2505.12851v1 [cs.CR] 19 May 2025

arXiv

FLTG: Byzantine-Robust Federated Learning
via Angle-Based Defense and Non-IID-Aware
Weighting

Yanhua Wen!, Lu Ai', Gang Liu?*, Chuang Li', and Jianhao Wei!

! Hunan University of Technology and Business and also with Xiangjiang
Laboratory, Hunan 410205, China
yanhua-wen@hutb.edu.cn, 1392054016Qqq. com, chuangli@hutb.edu.cn
jianhao@hutb.edu.cn
2 Shenzhen Institute for Advanced Study, University of Electronic Science and
Technology of China, Shenzhen 518055, China
gliu29Q@uestc.edu.cn

Abstract. Byzantine attacks during model aggregation in Federated
Learning (FL) threaten training integrity by manipulating malicious
clients’ updates. Existing methods struggle with limited robustness un-
der high malicious client ratios and sensitivity to non-i.i.d. data, leading
to degraded accuracy. To address this, we propose FLTG, a novel ag-
gregation algorithm integrating angle-based defense and dynamic refer-
ence selection. FLTG first filters clients via ReLU-clipped cosine similar-
ity, leveraging a server-side clean dataset to exclude misaligned updates.
It then dynamically selects a reference client based on the prior global
model to mitigate non-i.i.d. bias, assigns aggregation weights inversely
proportional to angular deviations, and normalizes update magnitudes to
suppress malicious scaling. Evaluations across datasets of varying com-
plexity under five classic attacks demonstrate FLTG’s superiority over
state-of-art methods under extreme bias scenarios and sustains robust-
ness with higher proportion(over 50%) malicious clients.

Keywords: Federated Learning; Byzantine Robustness; Cosine Similar-
ity Aggregation; Non-I1ID Data; Model Poisoning Attacks

1 Introduction

Federated Learning(FL)[1],[2] is a decentralized machine learning [3] approach
that enables clients to collaboratively train a model without exposing their
private data. Each client trains a local model using its own data and sends
only model updates (e.g., gradients)[4] to a central server for aggregation. This
framework ensures data privacy by keeping sensitive original data local, while
still benefiting from the collective knowledge of all participants. FL is particu-
larly well-suited for applications involving mobile devices[5], blockchain [6], and
healthcare[7], where data security is paramount.

https://arxiv.org/abs/2505.12851v1

However, federated learning (FL) still encounters a number of challenges
when applied in real-world scenarios. Its decentralized structure makes it sus-
ceptible to malicious disruptions, particularly during the model sharing phases,
which can expose it to Byzantine attacks. Among the primary threats are data
poisoning attacks[8] and local model poisoning attacks[9],[10],[11], both of which
can severely affect the global model’s training performance, jeopardizing the se-
curity and stability of the entire FL framework. To tackle this security challenge,
various Byzantine-robust FL approaches have been proposed[7],[11], [12],[13],[14],
[15],[16], [17], [18]. The majority of these methods detect malicious clients by an-
alyzing discrepancies in model updates, either through comparisons with other
client models or the server model. These solutions face two critical limitations:
(1) sensitivity to non-IID data — conventional similarity metrics (e.g., Euclidean
distance in Krum, coordinate-wise trimming in Trim-mean) fail to disentangle
malicious updates from legitimate yet divergent updates caused by data hetero-
geneity, leading to over-filtering and model bias; (2) fragility under high mali-
cious ratios — most methods degrade sharply when malicious clients dominate,
as static reference models or fixed thresholds become ineffective against adaptive
poisoning strategies.

To address the aforementioned challenge, based on the two main categories of
defense aggregation methods in federated learning, we select angle-based defense
techniques to detect malicious clients. Compared with angle-based approaches,
distance-based methods have the following disadvantages: First, distance-based
methods typically require strict assumptions, such as knowing the number of
malicious clients in advance, which are hard to meet in real federated learning
environments. Second, computing FEuclidean or Mahalanobis distance requires
extensive mathematical operations on model parameters, which becomes com-
putationally expensive, especially for high-dimensional models. Third, distance-
based approaches are generally more effective at detecting attacks that manip-
ulate update magnitudes, whereas angle-based methods are better suited for
detecting directional anomalies in gradients. In our study, we not only focus on
the direction of the gradients but also normalize the gradients to account for
their magnitudes. This combination gives our method a robustness advantage
that cannot be achieved by distance-based methods.

Based on the advantages of the aforementioned angle-based techniques, we
propose a Byzantine-Robust aggregation algorithm, FLTG. First, we compute
the cosine similarity between each client’s model update and the server’s model
update. Next, we perform additional operations on the subset of clients whose
cosine similarity is greater than zero. To reduce the effects of non-iid (non-
independent and identically distributed) data, we identify the client within this
subset that exhibits the largest angular difference from the global model in the
previous round. We then calculate the cosine similarity between this reference
client and the rest of the clients in the subset. We hypothesize that clients more
similar to the reference client should have lower aggregation weights. Subse-
quently, we normalize the model updates of the client subset, scaling them to
align with the server’s model update on the same hypersphere in the vector

space. This step helps mitigate the influence of malicious model updates with
large deviations. Finally, FLTG computes a weighted average of the normalized
model updates to complete the aggregation. In conclusion, the main contribu-
tions of our work are as follows.

e Innovative Byzantine-Robust Aggregation Mechanism. We integrate
ReLU-based cosine similarity screening strategy and dynamic reference se-
lection strategy driven by historical global model updates, ensuring adaptive
defense against evolving attacks while minimizing over-filtering of legitimate
non-IID updates.

e Enhanced Robustness to Non-ITD Scenario. We introduce a global
model-guided scoring system, distinguishing malicious deviations from be-
nign data heterogeneity. The inverse-proportional weighting of angular dif-
ferences mitigates root dataset bias and client non-IID impacts.

e Comprehensive Resilience Validation. We rigorously evaluate FLTG
across diverse datasets (MNIST, CIFAR-10), model architectures (CNN,
ResNet20), and six attack scenarios (e.g., label-flipping, Krum attack). FLTG
sustains robustness even with >50% malicious clients, outperforming state-
of-the-art methods in accuracy and attack resistance.

2 Background and Related Works

2.1 Federated Learning

Federated Learning (FL) is a decentralized machine learning method where mul-
tiple clients collaboratively train a shared model without directly exchanging
their data. Each client trains a local model using its own data and only shares
model updates (such as gradients) with a central server. This approach ensures
data privacy while enabling the construction of a global model. The implemen-
tation of Federated Learning follows these three steps (as shown in Fig. 1): The
server sends the global model to clients, who then train local models and send
updates back. The server aggregates these updates to update the global model.

Step II1: The server aggregates local model updates
and uses them to update the global model.

Step II:The clients /‘/l \ Step I:The server

train local models & Bo o sends the global
¢ model to the clients.

G i,‘ﬁ o]
and send them to_ S S 1

o | b
the server. E |;| @

Fig. 1: Federated Learning Framework.

2.2 Byzantine-Robust Federated Learning

Byzantine-Robust Federated Learning (BR-FL) aims to maintain the reliabil-
ity and integrity of model aggregation in the presence of malicious participants.
While privacy-preserving techniques in Federated Learning (FL) focus mainly on
safeguarding sensitive data, BR-FL addresses the challenge of ensuring the accu-
racy and trustworthiness of models despite adversarial attacks, such as Byzan-
tine failures, where participants may submit corrupted or misleading updates
to disrupt the training process. To combat this issue, a variety of Byzantine-
robust aggregation strategies have been proposed. Aggregation rules are vital in
Federated Learning, as they directly influence the system’s ability to effectively
mitigate malicious behavior. In the following section, we will introduce several
classical aggregation algorithms.

2.3 Byzantine-Robust Aggregation Rules

Krum[12]: Krum is designed to assess the similarity between each client’s model
update and those of other clients using the squared Euclidean distance. The
server evaluates each update by computing the sum of squared distances to its
n— f—2 closest neighbors, where n is the total number of clients and f represents
the number of malicious clients. The update with the smallest sum of distances is
selected as the global model update, thereby reducing the influence of malicious
clients. Krum has been proven to tolerate up to f malicious clients, provided
that the condition n > 2f 4 2 is met. The aggregation process for Krum is
formulated as follows:

g=g,, i"=arg _min Y |g;— gl (1)
ie{l,...,n} |)
JEN(3)

where g; and g; denote the model updates from clients i and j, respectively,
and A/ (7) represents the set of n— f —2 closest neighbors of g;, determined based
on the squared Euclidean distance.

Trim-mean[13]: Trimmed-Mean is a coordinate-wise aggregation method
that enhances robustness by filtering out extreme values. Specifically, for each
parameter, it discards the k largest and %k smallest values before computing
the mean of the remaining ones. The trim parameter k, which determines the
number of values removed, must be at least equal to the number of malicious
clients to ensure resilience against attacks. This approach allows Trim-Mean to
tolerate up to k < 4 malicious clients, meaning it remains effective as long as
fewer than 50% of participants are adversarial. The aggregation process follows
this formulation:

1
9=191,92---.94, gj:ngijv (2)
i€S;

where g;; denotes the j-th parameter in the i-th client’s model update, and
S; represents the set of remaining values for the j-th parameter after removing

the k highest and lowest values. Here, n refers to the total number of clients.
The final aggregated update g is composed of all parameter values g, gs, - .., 94,
where d represents the total number of parameters in the model.

Median[13]: The Median aggregation method operates in a coordinate-wise
manner, determining the global model update by computing the median value
of each parameter across all client updates. This approach enhances robustness
by mitigating the influence of extreme values. The aggregation process is math-
ematically defined as follows:

9=191,95---.94, g; =median ({g,; :i € [n]}), (3)

where g;; denotes the j-th parameter in the model update from client i,
and n represents the total number of participating clients. The final aggregated
update g consists of all parameter values g;,9s,.-.,9,, With d being the total
number of model parameters.

FLTrust[11]: FLTrust introduces a defense mechanism in which the server
manually collects a small, trustworthy dataset—referred to as the root dataset
that remains untainted by poisoning attacks. Using this dataset, the server trains
a reference model, known as the server model, analogous to how each client trains
its local model. To assess the reliability of client updates, FLTrust computes
a trust score (TS) for each client based on the cosine similarity between the
client’s model update and the server model update. These trust scores serve
as weights during the aggregation process. Additionally, FLTrust reduces the
impact of malicious updates by normalizing each client’s model update, adjusting
its magnitude to align with that of the server model update. The aggregation
process follows the formula:

1 n
9= 7g 2 TS5 9 (4)
Zj:l TS ;

where T'S; represents the trust score assigned to client j, and g, denotes the
normalized model update of client 1.

3 Problem Setup

3.1 Attack Model

In federated learning (FL), adversaries can either compromise existing clients
or introduce fake ones to launch attacks. These malicious clients generate cor-
rupted local updates with the intent of manipulating the global model, a strategy
known as Byzantine attacks[9],[11],[10]. The goal of such attacks is to disrupt
the collaborative training process and degrade the global model’s performance.
Consistent with prior work on poisoning attacks, we classify adversaries based
on their level of knowledge. In the partial knowledge setting, attackers have ac-
cess to their own local training data, model updates, loss functions, learning
rates, batch sizes, and other related parameters. In the full knowledge setting,

adversaries have complete visibility into the entire FL training process, including
local training data, model updates across iterations, aggregation rules, and all
relevant parameters.

To evaluate the robustness of our method, we conduct experiments under the
full knowledge setting. In this scenario, we assume the server remains uncompro-
mised and does not collaborate with any clients. However, the server operates
under an honest-but-curious model: it strictly follows the aggregation protocol
without selectively discarding updates but may attempt to infer private client
information by analyzing both local and global model updates during training
rounds. The main types of threats considered include:

e Data Poisoning Attacks [11]: Adversaries alter training labels without chang-
ing input features, such as in label flipping attacks where malicious clients’
labels are changed to a target class or reassigned randomly. Detecting these
attacks is difficult as the server cannot directly access client data.

e Model Poisoning Attacks [9]: These attacks modify local model updates
strategically. If the aggregation mechanism doesn’t filter them out, it can
lead to significant performance loss or failure of the global model to con-
verge.

e Backdoor Attacks [10]: These attacks embed hidden triggers in training data.
Models trained on this data will misclassify inputs containing the trigger,
producing the attacker’s intended output. For instance, in image classifica-
tion, an attacker might insert a subtle pattern in images and mislabel them.
The model will only be compromised when it encounters this pattern during
inference.

3.2 Design Goals

We aim to develop a Byzantine-robust federated learning framework that focuses
on server-side defense mechanisms. The framework is designed to ensure fidelity,
meaning the global model’s accuracy remains uncompromised in the absence
of malicious clients. Simultaneously, it guarantees robustness, maintaining high
global model accuracy even under adversarial attacks. To achieve these objec-
tives, our proposed framework must be effective across different datasets, attack
strategies, and scenarios with highly heterogeneous data distributions. Further-
more, it should remain functional even when the fraction of malicious clients

exceeds 50%.

3.3 System Model

Our system architecture, consistent with FLTrust[11], involves the server main-
taining a small, clean dataset (referred to as the root dataset) and following the
standard three-step federated learning process outlined in Section 2.1. However,
a key distinction exists in the second step: while clients train their local models,
the server also trains a model on the root dataset, known as the server model.
This additional step enables the server to utilize its own model update as a

trusted reference during aggregation. Specifically, in the third step, the server
compares client model updates against the server model update, leveraging di-
rectional similarity to detect and mitigate malicious contributions. For a detailed
breakdown of the workflow, please refer to Algorithm 1.

Algorithm 1 Federated Learning Framework

Require: A set of n clients S = {C1,Cs,...,C,}, with their corresponding training
datasets {D1, D2, ..., D,}, server’s root dataset Dy, global learning rate «, local
learning rate [, total global rounds R, n clients selected per round, local epochs e,
and batch size b.

Ensure: Global model G.

1: G < random initialization.

2: fort=1,2,...,R do

3: // Step L: The server sends the global model to clients.

4: The server randomly samples 7 clients C1,Cs,...,C, from {1,2,...,n} and
sends G to them.

5: // Step II: Training local models and server model.
6: // Client side.

7. for alli=C1,Cs,...,C, do

8: g¢ = ModelUpdate(G*, D;, b, 3, €).

9: Send g! to the server.

10: end for

11: // Server side.

12: gb = ModelUpdate(G*, Do, b, 3, €).

13: // Step IIL: Updating the global model via aggregating the local model updates.
14: for all ¢ = C1,Cq,...,C), do

15: Score;, gt + FLTG.

16: end for

17: ¢t = ST Seores, Slwmcj ;’:1 Scorec; .gtcj.
18 G'=G"'4+a-g'.

19: end for

20: return G.

4 Method

4.1 Overview

Federated learning is highly susceptible to Byzantine attacks, particularly model
poisoning attacks, where adversaries manipulate the updates of compromised
clients to influence the aggregation process. These manipulations can alter both
the direction and magnitude of model updates. To enhance robustness, it is essen-
tial to address both factors effectively. Our approach revolves around computing
the cosine similarity between each local model update and the server model
update. To filter out potentially malicious updates, we apply ReLU-clipped fil-
tering, excluding clients whose cosine similarity falls below zero. To further miti-
gate the impact of data non-IID, we introduce a scoring mechanism based on the

global model, ensuring a more balanced and fair weighting of client contributions
during aggregation. After filtering, we normalize the magnitude of the remaining
local model updates, reducing the influence of model poisoning attacks. Finally,
we aggregate the filtered and normalized updates using a weighted averaging
process to obtain the global model update. The full workflow of our proposed
FLTG framework is detailed in Algorithm 2, with the following Details section
providing an in-depth explanation of its core techniques.

Algorithm 2 FLTG

Require: The server randomly selects n clients Cy,C5,...,Cy, from the set
S = {C1,Cy,...,Cy,}, with their corresponding encrypted local model updates

gtcl , gtCQ, . ,gtcn, server’s model update g§, the current round ¢, the global model
t—1

update from the previous round g
Ensure: Score;, gt.
: Score; = Score; = Score = 0.
: Initialize S’.
: for ¢ = 01702,‘..707] do
Score; = ReLU (7@:’9{j>)

1

2

3

4 lgtll-Ng§ll

5: if Score; > 0 then

6: Add i to the client subset S’.
7 end if

8: end for

9: if t == 1 then

10: foriec S’ do

11: Score; = Scorel.
12: end for

13: else

14: for i € S’ do L

. no_ (95,9 7)

15: Seorei = prigE=Ty-
16: end for

17: ref = arg min;ecg/ (Scorey).
18: for i € S’ do .

- o _9nrep)
19: Score; = 1 ToT I Tt T
20: end for
21: end if

22: for i € ﬁ't(‘flo
. gt — lsbll e
2 g0 =gt g

24: end for
25: return Score;, gt.

4.2 Details

Our new aggregation rule implements a more reasonable scoring mechanism and
stronger robustness.Fig. 2. illustrates our aggregation rule.

Local model updates Step |
gﬁ, gé, g:ts, 951 { t t)
& _ V91,9
: c N Tl e
Server model update 90)g'1
& - <, cos 0y = —(98:90)
Global model update 9~ ///;52”' 90 lgsll - llgbl
t t
PR 7 g cosfy = —(95:96)
T a Y FARE
9g.
g2 ‘ PR ()
T gk g
. g = 4 0
4 93
94
< <
Normalization & Aggregation Step |l .
g
gi bl ¥4
g gt = Joll . ¢ % D
w gt _
<7 a1 :
gs)92 g = ﬁ -9 gt
t 92 g
93 . 3
g g = llgall gt 2G> ZGY g > Z(GF

llg5l

Score,, = 1 — cos(g!, gt)

¢+ _ Scorecs - g + Scorecs - g + Scorecs - 75
Score.; + Scoreqo + Scoregs

@

Score, = 1 — cos(gi, 95)

Score., = 1 — cos(g!, g%)

Fig. 2: Ilustration of FLTG.

Cosine Similarity Filtering with ReLU Function: Attackers can ma-
nipulate the direction of malicious clients’ model updates to interfere with the
global model update. To counter this, we treat the server model update as a
trusted reference. Cosine similarity, a widely used metric for evaluating the an-
gular relationship between two vectors, is employed to measure the directional
alignment between each local model update and the server model update. If the
cosine similarity is negative, the corresponding update could adversely affect the
global aggregation. To prevent this, we apply the ReLU function to filter out
such updates. The process is formally defined as follows:

t ot
cos; = 7{?“901 , (5)

lgill - llgoll
where gf, denotes the server model update at round ¢, || - || represents the 5

norm of a vector, and (a, b) is the inner product of vectors a and b.
The ReLU function as folllows:

0 ifz<O

ReLU(z) = >0

X

Non-IID-Aware Weighting Mechanism: The non-IID nature of data
distribution is a crucial factor in federated learning, as it can substantially affect
model performance. To alleviate the impact of non-IID data and assign more ap-
propriate aggregation weights to clients, we integrate the global model into the
process, leveraging its comprehensive knowledge. Beyond handling non-IID chal-
lenges, we observed that simply filtering clients based on directional similarity
does not entirely eliminate the risk of including malicious updates in the aggre-
gation. To further mitigate their influence, we aim to assign lower aggregation
weights to such clients. Our approach is structured as follows. All subsequent
computations are performed on the subset S of clients that remain after apply-
ing the ReLU function. Within this subset, we first identify the client whose
model update exhibits the lowest cosine similarity with the previous round’s
global model. This client’s model update serves as a reference. We then com-
pute the cosine similarity between this reference update and the updates from
other clients in S. The principle behind our weighting mechanism is that clients
with greater similarity to the reference update should receive lower aggregation
weights. The scoring function that determines these weights is defined as follows:

Score.; = 1 — cos(gﬁef,gz-), (7)

where c; represents a client in subset S, gé- denotes its corresponding en-
crypted model update at round ¢, and g ; refers to the encrypted model update
of the reference client in S.

Normalizing the magnitudes of local model updates: As mentioned
earlier, model updates encompass both direction and magnitude. Attackers may
also alter the magnitude of malicious clients’ updates to compromise the global
model update. To counteract this, we apply normalization to each client’s model
update, reducing the impact of such attacks. This normalization step also miti-
gates the influence of positive random scaling factors that clients may introduce
to obscure their updates before submission while preserving the data’s utility.

By leveraging the server model update as a reference, the normalization pro-
cess projects all local updates onto the same hypersphere within the vector space.
Specifically, each client’s update is scaled by its f5 norm to form a unit vector.
The normalization operation is defined as follows:

—t ||96|| t
g; = - g5 (8)
7o ghl Y

where Q; represents the obfuscated model update of client j in subset S at
round t, ||g4|| is its corresponding £ norm, [|gh|| denotes the f5 norm of the
server model update, and §§ represents the normalized model update of client
j-

Aggregating the local model updates: In the final step, we calculate the
weighted average of the normalized model updates from all clients to obtain the
global model update. The aggregation formula is given by:

k
1

—— Y Score;-g.; (9)

k Z i 95
> iy Scorej =

where j denotes a client in the subset S, consisting of k clients in total,
Score; represents the weight assigned to client j based on its contribution, and
g; is the normalized model update from client j.

g:

5 Evaluation

In this section, we present experimental results that evaluate the performance
of our proposed method, FLTG, under existing poisoning attacks. We used the
MNIST and CIFAR-10 datasets, with the number of clients set to 100 for both.
The degree of non-ITDness in the data distribution among clients is represented
by ¢, where a larger value indicates a higher degree of non-ITDness. The size
of the Root Dataset is 100, and its Bias Probability is p, where a larger value
indicates a greater degree of bias.

Table 1: Performance on MNIST under Standard Attacks.

FedAvg Krum Trim-mean Median ~ FLTrust FLTG
No attack 0.9999 0.9374 0.9790 0.9790 1 1.0190
LF attack 0.9790 0.9374 0.9895 0.9790 1 1.0169
Krum attack 0.9374 0.0141 0.9686 0.9686 1 1.0115
Trim attack 0.8749 0.9374 0.9061 0.9061 1 1.0080
Scaling attack 1.0103/0.0000 0.9278/1.0000 0.9794/0.9900 0.9794/0.9900 1/1 1.0197/1.0012
Adaptive attack 0.9583 0.9375 0.9271 0.9062 1 1.0184

Notes: Scaling attack results are formatted as ” Accuracy /Backdoor Defense Suc-
cess Rate.”

As shown in Table 1, we use the same experimental settings in FLTrust[11]: 5
types of standard attacks with a non-IID degree ¢ = 0.1, a bias probability p =
0.1, and 20% malicious clients. Note that we only reproduced FLTrust [11] and
use its results as the normalization bridge for performance comparison with other
baseline methods. We calculate the ratio between the accuracy of other methods
relative to FLTrust to ensure the fairness and consistency. We first calculated
the ratio a as the accuracy of the locally reproduced FLTrust divided by the
official FLTrust accuracy. Then, we multiplied the official performance values of
each method by this ratio. Finally, we obtained the performance comparison of
each method under the local hardware environment by dividing the result by the
accuracy of the locally reproduced FLTrust. For instance, under scaling attacks,
FLTrust achieved normalized accuracy and defense success rates of 1.0, while
Median lagged by 2.06% and 1%, respectively. In contrast, FLTG outperformed
FLTrust with 1.97% higher accuracy and a 0.12% improvement in defense rate.
Notably, FLTG maintained near-optimal accuracy even in no-attack scenarios,
demonstrating its compatibility with benign environments.

Table 2: Impact of Root Dataset Bias.

Attack Method 0.1 0.2 04 0.6 0.8 1.0
No attack FLTrust 0.9574 0.9531 0.9613 0.9552 0.9510 0.3546
O attac FLTG 0.9681 0.9592 0.9640 0.9652 0.9620 0.9196
LF attack FLTrust 0.9564 0.9587 0.9595 0.9526 0.9562 0.0980
FLTG 0.9661 0.9671 0.9675 0.9692 0.9640 0.1261
Krum attace FLTrust 0.9457 0.9445 0.9421 0.9101 0.9384 0.1330
attade prra 0.9509 0.9532 0.9504 0.9107 0.9429 0.0980

Trim attack FLTTUSt 0.9541 0.9404 0.9452 0.9343 0.9316 0.0980
attac FLTG 0.9576 0.9550 0.9502 0.9524 0.9515 0.0980

FLTrust 0.9558 / 0.0072 0.9494 / 0.0093 0.9577 / 0.0194 0.9501 / 0.9020 0.9535 / 0.9020 0.0980 / 0.9020
FLTG 0.9688 / 0.0060 0.9565 / 0.0077 0.9651 / 0.0139 0.9612 / 0.0285 0.9683 / 0.0465 0.0980 / 0.9020

FLTrust 0.9452 0.9275 0.9366 0.0980 0.0980 0.0980
FLTG 0.9573 0.9500 0.9536 0.9434 0.9369 0.0980

Scaling attack

Adaptive attack

In Table 2, to investigate FLTG’s tolerance to root dataset bias, we set ¢ = 0.1
and varied the root dataset bias probability p from 0.1 to 1.0 FLTG consistently
outperformed FLTrust across all bias levels. In the no-attack scenario with ex-
treme bias (p = 1.0), FLTrust’s accuracy dropped significantly to 0.3546, while
FLTG maintained an accuracy of 0.9196. This demonstrates FLTG’s ability to
effectively mitigate the impact of data heterogeneity, even when the root dataset
is highly skewed.

CIFAR-10, non-iid=0.5, Bias probability=0.1 o 7CIFAR-ll], non-iid=0.5, Bias probability=0.5 CIFAR-10, non-iid=0.5, Bias probability=0.8
- 0.7

0.70

> >06 >
9 9 0.6
3065 e, I
e Cos o
S 3 S
3 060 3 —— FUTrust 3 05 —— FlTrust
® 0.55 © 0.41 —=— FUTG © 0.4 —=— FUTG
o =) —— FedAVG No attack o —— FedAVG No attack
£050 £03 £03
= =] =]
@ 0.45] —— FUTst 7 7
EDO+FLTG o2 @o.2 '\.—r/.\.

401 —— FedAVG No attack 01 01

095 0 095 20 95

50 80 9 50 80 o 50 80
Fraction of malicious clients (%) Fraction of malicious clients (%) Fraction of malicious clients (%)

(a) Bias probability=0.1 (b) Bias probability=0.5 (c) Bias probability=0.8

Fig. 3: Impact of Root Dataset Bias Probability and Malicious Client Ratio on
Model Robustness under Adaptive Poisoning Attack.

In Figure 3, we have replaced the dataset with the more complex CIFAR-
10 dataset under higher non-IID (q=0.5), and employed the stronger model
poisoning attack, Min-max[19]. The figure shows a comparison of FLTG’s per-
formance against FLTrust under varying bias probabilities and fractions of ma-
licious clients, along with FedAvg under no-attack conditions. The experiments
demonstrate that FLTG outperforms FLTrust in terms of both bias probability
tolerance and resilience to varying proportions of malicious clients. Specifically,
at a bias probability of 0.8, where conditions are most challenging, FLTG still
manages to maintain a relatively higher testing accuracy than FLTrust, indi-
cating its robustness against high levels of dataset bias and malicious client

influence. These results highlight the effectiveness of FLTG in maintaining per-
formance under more complex and adversarial conditions.

CIFAR-10, non-iid=0.1, Bias probability=0.1 CIFAR-10, non-iid=0.5, Bias probability=0.1 CIFAR-10, non-iid=1.0, Bias probability=0.1
PR R —— 017 —e— FLTrust
Co.16 —— FITG /\—‘
> —+— FedAVG No attack
00.15
X ®
5014
o So013
! ®
£ 7|~ st go 45] —>— FIrust go 2
2 0.45] = FTG 2% e fre So011 A\
@ —+— FedAVG No attack |L 0,401 —— FedAVG No attack “o.10
20 50 80 9095 20 50 80 9095 20 50 80 9095
Fraction of malicious clients (%) Fraction of malicious clients (%) Fraction of malicious clients (%)
(a) Non-iid=0.1 (b) Non-iid=0.5 (c) Non-iid=1.0

Fig.4: Impact of Client Non-IID Degree and Malicious Client Ratio on Model
Robustness under Adaptive Poisoning Attack.

Finally, in Figure 4, we also use the CIFAR-10 dataset. We fix p=0.1 and use
the Min-max attack to study the performance of FLTG compared to FLTrust
under varying levels of non-IID and fractions of malicious clients, as well as
the performance of FedAvg under no-attack conditions. Specifically, in subplot
(a) of Figure 4, where the non-IID level is set to 0.1, FLTG not only surpasses
FLTrust but also achieves a higher testing accuracy rate than FedAvg in no-
attack scenarios, even at a low fraction of malicious clients, such as 20%. This
indicates that even at a relatively low level of non-IID distribution and under
attack by a relatively small proportion of malicious clients, FLTG is still able to
effectively maintain high performance.

6 Conclusion and Future Work

This paper introduces FLTG, a new aggregation algorithm for defending against
Byzantine attacks in federated learning. Using cosine similarity screening and
model update normalization, FLTG enhances model convergence and resilience
to poisoning attacks. Future work will focus on improving privacy and efficiency
in federated learning, aiming for a balance between privacy, accuracy, and com-
putational cost. We will also conduct scalability evaluations in large-scale fed-
erated learning environments and investigate how performance changes as the
number of clients increases, in order to broaden its applicability and enhance
the practical relevance of the paper.

Acknowledgments. This research was supported in part by the National Social
Science Foundation Youth Program (Grant No. 24CGL104), Hunan Provincial
Natural Science Foundation of China (No. 2023JJ40237), and the Youth Pro-
gram of Hunan Provincial Department of Education (Grant No. 23B0598, No.
22B0648).

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Konecny, J., McMahan, H.B., Felix, X.Y., Richtéarik, P., Suresh, A.T., Bacon,
D.: Federated learning: Strategies for improving communication efficiency. CoRR
(2016)

McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.
Communication-efficient learning of deep networks from decentralized data. In:
Artificial intelligence and statistics, pp. 1273-1282. PMLR (2017)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778 (2016)

Zeng, H., Li, J., Lou, J., Yuan, S., Wu, C., Zhao, W., Wu, S., Wang, Z.: Bsr-fl: An
efficient byzantine-robust privacy-preserving federated learning framework. IEEE
Transactions on Computers (2024)

Gong, B., Xing, T., Liu, Z., Xi, W., Chen, X.: Towards hierarchical clustered
federated learning with model stability on mobile devices. IEEE Trans. Mob.
Comput. (2024)

Li, Y., Xia, C., Li, C., Wang, T.: Brfl: A blockchain-based byzantine-robust feder-
ated learning model. Journal of Parallel and Distributed Computing 196 (2025)
Zhang, L., Fang, G., Tan, Z.: Fedccw: a privacy-preserving byzantine-robust fed-
erated learning with local differential privacy for healthcare. Cluster Computing
28(3), 1-21 (2025)

. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector ma-

chines. Omnipress (2012)

Fang, M., Cao, X., Jia, J., Gong, N.Z.: Local model poisoning attacks to byzantine-
robust federated learning. In: USENIX Security Symposium (2020)

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor
federated learning (2018)

Cao, X., Fang, M., Liu, J., Gong, N.Z.: Fltrust: Byzantine-robust federated learning
via trust bootstrapping. In: Network and Distributed System Security Symposium
(2021)

Blanchard, P., Mhamdi, E.M.E., Guerraoui, R., Stainer, J.: Machine learning with
adversaries: byzantine tolerant gradient descent. Curran Associates Inc. (2017)
Yin, D.; Chen, Y., Ramchandran, K., Bartlett, P.: Byzantine-robust distributed
learning: Towards optimal statistical rates (2018)

Mai, P., Yan, R., Pang, Y.: Rflpa: A robust federated learning framework against
poisoning attacks with secure aggregation. Advances in Neural Information Pro-
cessing Systems 37, 104,329-104,356 (2025)

Bao, W., Wu, J., He, J.: Boba: Byzantine-robust federated learning with label
skewness. In: International Conference on Artificial Intelligence and Statistics, pp.
892-900. PMLR (2024)

Dong, Y., Chen, X., Li, K., Wang, D., Zeng, S.: Flod: Oblivious defender for private
byzantine-robust federated learning with dishonest-majority (2021)

Miao, Y., Xie, R., Li, X., Liu, Z., Choo, K.K.R., Deng, R.H.: Efficient and secure
federated learning against backdoor attacks. IEEE Transactions on Dependable
and Secure Computing (2024)

Wang, Y., Zhu, T., Chang, W., Shen, S., Ren, W.: Model poisoning defense on
federated learning: A validation based approach (2020)

Shejwalkar, V., Houmansadr, A.: Manipulating the byzantine: Optimizing model
poisoning attacks and defenses for federated learning. In: NDSS (2021)

