arXiv:2505.12968v1 [cs.CR] 19 May 2025

LARA: Lightweight Anonymous Authentication
with Asynchronous Revocation Auditability

Claudio Correia, Guilherme Santos, Luis Rodrigues
INESC-ID
Instituto Superior Técnico,
Universidade de Lisboa

Abstract—Anonymous authentication is a technique that
allows to combine access control with privacy preserva-
tion. Typically, clients use different pseudonyms for each
access, hindering providers from correlating their activities.
To perform the revocation of pseudonyms in a privacy
preserving manner is notoriously challenging. When mul-
tiple pseudonyms are revoked together, an adversary may
infer that these pseudonyms belong to the same client and
perform privacy breaking correlations, in particular if these
pseudonyms have already been used. Backward unlinkability
and revocation auditability are two properties that address
this problem. Most systems that offer these properties rely on
some sort of time slots, which assume a common reference
of time that must be shared among clients and providers;
for instance, the client must be aware that it should not use a
pseudonym after a certain time or should be able to assess the
freshness of a revocation list prior to perform authentication.
In this paper we propose LARA, a Lightweight Anonymous
Authentication with Asynchronous Revocation Auditability
that does not require parties to agree on the current time slot
and it is not affected by the clock skew. Prior to disclosing a
pseudonym, clients are provided with a revocation list (RL)
and can check that the pseudonym has not been revoked.
Then, they provide a proof on non-revocation that cannot
be used against any other (past or future) RL, avoiding any
dependency of timing assumptions. LARA can be implemented
using efficient public-key primitives and space-efficient data
structures. We have implemented a prototype of LARA and
have assessed experimentally its efficiency.

I. MOTIVATION AND GOALS

Authentication is a fundamental requirement in many
applications, ensuring that only authorized users can access
protected resources. However, authentication processes of-
ten pose privacy risks, as they may involve sensitive infor-
mation, such as habits or locations [32]. These concerns
are particularly relevant in edge applications, including
crowdsensing [16], [32], [30], [37] and vehicular networks
(VANETS)[34], [15], [4], where mobile clients must au-
thenticate frequently—such as when transitioning between
base stations or cells—leading to the continuous generation
of sensitive data. Information from multiple authentications
may be linked to extract additional information such as
daily routines [16] or health conditions [25] for financial
gain [28], [12], [24], [14], [17], [6].

Anonymous authentication offers both accountability
and privacy, protecting clients from curious application
providers while ensuring that only authorized participants
are able to use the application [33], [20], [23], [38].

Anonymous authentication can be achieved using Group
Signatures (GS) schemes [11], [8], [37] or pseudonym
certificates [27], [10]. A desirable feature of anonymous
authentication system is the ability to support revocation
without violating privacy. Revocation aims to prevent some
clients from further authenticating in the system. Client
revocation may be required in the event of credential
misuse, a change in client privileges, stolen secret keys,
or simply when a client leaves voluntarily.

Client revocation can be implemented in different ways.
We distinguish two main classes of revocation strategies,
namely, global client revocation and verifier local revoca-
tion. Strategies based on global client revocation require
all clients to obtain new credentials (or update their cre-
dentials) every time a single client is revoked. Examples of
this strategy include Ateniese et al. [2] (where the group
public key is renewed at each revocation) and Ohara et
al. [31] (where a small public membership message is
broadcast at each revocation). These approaches make re-
vocation very onerous in scenarios with many clients (e.g.,
consider vehicle numbers in VANETS) and impractical in
mobile settings, where clients may become temporarily
disconnected from the network. Strategies based on verifier
local revocation. (VLR) [8], [9] do not require that all
clients are contacted when a given client is revoked. Instead,
only the nodes that perform authentication (often called the
signature verifiers) have to be informed about the revoked
clients [35], [1], [22], [38], [20], [37]. In systems that
use pseudonyms, this involves sending to the verifiers a
Revocation List (RL) with the pseudonyms of the revoked
client. In systems based on group signatures, this involves
sending a cryptographic token that can be used to trace the
digital signatures of the revoked client. In this paper, we are
interested in systems that support verifier local revocation.

A challenge in revocation strategies is that, if one or
more credentials have been used before revocation, an
attacker can cross-check the information used for revocation
with the information collected when those pseudonyms
were used to break the privacy of the client. In order to
respect backward unlinkability [18], [23], [20], [29], client
revocation should not allow linking credentials that have
been used prior to the revocation. Previous strategies to
provide backward unlinkability assign credentials that are
valid only during a given time slot of a certain duration [18],
[23], [33], [37]. Recent work has shown that is possible

https://arxiv.org/abs/2505.12968v1

to make time slots very small [13], but do not eliminate
completely the tension between immediate revocation and
backward unlikability. Most critically, these approaches
assume a common time reference among all participants:
pseudonyms are bound and revoked based on time slots
and credentials are tied to specific time slots. If clocks are
not synchronized, authentication may fail because the client
and the verifier may be operating in distinct time slots.

Given that many revocation schemes cannot ensure pri-
vacy for clients that have been revoked, another desirable
property of an anonymous authentication system is revo-
cation auditability [19], that states that a client should be
able to see his revocation status, before each authentication,
avoiding the situation where a client tries to authenticate
with a pseudonym that has been revoked without being
aware of that fact. An example of a system that offers
revocation auditability is Nymble [40]. In Nymble, a client
is provided with a revocation list (RL) prior performing
authentication and can check is revocation status before
proceeding with the operation; if it finds that the pseudonym
it was planning to use has been revoked, it will not disclose
it to the verifier. Similarly to the systems mentioned in the
previous paragraph, Nymble also relies on the notion of
timeslots.

In this paper, we propose LARA, a Lightweight
Anonymous Authentication with Asynchronous Revocation
Auditability that does not rely on a shared notion of
time among clients and verifiers. Prior to disclosing a
pseudonym, clients are provided with a revocation list
(RL) and can check that the pseudonym has not been
revoked, in that specific RL (regardless of its status on
other RLs). Then, clients provide a proof on non-revocation
that works with the given RL but that cannot be used
against any other (past or future) RL, avoiding any depen-
dency of timing assumptions. Besides offering revocation
auditability, LARA offers strong backward (and forward)
unlinkability properties that are not tied to time intervals
(unlike many previous solutions [18], [23], [33], [37],
[13]). This feature allows LARA to achieve immediate
revocation for clients by publishing RLs without any time
interval delay, while also requiring smaller RLs. LARA can
be implemented using efficient public-key primitives and
space-efficient data structures. We propose and compare
3 alternative implementations of LARA that use Bloom
filters (in different ways) to construct the revocation list.
These implementations allow clients to perform the audit
efficiently. We have implemented a prototype of LARA and
have experimentally evaluated its efficiency.

II. REVOCATION AUDITABILITY

Despite the existence of various schemes for anonymous
authentication [13], [19], they face a significant challenge
in maintaining client anonymity after their revocation [19].
This issue arises in authentication systems that respect
verifier local revocation (VLR) [8], [9], as it requires
revocation lists to be published. The existence of these
lists allows an attacker to flag/identify the authentication

instances performed by a revoked client, which can be
exploited to link multiple authentications and, consequently,
compromise the client’s anonymity. An adversary can ex-
ploit these lists to link past and future authentications.
Backward unlinkability is the property that safeguards past
authentication anonymity. Revocation auditability, a key
goal of our system, aims to provide unlinkability in future
authentications performed by a revoked user.

Informally, revocation auditability means that a user has
the ability to verify his revocation status at a service
provider before attempting to authenticate [19], [40]. If the
user is indeed revoked, he can then safely disconnect from
the service without disclosing any potentially sensitive in-
formation. Otherwise, clients could be revoked without their
knowledge, and a malicious service provider might still
accept authentication requests from these revoked users,
thereby compromising their privacy. Such an attack can lead
to severe privacy breaches, enabling the service provider to
link all of the user’s actions, which is especially concerning
when schemes rely on uncircumventable forward linkability
for achieving revocability. In the literature on anonymous
authentication we have identified four main techniques to
achieve revocation auditablity:

Central authority: The simplest solution is to have clients
access a central and remote node that issues revocation lists.
Before each authentication, clients pull the most recent list
and verify their status in the system (i.e., whether they
have been revoked). However, this solution is not desirable
for large-scale and dynamic systems like distributed edge
storage systems or VANETS, where clients have intermit-
tent connections, and reliance on a central node can lead
to multiple availability failures. Additionally, it does not
respect VLR.

Contract-based revocation: Another approach is to use
contract-based revocation [19], [36], [26], where the con-
tract semantics are agreed upon by both the user and the
provider. This enables the user to determine whether a
certain action will constitute misbehavior before deciding
whether to engage in it. Thus, the client is aware that it may
be revoked after such an action. Unfortunately, due to the
large variety of applications nowadays, it is very difficult
to define all the possible behaviors a client may exhibit,
making these approaches inflexible and impractical.

Revocation list freshness: A more desirable approach is to
ensure that fresh revocation information reaches the client.
This is achieved by having RLs published at regular Af time
intervals, containing a signature with the corresponding
timestamp [40]. When a client performs authentication, it
can first request the local revocation list, which must have
a fresh signature for the current Az, and then check if it
has not been revoked; otherwise, it should halt the authen-
tication process. This is a practical and easily deployable
solution, but the downside is that Az imposes a tradeoff
between system availability (clients do not authenticate if
revocation information is not fresh) and effective revocation
(the larger the Az, the longer it takes for a revocation to take

effect). Maybe more concerning, the availability of some
of these systems relies on the assumption that participants
have their clocks synchronized (given that authentication
may fail if the client and the verifier do not agree on the
current time slot), which can be a vulnerability.

Non-Revocation proof based on the RL: The more secure
approach is to have clients locally generate a non-revocation
proof unique to the presented RL (before authentication,
the client downloads the list from the local provider). This
guarantees that the generated proof cannot be tested against
another RL (that may contain the client), and it is only
valid for the locally presented RL. Previous approaches
to offer revocation audidatability based on non-revocation
proofs have been designed for systems that do not rely
on a Trusted Third Party (TTP) to implement revocation.
Although powerful, these solutions rely on the use of
NZNPs [3], [39] that require clients to construct complex
proofs, in the critical path of the authentication procedure,
imposing a high latency and computation cost. Therefore,
these solutions are unnecessarily expensive when a TTP is
available.

Our goals: Our goal is to derive an anonymous authen-
tication for existing edge applications, such as vehicular
networks, where a TTP is responsible for issuing and
revoking pseudonyms. We aim at offering the following
combination of features that are desirable in this setting:
immediate revocation (there is no need to wait for the end of
some pre-defined time-slot to revoke a client), verifier local
revocation (edge resources can perform authentication with-
out being required to contact the TTP in the critical path),
backwards unlinkability, revocation auditability, robustness
in face of the clock-skew (the safety and/or liveness of the
algorithm does not depend on the clock synchronization of
all agents), and, last but not the least, can be implemented
efficiently.

III. SYSTEM MODEL
A. Entities

The system is composed of the following entities: clients,
verifiers, a (logically) centralized pseudonym manager ser-
vice, and a trusted administrator. We follow a nomenclature
similar to that in previous work [33], [18].

Clients: the application client that generates signatures to
perform authentication against any verifier. Clients are the
holders of pseudonyms that they use to generate capabilities
to ensure anonymity. Clients are responsible for renewing
their pseudonyms when needed.

Verifiers: the component that performs client authentication
before granting access to a resource, such as edge storage.
Verifiers are responsible for checking the validity of the
pseudonyms provided by clients before granting access.
They are also responsible for updating their state by fetch-
ing the list of revoked capabilities from the pseudonym
manager.

Certification Authority (CA): this component is respon-
sible for providing new pseudonyms to clients and,
when necessary, revoking capabilities generated from these
pseudonyms. CA servers are the only entity capable of
accessing the true identity of a client.

Administrator: a trusted entity responsible for adding
clients to the system and instructing the CA to revoke
clients.

B. Timing Assumptions

We assume that participants have access to loosely syn-
chronized clocks and can assess whether certificates have
expired. As will be explained in Section IV-A, we assume
that pseudonyms are valid for extended time periods, de-
noted epochs (for instance, valid for periods of 1 year).

However, unlike previous authentication schemes that are
based on time slots, our authentication scheme does not
require the client and the verifier to agree on the current
time slot. For example, in [13], authentication may fail if
the client and verifier clocks are not synchronized: The
client will provide credentials that are valid for a time
window that differs from the verifier time window. This
problem is exacerbated when time slots are small, and,
therefore, in those solutions, the tolerance to clock skew
conflicts with the goal of reducing the linkability window.
Our solution does not suffer from this limitation, since the
unlikability properties are not tied to the notion of time.

C. Threat Model

We trust the administrator and the CA. Clients and veri-
fiers are considered untrusted and susceptible to the control
of attackers, potentially engaging in malicious activities.

Malicious Client: may attempt to generate pseudonyms
or capabilities to impersonate a valid client and access
resources to which it is not authorized. It can also try to use
old or fake pseudonyms after being revoked to authenticate
towards verifiers.

Malicious Verifier: The problem we consider is that a
malicious verifier may try to perform link attacks [35],
[18]. Such attacks involve associating (linking) various
pseudonyms with a single client, thereby compromising
user anonymity. This type of attack becomes trivial when
revocation lists are disclosed that enumerate all of a client’s
pseudonyms. A malicious verifier could potentially compile
all the observed data with the aim of deducing user identi-
ties.

Trust Assumptions: Entities use asymmetric key pairs to
establish secure channels. Clients employ pseudonyms for
authentication, integrity, and non-repudiation. The CA will
only revoke users if instructed by the trusted and authenti-
cated administrator, and will generate fresh pseudonyms for
non-revoked and authenticated clients. We assume that there
is no collusion between the trusted CA and the verifiers.
In scenarios were potential collusion between the trusted
CA and the verifiers is a threat, the architecture can be

@+ seed

QRL

bl 2 e+ seed
a - » Verifier

- Access Token
Pseudonym (non-revocation proof)
N

e

Client

Fig. 1: Authentication in LARA

augmented with additional components, as described in the
literature [40], [35]. For instance, in Nymble, there is a
Certification Authority that knows the real identity of the
user which independent of the server that provides the
pseudonyms used in the authentication.

IV. LARA

We now introduce our scheme for anonymous authenti-
cation. To the best of our knowledge, LARA is the first
pseudonym-based system to offer both immediate revo-
cation, auditability and pure backward unlinkability. We
use the term “pure” because, unlike [18], [13], in LARA
unlikability is not tied to time slots of discrete granularity.
Our solution enables immediate revocation since a new RL
can be published without delay, while systems based on
time slots must wait for the current slot to end.

In LARA, the authentication is performed against a
Revocation List (RL). A RL includes a unique seed and
an encoded set of revoked access tokens. Revoked access
tokens are encoded in an RL using a secure one-way
function: it is possible to check if a token is in the set
but impossible to extract tokens from the set. The authen-
tication requires the client to transmit a pseudonym and an
access token that is not included in the set of revoked access
tokens. This token proves that the given pseudonym was not
revoked; this is conceptually similar to the non-revocation
proofs used in NZNPs [3], [39], as illustrated in Fig. 1. By
using access tokens, our scheme enables client revocation
without disclosing pseudonyms. To achieve auditability,
we require tokens to be uniquely linked to a given RL,
similarly to the non-revocation proofs used in NZNPs. To
accomplish this, clients request a RL from the verifier at the
time of authentication and generate their token exclusively
for that RL. Our scheme achieves this by letting access
tokens for a given RL be a function of the unique seed
of that RL. Clients then generate the token using this
seed, establishing a unique connection between the token
and the presented RL, as shown in Fig. 1. The verifier is
then responsible for cryptographically checking that all the
presented information has been correctly constructed, for
instance, verifying that the presented token corresponds to
the RL seed.

A. Algorithm

We will now describe in more detail how the tokens used
for authentication and revocation are constructed. Table I
provides a summary of the notation used in the description
of the algorithm.

Notation: We assume (K, K~) is a pair of public and
private asymmetric keys, respectively. A digital signature
is defined by {digest(a)}* ", where the private key K~ is
used to sign the digest of the content of a.

Time: In this scheme, time is divided into epoch periods
with a duration of e. These epochs are relatively long time
intervals, such as one year or one month. Each pseudonym
is associated with a specific epoch period. Epochs are use
to simplify the garbage collection of old pseudonyms.

Client Storage: We assume that a client has performed
some initial setup and stores locally multiple pseudonyms
valid for the current epoch. Each pseudonym p has a public
and private key pair, (K, K,), and the pseudonym is
defined by its public key and a digital signature from a
CA, p = (K, {K;}¥ca). The client holds a number I
of valid pseudonyms for the current epoch.

Access Token: An access token ol'f= in LARA is al-

ways cryptographically bounded to a pseudonym p, =
(K,f {K} }fca),x € [1,I] and a unique seed.. The
token is used to proof that some selected pseudonym,
Pz, has not been revoked in the given revocation list
RL,. The next paragraph explains how RL, is uniquely
bounded to seed,. The construction of our token is quite
straightforward. It involves generating a digital signature
using the private key associated with p, over the digest
of the provided seed,. Therefore, J_f’Lz is defined as
{digest(seed.)}r= . For authentication, the client forwards
both the selected pseudonym and the corresponding token,
denoted as (p,,cfF=), as depicted in Fig. 1.

Revocation Lists: In LARA, the RLs include an unique
seed and an encoded set of revoked access tokens. Each
RL is constructed by a trusted entity, the CA. This CA
has the capability to generate all the access tokens that
can be tied to any given RL. The generation of RLs is
the only aspect of our scheme that has some computational
impact because each RL is dependent on a distinct seed.
When the CA needs to revoke a client at a specific time
t, it first generates a random value, which becomes the
seed, associated with a new revocation list, RL,. It then
retrieves each pseudonym of the recently revoked client,
along with all other pseudonyms that were revoked in the
current epoch, from other previously revoked clients. Sub-
sequently, it calculates the digest of the seed and generates
each token using all the revoked pseudonyms, resulting in
({digest(seed.)} 7). Vi € Ryer, where Ry is the set of
all revoked pseudonyms in the current epoch. Each of these
tokens is encoded in the RL’s set of revoked access tokens
using a secure one-way function. We denote the resulting
set of revoked encoded access tokens sreat,. Finally, the CA
creates a final digital signature covering both the RL and
the seed together, denoted as {digest(seed, || sreat,)}¥ca.
The CA can then immediately publish these three elements:
the seed, the set of revoked encoded access tokens, and the
signature, all of which define the new RL.

In our scheme we ensure the verifier cannot provide a
fake RL, by leveraging digital signatures for authenticity.

TABLE I: Summary of Notation

(K, E;L Ko asymmetric key pair for the CA
pe = (KT, {K;}KCA> pseudonym x
P set of pseudonyms of a client ¢
seed unique seed of a revocation list
otz = {digest(seed,)} re access token for p, in revocation list RL
digest(cFF=) encoded access token
sreat set of revoked encoded access tokens in revocation list RL

RL. = ({seed., sreat., digest(seed, || sreat,)}<ca)

revocation list

However, similar to related work, a malicious verifier might
provide an old RL, misleading a revoked client into a suc-
cessful authentication attempt. LARA does not suffer from
this vulnerability and preserves revocation auditability. Our
scheme uniquely binds the authentication information with
the provided RL (through the seed), rendering it useless to
test across different or newer RL versions, regardless of the
user’s revocation status. Next, we explain how our unique
token can still provide proof of non-revocation.

Non-Revocation proof: For authentication, the client must
provide a pseudonym and a non-revocation proof that this
pseudonym is valid. The proof is provided by presenting
a valid access token that is not included in the RL’s
encoded set of revoked access tokens. This provided token
is associated with the given pseudonym and to the unique
seed of the RL. In detail, the process to demonstrate that
the given pseudonym p, is not revoked is as follows.

In the first step, the client must obtain a revocation
list RL, and its associated seed, from the verifier. Sub-
sequently, the client validates the signature, generated by
the CA, on the revocation list. This validation confirms
the integrity and authenticity of both the revocation list
and the seed. After this verification, the client generates
a token of*L= for a selected pseudonym p,, as described
earlier. It is important to note that this access token is only
applicable for testing against RL, and it is not valid to
be tested against any other RL. Additionally, as previously
mentioned, the verifier cannot provide a fake RL.,.

Consequently, it is the verifier’s responsibility to validate
o RL= by ensuring that it has been correctly constructed, that
it corresponds to the presented pseudonym p,, and that
it has not yet been revoked. To achieve this, the verifier
first checks if the pseudonym has a valid signature from
the CA. Subsequently, it uses the provided pseudonym’s
public key, K ;; , to verify the digital signature within o ZF=.
This signature must be correctly constructed using K, and
must correspond to the correct seed, from RL.. If this is
confirmed, it indicates that the proof has been correctly
constructed and corresponds to the presented pseudonym
pz- The next step for the verifier is to ascertain whether
the access token 'Y= can be found in the encoded set
of revoked access tokens of RL.. If this access token
belongs to the encoded set of revoked access tokens, the
pseudonym has been revoked; otherwise, the access token
provides proof that this pseudonym has not been revoked
and is valid.

Authentication: At a high level, authentication begins with
the client downloading the RL from the local verifier. Then,
the client selects a pseudonym and generates an access
token for the seed associated with RL, using the private
key of this pseudonym. Next, the client checks whether it
has been revoked by testing if the token is found in the
RL’s encoded set of revoked access tokens. If not, both the
access token and pseudonym are sent to the verifier, which
authenticates the token and tests it against the same RL.
If the token is found in the RL’s encoded set of revoked
access tokens, the client is considered revoked; otherwise, it
is deemed valid, and the authentication is accepted. The step
of downloading the list is necessary to ensure auditability,
enabling the client to verify his status. It is important to
note that even if the verifier presents an older RL, the proof
generated by the client is only valid for that specific RL,
thus guaranteeing revocation auditability.

V. SECURITY PROOF

In this section, we first present a proof that LARA
preserves unlinkability, and afterward we prove that LARA
is also capable of offering auditability.

A. Unlikability

We now provide a proof that LARA offers full unlinkabil-
ity, meaning that revocation information cannot be linked to
the information used by clients when authenticating before
and after the revocation. Our scheme provides unlinkability
because access tokens are only valid for a specific RL and,
therefore, the revoked access tokens that are encoded in
different RLs are necessarily distinct.

Assumption 1: There is a secure one-way function.

We assume the availability of a secure collision-resistant
hash function H(), such as SHA256, that is easy to compute
on every input, but not possible to invert given the output.

Assumption 2: Only the client and the CA can access
pseudonyms.

We assume that both the client and the CA will securely
store the secret private key of each pseudonym and never
disclose it. The CA is responsible for generating different
pseudonyms for a client. The cryptographic keys (K, KT)
of a pseudonym are randomly generated by the CA using
a secure cryptographic scheme.

Assumption 3: There is a secure deterministic digital
signature scheme.

We assume the availability of a secure deterministic dig-
ital signature scheme, such as Ed25519 [5], which ensures

the usual authentication, integrity, and non-repudiation
properties. A deterministic signature is generated by
{H(a)}* using K~ to sign the digest of the content of
a, and can be verified with K.

Assumption 4: The client picks an unused pseudonym to
authenticate.

For each authentication, the client chooses a pseudonym
that has never been used. If it runs out of pseudonyms to
use, it requests more from the CA.

Assumption 5: Given a revocation list RL,, the client
only proceeds with authentication with a pseudonym p,, if
p. has not been added to the RL,’s encoded set of revoked
access tokens.

When performing authentication, the client requests the
current RL, from the verifier, and checks if pseudonym p,
has been revoked. We recall that p, is marked as revoked
in RL, if o2*L= belongs to the RL’s encoded set of revoked
access tokens. If the client finds that p has been revoked in
RL, it stops from using the service and does not provide
any more information; otherwise, it continues with the
authentication.

Definition 1: A valid pseudonym p,, is defined as:

Pz = <K;7K;_7 {H(K;_>}’KEA>

Where (K, ,K;) represent the private and public key
of the pseudonyms respectively, and {H(K;)}®ca is a
digital signature of the CA over the public key to provide
authenticity for the pseudonym. From Assumption 2, the
CA provides the pseudonyms to clients with the respective
signature.

Remark 1: A valid token o for revocation list RL is a
unique digital signature over the RL’s seed.

A token ofl: represents the unique bond of a
pseudonym p, to a given revocation list RL.. This bond
is implemented by a digital signature performed over the
unique seed, that accompanies the list, where ofl: =
{H(seed,)}*=. By using the private key K, of the
pseudonym (from Definition 1), we enforce authentication,
integrity, and non-repudiation of the token (from Assump-
tion 3).

Remark 2: A RL is immutable, unique, and cannot be
tempered with.

All the revocation lists are generated and published by
the CA. For anew RL,, the CA generates a unique and ran-
dom seed,, then computes a revoked access token for each
revoked pseudonym as 07" = {H(seed,)} »: (from Re-
mark 1) and then encodes each revoked access token using a
one-way hash function as H(o/*“*) (from Assumption 1).
The encoded set of revoked access tokens sreat, is then
bound to the seed, through a digital signature that proves
its authenticity, resulting in {H(sreat. || seed.)}*c4. Any
atempt to tamper the RL will invalidate its signature. The
CA will never reuse the same seed, making each encoded
set of revoked access tokens unique and immutable.

Remark 3: A valid authentication request is defined as:

(@, 05)

When authenticating, the client must provide the authen-
tication request where z is defined as the public information
of some pseudonym p,, specifically the public key and the
CA signature:

(G (1K) Een).

Before presenting this information towards the verifier,
the client requests the current revocation list RL, and
generates oL+ from Remark 1. Following Assumption 5, if
the client does not find o7+ in the encoded set of revoked
access tokens for RL,, it proceeds with the authentication
by sending the authentication request (z,c%l=) to the
verifier.

Theorem 1: Two different authentications cannot be
linked to the same client.

Proof: Consider an authentication from client ¢ that
provides an authentication request (x, o *%¢) for pseudonym
x € P, in face of some revocation list RL; (where P. is the
set of pseudonyms of client ¢). Consider another authenti-
cation from client ¢’ that provides the request (y, Uf Lj) for
pseudonym y € P in face of some revocation list RL;.
For an attacker to successfully link the two authentications,
it needs to infer that ¢ = ¢/. There are two ways for an
attacker to achieve this goal.

One is to assert that z and y belong to the same client,
ie.:

ASSERT(3. p,, € P, N y€ P,) (D)

This condition holds true when x and y belong to the
same pseudonym p € P, and according to Remark 3, this
would require x and y to share the same public key K;rc .
However, by Assumption 4, the client never uses the same
pseudonym twice. Additionally, according to Assumption 2,
the CA generates all the public and private keys of each
pseudonym using a secure, random, and invertible crypto-
graphic scheme, this will result in unlinkable and random
pseudonyms by construction. Therefore, an attacker will
always observe x # y and never be able to assert Equation 1
as true.

The other way is to use the information in some other
revocation list RL; to link pseudonyms x and y. Let us
use RL.sreat to denote the encoded set of revoked access
tokens of revocation list RL.

T

ASSERT(3 gy, , H(c2*) € RLy.sreat A H(afL’“) € RLy.sreat)

(2)

This condition holds true if the attacker can verify that
exist a list RLj; that contains encoded tokens for both
pseudonyms z and y. Because tokens are encoded by secure
one-way functions, the attacker cannot extract Uka and
ofL’f from RL; or RLj.sreat and therefore these must be
provided by the client. By construction (Assumption 5),
the client will not provide o*L* if H(cf*E*) € RLy.sreat.
Thus, the attacker can only have access to J_f‘Lk if there
is some other RLj such that af‘Lk = Jf Lwr , however, by
Remark 2, this is impossible, because tokens are unique,
given that they depend cryptographically on different seeds.

Therefore, the attacker is not able use some public revoca-
tion list to assert Equation 2 as true.

Therefore, we can conclude that the attacker is incapable
of leveraging the available information to assert either
Condition 1 or 2 as true. This implies that the attacker
cannot infer whether ¢ = ¢/. Consequently, an attacker is
unable to link two different authentication attempts to a
single client.

|

B. Auditability

We now provide a proof that LARA offers full auditabil-
ity.

Lemma 1: After a pseudonym p, is revoked, any RL
presented to clients must encode oX= in the RL’s encoded
set of revoked tokens.

Proof: A client authenticates against a given RL by
selecting a pseudonym p, and presenting (x,cfl=). Au-
thentication is granted if %= has not been added to the
RL’s encoded set of revoked tokens. Thus, for revocation
of pseudonym p, to succeed, o= must be added to the
RL’s encoded set of revoked tokens of all RL presented to
a client after revocation.]

Lemma 2: A client authenticates using pseudonym p,
only if, when presented with a revocation RL, it cannot
find 2L~ in the RL’s encoded set of revoked tokens.

Proof: A client authenticates against a given RL by
selecting a pseudonym p, and presenting (z,0%l=). By
construction (see Assumption 5) a client will only authen-
ticate using p, if it cannot find of**= in the RL’s encoded
set of revoked tokens.]

Theorem 2: LARA ensures auditability

Proof: The proof, is by contradiction. A client is
not guaranteed auditability if it attempts to authenticate
with a pseudonym p, that has been revoked. Let p, be
a pseudonym used by some client to perform authenti-
cation against some revocation list RL. By Lemma 1, if
pseudonym p, has been revoked of*f: must be encoded
in the RL’s encoded set of revoked tokens. By Remark 2
RLs are immutable and cannot be tempered with by the
verifier. By Lemma 2, if the client authenticates, it cannot
find ofL= in the RL’s encoded set of revoked tokens. A
contradiction. []

VI. IMPLEMENTATION

LARA requires revocation tokens to be encoded using
a one-way function, in order to create a revocation list
that can be safely distributed to verifiers. Such one-way
function must be efficient and produce compact results. We
show how revocation lists can be implemented using Bloom
Filters [7]. We propose three alternative implementations
of the RL that aim to reduce the amount of information
that clients and verifiers exchange during each authentica-
tion process, while maintaining all the security properties
inherent to the Revocation List, namely its integrity and
authenticity: 1) an implementation based on a single Bloom
Filter; 2) an implementation based on Hierarchical Bloom

filter Arrays; and 3) an implementation based on Redactable
Signatures. Another potential source of inefficiency is the
computation of a new revocation list, that can be slow. This
can be circumvented by a pre-computation strategy that we
also describe in this section.

A. RLs based on a single Bloom Filter

(]
BF + seed % RL

Client ac %

o E
Pseudonym + non-revocation proof

-
“aim

Central RL
Authority
mam

Verifier

Fig. 2: Authentication with a single BFs.

Bloom Filters [7] are a probabilistic structure designed to
store members of a set and to determine if a given element
is member. In pseudonym systems, verifiers often use
Bloom Filters for the storage of the revoked pseudonyms.
Bloom Filters are very efficient and have constant compu-
tation costs O(1) for storing and searching elements. The
filter is made up of N addressable bits, with addresses from
0 to N-1, being N its size. Besides its size, a filter also has
another parameter which is the number of hash functions,
k. When an element is to be inserted in the filter, it is hash
coded using the hash functions, obtaining k hash codes,
that will be used as addresses inside the filter. After that,
the bits of the filter with that addresses are set to 1. To
test whether an element belongs to the filter, the element is
hash coded using the hash functions obtaining k addresses,
the element is considered to be in the filter if and only
if the bits in the filter with that addresses are all set to 1.
When searching for an element, Bloom Filters may indicate
that the element is in the filter when it is not, allowing false
positives to happen. On the contrary, false negatives are not
possible. The rate of false positives depends on the size of
the filter, N, the number of elements inserted, m, and the
number of hash functions used, k. The rate of false positives
can be calculated using the following formula:

P=(1-(1-) (3)

m

Pseudonym Revocation The certification authority (CA)
creates a single Bloom filter (BF) and encodes all revo-
cation tokens into the BF. Finally, the BF is signed by the
CA and sent to the verifiers. The revocation list, RL, is
then composed of, the bloom filter, BF, the seed and the
signature.

RL = (BF, {digest(BF, seed)}KéA7seed>

Access Control During the authentication process the client
downloads the Bloom filter. The authenticity of the filter
is verified by the client using the certification authority’s
signature. Then, the client chooses a pseudonym p and
checks if this pseudonym is not marked as revoked in
the received filter. If the client concludes that it has not

been revoked, it can then complete the authentication by
sending the pseudonym p and the corresponding proof to
the verifier.

B. RLs based on HBFAs

Hierarchical Bloom filter Arrays [41] are a data structure
based on Bloom Filters that aim to increase the efficiency
when large Bloom Filters are used. These filters use a
hierarchical structure composed of multiple Bloom Filters
of different sizes (with the filters in the higher positions
of the hierarchy being smaller than the filters in the lower
positions), where the insertion/test of presence is done by
utilizing multiple filters. Typically, a membership test in the
data structure requires performing sequential presence tests
across the various filters until a conclusion is reached. The
Revocation List can be implemented using multiple Bloom
Filters of different sizes, each containing exactly the same
elements. These filters are organized sequentially and in
ascending order of their size.

Pseudonym Revocation During the revocation of a client,
the certification authority creates a set of n Bloom Filters.
Then, all revocation tokens inserted into all Bloom filters.
Finally, the central authority signs each of these filters
with its private key, protecting the authenticity and integrity
of each filter. Subsequently, these filters, their respective
digital signatures, and the generated seed are aggregated to
form the revocation list which is sent to the verifiers:

P
RL = <[BF1, ...,BF,], [{digest(BFl,seed)} CA,. ..,
-
{digest(BF,,, seed)} CA} , seed)

Access Control During the authentication process, repre-
sented in Figure 3, the client starts by downloading the
first BF from the Revocation List, which is the one with the
smallest size, as well as the random seed, seed, associated
with the Revocation List. Then, it chooses a pseudonym p
and checks if this pseudonym is marked as revoked in the
previously received filter. Since the false positive rate of a
BF varies with its size, and the client begins by receiving
the smallest filter, it is not unlikely that the client encounters
a false positive at this step. In that case, the client will then
download the remaining filters from the Revocation List
in increasing order of size until it reaches a filter where
the pseudonym is not marked as revoked. If it reaches
the last filter and the pseudonym is marked as revoked
in that filter, the client assumes that it has indeed been
revoked and cancels the authentication. The authenticity of
each filter is verified by the client using the certification
authority’s signature. If the client concludes that it has not
been revoked, it can then complete the authentication by
sending the pseudonym p and the corresponding proof to
the verifier.

HBFA are advantageous in cases where the client can
confirm that the pseudonym has not been revoked by
checking the first few filters (ideally, relying only on the

BF + seed

«°rreeed
nx Next BF () 9
R Ees— RL
v Next BF RL
Al a>
Client ac % Verifier Central RL
v Authority @

Pseudonym + non-revocation proof

Fig. 3: Authentication with HBFAs.

smallest filter in most cases); however, it may worsen the
original solution if the client has to download several filters.
In most cases, the client would be able to authenticate using
the first pseudonyms by checking only the smaller filters,
making this an efficient solution overall.

C. RLs based on Redactable Signatures

Redactable Signatures [21] enable the sending of a
digitally signed message, with the ability to delete certain
parts of it, while still allowing the recipient to verify the
security properties of the message, such as integrity and
authenticity. The process of creating an editable signature
begins by dividing the message into removable parts. A
Merkle Tree is constructed by associating each part of
the message with a leaf node of the tree, calculating its
cryptographic hash, and then recursively building the tree
up to the root node, where each node’s value is the hash
of the concatenation of its child nodes’ hashes. After that,
the sender digitally signs the root node.

When sending the message, the sender deletes the parts
it wish to omit and sends the remaining parts to the
recipient. Along with the message, it also send the hashes
of the leaf nodes corresponding to the deleted parts. These
hashes can be compressed using the tree structure by
sending the hashes of internal nodes. The recipient uses
the received information to reconstruct the hash of the
root node and verify the sender’s digital signature on that
node. The signatures also incorporate a random component
during the signature creation process, which prevents the
recipient from recovering the deleted parts through brute
force attacks.

We use these ideas to derive an implementation of the
RL where revoked pseudonyms are first inserted in a Bloom
filter and then the filter is encoded as a redactable signature,
such that only the relevant parts of the Bloom filter need
to be sent to the client.

Pseudonym Revocation: In this implementation, the revo-
cation list is first encoded as a Bloom filter, which is then
divided into multiple segments of configurable size. The
cryptographic hash of each segment is associated with the
child nodes of a Merkle tree. The remaining nodes of the
tree are generated recursively by hashing the concatenation
of the hashes of the child nodes. Finally, the central au-
thority generates a digital signature o by concatenating the
root hash, root_hash(BF), with the random seed associated
with the Revocation List, as illustrated in Figure 4. The
generated elements form the RL which is then distributed
to the verifiers:

RL = (BF, {digest(seed, root_hash(BF))}KEJA , seed)

Root_Hash

e
/ \ O = (Root_Hash|| seed)

Hashgg Hashgq

/N /N

Hashggg Hashggq Hashgqg Hashgqq

Filter: 1011101100010001000101100110011101001001110

Fig. 4: Redactable Signature Creation.

Access Control In the access control phase, shown in Figure
5, the verifier begins by sending the random seed to the
client. With this information, the client selects a pseudonym
p that it has not used yet and with that pseudonym p,
computes the non-revocation proof, calculates the exact
positions of the BF that needs to verify to attest their
revocation status, and requests these positions. The verifier
checks if the selected bits are set to “1”. If all the bits
are set, this means that the client has been revoked. In this
case, the verifier simply notifies the client that it should
not proceed with the authentication. If there is at least
one bit that is not set, the client has not been revoked.
In this case the verifier selects one of the segments that
have a bit set to “0”. It sends this segment along with
the necessary hashes for the client to reconstruct the path
from that segments to the root node. The client can then
check that segment has not been tempered by the verifier,
given that any alteration would necessarily affect the root
hash. If the client concludes that it has not been revoked,
it completes the authentication process by sending their
pseudonym p and the corresponding proof to the verifier.

Seed

%%
n Bits q
—> RL
Asked Bits % RL
Client =B Verifier AC?rr‘\ﬁratl RL
o & uthority @

Pseudonym + non-revocation proof

Fig. 5: Authentication with Redactable Signatures.

D. Precomputing the RL

Since the most resource-intensive part of our system is
the construction of the RL from scratch every time a new
client is revoked, we have implemented an optimization
to accelerate this process. This optimization hinges on the
CA consistently maintaining a precomputed RL. In other
words, the CA consistently prepares in advance a new
version of the RL, selecting a random seed and generating
all the revoked access tokens associated with that RL for all
previously revoked users. When there is a need to revoke a
new client, it is merely a matter of generating the revoked
access tokens for the new client and inserting them into the
encoded set of revoked access tokens. This precomputation
significantly reduces the time required to generate a new
RL and to publish it, making revocation more effective.

VII. EVALUATION

We evaluate LARA in two orthogonal dimensions. Firstly,
we assess the time it takes to construct a revocation list.
Then, we assess the efficiency of authentication when using
the different implementations presented in Section VI. For
our evaluation, we used an Intel NUC10i7FNB, with an
Intel i7-10710U CPU with Intel SGX, 16GB RAM, and
Ubuntu 20.04 LTS, a setting similar to other papers that
also target edge networks [13].

The code used for the evaluation is open source and
available in the following anonymous Git repository: https:
//github.com/LaraAuth12/LARA.

A. Time to Generate a RL

1) Single Filter: We compare the time required to create
a revocation list with LARA against the two main solutions
that offer backward unlinkability in public key encryption,
namely Haas et al. [18] and RRPs [13], despite the fact
that these systems do not provide revocation auditability, a
distinctive feature of our system. Additionally, to ensure a
fair comparison, we selected the ideal parameters for RRPs,
an epoch of one month and a time slot of one minute. This
means that for Haas et al. it requires at least one different
pseudonym for each minute of the month.

Em Haasetal Lara
mmm RRP B Lara (RL precomputed)

---- RL size (KB)

RL Generation Time (ms)
(a) 9215 14

1002 10002 12 1002 10002 1° 1002 1000°
500 Pseudonyms 5k Pseudonyms 50k Pseudonyms
per User per User per User

12 1002 10002 1°

50 Pseudonym
per User

Fig. 6: RL Generation Time.

We compare the the time required to generate a new
version of the RL and the size this list can reach. Figure 6
shows the latency required to create a new version of the
RL for the first revoked user, the one-hundredth, and the
one-thousandth, while varying the number of pseudonyms
each client owns. This figure depicts value obtained with
the implementation that uses a single Bloom filter. It is
important to note that with each new revocation, we need
to recreate the RL from scratch and generate the necessary
information for all previously revoked clients. Therefore,
the more clients have been revoked, the longer the latency
to create an RL will be. Using the strategy of precomputing
the RL, LARA latency similar to Haas et al., with a worst-
case time of just under 10 seconds to generate. Another
visible advantage of our system is that the size of the
RL is much more efficient, maintaining the same flexible
properties as RRPs. In our scheme, clients store only the
desired number of pseudonyms, and the revocation only
requires }a single token per pseudonym, while RRPs need

epoch

log(“E7=*) of revocation data in the RL per pseudonym. It’s

worth noting that although Haas et al. is more efficient, it

—— 5 Filters, 100.00 KB
10 Filters, 100.00 KB

—— 5 Filters, 1.00 MB
—— 10 Filters, 1.00 MB

—— 5 Filters, 10.00 MB
—— 10 Filters, 10.00 MB

5 Filters, 100.00 MB
—— 10 Filters, 100.00 MB

5 6.0%10°

~5.0%10¢

= 4.0 * 10

C

S30%10¢

©

—

L20*10

[}

B 1.0 * 10¢

z _——

ol —

50 thousand
(1000 revoked users,
50 pseudonyms
Juser)

500 thousand
(1000 revoked users,
500 pseudonyms 5k pseudonyms
Juser) user)

Number of Tokens in Each Filter

50 million
(1000 revoked users,
5k pseudonyms
Juser)

5 million
(1000 revoked users,

(a) 5 hash functions

m

Es8o0*10°

(]

1S

iZ 6.0%10°

c

RS

o 4.0 *10%

=

(]

c

& 2.0+ 10¢

—

24 /f
—_—

) S————_
50 thousand 500 thousand 5 million 50 million

(1000 revoked users,
50 pseudonyms
/user)

(1000 revoked users,
500 pseudonyms 5k pseudonyms
/user) Juser)
Number of Tokens in Each Filter

(1000 revoked users, (1000 revoked users,

5k pseudonyms
/user)

(b) 10 hash functions
Fig. 7: HBFA’s Overhead

offers fewer security properties and flexibility, as it forces
clients to carry many pseudonyms, even if they do not need
them.

2) HBFA: Figure 7 illustrates the results of a series
of tests we conducted to assess the additional overhead
involved in generating the revocation list using the Hierar-
chical Bloom Filter Arrays technique, as well as its impact
on the latency required to generate a revocation with this
approach.

There are several factors that may impact the necessary
additional overhead in generating a revocation list with mul-
tiple Bloom filters, instead of just one. We have conducted
a series of tests to measure the additional latency this would
take, varying parameters such as: the number of filters that
our revocation list was composed of, the number of hash
functions of each filter, the size of those filters and the
number of tokens to be inserted in each filter.

By analyzing our results it is possible to notice that the
number of hashes, the number of tokens to be inserted and
the number of filters, have a linear impact in the additional
overheard, doubling the latency when doubling the number
of hashes or the number of tokens, due to the number of
bits that are necessary to set to ”’1” also double. We can also
conclude that the size of the Bloom filters do not have a
significant impact on this metric, due to the nature of Bloom
filters being highly efficient and constant with respect to
their operations.

Also, we can conclude that, depending on the system
scale, the additional overhead can be negligible, being only
a few milliseconds for most cases until 5 million tokens,
starting to impose a serious overhead when we hit the scale
of 50 million tokens, reaching the magnitude of 60 seconds
or more.

10°

—e— 1000 bits
2000 bits

—e— 4000 bits
—e— 8000 bits

-
%

RL Generation Time (ms)
S

=
o
E)

100KB 1iMB 10MB
(1000 revoked users, (1000 revoked users, (1000 revoked users,
50 pseudonyms/user) 500 pseudonyms/user) 5k pseudonyms/user)

Revocation List Size

100MB
(1000 revoked users,
50k pseudonyms/user)

Fig. 8: Redactable Signature Overhead.

3) RS: To quantify the overhead introduced by our
Redactable Signature technique, we conducted experiments
measuring the time required to generate a signature over a
revocation list, varying both the size of the Bloom filter
and the size of the chunks into which it was divided.

As shown in Figure 8, the signature generation time
increases linearly with the Bloom filter size, as expected.
Additionally, using smaller chunks results in longer gen-
eration times due to the larger number of leaf nodes in
the Merkle tree, which increases the number of required
hash computations. In contrast, larger chunks yield smaller
trees and thus lower computational overhead. The latency
required to generate a redactable signature ranges from
just 1 millisecond or less for Bloom filters of 100KB to
hundreds of milliseconds for filters as large as 100MB.

This highlights a trade-off between redaction granularity
and efficiency. As discussed later (see Figure 11), larger
chunks reduce signature generation time but require more
data transfer during authentication. This trade-off becomes
particularly relevant for Bloom filters exceeding 100MB.
For smaller filters, generation time remains below one sec-
ond across all chunk sizes, making the overhead negligible
in practice.

4) Comparison: Based on the previous, we can as-
sess the impact of our proposed techniques on revocation
list generation time. The RS-based technique introduces
minimal overhead—adding no more than a single extra
second for Bloom filters smaller than 100MB. In contrast,
the overhead introduced by the HBFA-based technique is
significantly influenced by the number of tokens added
to the revocation list. In the worst-case scenario analyzed
(1,000 revoked users with 50,000 pseudonyms each), the
baseline generation time using a single Bloom filter exceeds
1,000 seconds. The RS-based method increases this by less
than one second—an overhead of under 0.1%. Meanwhile,
the HBFA-based approach adds approximately 60 seconds

for Bloom filters using 5 hash functions, corresponding to
an overhead of about 6%.

B. Authentication Performance

mmm 0.01% Rate == 0.001% Rate 0.0001% Rate == No Bloom Filter

> 3

e
g5 8

Revocation List Size (KB)
5

-
=3

250 1000 2500 250 1000 2500 250 1000 2500 250 _ 1000 2500
50 Pseudonyms 500 Pseudonyms 5k Pseudonyms 50k Pseudonyms
per User per User per User per User

Fig. 9: RL Size Growth.

1) Using a single BF: To evaluate authentication using a
single Bloom Filter (BF), we analyzed the size of revocation
lists while varying the system scale and the Bloom Filter
properties used to implement the revocation list. The size of
a Bloom Filter, given a fixed number of inserted elements,
is primarily influenced by two factors: the false positive
rate and the number of hash functions. To minimize the
Bloom Filter size, we calculated the optimal number of hash
functions for each scenario. Figure 9 presents the results of
our tests across different scenarios, comparing various false
positive rates, and evaluating the impact of using a Bloom
Filter versus not using one.

Our study demonstrates that Bloom filters significantly
reduce the size of revocation lists. We tested Bloom filters
with false positive rates of 0.01%, 0.001%, and 0.0001%,
showing their effectiveness in minimizing the size of the
revocation list. In systems like these, revocation lists grow
linearly depending on the number of pseudonyms they
contain. In the worst-case scenario we tested—2500 re-
voked users and 50,000 pseudonyms per user, simulating
highly dynamic environments—the use of Bloom filters
reduced the size of the revocation list by up to 90%. In
this case, maintaining a revocation list without a Bloom
filter required 4GB, whereas using a Bloom filter reduced
this to approximately 0.4GB.

As expected, revocation list’s size decreases as the al-
lowed false positive rate increases. However, a higher false
positive rate can impact authentication performance for
non-revoked users. False positives can increase authenti-
cation latency and cause certain pseudonyms assigned to
legitimate users to become unusable. Therefore, selecting
an appropriate trade-off between storage efficiency and
authentication performance is essential.

2) Using a HBFA: HBFA uses multiple filters of differ-
ent sizes, with several parameters that directly influence
the amount of information to be transferred during au-
thentication. Thus, we evaluated the following parameters:
1) reduction factor between each filter, starting from the
largest/original filter down to the smallest one. 2) the
number of filters with different sizes used in the hierarchy,
i.e., how many times we reduce the largest filter by the
chosen factor. 3) the false positive rate that we accept

— Factor = 1.25
Factor = 1.5

— Factor = 1.75
— Factor = 2

— Factor = 2.25
— Factor = 2.5

Factor = 2.75
— Factor =3

S 0.40

o
W
1=}

o
N
a

¢ < S 0 < ‘ <
VeT AT T T T T
Number of Filters

(a) 0.1%

0.5

0.4

0.3

0.2

Transferred Information (GB)

0.1

B
RN
Number of Filters

(b) 0.01%

° o ° 4
N w > «

Transferred Information (GB)

o
h

Number of Filters
(¢) 0.001%
Fig. 10: Different Target False Positive Rates

in the largest filter of the hierarchy. In Figure 10, we
vary these parameters and calculate the expected amount
of information related to Bloom Filters that needs to be
transferred during authentication for each of these configu-
rations, keeping the size of the largest filter fixed at 0.5GB.

It is worth noting that calculating the expected amount
of transferred information is not trivial, as it depends on
the number of filters the client needs to transfer before
authenticating. To evaluate each set of parameters, we
calculated the amount of information transferred for each
scenario (in each scenario, the client needs to download
a different number of filters before completing the audit

—— Size of Bloom Filter = 0.5 MB
Size of Bloom Filter = 5.0 MB
2.00

—— Size of Bloom Filter = 50.0 MB
— Size of Bloom Filter = 500.0 MB

H
S
&

=
I
S

H
N
&

_\—j—//
—————

Transferred Information (KB)
o o o &
N @ oS o
5 & & 8

o
=
s

0 500 1000 1500 2000 2500 3000
Size of Segments (bits)

(a) 5 hash functions

~
=3
S

,_.
S
&

-
I
S

H
i
&

\—’\{‘_//
\//

e o =
o 9 o
S & 38

Transferred Information (KB)
°

o
=
S

[500 1000 1500 2000 2500 3000
Size of Segments (bits)

(b) 10 hash functions
Fig. 11: Amount of data exchanged

process), and we calculated the expected value of the
amount of information transferred by the client using the
false positive rates of each BF to compute the probability
of each scenario.

It can be observed that, when there is only one fil-
ter, the information required to transfer is always 0.5GB,
representing the original filter. However, when we create
more filters, the average amount of information transmitted
quickly decreases to less than half with more than 5 filters.
Furthermore, we observed that the smaller the reduction
factor, the lower the expected amount of information trans-
mitted during each authentication. However, it is necessary
to increase the number of filters used to reach the minimum
amount of information transmitted.

We also observed that the transferred information de-
creases when we reduce the false positive rate. This is due
to the fact that reducing the rate also affects the smaller
filters, as all filters will have lower false positive rates and
a greater number of clients will authenticate using the first
filters. Note that, in order to reduce the false positive rate
while keeping the filter size fixed, it is necessary to reduce
the number of items in the filter.

A good configuration for a false positive rate of 0.001%
would be to choose a factor of 2 with 4 filters, as this
is a point that minimizes the information to be transmitted
over the network while maintaining a reasonable number of
filters. Our technique drastically reduces the amount of in-
formation transferred, in particular, transferring only about
10% of the original amount of information on average.

3) Using Redactable Signatures: Redactable Signatures
use two main structures: a Bloom filter and a Merkle Tree,
which is constructed from the filter. The information trans-
ferred during authentication consists mainly of segments of

—— Lara BF
Lara with Hierarchical Bloom Filters

—— Lara with Redactable Signatures

04—

Data Transferred during Authentication(KB)
5

S

S &
o S o S o)
% S 5 K3 o S

Number of Revoked Pseudonyms

Fig. 12: Data Transferred vs # Revoked Pseudonyms

the BF and various hashes from the Merkle Tree.

Several parameters of the solution impact the amount
of information transferred during authentication. These
parameters include: 1) the number of hash functions, which
directly influences the number of filter segments sent to the
client, and 2) the size of the segments into which the filter
is divided, since the segment size determines the number
of filter segments that will be associated with the Merkle
tree’s leaf nodes, affecting the size of the Merkle tree and
the number of hashes sent to the client.

In Figure 11, we varied these parameters and measured
the average amount of information that the verifier sends
to the client during authentication. Given that only a
segment is transferred to the client, the number of hash
functions used does not increase the amount of information
transferred during the authentication. Thus, it is possible
to increase the number of hash functions of the BF, thus,
reducing the false positive rate, without increasing the
amount of information transferred. We can observe that the
optimal configurationis to divide the BF into segments of
500 binary digits. With this configuration, the amount of
information sent to the client is just 125MB.

4) Comparison: In this section, we compare the authen-
tication performance of the three proposed LARA imple-
mentations. To ensure a fair comparison, we chose configu-
rations that minimize the amount of information exchanged
during authentication between verifiers and clients, based
on the analysis presented earlier.

For this evaluation, we developed a set of tests in which
we measured the average authentication latency of a client,
varying the size of the BF that implements the Revocation
List. In the case of the Hierarchical Bloom filter Arrays
technique, this size corresponds to the size of the last
and largest filter. For the evaluation of the technique with
Hierarchical Bloom filter Arrays, we used the following
configuration: a reduction factor of 2, which means that
each filter is half the size of the next filter, with the number
of filters in the set fixed at 4, and 5 hash functions in
each filter. We considered a false positive rate of 0.01%
for the last BF, which we then used to calculate the false
positive rates for the other filters. For the evaluation of
the Redactable Signatures-based technique, we fixed the
segment size at 500 binary digits and the number of hash
functions at 5, measuring the authentication latency.

Figure 12 shows the amount of data transferred as a

Latency to download 1 Bloom filter

Latency to download 2 Bloom filters

104 ™ Latency to download 3 Bloom filters

mmm Latency to download 4 Bloom filters
Expected Latency

" ' I I
® ® ® &
A o S o
N g @ ~

Size of Last Bloom Filter

(a) Latency using HBFA

Latency (ms)
=
v

"
i3

= Lara BF
104 Redactable Signatures
—— Hierarchical Bloom Filter Arrays

-
2

Latency (ms)
H
e

Size of Bloom Filter

(b) Latency Comparison

Fig. 13: Authentication Latency

function of the total number of revoked pseudonyms. It
can be observed that HBFAs provide limited gains over
the use of single BF. In turn, the implementation based on
redactable signatures is highly efficient and allows clients
to perform an authentication by transfering a RL smaller
than 1KB.

Figure 13 presents the latency results for the three
proposed techniques. In the HBFA implementation, the
client retrieves one or more Bloom Filters; we used a
configuration with four filters, each growing progressively
in size with a specified growth factor of 2. To assess the per-
formance of HBFA, we considered the performance of each
individual filter and calculated the expected latency based
on the probability of transitioning to the next filter. These
results are illustrated in Figure 13a. Figure 13b compares
the performance of each technique. The single Bloom Filter
approach shows a linear increase in latency as the size of the
revocation list grows, reaching +17 seconds for a 1.25GB
list. In contrast, the HBFA configuration follows a similar
pattern but with a roughly 80% improvement in efficiency,
achieving an authentication latency of £3 seconds for the
same list. The Redactable Signatures techniques, on the
other hand, maintain constant latency regardlessf the list
size, with an authentication latency of approximately +2
milliseconds.

VIII. CONCLUSIONS

We have introduced LARA, a novel lightweight privacy-
preserving authentication scheme that ensures backward

unlinkability, revocation auditability, and operates indepen-
dently of timing assumptions. We propose and compare
three different implementations of LARA, which aim to
reduce the amount of data transferred when the revocation
audit is performed. The implementation based on Hierar-
chical Bloom Filter Arrays achieves an 80% reduction in
authentication latency compared to using a single Bloom
Filter but adds a noticeable overhead on the time required
to create the revocation list. The other implementation,
based on Redactable Signatures, proved to be the most
efficient: it introduces a negligible overhead when creating
the revocation list and enables constant-time authentication,
achieving an audit/authentication latency lower than 2ms,
regardless of the revocation list size.

Acknowledgements

This work was supported by the FCT scholarship
2020.05270.BD, by national funds through Fundagdo para
a Ciéncia e a Tecnologia (FCT) via the INESC-ID grant
UIDB/50021/2020 and via the SmartRetail project (ref.
C6632206063-00466847) financed by IAPMEI, and by the
European Union ACES project, 101093126.

REFERENCES

[1] Nikolaos Alexiou, Marcello Lagana, Stylianos Gisdakis, Mohammad
Khodaei, and Panagiotis Papadimitratos. Vespa: Vehicular security
and privacy-preserving architecture. In Proceedings of the ACM
workshop on Hot topics on wireless network security and privacy,
Budapest, Hungary, April 2013.

[2] Giuseppe Ateniese, Dawn Song, and Gene Tsudik. Quasi-efficient
revocation of group signatures. In Proceedings of the International
Conference on Financial Cryptography, Southampton, Bermuda,
March 2002.

[3] Man Au, Patrick Tsang, and Apu Kapadia. PEREA: Practical TTP-
free revocation of repeatedly misbehaving anonymous users. ACM
Transactions on Information and System Security, pages 1-34, 2008.

[4] Alastair Beresford and Frank Stajano. Mix zones: User privacy in
location-aware services. In Proceedings of the IEEE Conference on
Pervasive Computing and Communications Workshops, Orlando, FL,
USA, March 2004.

[5] Daniel Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and
Bo Yang. High-speed high-security signatures. Journal of cryp-
tographic engineering, pages 77-89, 2012.

[6] Michele Bertoncello. Monetising car data: New
service ~ business opportunities to create = new cus-
tomer benefits. https://www.thinkwithgoogle.com/
intl/en- gb/future- of- marketing/digital- transformation/

monetizing-car-data-new-service-business-opportunities- create-new-customer-benefits/,

2017. Accessed: 2025-03-31.

[7] Burton Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, pages 422-426, 1970.

[8] Dan Boneh and Hovav Shacham. Group signatures with verifier-local
revocation. In Proceedings of the ACM Conference on Computer and
Communications Security, Washington, DC, USA, 2004.

[9] Julien Bringer and Alain Patey. Backward unlinkability for a VLR
group signature scheme with efficient revocation check. Cryptology
ePrint Archive, 2011.

[10] David Chaum. Security without identification: Transaction systems
to make big brother obsolete. Communications of the ACM, pages
1030-1044, 1985.

[11] David Chaum and Eugene Heyst. Group signatures. In Workshop
on the Theory and Application of Cryptographic Techniques, pages
257-265, Brighton, UK, 1991.

[12] Delphine Christin. Privacy in mobile participatory sensing: Current
trends and future challenges. Journal of Systems and Software, pages
57-68, 2016.

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Cléaudio Correia, Miguel Correia, and Luis Rodrigues. Using range-
revocable pseudonyms to provide backward unlinkability in the
edge. In Proceedings of the ACM Conference on Computer and
Communications Security, Copenhagen, Denmark, November 2023.
AT&T Cybersecurity. Cybersecurity Insights Report: Securing
the Edge, eleventh edition. https://cdn-cybersecurity.att.com/docs/
industry-reports/cybersecurity-insights-report-eleventh-edition.pdf,
2022. Accessed: 2025-03-31.

Carlos Gaiian, Jose Munoz, Oscar Esparza, Jorge Mata-Diaz, and
Juanjo Alins. EPA: An efficient and privacy-aware revocation
mechanism for vehicular ad hoc networks. Pervasive and Mobile
Computing, pages 75-91, 2015.

Raghu Ganti, Fan Ye, and Hui Lei. Mobile crowdsensing: Current
state and future challenges. IEEE Communications Magazine, pages
32-39, 2011.

GAO. Vehicle data privacy. Technical Report GAO-17-656, United
States Government Accountability Office, June 2017. Accessed:
2025-03-31.

Jason Haas, Yih-Chun Hu, and Kenneth Laberteaux. Efficient
certificate revocation list organization and distribution. /[EEE Journal
on Selected Areas in Communications, pages 595-604, 2011.

Ryan Henry and Ian Goldberg. Formalizing anonymous blacklisting
systems. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 81-95, Oakland, California, USA, May 2011.

Ai Ishida, Yusuke Sakai, Keita Emura, Goichiro Hanaoka, and
Keisuke Tanaka. Fully anonymous group signature with verifier-
local revocation. In Proceedings of the International Conference on
Security and Cryptography for Networks, Amalfi, Italy, September
2018.

Robert Johnson, David Molnar, Dawn Song, and David Wagner.
Homomorphic signature schemes. In Cryptographers’ track at the
RSA conference, pages 244-262. Springer, 2002.

Mohammad Khodaei, Hongyu Jin, and Panagiotis Papadimitratos.
SECMACE: Scalable and robust identity and credential management
infrastructure in vehicular communication systems. [EEE Transac-
tions on Intelligent Transportation Systems, pages 1430-1444, 2018.
Mohammad Khodaei and Panos Papadimitratos. Efficient, scalable,
and resilient vehicle-centric certificate revocation list distribution in
VANETs. In Proceedings of the ACM conference on security &
privacy in wireless and mobile networks, Stockholm, Sweden, June
2018.

Tobias Lauinger, Nikolaos Laoutaris, Pablo Rodriguez, Thorsten
Strufe, Ernst Biersack, and Engin Kirda. Privacy implications of
ubiquitous caching in named data networking architectures. In ACM
Special Interest Group on Data Communication, Helsinki, Finland,
August 2012.

Mu Lin, Nicholas Lane, Mashfiqui Mohammod, Xiaochao Yang,
Hong Lu, Giuseppe Cardone, Shahid Ali, Afsaneh Doryab, Ethan
Berke, Andrew Campbell, and Tanzeem Choudhury. BeWell+ multi-
dimensional wellbeing monitoring with community-guided user
feedback and energy optimization. In Proceedings of the conference
on Wireless Health, San Diego, CA, USA, October 2012.

Karsten Loesing. Measuring the tor network: Evaluation of client
requests to the directories. Technical report, Tor Project, 2009.
Anna Lysyanskaya, Ronald Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In Proceedings of the International Workshop
on Selected Areas in Cryptography, Ontario, Canada, August 1999.

David Meyer. What the GDPR will mean for
companies tracking location. https://iapp.org/news/a/
what-the- gdpr- will-mean-for-companies- tracking-location/, 2018.

Accessed: 2025-03-31.

Toru Nakanishi and Nobuo Funabiki. Verifier-local revocation group
signature schemes with backward unlinkability from bilinear maps.
In Proceedings of the International conference on the theory and
application of cryptology and information security, Chennai, India,
December 2005.

Jianbing Ni, Aiqing Zhang, Xiaodong Lin, and Xuemin Shen.
Security, privacy, and fairness in fog-based vehicular crowdsensing.
IEEE Communications Magazine, pages 146-152, 2017.

Kazuma Ohara, Keita Emura, Goichiro Hanaoka, Ai Ishida, Kazuo
Ohta, and Yusuke Sakai. Shortening the Libert—Peters—Yung revoca-
ble group signature scheme by using the random oracle methodology.
IEICE Transactions on Fundamentals of Electronics, Communica-
tions and Computer Sciences, pages 1101-1117, 2019.

Bei Pan, Yu Zheng, David Wilkie, and Cyrus Shahabi. Crowd
sensing of traffic anomalies based on human mobility and social
media. In Proceedings of the ACM international conference on

[33]

[34]

[35]

(36]

(371

[38]

[39]

[40]

[41]

advances in geographic information systems, Orlando, FL, USA,
November 2013.

Sazzadur Rahaman, Long Cheng, Danfeng Yao, He Li, and Jung
Park. Provably secure anonymous-yet-accountable crowdsensing
with scalable sublinear revocation. In Proceedings of the Privacy
Enhancing Technologies, Minneapolis, USA, July 2017.

Mina Remeli, Szilvia Lestydn, Gergely Acs, and Gergely Biczok.
Automatic driver identification from in-vehicle network logs. In Pro-
ceedings of the IEEE Intelligent Transportation Systems Conference,
Auckland, New Zealand, October 2019.

Florian Schaub, Frank Kargl, Zhendong Ma, and Michael Weber.
V-tokens for conditional pseudonymity in VANETS. In Proceedings
of the IEEE Wireless Communication and Networking Conference,
Sydney, Australia, April 2010.

Edward Schwartz, David Brumley, and Jonathan McCune. Contrac-
tual anonymity. PhD thesis, Carnegie Mellon University. Information
Networking Institute, 2009.

Victor Sucasas, Georgios Mantas, Joaquim Bastos, Francisco
Damifo, and Jonathan Rodriguez. A signature scheme with
unlinkable-yet-acountable pseudonymity for privacy-preserving
crowdsensing. /[EEE Transactions on Mobile Computing, pages 752—
768, 2020.

Yipin Sun, Rongxing Lu, Xiaodong Lin, Xuemin Shen, and Jinshu
Su. An efficient pseudonymous authentication scheme with strong
privacy preservation for vehicular communications. IEEE Transac-
tions on Vehicular Technology, pages 3589-3603, 2010.

Patrick Tsang, Man Au, Apu Kapadia, and Sean Smith. BLAC: Re-
voking Repeatedly Misbehaving Anonymous Users without Relying
on TTPs. Technical report, Dartmouth College, Computer Science
Department, TR2008-635, 2010.

Patrick Tsang, Apu Kapadia, Cory Cornelius, and Sean Smith.
Nymble: Blocking misbehaving users in anonymizing networks.
IEEE Transactions on Dependable and Secure Computing, 8(2),
2009.

Yifeng Zhu, Hong Jiang, and J. Wang. Hierarchical Bloom filter
Arrays (HBA): a novel, scalable metadata management system for
large cluster-based storage. In Proceedings of the IEEE International
Conference on Cluster Computing, pages 165—174, San Diego (CA),
USA, 2004.

