuously
checked for every code change in a continuous integration (CI)
system.

Local attestation. It is essential for TEEs to provide a way for
clients to detect unauthorized modifications to the firmware,
TSM, or TVM. However, embedded systems might operate
in environments with limited or no network access, like con-
trollers used in operational technology or automobile industry.

To support disconnected systems following P1, ACE sup-
ports local attestation [28] which uses information delivered
together with a TVM’s image to verify the integrity and au-
thenticity of the TVM during its creation. In local attesta-
tion, a TVM owner uses his key to encapsulate (i.e., crypto-
graphically protect) a TVM attestation payload (TAP), which
is an object (file) that stores TVM integrity measurements and
TVM-specific secrets. Only the expected TSM running on the
correct hardware can read the contents of a TAP because it
has access to the decapsulation key. The presence of local at-
testation does not exclude remote attestation for systems with
network connectivity.

5 Implementation

We implemented the TSM in Rust [41] and open sourced it
under: https://github.com/IBM/ACE-RISCV. The
TSM is statically linked with OpenSBI [51] firmware to which
it delegates some requests, like handling unaligned memory
accesses or inter processor interrupts (IPIs). Both OpenSBI
and the TSM run in the most-privileged RISC-V M mode, but
OpenSBI is used as a library to simplify its future replacement
or de-privileging as reported by [8]. We use Linux KVM as
the hypervisor and QEMU as a virtual machine monitor. We
patched Linux kernel with the CoVE patches, which were de-
veloped by Rivos and then extended by us with functionality
required for running the deployment model 3 of the RISC-V
CoVE spec.

The TSM’s core implementation consists of two parts: ini-
tialization code executing during secure boot (§5.1) and run-
time code executing as a finite state machine (§5.2) reacting to
interrupts. We then discuss how formal verification is imbued
in our design and implementation of the TSM in (§5.5) and
outline how a key TSM component can be verified with our
approach.

5.1 System Initialization

At power on, the hardware root of trust initializes the secure
boot [2] process and transfers control to the TSM’s initializa-
tion code. This code configures the system to ensure that the
TSM maintains full control until the next power-cycle. Specifi-
cally, it reconfigures hardware to protect the TSM’s code, data,
and hardware configuration from tampering by less-privileged
software that will execute during runtime. Additionally, it en-
sures that the execution of less-privileged software traps to the
TSM at well-defined entry points. In more detail, the TSM
(1) configures the memory access control mechanisms so that
its code and data cannot be accessed by software executing in
less privileged processor modes and by non-processor mem-
ory accesses, e.g., direct memory access (DMA), (2) sets up
the hart to trap into the TSM’s entry preamble on selected in-
terrupts and exceptions, and (3) executes the hypervisor’s code
in a less privileged mode. The configuration is identical across
all physical harts.

Memory partitioning. During the system initialization, the
TSM divides main memory into two contiguous regions: non-
confidential memory and confidential memory. Later, at run-
time, the hypervisor will have complete ownership of the non-
confidential memory but will not be able to access the confi-
dential memory. That allows the TSM to store in confidential
memory the security-sensitive data required to maintain confi-
dential computing functionality, such as the TSM’s stack areas
(for every physical hart), the TSM’s heap area, save-state ar-
eas (for every physical and virtual hart), and code and data of
TVMs.

5

https://github.com/IBM/ACE-RISCV

To enforce memory access protection to confidential mem-
ory, the TSM configures hardware-based memory access con-
trol mechanisms. Specifically, it uses RISC-V physical mem-
ory protection (PMP) [29] and IOPMP [34]2. The RISC-V
architecture guarantees that only software running in M-mode
is authorized to reconfigure it.

Page allocator and page tokens. Confidential memory is
further partitioned into pages that the TSM assigns to TVMs
to store their code and data, as well as pages to manage the
TSM’s internal data structures. To ensure correct allocation of
pages, i.e., that pages belong to confidential memory and have
a single owner, the TSM instantiates a component called the
page allocator. The page allocator is a software submodule of
the TSM. During system initialization, for every confidential
memory region corresponding to a physical page, it creates a
logical page token, a Rust object that lives on the TSM’s heap.
Initially, the page allocator owns all page tokens. Whenever
the TSM allocates a new page of memory, for example to cre-
ate a TVM’s data page, the TSM retrieves a free page token
from the page allocator and stores it within the Rust data type
corresponding to the final entity, e.g., a page table associated
with the TVM. In the above example, the ownership transfer
would correspond to the move of the page token’s self refer-
ence from page allocator to the object of the TVM’s page table
type. Rust’s type system ensures that a page token is not spent
twice. In the above example, it would ensure that every physi-
cal memory region is only assigned to one TVM.

5.2 Runtime

The firmware executing the secure boot eventually transfers
control to the hypervisor, marking the transition of the device
into its operational state called runtime. During runtime, the
hypervisor, running in the RISC-V HS-mode, manages which
software runs on the processor and for how long. The hyper-
visor has limited privileges and must request the TSM to per-
form security-sensitive operations, for example, accessing cer-
tain memory mapped input/output (MMIO) or running a TVM.

To limit the attack surface, the TSM exposes only a narrow
ABI to the hypervisor. In addition to the standardized RISC-
V ABI calls, such as read-only calls to discover the system
configuration and a call to shutdown/reboot the system, the
TSM adds three calls to manage a TVM: promote, run, and de-
stroy. In comparison, a full RISC-V CoVE defines additional
sixteen complex calls for page table management and two ex-
tra calls for constructing a TVM in multiple steps. With help
of OpenSBI, the TSM supports optional symmetrical multi-
processing calls (like start/stop/suspend hart, execute remote
fence), access to hardware devices via MMIO, and emulated
access to misaligned load/stores.

2The current implementation of ACE runs on a RISC-V evaluation board
that does not support IOPMP because IOPMP has not been ratified at the time
when the board was designed.

TEE security monitor (TSM)

enter from hypervisor
(lightweight context switch) router

handlers

enter from confidential hart
(lightweight context switch)

router

handlers

declassify

apply transformation

non-confidential flow

apply transformation

 security domain
context switch

declassify

exit to hypervisor
(lightweight context switch)

hypervisor

AB
I 

ca
ll

exit to confidential hart
(lightweight context switch)

TEE virtual
machine

(TVM) in
te

rru
pt

 o
r 

AB
I c

al
l

1

1 2

2

3

3

4

4

5

5

6

confidential flow

Figure 4: Finite state machine (FSM) shows the execution flow
of the TSM on a single physical core on which the hypervisor
and a TVM execute concurrently.

Finite state machine. To enhance the correctness of the
TSM’s implementation and simplify the verification process,
the TSM operates as a finite state machine (FSM), as shown in
Figure 4. The hart that the TSM executes upon taking control
is in one of two states: executing a non-confidential flow (up-
per part) or executing a confidential flow (bottom part). This
split simplifies the analysis of information flow between the
hypervisor and the TVM, while minimizing the potential for
programming errors. Specifically, we leveraged Rust modu-
larization capabilities to statically ensure that the TSM’s func-
tionalities are accessible exclusively to the hypervisor or a
TVM.

In the non-confidential flow (upper part of the FSM), the
TSM handles requests on behalf of the hypervisor and the
hardware remains configured to enforce hypervisor-specific
access control permissions. For example, the memory access
control mechanism enforces that the hypervisor can access
only non-confidential memory. Therefore, no additional secu-
rity measures must be taken to return execution to the hyper-
visor. Analogously, in the confidential flow (bottom part), the
TSM processes requests of a TVM and the hardware is config-
ured to enforce access permissions of a TVM. When the TVM
resumes execution, the memory management unit (MMU) is
using the page tables associated with the TVM which allows
the TVM to access only memory pages it owns. If there is a
need to switch from the current TVM, the TSM switches ex-
ecution to the hypervisor as the hypervisor retains scheduling
responsibility.

Lightweight context switch. The TSM executes only in re-
sponse to interrupts and ABI calls from the hypervisor and
TVMs (➊). The lightweight context switch (➋) starts by stor-
ing the minimal set of the architectural state that the TSM
could overwrite during its execution (i.e., general-purpose reg-
isters (GPRs) and control status registers (CSRs)) in the save-
state area in main memory. Then, the router component (➌)
parses the request and invokes the appropriate handler. The
handler (➍) decides if the request will return to the same se-
curity domain or a different security domain. Handlers im-
plement the logic that decides how to transform the architec-
tural state to fulfill the request. This transformation is then

6

applied to the hardware architectural state and/or state in the
save-state area. If the security domain will not be changed, the
lightweight context switch (➎) is called to return to the secu-
rity domain.

Security domain context switch. One security domain can
request assistance from another security domain to perform an
operations. For example, a TVM that cannot access a phys-
ical network card directly uses the VirtIO protocol, so that
the hypervisor emulates such access. The corresponding han-
dler (➍) routes then the call to the security domain context
switch (➏) and the TSM crosses the boundary between the
non-confidential and confidential security domains.

The security domain context switch is a piece of code that
reconfigures the hardware to prepare for execution of a dif-
ferent security domain. It saves all architectural state of one
security domain in the save-state area in the main memory
and loads the architectural state of the other security domain
from the main memory into hardware. All state for the secu-
rity domain context switch is stored to or read from confiden-
tial memory. The security domain context switch also recon-
figures the memory access control mechanism to protect the
current security domain from the one that will execute next,
and clears micro-architectural caches, e.g., translation looka-
side buffer (TLB) caches. Our design of the TSM implemen-
tation in Rust ensures that every execution path between non-
confidential and confidential flows goes through the security
domain context switch.

Handlers and Reclassification. Handlers implement the
TSM’s functionality exposed to the hypervisor and TVMs via
the ABI. To reduce the risk of implementation errors creating
security bugs, each handler operates only on a subset of the ar-
chitectural state of a security domain. For example, a TVM’s
attestation handler will never have write access to the hyper-
visor’s state, so that it can never leak attestation-related data
to the hypervisor. To do so, we leveraged Rust’s constructs to
ensure the limited visibility scope and privacy of data struc-
tures in the implementations of handlers. Specifically, each
handler consists of three phases: a constructor, a transforma-
tion method, and a destructor. The constructor has read-only
access to the hart state, which permits it to read information
required to process the request. The transformation method
has access only to the TSM’s core functionalities, such as the
page allocator, the interrupt controller or the TVM’s metadata
storage. Finally, the destructor has write access to the tar-
get security domain’s architectural state to which it can apply
or reclassify processed information. The Rust-enforced con-
straints placed on handlers and accessibility of each domain’s
architectural state simplify how a TVM’s owners and verifi-
cation tools can verify that the TSM correctly implements the
specification.

Importantly, the TSM cannot guarantee that TVMs use han-
dlers correctly. Therefore, it is the security domain’s responsi-
bility to use them securely. For example, for VirtIO, the TSM

enables a TVM to have a shared page with the hypervisor, but
does not enforce any form of data secrecy. Thus, to maintain
security, a TVM itself must encrypt data before sending them
to disk over VirtIO and decrypt when reading back.

5.3 Selected Non-confidential Flow Handlers

Promote to TVM. As explained in Subsection 4.2, the TSM
implements a single-step TVM creation procedure. In this
novel approach, the TSM atomically converts an existing in-
stance of a VM into a TVM as part of the process called pro-
motion. In contrast to other architectures [10, 28, 5] which
convert the VM memory page-by-page, there are no interme-
diate states corresponding to a TVM that could be exploited
by an adversary.

We leave the decision when to promote a VM into a TVM
to a TVM owner. A VM must execute a hypercall that will
then be forwarded by the hypervisor to the TSM. The TSM re-
ceives as input the initial state of the VM (boot hart), a pointer
to the root page table, a pointer to the flattened device tree, and
a pointer to the attestation payload. It creates save-state areas
for the new confidential harts and traverses the VM’s page ta-
ble hierarchy copying non-zeroed pages from non-confidential
memory into confidential memory. After measuring the ini-
tial TVM state, it performs local attestation to decide whether
or not the TVM is allowed to execute. The Above process
can also be initialized by the hypervisor. In all cases, a TVM
owner must establish trust with the TVM using an attestation
mechanism.

Local attestation. Local attestation provides attestation for
TVMs that execute with limited or no network access. When
the hypervisor requests the TSM to create a TVM, it passes
to the TSM both the TVM’s image and a dedicated file called
TEE attestation payload (TAP). The TSM verifies the TVM’s
integrity by comparing it with reference measurements from
the TAP and stores TVM’s secrets retrieved from the TAP in
confidential memory. A verified TVM can use a dedicated ABI
call to retrieve secrets from the TSM.

The TVM’s integrity measurement includes the crypto-
graphic hashes of the TVM’s code and data, flattened device
tree, and the initial confidential hart’s state. This is stored in
dedicated registers analogous to platform configuration regis-
ters (PCRs) [3]. The TVM’s data integrity is a single hash, the
value of which uniquely represents the initial content of the
TVM’s code and data pages.

The TVM’s owner creates a TAP by encrypting a payload,
which contains integrity measurements and secrets, and con-
catenates it with a lockbox. The lockbox stores the symmetric
key encrypted with the public portion of the TSM’s attestation
key, which is an asymmetric cryptographic key. Only the TSM
running in the target hardware can then decrypt the symmet-
ric key and the payload. A TVM owner can permit running a
TVM image on different hardware by attaching multiple lock-

7

boxes to the TAP.
The TAP format supports post-quantum cryptography

(PQC), so that an adversary possessing a powerful enough
quantum computer is not able to decrypt confidential TAP
information. Specifically, the TSM uses quantum-safe algo-
rithms, such as ML-KEM [46] to encapsulate the TAP sym-
metric key in the lockbox, SHA-384 to calculate the TVM’s in-
tegrity measurements, and AES-GCM-256 to encrypt the pay-
load. The TAP format also supports cryptographic agility, be-
cause each lockbox defines the type of algorithm that encrypts
the TAP symmetric key to allow a TVM owner to choose a
PQC algorithm of their choice.

5.4 Selected Confidential Flow Handlers

Symmetrical multiprocessing. ACE supports symmetrical
multiprocessing which enables a TVM to have multiple confi-
dential harts.

When creating a TVM, the TSM enables only the TVM’s
boot hart and sets other confidential harts to the powered off
state. The boot hart can then request the TSM to start another
confidential hart at the indicated guest physical address and
with specific initial arguments. The TSM follows the finite
state machine defined in the hart state management (HSM) ex-
tension to RISC-V supervisor binary interface (SBI) [43] to
track and ensure proper lifecycle state changes. The TSM
also permits confidential harts to send inter processor inter-
rupts (IPIs), as well as dedicated commands to clear remote
caches, to other confidential harts as defined in the respective
SBI extensions [43].

Timer programming and interrupt handling. The ACE
implementation relies on the hypervisor to manage a TVM’s
external interrupts and on hardware to provide the per-hart
timers.3 ACE also supports systems with a basic hardware in-
terrupt controller [24] without requiring support for the com-
plex RISC-V AIA specification [4].

During the TVM’s execution, all of the guest’s interrupts
(RISC-V VS-mode) trap directly into the TVM, because of the
TSM interrupt delegation setup. Other interrupts, like an ex-
ternal interrupt or a software interrupt, trap into the TSM. For
external interrupts, the TSM returns execution to the hypervi-
sor so that it can decide who is the recipient of the interrupt. If
the interrupt targets a TVM, the hypervisor requests the TSM
to resume the TVM’s execution and inject the interrupt whose
identifier is in a dedicated CSR. After the security domain con-
text switch, the TSM decides whether to inject the interrupt to
a TVM by checking which interrupts the TVM agreed to re-
ceive. If the TSM is not executing, all interrupts go either to
the hypervisor or the VM as indicated by the configuration.

3The evaluation board we used to measure the performance of ACE did
not support Sstc. Consequently, we added support for hardware without a
VS-level hardware timer to enable evaluating ACE’s performance. The CoVE
spec mandates that hardware provide the RISC-V Sstc extension.

A TVM manages its own timer by programming a dedicated
CSR specified by the RISC-V Sstc extension [64]. The TSM
ensures proper resumption of the timer after the security do-
main context switch. Following the CoVE spec, the TSM dis-
closes by reclassifying the timer value to the hypervisor for
scheduling purposes.

5.5 Formal Verification Foundation
We have designed ACE with the goal of providing a high-
trust implementation in mind. This influenced the design of
the ABI, as well as its implementation, where unsafe code is
minimized and safely encapsulated.

Rust memory safety Rust aims to provide memory safety
guarantees, which hold as long as only the safe fragment of
the language is used. However, for low-level software like the
TSM, unsafe code is inherently necessary to interface with the
hardware and do low-level memory manipulation. Unfortu-
nately, a memory safety error in a piece of unsafe code can
nullify the memory safety guarantees of all other code, includ-
ing safe Rust code. Thus, it is important to both minimize the
amount of unsafe code and to scrutinize it.

The TSM implementation tries to minimize unsafe code by
developing safe abstractions over core sources of unsafety that
can be re-used across the code – one such abstraction are the
page tokens mentioned earlier. In total, the TSM code base
has 55 unsafe blocks, each of which is usually very short, with
an average size of just over 4 lines. Of these unsafe blocks,
12 are part of the TSM’s core memory management, 11 are
for interfacing with the hardware (e.g. reading CSRs), and 20
for flow handling and managing the state of confidential VMs.
In total, about 240 of the 8000 lines of Rust code are unsafe;
about 90 of the unsafe lines are for inline assembly backing up
or modifying registers. Thus, we argue that it is possible to do
effective low-level systems programming with relatively little
unsafe code.

ABI design The primary attack surface of the TSM is the
ABI. For that reason, in our design we minimized the ABI
between the TSM and hypervisor, and between the TSM and
a TVM. The promote call is the most complex ABI with the
largest input. To handle this call, the TSM must traverse the
multi-level page table hierarchy and parse individual interme-
diate page tables. Because the hypervisor creates these page
tables, it can maliciously craft the content of these page tables
to exploit a buggy TSM implementation.

For example, one of the attacks consists of defining a pointer
to a data page that resides in the confidential memory. When
handling the promote call, an incorrectly implemented TSM
would copy the contents of an arbitrary confidential memory
region to a new confidential page mapped to the attacker’s
TVM. To mitigate this class of attacks, the TSM allows a hy-
pervisor and a TVM to pass as input arguments only memory

8

addresses they own, i.e., non-confidential memory and guest
physical addresses, respectively. To enforce this requirement
statically during compile time, we define dedicated Rust types
for each type of memory address. At ABI entry points, all
memory addresses are validated in order to obtain valid (non-
)confidential memory addresses that can be trusted in the rest
of the security monitor. These kinds of protections are possi-
ble thanks to the rich Rust type system which guarantees non-
trivial properties even without complex deductive verification
tools.

Initial Formal Verification In ongoing work, we formally
verify the TSM using RefinedRust [21]. RefinedRust verifies
programs modularly, which means that individual functions
are given a specification and verified independently of each
other to then compose to a verification result for the whole
program.

As explained in Section 4, we integrate formal verifica-
tion methodology into our design and implementation process.
During the design phase, we state individual module invari-
ants that the implementation has to uphold. After the module
has been implemented, we annotate the Rust code with spec-
ifications for individual functions and data structures. While
writing the specifications, individual interfaces may be hard
to specify. In this case, the proof engineer and system engi-
neer iterate to simplify the code and make it more amenable to
formal specification.

Based on the module’s specifications, RefinedRust gener-
ates a formal model of the Rust code and specifications in the
Rocq prover [60], as well as a proof template in Rocq using
RefinedRust’s automation tactics. If the automatic proof does
not succeed, the proof engineer can interactively add hints to
RefinedRust until the verification succeeds. The specification
and proof are then checked into continuous verification, where
RefinedRust continuously updates the model of the code when
it is changed, and checks the specifications and proofs against
the model. If a change to the code breaks the proof, the con-
tinuous verification rejects the code.

RefinedRust verifies functional correctness of the code
against the specification, as well as memory safety of safe and
unsafe code, and absence of panics. For unsafe code, we use
RefinedRust to verify that functions adhere to Rust’s safety
contract for all inputs, ensuring that all clients only using safe
Rust code cannot trigger memory unsafety.

To demonstrate our approach, let us take a look at a part
of the memory safety proof for page tokens. Page tokens are
crucial to ensure isolation between security domains, i.e., no
two security domains have access to the same page in con-
fidential memory. Figure 5 shows excerpts of the invariant
on page tokens. The invariant on Page specifies that page to-
kens are mathematically modeled by a type page we define
in Rocq, with the following components: the memory location
page_loc, the stored sequence of words page_val, and the size
page_sz. Then, the core invariant is that a page token exclu-

1 #[rr::refined_by("p" : "page")]
2 /// Invariant: A Page exclusively owns its memory region.
3 #[rr::invariant(#type "p.(page_loc)" : "p.(page_val)" @
4 "array usize (page_sz_in_words p.(page_sz))")]
5 /// Invariant: The page is well-formed.
6 #[rr::invariant("page_wf p")]
7 /// Omitted: the page resides in confidential memory
8 #[rr::invariant("...")]
9 pub struct Page {

10 #[rr::field("p.(page_loc)")]
11 address: ConfidentialMemoryAddress,
12 #[rr::field("p.(page_sz)")]
13 size: PageSize,
14 }
15 impl Page {
16 /// Precond: offset is divisible by the size of usize.
17 #[rr::requires("size_of usize | off_bytes")]
18 /// Precond: a usize fits at the offset within page bounds
19 #[rr::requires("off_bytes + size_of usize ≤
20 page_sz_in_bytes p.(page_sz)")]
21 /// Postcond (omitted): return value is read from page
22 #[rr::ensures("...")]
23 fn read(&self, off_bytes: usize) -> Result<usize, Error> {
24 unsafe { .. }
25 }}

Figure 5: Definition of the page token invariant in the
RefinedRust specification language.

sively owns the memory region it spans, containing the list of
words page_val. We state this by providing a RefinedRust
type assignment for the page_loc location.

The function read on Pages reads one machine word from
the page. It does so by using unsafe code to read from the
page’s underlying memory. Nevertheless, the function as a
whole is safe (i.e. not marked as unsafe), as read does appro-
priate bounds and alignment checks (e.g. that the read word is
in confidential memory and inside the page) before perform-
ing the read, returning an error in case of an invalid input. The
RefinedRust specification we annotate on the function spec-
ifies the conditions under which the read succeeds, and the
expected result value.

The page token abstraction is useful, as it safely abstracts
from the low-level memory operations that it is implemented
with. With verification tools like RefinedRust, we can verify
once and for all that this abstraction is sound and upholds the
safety guarantees of Rust’s type system. Other components of
ACE like the page allocator can thus be assumed to be free
of memory safety errors before fully verifying them for func-
tional correctness and security – and once we fully verify them,
Rust’s safety proof can be re-used to simplify the full verifica-
tion.

6 Evaluation

ACE has been designed from the ground up to be minimalis-
tic, take advantage of commodity hardware features, and be
amenable to verification. We evaluate next whether ACE ham-
pers the TVM’s runtime performance and memory overhead
compared with a normal VM. Specifically, we analyze the im-
pact of the TSM on the system’s performance as the TSM plays

9

mid
rea

d

big
 fo

rkc
hild

hu
ge

 m
map po

ll
ge

tpi
d

big
 fo

rk

big
 pa

ge
 fa

ult

mid
write

hu
ge

 fo
rkc

hild sen
d

hu
ge

 fo
rk

big
 m

map

con
tex

t s
iwtch

sel
ect

 bi
g

rec
v

big
 re

ad

thr
 cr

ea
tec

hild ref

hu
ge

 re
ad

hu
ge

 pa
ge

 fa
ult

hu
ge

 write

hu
ge

 m
un

map

sm
all

mun
map

sm
all

pa
ge

 fa
ult ep

oll

mid
mmap cpu

mid
pa

ge
 fa

ult

big
 m

un
map

sm
all

rea
d

big
 re

cv

po
ll b

ig

sm
all

write
sel

ect

for
kch

ild

ep
oll

big

sm
all

mmap

big
 se

nd

big
 write

mid
mun

map for
k

thr
 cr

ea
te

0

1

2

Ru
nt

im
e

 (r
el

at
iv

e
to

 N
OA

EE
) NormalVM_NOAEE NormalVM

Figure 6: Overhead of running LEBench in a normal VM on system with ACE to a system without ACE.

mid
rea

d

big
 fo

rkc
hild

hu
ge

 m
map po

ll
ge

tpi
d

big
 fo

rk

big
 pa

ge
 fa

ult

mid
write

hu
ge

 fo
rkc

hild sen
d

hu
ge

 fo
rk

big
 m

map

con
tex

t s
iwtch

sel
ect

 bi
g

rec
v

big
 re

ad

thr
 cr

ea
tec

hild ref

hu
ge

 re
ad

hu
ge

 pa
ge

 fa
ult

hu
ge

 write

hu
ge

 m
un

map

sm
all

mun
map

sm
all

pa
ge

 fa
ult ep

oll

mid
mmap cpu

mid
pa

ge
 fa

ult

big
 m

un
map

sm
all

rea
d

big
 re

cv

po
ll b

ig

sm
all

write
sel

ect

for
kch

ild

ep
oll

big

sm
all

mmap

big
 se

nd

big
 write

mid
mun

map for
k

thr
 cr

ea
te

0

1

2

Ru
nt

im
e

 (r
el

at
iv

e
to

 N
or

m
al

VM NormalVM TVM

Figure 7: Overhead of running LEBench in a TVM vs a normal VM running on top of ACE.

a critical role during the booting of VMs and context switch-
ing of security domains such as during interrupt handling and
direct invocation via the ABI by a TVM. We seek to answer
the following key questions:

• What is the overhead of the TSM on TVM’s execution?
• How efficient is I/O in TVMs?
• What is the impact on TVM’s boot time?
• What is the implementation complexity and memory

overhead of the page token mechanism?

Evaluation setup. We run evaluation on a SiFive P550 evalu-
ation board equipped with ESWIN EIC7700X system on chip
with four 64 bit RISC-V 1.4 GHz cores supporting imafdch,
zicsr, zifencei, zba, zbb, sscofpmf extensions. The board has
16 GB RAM, 8 PMPs, and Sv48x4 MMU. The host operat-
ing system runs Linux kernel 6.6.21 with CoVE and ESWIN
patches that enable support for CoVE and P550 hardware.

The TSM runs with OpenSBI in M-mode and uses two
PMPs to define the confidential memory in the upper half of
the main memory. The evaluation board is not fully compliant
with the requirements of the CoVE spec and implements the
pre-ratified version of the RISC-V H extension. Thus, we had
to emulate certain functionalities inside the TSM. Specifically,
(1) the TSM reads the TVM’s instruction that trapped into the
TSM because such information is not provided in the mtinst
register, (2) the TSM virtualizes the VS-level timer because
the hardware does not implement the Sstc extension, (3) the
TSM emulates TVM’s access to the clock because hardware
does not provide it via the CSR TIME. Since hardware does
not implement a root-of-trust for attestation, we utilized a hard
coded attestation key to evaluate the local attestation mecha-
nism.

6.1 ACE’s Overhead

To evaluate the impact of CoVE patches on the Linux kernel
and runtime overhead of the TSM, we ran LEBench [49] on
VMs and TVMs with and without ACE. Since the evaluation
board’s hardware clock does not support nanosecond accuracy,
we modified LEBench to measure a batch of operations as a
single measurement to ensure that a single measurement runs
longer than 1µs.

Figure 6 shows that a normal VM executed on Linux KVM
with CoVE patches and OpenSBI with the TSM performs
mostly similarly to a normal VM running without a TSM. In
the case with the TSM, normal VM has lower performance
for read/write, page fault, and context switch operations. This
could be a result of additional execution paths and branches
inside Linux KVM that were added by the experimental patch
with support for the RISC-V nested acceleration extension
(NACL) and a level of indirection introduced by the TSM. The
CoVE spec requires NACL to share CSRs values between the
TSM and KVM and current the implementation affects both
normal VMs and TVMs.

Figure 7 shows that core Linux kernel operations have sim-
ilar performance for a TVM and a normal VM, except for
mmap and page fault operations for which we observed be-
tween 5% and 16% performance increase for a TVM com-
pared with a normal VM. It might be caused by the way the
TSM manages TVM’s address translation, timers, and caches.
The TSM never pages out confidential memory pages, prevent-
ing G-stage page faults. Moreover, timer interrupt handling
and scheduling happens directly in the TSM (M mode) while
the regular VM’s timer interrupts must be handled by KVM
(HS mode) with help of OpenSBI (M mode).

For the ref benchmark, which measures the time to read the

10

clock value managed by the Linux kernel, we observe signif-
icant latency increase for TVMs. This might be caused by
the way we compensated for the lack of hardware support
for nanosecond accuracy clocks and guest (VS-level) timers.
We anticipate that this problem will go away with production-
grade hardware that better adheres to the RISC-V CoVE spec-
ification.

ACE’s multi-VCPU overhead To get a better idea of whether
the TSM causes any overhead when multiplexing between
VCPUs within a VM, we use the parallel mode of Core-
Mark [12] to launch different numbers of instances of the
benchmark inside a multi-VCPU VM. Each VM is given 4,
8, and 16 VCPUs to match the benchmark’s level of concur-
rency (number of parallel processes). Table 1 shows that the
TSM does not introduce any significant performance differ-
ences when multiplexing the different VCPUs within a VM
across the different configurations.

6.2 Network I/O
We analyzed ACE’s impact on performance of a Virtio device
by measuring network I/O overhead in a TVM. To do so, we
measured throughput and latency of an Nginx server for each
VM type and varying number of VCPUs. The Nginx server
and the ab benchmarking tool run on separate machines con-
nected to the same switch. ab used 8 threads to generate 10k
requests for the same 615 B file. VMs were configured with
5 GB of memory and run Nginx with the number of workers
matching the number of VCPUs. We run experiment five times
and present average with standard deviation.

Figure 8 shows large throughput variation for normal VMs
(between 550 to 1350 req/sec) and drop in throughput when
adding more than 2 VCPUs. Similarly, TVMs throughput
decreases when adding more VCPUs and constitutes 48% of
the normal VM’s throughput, before overcommitment of VC-
PUs on physical harts. When the number of VCPUs exceeds
number of harts, we observe increase in latency and drop in
throughput (up to 8x). We do not anticipate this degradation to
be a major impediment in real-world settings as resource over-
subscription is not a typical deployment pattern for embedded
systems.

The TVM’s lower performance for Virtio is caused by ACE
security measures: use of bounce buffers and security domain
context switches. Bounce buffers are needed because ACE
does not allow hypervisor to perform direct memory access

Table 1: CoreMark benchmark results when running inside the
respective VMs. Reported values are means from three runs
along with standard deviation.

of proc VM NOACE VM TVM
4 30003 ± 776 30387 ± 1172 29373 ± 713
8 32191 ± 325 32368 ± 148 31614 ± 497
16 32952 ± 91 33055 ± 14 32822 ± 40

1 2 3 4 5 6 7 8
VCPUs

0

200

400

600

800

1000

1200

1400

1600

1800

Re
qu

es
ts

 p
er

 se
co

nd

VM_NOAEE
VM
TVM

20

40

60

80

La
te

nc
y

(m
s)

VM_NOAEE_LAT
VM_LAT
TVM_LAT

Figure 8: Network I/O performance when hosting Nginx
server in VMs with different numbers of VCPUs.

(DMA) in confidential memory (similar to other confidential
computing approaches [10, 56, 28]) and security domain con-
text switches prevent covert and side channels. The latter re-
sults in cache misses on every context switch because the TSM
clears all microarchitectural state when switching control be-
tween a TVM’s VCPU and the hypervisor.

6.3 Boot Time
We measured a VM boot time from the point we request its
creation to the point we established an SSH connection to in-
clude overhead of local attestation, initialization of virtio de-
vices, and network communication. The results show an aver-
age time calculated over eight measurements.

Figure 9 presents boot times of normal VMs and TVMs for
different memory sizes and number of VCPUs. Since TVMs’
zeroed pages are lazily loaded, boot times for TVMs, similarly
to normal VMs, scale with the memory size. We see slower
boot times (10 sec increased to up to 30 sec) caused by local
attestation and slower I/O for TVMs. The increased boot time
when adding more VCPUs to a TVM can be caused by the
synchronization between VCPUs: additional IPIs trigger more
context switches that result in cache misses due to security do-
main context switches. ACE does not impact a normal VMs
boot time compared to a non ACE system.

6.4 Page Token Memory Overhead
A single page token occupies 9 B in main memory regardless
of the page size it represents. The page allocator stores page
tokens in a tree data structure, in which every level corresponds
to a different architectural page size, adding extra 32 B of in-
formation per not-empty node. The presence of a page token in
the tree indicates that a page can be allocated. To allow alloca-
tion of smaller pages, large page tokens are split into smaller
ones. An analogous operation, merging, occurs when pages

11

1 2 3 4 5
Memory size (GB)

0

5

10

15

20

25

30

35

Bo
ot

 ti
m

e
(s

)

VM 1VCPU
TVM 1VCPU

1 2 3 4
VCPUs

0

5

10

15

20

25

30

35
VM 1G
TVM 1G

Figure 9: Average time to boot a normal VM and a TVM with
different memory size and number of VCPUs. Bars show stan-
dard deviation.

are deallocated and returned to the page allocator. In such
cases, multiple contiguous smaller page tokens are merged into
a larger single page token, reducing the number of nodes in the
tree. Thus, the latency of allocation/de-allocation operations is
independent of fragmentation of the confidential memory, and
the number of unallocated page tokens is minimized. In more
detail, 1 GiB of unallocated confidential memory can be repre-
sented as a single 1 GiB page token, taking then only 9 B of the
ACE heap. If all page tokens representing the smallest archi-
tectural page size (4 KiB) are allocated, then page allocator’s
tree is empty but allocated page tokens are stored in TVM’s
specific structures. In such case, the overhead of page tokens
is the largest and results in occupancy of 2.25 MiB of ACE
heap for every 1 GiB of confidential memory.

7 Related Work

Target use cases. ACE is tailored for mid- to high-end, off-
the-shelf, embedded RISC-V processors. Other VM-based
confidential computing systems target AI, cloud, and multi-
tenant high-end systems. A summary of confidential comput-
ing technology for high-end systems (e.g., from AMD, ARM,
and Intel) appears in the Related Work section of [54]. Some
design concepts from one such system, IBM’s Protected Exe-
cution Facility [28] were incorporated into ACE: open source
software, secure boot, TAP data structures for local attestation,
security domains, and hardware-enforced memory access con-
trol managed by privileged firmware.

Commodity Hardware. Confidential computing systems rely
on hardware to isolate resources, protect the execution state,
and meet performance targets. ACE builds upon, but does not
rely on custom hardware, nor on hardware that requires license
fees. The CoVE architecture [54] with its Salus TSM reference
implementation [31] requires extensions to the RISC-V ISA
such as a protected execution state and scalable isolation of
resources [53]. IBM Z Secure Execution for Linux [30] uses
powerful hardware-accelerated cryptography to protect mem-
ory from physical attacks. ACE does not protect against phys-

ical attacks.

Process-based TEEs. Other commercial and academic sys-
tems target process-based confidential computing for RISC-V:
Cerberus [37], Keystone [38], OP-TEE [63], Penglai [17], Ser-
vas [58], Timber-V [65], Sanctum [13], SPEAR-V [55], and
Elasticlave [66].

Formal verification of systems. CertiKOS [25] is a frame-
work for verification of operating system kernels. However,
it is still written in an inherently unsafe combination of C
and x86 assembly, putting greater needs for abstraction on the
verification methodology. The verification proceeds in layers
that progressively abstract implementation details in the Rocq
proof assistant. It was used to verify the mCertiKOS hypervi-
sor.

ARM CCA [1] is a confidential computing architecture for
ARM, in which realm management monitor (RMM) has a sim-
ilar role to ACE’s TSM. RMM is implemented in C and assem-
bly, and thus there is a higher risk for vulnerabilities caused by
memory unsafety. Li et al. [39] verify an early snapshot of
the RMM implementation using CertiKOS’ approach, incre-
mentally abstracting to a small top-level specification in Rocq.
However, their proof cannot be easily updated when the code
evolves. Fox et al. [19] propose continuous verification of the
RMM implementation, using a combination of interactive the-
orem proving in the HOL4 proof assistant for a core model,
and bounded model checking and concurrency-aware testing
for the actual system. This results in less high assurances, but
enables a larger-scale integration.

Verismo [67] functionally verifies firmware implemented in
Rust and running inside a confidential VM on AMD SEV-
SNP [56]. It relies on the isolation boundary provided by the
AMD platform security processor (PSP), while ACE’s TSM
is functionally closer to firmware running inside PSP. Their
approach to formal verification differs from ours by using
Verus [35]: Verus is faster and more automated for proving
functional specifications, while RefinedRust offers higher as-
surances due to its foundational verifier and smaller trusted
computing base. Verus trusts unsafe Rust code, whereas we
verify unsafe code. Additionally, Verus’s proofs require sig-
nificant modifications to the Rust source code, while we aim
to verify idiomatic Rust code.

Komodo [18] is a process-based TEE that builds on top of
ARM TrustZone. Due to its implementation in assembly it has
limited potential to scale in terms of verification for VM-based
TEEs. NOVA [57] is a microhypervisor that, similarly to ACE,
follows a philosophy of minimizing the critical code base and
reducing to the core functionality. Verification of its variant
in ongoing work [26]. GlobalPlatform [22] publishes security
standards for IoT devices through its Common Criteria Protec-
tion Profile (PP) for TEEs. ProveriT [27] is a verified formal
specification of the GlobalPlatform PP for TEEs. In contrast,
we do not aim to just verify the specification, but the concrete
implementation of ACE.

12

8 Conclusion
We introduced principles and a methodology to design and im-
plement high-assurance embedded systems. We applied these
to build ACE, an open-source and royalty-free confidential
computing for embedded RISC-V processors. Thus far we
have formally verified the memory safety of a core part of the
ACE implementation. The formal verification of the rest of the
implementation and security properties is work in progress.
Our work on ACE was used to extended the RISC-V CoVE
spec with a deployment model targeting embedded systems.

We are first to evaluate VM-based confidential computing
on RISC-V hardware. The results show that a confidential VM
running on this hardware, which does not have confidential
computing-specific extensions, is practical. ACE incurs low
performance overhead for process-intensive workloads and up
to 50% overhead for multi-vcpu network intensive workloads.

Acknowledgement
We would like to thank SiFive for making a P550 evaluation
board available to us, as well as Warren Lew and John Chasko
for their support during the initial setup. We thank also our
colleagues from the RISC-V community for great collabora-
tion on the RISC-V specifications, especially Ravi Sahita and
Atish Kumar Patra for feedback on our design and extensions
to the Linux KVM’s CoVE patches.

References
[1] Arm confidential compute architec-

ture. https://www.arm.com/
architecture/security-features/
arm-confidential-compute-architecture.
Accessed on May 2025.

[2] William A Arbaugh, David J Farber, and Jonathan M
Smith. A secure and reliable bootstrap architecture. In
Proceedings. 1997 IEEE Symposium on Security and
Privacy (Cat. No. 97CB36097), pages 65–71. IEEE,
1997.

[3] Will Arthur and David Challener. A Practical Guide to
TPM 2.0: Using the Trusted Platform Module in the New
Age of Security. Apress, 2015.

[4] Krste Asanovic, Paul Donahue, Greg Favor, John
Hauser, James Kenney, David Kruckemyer, Shubu
Mukherjee, Stefan O’ear, Vernon Pang, Anup Pa-
tel, Josh Scheid, Ved Shanbhogue, and Andrew
Waterman. The risc-v advanced interrupt archi-
tecture, version 1.0. https://github.com/riscv/riscv-
aia/releases/download/1.0/riscv-interrupts-1.0.pdf, 2023.

[5] Christian Bornträger, Jonathan D Bradbury, Reinhard
Bündgen, Fadi Busaba, Lisa Cranton Heller, and Vik-
tor Mihajlovski. Secure your cloud workloads with ibm
secure execution for linux on ibm z15 and linuxone iii.
IBM Journal of Research and Development, 64(5/6):2–1,
2020.

[6] Andrew Bresticker, Andy Dellow, Atish Patra, Atul
Khare, Beeman Strong, Christian Bolis, Dingji Li, Dong
Du, Dylan Reid, Eckhard Delfs, Fabrice Marinet, Guer-
ney Hunt, Jiewen Yao, Kailun Qin, Manuel Offenberg,
Nicholas Wood, Nick Kossifidis, Osman Koyuncu, Qing
Li, Rajnesh Kanwal, Ravi Sahita, Rob Bradford, Samuel
Ortiz, Steven Bellock, Vedvyas Shanbhogue, Wojciech
Ozga, and Yann Loisel. Confidential vm extension (cove)
for confidential computing. https://github.com/
riscv-non-isa/riscv-ap-tee/releases/
download/v0.7/riscv-cove.pdf, accessed on
May 2025.

[7] Fabiana Cambricoli. Nova falha do Ministe-
rio da Saude expoe dados pessoais de mais
de 200 milhoes de brasileiros. https://
saude.estadao.com.br/noticias/geral,
nova-falha-do-ministerio-da-saude-expoe-dados-pessoais-de-mais-de-200-milhoes,
70003536340, accessed on May 2025.

[8] Charly Castes, Neelu S. Kalani, Sofia Saltovskaia, Noé
Terrier, Abel Vexina Wilkinson, and Edouard Bugnion.
Kicking the firmware out of the tcb with the miralis vir-
tual firmware monitor. In Proceedings of the 2nd Work-
shop on Kernel Isolation, Safety and Verification, KISV
’24, 2024.

[9] Katharina Ceesay-Seitz, Flavien Solt, and Kaveh Razavi.
uCFI: Formal Verification of Microarchitectural Control-
flow Integrity. In CCS, October 2024.

[10] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez,
Salman Ahmed, Zhongshu Gu, Hani Jamjoom, Huber-
tus Franke, and James Bottomley. Intel tdx demystified:
A top-down approach. arXiv preprint arXiv:2303.15540,
2023.

[11] Chromium. The chromium projects - memory
safety. https://www.chromium.org/Home/
chromium-security/memory-safety/, ac-
cessed on May 2025.

[12] Embedded Microprocessor Benchmark Consortium.
coremark. https://github.com/eembc/
coremark, 2025.

[13] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanc-
tum: Minimal hardware extensions for strong software
isolation. In 25th USENIX Security Symposium (USENIX
Security 16), 2016.

13

https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://github.com/riscv-non-isa/riscv-ap-tee/releases/download/v0.7/riscv-cove.pdf
https://github.com/riscv-non-isa/riscv-ap-tee/releases/download/v0.7/riscv-cove.pdf
https://github.com/riscv-non-isa/riscv-ap-tee/releases/download/v0.7/riscv-cove.pdf
https://saude.estadao.com.br/noticias/geral,nova-falha-do-ministerio-da-saude-expoe-dados-pessoais-de-mais-de-200-milhoes,70003536340
https://saude.estadao.com.br/noticias/geral,nova-falha-do-ministerio-da-saude-expoe-dados-pessoais-de-mais-de-200-milhoes,70003536340
https://saude.estadao.com.br/noticias/geral,nova-falha-do-ministerio-da-saude-expoe-dados-pessoais-de-mais-de-200-milhoes,70003536340
https://saude.estadao.com.br/noticias/geral,nova-falha-do-ministerio-da-saude-expoe-dados-pessoais-de-mais-de-200-milhoes,70003536340
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://github.com/eembc/coremark
https://github.com/eembc/coremark

[14] Common Criteria. Common criteria for infor-
mation technology security evaluation: Part 5:
Pre-defined packages of security requirements.
https://www.commoncriteriaportal.
org/files/ccfiles/CC2022PART5R1.pdf,
2022.

[15] Natasha Dailey. The hackers that attacked
a major US oil pipeline say it was only for
money — here’s what to know about DarkSide.
https://www.businessinsider.com/
pipeline-cyber-attack-darkside-hacker-group-shutdown-ransomware-money-politics-oil-2021-5?
op=1&r=US&IR=T, accessed on May 2025.

[16] RTCA / EUROCAE. Formal methods supplement to do-
178c [ed-12c] and do-178a [ed-109a]. DO-333/ED-218,
2011.

[17] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang
Jiang, Yubin Xia, Binyu Zang, and Haibo Chen. Scalable
memory protection in the PENGLAI enclave. In 15th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), pages 275–294. USENIX
Association, July 2021.

[18] Andrew Ferraiuolo, Andrew Baumann, Chris Haw-
blitzel, and Bryan Parno. Komodo: Using verification
to disentangle secure-enclave hardware from software.
In 26th ACM Symposium on Operating Systems Princi-
ples, pages 287–305. ACM, October 2017. The Komodo
specification, prototype implementation, and proofs are
available at https://github.com/Microsoft/Komodo.

[19] Anthony C. J. Fox, Gareth Stockwell, Shale Xiong,
Hanno Becker, Dominic P. Mulligan, Gustavo Petri, and
Nathan Chong. A verification methodology for the arm®
confidential computing architecture: From a secure spec-
ification to safe implementations. Proc. ACM Program.
Lang., 7(OOPSLA1):376–405, 2023.

[20] BSI Bundesamt für Sicherheit in der Informationstech-
nik. Railway applications -communication, signalling
and processing systems - software for railway control and
protection systems. In European Standard EN 50128,
2011.

[21] Lennard Gaeher, Michael Sammler, Ralf Jung, Robbert
Krebbers, and Derek Dreyer. RefinedRust: Towards
high-assurance verification of unsafe Rust programs. In
Rust Verification Workshop, 2023.

[22] GlobalPlatform. TEE protection profile v1.3. https:
//globalplatform.org/specs-library/
tee-protection-profile-v1-3.

[23] Google. Google security blog - memory
safe languages in android 13. https:

//security.googleblog.com/2022/12/
memory-safe-languages-in-android-13.
html, accessed on May 2025.

[24] RISC-V Task Group. Risc-v platform-level interrupt con-
troller specification, version 1.0. https://github.
com/riscv/riscv-plic-spec/releases/
download/1.0.0/riscv-plic-1.0.0.pdf,
2023.

[25] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (New-
man) Wu, Jieung Kim, Vilhelm Sjöberg, and David
Costanzo. CertiKOS: An extensible architecture for
building certified concurrent os kernels. In OSDI, pages
653–669. USENIX Association, 2016.

[26] Hoang-Hai Dang, David Swasey, and Gre-
gory Malecha. Towards modular specifica-
tion and verification of concurrent hypervisor-
based isolation. https://www.bluerock.
io/formal-methods-publications/
towards-modular-specification, 2024.

[27] Jilin Hu, Fanlang Zeng, Yongwang Zhao, Zhuoruo
Zhang, Leping Zhang, Jianhong Zhao, Rui Chang, and
Kui Ren. Proverit: A parameterized, composable, and
verified model of tee protection profile. IEEE Trans. De-
pendable Secur. Comput., 21(6):5341–5358, November
2024.

[28] Guerney D. H. Hunt, Ramachandra Pai, Michael V. Le,
Hani Jamjoom, Sukadev Bhattiprolu, Rick Boivie, Lau-
rent Dufour, Brad Frey, Mohit Kapur, Kenneth A. Gold-
man, Ryan Grimm, Janani Janakirman, John M. Lud-
den, Paul Mackerras, Cathy May, Elaine R. Palmer,
Bharata Bhasker Rao, Lawrence Roy, William A. Starke,
Jeff Stuecheli, Enriquillo Valdez, and Wendel Voigt.
Confidential Computing for OpenPOWER. In Proceed-
ings of the Sixteenth European Conference on Computer
Systems, EuroSys ’21, 2021.

[29] Sander Huyghebaert, Steven Keuchel, Coen De Roover,
and Dominique Devriese. Formalizing, verifying and ap-
plying isa security guarantees as universal contracts. In
Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, pages 2083–
2097, 2023.

[30] IBM. Linux on IBM Z and IBM Linux-
ONE. https://www.ibm.com/docs/en/
linuxonibm/pdf/lx24se04.pdf, 2024.

[31] Rivos Inc. salus. https://github.com/
rivosinc/salus, accessed on May 2025.

[32] Intel. Intel software guard extensions (in-
tel sgx). https://www.intel.com/

14

https://www.commoncriteriaportal.org/files/ccfiles/CC2022PART5R1.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CC2022PART5R1.pdf
https://www.businessinsider.com/pipeline-cyber-attack-darkside-hacker-group-shutdown-ransomware-money-politics-oil-2021-5?op=1&r=US&IR=T
https://www.businessinsider.com/pipeline-cyber-attack-darkside-hacker-group-shutdown-ransomware-money-politics-oil-2021-5?op=1&r=US&IR=T
https://www.businessinsider.com/pipeline-cyber-attack-darkside-hacker-group-shutdown-ransomware-money-politics-oil-2021-5?op=1&r=US&IR=T
https://globalplatform.org/specs-library/tee-protection-profile-v1-3
https://globalplatform.org/specs-library/tee-protection-profile-v1-3
https://globalplatform.org/specs-library/tee-protection-profile-v1-3
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://github.com/riscv/riscv-plic-spec/releases/download/1.0.0/riscv-plic-1.0.0.pdf
https://github.com/riscv/riscv-plic-spec/releases/download/1.0.0/riscv-plic-1.0.0.pdf
https://github.com/riscv/riscv-plic-spec/releases/download/1.0.0/riscv-plic-1.0.0.pdf
https://www.bluerock.io/formal-methods-publications/towards-modular-specification
https://www.bluerock.io/formal-methods-publications/towards-modular-specification
https://www.bluerock.io/formal-methods-publications/towards-modular-specification
https://www.ibm.com/docs/en/linuxonibm/pdf/lx24se04.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/lx24se04.pdf
https://github.com/rivosinc/salus
https://github.com/rivosinc/salus
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html

content/www/us/en/developer/tools/
software-guard-extensions/overview.
html, Accessed on May 2025.

[33] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers,
and Derek Dreyer. Rustbelt: Securing the foundations
of the rust programming language. Proc. ACM Program.
Lang., 2017.

[34] Pau Ku and Channing Tang. RISC-V IOPMP
Specification Document: version 1.0.0-draft1.
https://github.com/riscv-admin/iopmp/
blob/main/specification/riscv_iopmp_
specification.pdf, accessed on May 2025.

[35] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias
Brun, Isitha Subasinghe, Yi Zhou, Jon Howell, Bryan
Parno, and Chris Hawblitzel. Verus: Verifying rust pro-
grams using linear ghost types. Proc. ACM Program.
Lang., 7(OOPSLA1):286–315, 2023.

[36] Stella Lau, Thomas Bourgeat, Clément Pit-Claudel, and
Adam Chlipala. Specification and verification of strong
timing isolation of hardware enclaves. In Proceedings of
the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, CCS ’24, 2024.

[37] Dayeol Lee, Kevin Cheang, Alexander Thomas,
Catherine Lu, Pranav Gaddamadugu, Anjo Vahldiek-
Oberwagner, Mona Vij, Dawn Song, Sanjit A. Seshia,
and Krste Asanovic. Cerberus: A formal approach to
secure and efficient enclave memory sharing. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’22, page
1871–1885, New York, NY, USA, 2022. Association for
Computing Machinery.

[38] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. Keystone: An open frame-
work for architecting trusted execution environments.
In Proceedings of the Fifteenth European Conference
on Computer Systems, pages 1–16, 2020. Repository:
https://github.com/orgs/keystone-enclave/repositories.

[39] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Ja-
son Nieh, Yousuf Sait, and Gareth Stockwell. Design and
verification of the arm confidential compute architecture.
In OSDI, pages 465–484. USENIX Association, 2022.

[40] Daniel Matichuk, Toby Murray, June Andronick, Ross
Jeffery, Gerwin Klein, and Mark Staples. Empirical
study towards a leading indicator for cost of formal
software verification. In International Conference on
Software Engineering, page 11, Firenze, Italy, February
2015.

[41] Nicholas D. Matsakis and Felix S. Klock, II. The rust
language. In Proceedings of HILT, 2014.

[42] NIST. Cve-2021-44228 detail. https://nvd.nist.
gov/vuln/detail/cve-2021-44228, 2021.

[43] RISC-V Platform Runtime Services
Task Grouphttps://github.com/riscv non-isa/riscv-
sbi-doc/releases/download/v2.0/riscv sbi.pdf.
Risc-v supervisor binary interface specification.
https://github.com/riscv-non-isa/
riscv-sbi-doc/releases/download/v2.0/
riscv-sbi.pdf, 2024.

[44] National Institute of Standards and Technology
(NIST). Security requirements for cryptographic mod-
ules. https://csrc.nist.gov/pubs/fips/
140-3/final, 2019.

[45] National Institute of Standards and Technology (NIST).
Cve-2024-3094 detail. https://nvd.nist.gov/
vuln/detail/cve-2024-3094, 2024.

[46] National Institute of Standards and Technology (NIST).
Fips 203: Module-lattice-based key-encapsulation
mechanism standard. https://csrc.nist.gov/
pubs/fips/203/final, 2024.

[47] Wojciech Ozga, Guerney D. H. Hunt, Michael V. Le,
Elaine R. Palmer, and Avraham Shinnar. Towards a for-
mally verified security monitor for vm-based confiden-
tial computing. In Proceedings of the 12th International
Workshop on Hardware and Architectural Support for
Security and Privacy, HASP2023, 2023.

[48] PCI-SIG. Tee device interface security protocol
(tdisp). https://members.pcisig.com/wg/
PCI-SIG/document/18268, 2022.

[49] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen,
Camilo Vega, Michael Stumm, and Ding Yuan. An anal-
ysis of performance evolution of linux’s core operations.
Huntsville, Ontario, Canada, October 2019.

[50] Reuters. Foreign Hackers Probe European
Critical Infrastructure Networks: Sources.
https://www.reuters.com/article/
us-britain-cyber-idINKBN19V1C7, accessed
on May 2025.

[51] RISC-V International, Western Digital Corporation
or its affiliates. RISC-V Open Source Supervisor
Binary Interface (OpenSBI). https://github.
com/riscv-software-src/opensbi, accessed
on May 2025.

[52] Ravi Sahita, Andy Dellow, Dean Liberty, Deepak
Gupta, Guerney Hunt, Krste Asanovic, Mark Hill, Nick
Wood, Osman Koyuncu, Paul Elliott, Ved Ortiz, Samuel
abd Shanbhogue, and Wojciech Ozga. RISC-V SmmTT:
Supervisor Domain Access Protection. https://

15

https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://github.com/riscv-admin/iopmp/blob/main/specification/riscv_iopmp_specification.pdf
https://github.com/riscv-admin/iopmp/blob/main/specification/riscv_iopmp_specification.pdf
https://github.com/riscv-admin/iopmp/blob/main/specification/riscv_iopmp_specification.pdf
https://nvd.nist.gov/vuln/detail/cve-2021-44228
https://nvd.nist.gov/vuln/detail/cve-2021-44228
https://github.com/riscv-non-isa/riscv-sbi-doc/releases/download/v2.0/riscv-sbi.pdf
https://github.com/riscv-non-isa/riscv-sbi-doc/releases/download/v2.0/riscv-sbi.pdf
https://github.com/riscv-non-isa/riscv-sbi-doc/releases/download/v2.0/riscv-sbi.pdf
https://csrc.nist.gov/pubs/fips/140-3/final
https://csrc.nist.gov/pubs/fips/140-3/final
https://nvd.nist.gov/vuln/detail/cve-2024-3094
https://nvd.nist.gov/vuln/detail/cve-2024-3094
https://csrc.nist.gov/pubs/fips/203/final
https://csrc.nist.gov/pubs/fips/203/final
https://members.pcisig.com/wg/PCI-SIG/document/18268
https://members.pcisig.com/wg/PCI-SIG/document/18268
https://www.reuters.com/article/us-britain-cyber-idINKBN19V1C7
https://www.reuters.com/article/us-britain-cyber-idINKBN19V1C7
https://github.com/riscv-software-src/opensbi
https://github.com/riscv-software-src/opensbi
https://github.com/riscv/riscv-smmtt/

github.com/riscv/riscv-smmtt/, accessed on
May 2025.

[53] Ravi Sahita and Atish Patra. Enabling
new security frontiers: Deep dive into con-
fidential computing on risc-v. https:
//lsseu2024.sched.com/event/1ebVO/
enabling-new-security-frontiers-deep-dive-into-implementing-confidential-computing-on-risc-v-ravi-sahita-rivos-inc0,
accessed on May 2025.

[54] Ravi Sahita, Vedvyas Shanbhogue, Andrew Bresticker,
Atul Khare, Atish Patra, Samuel Ortiz, Dylan Reid, and
Rajnesh Kanwal. Cove: Towards confidential computing
on RISC-V platforms. In Proceedings of the 20th ACM
International Conference on Computing Frontiers, pages
315–321, 2023.

[55] David Schrammel, Moritz Waser, Lukas Lamster, Mar-
tin Unterguggenberger, and Stefan Mangard. Spear-v:
Secure and practical enclave architecture for risc-v. In
Proceedings of the 2023 ACM Asia Conference on Com-
puter and Communications Security, ASIA CCS ’23,
page 457–468, New York, NY, USA, 2023. Association
for Computing Machinery.

[56] AMD Sev-Snp. Strengthening vm isolation with in-
tegrity protection and more. White Paper, January,
53(2020):1450–1465, 2020.

[57] Udo Steinberg and Bernhard Kauer. NOVA: a
microhypervisor-based secure virtualization architecture.
In EuroSys, pages 209–222. ACM, 2010.

[58] Stefan Steinegger, David Schrammel, Samuel Weiser,
Pascal Nasahl, and Stefan Mangard. Servas! secure en-
claves via risc-v authenticryption shield. In Computer
Security – ESORICS 2021: 26th European Symposium
on Research in Computer Security, Darmstadt, Germany,
October 4–8, 2021, Proceedings, Part II, page 370–391,
Berlin, Heidelberg, 2021. Springer-Verlag.

[59] Dina Temple-Raston. A ’worst nightmare’ cyberattack:
The untold story of the solarwinds hack. https:
//www.npr.org/2021/04/16/985439655/
a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack,
accessed on May 2025.

[60] The Coq Team. The Coq proof assistant. https://
coq.inria.fr/, accessed on May 2025.

[61] The New York Times. Hack of Saudi Petro-
chemical Plant Was Coordinated From Rus-
sian Institute. https://www.nytimes.
com/2018/10/23/us/politics/
russian-hackers-saudi-chemical-plant.
html, accessed on May 2025.

[62] The New York Times. Hackers Are Targeting Nuclear
Facilities, Homeland Security Dept. and F.B.I. Say.
https://www.nytimes.com/2017/07/06/
technology/nuclear-plant-hack-report.
html, accessed on May 2025.

[63] TrustedFirmware.org. About OP-TEE. https:
//optee.readthedocs.io/en/latest/
general/about.html#about-op-tee.

[64] Andrew Waterman, Krste Asanovi, and John
Hauser. The RISC-V Instruction Set Manual, Vol-
ume II: Privileged Architecture, Document Version
20241101. https://github.com/riscv/
riscv-isa-manual/releases/download/
riscv-isa-release-f32140c-2025-05-05/
riscv-privileged.pdf, accessed on May 2025.

[65] Samuel Weiser, Mario Werner, Ferdinand Brasser, Maja
Malenko, Stefan Mangard, and Ahmad-Reza Sadeghi.
Timber-v: Tag-isolated memory bringing fine-grained
enclaves to risc-v. 01 2019.

[66] Jason Zhijingcheng Yu, Shweta Shinde, Trevor E. Carl-
son, and Prateek Saxena. Elasticlave: An efficient mem-
ory model for enclaves. In 31st USENIX Security Sympo-
sium (USENIX Security 22), pages 4111–4128, Boston,
MA, August 2022. USENIX Association.

[67] Ziqiao Zhou, Anjali, Weiteng Chen, Sishuai Gong, Chris
Hawblitzel, and Weidong Cui. Verismo: A verified secu-
rity module for confidential vms. In OSDI, pages 599–
614. USENIX Association, 2024.

16

https://github.com/riscv/riscv-smmtt/
https://lsseu2024.sched.com/event/1ebVO/enabling-new-security-frontiers-deep-dive-into-implementing-confidential-computing-on-risc-v-ravi-sahita-rivos-inc0
https://lsseu2024.sched.com/event/1ebVO/enabling-new-security-frontiers-deep-dive-into-implementing-confidential-computing-on-risc-v-ravi-sahita-rivos-inc0
https://lsseu2024.sched.com/event/1ebVO/enabling-new-security-frontiers-deep-dive-into-implementing-confidential-computing-on-risc-v-ravi-sahita-rivos-inc0
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://coq.inria.fr/
https://coq.inria.fr/
https://www.nytimes.com/2018/10/23/us/politics/russian-hackers-saudi-chemical-plant.html
https://www.nytimes.com/2018/10/23/us/politics/russian-hackers-saudi-chemical-plant.html
https://www.nytimes.com/2018/10/23/us/politics/russian-hackers-saudi-chemical-plant.html
https://www.nytimes.com/2018/10/23/us/politics/russian-hackers-saudi-chemical-plant.html
https://www.nytimes.com/2017/07/06/technology/nuclear-plant-hack-report.html
https://www.nytimes.com/2017/07/06/technology/nuclear-plant-hack-report.html
https://www.nytimes.com/2017/07/06/technology/nuclear-plant-hack-report.html
https://optee.readthedocs.io/en/latest/general/about.html#about-op-tee
https://optee.readthedocs.io/en/latest/general/about.html#about-op-tee
https://optee.readthedocs.io/en/latest/general/about.html#about-op-tee
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-f32140c-2025-05-05/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-f32140c-2025-05-05/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-f32140c-2025-05-05/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-f32140c-2025-05-05/riscv-privileged.pdf

	Abstract
	Introduction
	Overview of ACE
	Open Source and Compliance
	Threat Model

	Design
	Design Methodology
	Key Design Choices & Invariants

	Implementation
	System Initialization
	Runtime
	Selected Non-confidential Flow Handlers
	Selected Confidential Flow Handlers
	Formal Verification Foundation

	Evaluation
	ACE's Overhead
	Network I/O
	Boot Time
	Page Token Memory Overhead

	Related Work
	Conclusion

