
ar
X

iv
:2

50
5.

12
77

0v
1

 [
cs

.C
R

]
 1

9
M

ay
 2

02
5

Testing Access-Control Configuration Changes for Web Applications

Chengcheng Xiang
University of California, San Diego

Li Zhong
University of California, San Diego

Eric Mugnier
University of California, San Diego

Nathaniel Nguyen
University of California, San Diego

Yuanyuan Zhou
University of California, San Diego

Tianyin Xu
University of Illinois Urbana-Champaign

Abstract

Access-control misconfigurations are among the main causes

of today’s data breaches in web applications. However, few

techniques are available to support automatic and system-

atic testing for access-control changes and detecting risky

changes to prevent severe consequences. As a result, those

critical security configurations often lack testing, or are

tested manually in an ad hoc way.

This paper advocates that tests should be made available

for users to test access-control configuration changes. The

key challenges are such tests need to be run with produc-

tion environments (to reason end-to-end behavior) and need

to be performance-efficient. We present a new approach to

create such tests, as a mini test environment incorporating

production program and data, called ACtests. ACtests report

the impacts of access-control changes—the requests, which

were denied, would be allowed after a change, and vice versa.

Users can validate if the changed requests are intended or not

and identify potential security vulnerabilities.

We evaluate ACtests with 193 public configurations of

widely-used web applications on Dockerhub. ACtests detect

168 new vulnerabilities from 72 configuration images. We

report them to the image maintainers; 54 of them have been

confirmed and 44 have been fixed. We also conduct in-depth

experiments with five real-world deployed systems, includ-

ing Wikipedia and a commercial company’s web proxy. Our

results show that ACtests effectively and efficiently detect all

the change impacts.

1 Introduction

Access-control misconfigurations have been the root causes

of many recent security incidents. For example, in 2022, a

misconfigured government website leaked confidential gun

permit data [22]. The access control was only configured for

the Tableau workbook, but was not configured for the sheets

to prevent public access to the underlying dataset. In 2019,

misconfigurations caused data leaks of election campaign

websites [81]; in the same year, a misconfigured website of

Inmediata Health Group exposed 1.5M patient data, causing

disastrous privacy leaks [46].

One main challenge of access-control configuration man-

agement is to accommodate constant configuration changes.

Configuring access control is not a one-time effort but a

continuous process to address the dynamics of systems and

data policies. In modern web applications, system com-

ponents and features are continuously deployed and up-

graded [31, 43, 72], while data policies are rapidly created

and updated [23, 74, 97].

In our experience of managing access control of dif-

ferent web applications across companies (including some

of the largest web applications in terms of end users), to-

day’s access-control configuration management still under-

goes manual, often ad hoc practices. Typically, when a legiti-

mate access (to data or services) is denied, system administra-

tors or DevOps engineers will need to manually reconfigure

access control. However, if access-control misconfigurations

are introduced especially in the form of over-permission, the

misconfigurations often remain latent for a long time, until

being noticed by permission reviews, or detected by the red

teams, or even worse revealed by true security incidents.

It is not surprising that existing human-based practices fall

short in front of the challenges of access-control configura-

tion management. The complexity of access-control config-

urations makes it hard for administrators or DevOps engi-

neers to reason about the impact of access-control changes.

Figure 1 shows a configuration snippet of the Dokuwiki

web application—it is nontrivial to detect the vulnerability

in the configuration files with 2,478 lines of complex direc-

tives. Second, as reported repeatedly in prior studies [49,85],

to err is human and misconfigurations are inevitable, espe-

cially considering that access-control configurations are of-

ten done with high time pressure to unblock important ac-

cesses [49, 85, 97].

We argue that a key missing piece of today’s access-

control configuration management is automated and continu-

ous testing to evaluate the impacts of access-control changes

1

https://arxiv.org/abs/2505.12770v1

Vulnerable Config:

server {

…

location ~ /(conf/|bin/|inc/) { deny all; }

location @dokuwiki {
rewrite ^/_media/(.*) /lib/exe/fetch.php?

media=$1 last;
}
…

}

Missed “|vendor/” to

block the sensitive
“vendor” directory.

Vulnerability:

Hard to detect because:

! The config is complex: 2478 lines of customized
directives across many files.

! Need to analyze config together with data (i.e. files).

Figure 1: A new access-control vulnerability we detected

in a widely used Docker image (10M+ downloads) [54].

The vulnerability has been confirmed and fixed [19].

and to flag problematic changes. In other words, changes of

access-control configurations should be rigorously tested and

evaluated, in the same way as source-code changes [3, 40]

and other configuration changes for feature flags and perfor-

mance tuning [12,75,77,84]. Unfortunately, we are unaware

of a practical, ready-to-deploy approach to effectively test-

ing configuration changes to access control of modern web

applications.

In fact, testing and verification were considered as promis-

ing directions to address access-control configurations a

decade ago with specialized testing and verification tech-

niques being developed [34, 58, 59, 94, 95]. However, the

aforementioned techniques all assumed a generic, high-level

configuration language, XACML [57], i.e., the target access-

control configuration is encoded in XACML. Unfortunately,

in practice, few web application component adopts XACML.

Instead, access-control configurations today are often en-

coded in system-specific languages. For example, NGINX

does not use XACML but uses a specific directive language

(Figure 1). The semantics of NGINX’s configurations are

different from other web servers like HTTPD, Lighttpd, and

Tomcat, and are also drastically different from other web

system components such as front-end proxies and databases.

The prevalent uses of system-specific access-control configu-

ration languages makes it hard to apply access-control testing

and verification techniques for XACML, and it would take

significant overhead to translate system-specific languages

into XACML.

Note that existing configuration testing techniques [12,75,

84] are fundamentally limited and are ineffective for access-

control configurations. First, existing techniques focus on

unit and integration test, and cannot reason about end-to-

end access behavior. More fundamentally, existing configu-

ration testing are disconnected with application data in the

deployment environment. However, access-control configu-

ration cannot be reasoned without the context of application

data. In Figure 1, the configuration is vulnerable because the

vendor directory contains sensitive data with open access. A

test cannot detect the vulnerability without knowledge of the

vendor directory on the file system. It would be prohibitively

expensive to address this issue by replicating production data

in the test environment [4, 14].

Contributions. In this paper, we present a general and practi-

cal approach of testing access-control configuration changes

for web applications. Our goal is to enable systematic evalu-

ation of the impact of target configuration changes as a foun-

dation to detect access-control vulnerabilities.

The key idea is to create a mini test environment named

ACtest to efficiently and effectively evaluate the impact of

every target change. The impact is represented by the differ-

ences of access-control decisions for user requests before and

after the target change, i.e., what requested that were denied

are now allowed by the configuration change, and vice versa.

Our key insight is that ACtest can be directly generated

from the target web applications and their deployment en-

vironments, without manually implementing new test code

or replicating data and system dependencies, and the created

ACtest is readily deployable and safe to run.

ACtest is an ephemeral test environment that are “forked”

from the deployment environment with high fidelity (includ-

ing the web application, the application data, and other de-

pendencies). It allows safe data access (i.e. read but not write)

from the test web application to the production data. The safe

data sharing are enabled at file system, database and network

layer through techniques of Copy-on-Write, write protection

and virtual subnet.

ACtest is efficient. It minimizes the original web applica-

tion into a slim, fast-running application to speedup the test

execution, using a novel program trimming technique. The

minimization is important, because with the original web

application, the testing would take too long to run against

comprehensive user requests (e.g., due to excessive system

call and I/O operations commonly in web applications). We

found the minimization can be done systematically, because

the expensive operations are typically only executed after

access-control checks—skipping them does not affect testing

results for access-control configurations.

ACtest measures the impact of the target access-control

configuration change based on generating comprehensive

user requests. It supports (1) replaying the historical user re-

quests recorded in access logs and calculating the differences

of access-control results before and after the change, (2) syn-

thesizing user requests that cover the Cartesian product of ex-

isting subjects (e.g., a user), objects (e.g., a file), and actions

(e.g., a GET or SET API).

Key results. We evaluate ACtests with the public Docker

images of five widely-used web applications. By testing the

2

changes made in the images version history, ACtests detect

168 new vulnerabilities from 72 Docker images1. We have re-

ported them to the image maintainers. So far 54 of them have

been confirmed and 44 of them have been fixed by the main-

tainers. We also evaluate ACtests with five deployed web ap-

plications, including Wikipedia and the web proxy of a com-

mercial company with millions of users. The results show (1)

by synthesizing user requests, ACtests detects all the impacts

of injected changes; (2) by replaying historical user requests,

ACtests detects up to 80% of the impacts. The minimization

reduces up to 98.61% testing time.

Summary. This paper makes three main contributions:

• We present ACtest as a new approach for testing access-

control configuration changes and evaluating their impacts

using mini, ephemeral test environment.

• We develop techniques to create ACtest from target web

applications and their deployment environment, including

safe data access and performance optimization.

• We show that ACtest can help effectively detect access-

control misconfigurations by applying it to Docker images;

ACtest has detected 168 new vulnerabilities (54 confirmed

and 44 fixed).

2 Motivating Examples

We present how change impacts detected by ACtests

can help sysadmins validate their access-control configura-

tion changes and identify security vulnerabilities. We use

two real-world access-control misconfigurations ACtests de-

tected from Docker images as examples.

2.1 Dangerous web interfaces

ACtests can detect unexpected interfaces and resources intro-

duced by configuration changes. This helps sysadmins vali-

date a change when they install third-party plugins or exten-

sions, a common practice for web applications [30, 87, 89].

As exemplified by both real-world incidents [78] and our

evaluation on Docker images, installing extensions could in-

cur security risks.

Figure 2 shows a new vulnerability detected by ACtests in

a Docker image of MediaWiki [88], a popular open-source

wiki system. In this example, the sysadmin installed a third-

party PHP extension “MW-OAuth2Client” that introduced

several dangerous PHP files, including “eval-stdin.php”.

These files exposed web interfaces that should only be used

for testing environments and can be exploited for remote

code execution attacks in production. However, sysadmins

1The full list of our detected vulnerabilities can be accessed

anonymously through: https://docs.google.com/spreadsheets/d/

18_oaaoEawPJ-GNajqEL7t43tiKQ2iizZ9J6URCZMWc0

Figure 2: A new vulnerability detected by ACtests in a

third-party Docker image [71] of MediaWiki [88]. This

vulnerability has been confirmed and fixed by the image

maintainer2. ACtests detect that anonymous users cannot ac-

cess phpunit/eval-stdin.php by default, but can access

it after the change.

were not aware of these files and failed to apply any access-

control rules to limit the access, making the dangerous in-

terfaces in the files publicly accessible. ACtests effectively

detect that these files were not accessible before the installa-

tion, but become accessible after. It warns sysadmins so they

can double check if the exposed interfaces in the files are

safe and make appropriate configurations to prevent requests

to the dangerous interfaces before they are exploited.

2.2 Openly-accessible database dump

ACtests can also detect access-control misconfigurations that

lead to unexpected impacts. Oftentimes, access-control con-

figurations are complex and error-prone. It is necessary to

test the actual impacts in terms of system behavior for sysad-

mins to validate if the behavior change meets their intention.

Figure 3 shows a new vulnerability detected by ACtests

in a Docker image of Drupal (a widely-used CMS system).

In a change, the sysadmin adds a few database files, such as

“vov_500.sql” and “db/light.sql.gz”. She adds a cus-

tomized access-control rule to prevent these files from being

accessed publicly. The rule is in the form of a regular ex-

pression “*sql”. However, the added rule only blocks files

with “.sql” but not with “.sql.gz”. This makes the file

“db/light.sql.gz” open to public access. Note that this

file is a database dump, including both users data and admins

account info. ACtests effectively detect only the “.sql” files

are blocked but the “.sql.gz” files are still accessible. It can

2Our report: https://github.com/Servarr/mediawiki-docker/

issues/1; reproducing: https://github.com/conf-test/acl-test/

blob/main/reproduce-example.md

3

https://docs.google.com/spreadsheets/d/18_oaaoEawPJ-GNajqEL7t43tiKQ2iizZ9J6URCZMWc0
https://docs.google.com/spreadsheets/d/18_oaaoEawPJ-GNajqEL7t43tiKQ2iizZ9J6URCZMWc0
https://github.com/Servarr/mediawiki-docker/issues/1
https://github.com/Servarr/mediawiki-docker/issues/1
https://github.com/conf-test/acl-test/blob/main/reproduce-example.md
https://github.com/conf-test/acl-test/blob/main/reproduce-example.md

Figure 3: A new vulnerability detected by ACtests in a

third-party Docker image [83] of Drupal [29]. ACtests de-

tect that anonymous users cannot access the db dump file

db/light.sql.gz before but can access it after the change3.

warn sysadmins so that they can further change their config-

urations to block requests to the “.sql.gz” files.

3 ACtest Overview

ACtest is a mini test environment for helping sysadmins

analyze the impact of access-control changes in terms of

end-to-end system behavior. ACtest analyzes access-control

changes by running test with production programs, configu-

rations and data. ACtest outputs the impact of configuration

changes, in the form of access-control behavior comparison.

Based on ACtest’s output, sysadmins can examine whether

the configuration change results are intended access-control

behavior. ACtest can help sysadmins to identify incorrect or

unintended access-control that either leads to security vulner-

abilities such as data breaches (grant more access than what

is intended) or accessibility issues (grant insufficient access

for the desired functionality).

3.1 ACtest Definitions

For a target system, an ACtest is a system-level test envi-

ronment, denoted as t(P,C,D). It consists of: 1) the system

program P, 1) the production configuration C, 2) the produc-

tion data D. Before a configuration change ∆C is rolled out

to production, ACtest runs P twice, with C and D as well

as with C +∆C and D to evaluate the end-to-end behavior

change before and after ∆C is rolled out. Note that C and D

3We reported this through email.

are the entire set of system configurations and data, not lim-

ited to access-control related ones. As discussed before, this

is needed to achieve high-fidelity of the testing results. Since

production data can have large volumes, the ACtest does not

replicate them for testing but access production data in a safe

way ($4.1).

After testing a configuration change ∆C, the ACtest out-

puts the change impact as a set of requests that have differ-

ent results before and after applying ∆C—namely, requests

that were denied by C, but become allowed after applying

C+∆C, or vice versa. A request is a tuple 〈s,o,a,r〉, which

represents a subject s (e.g., a user) that performs an action a

(e.g., an HTTP GET/PUT request) to an object o (e.g., a file)

and gets a result r (either ALLOW or DENY). Therefore, the

change impact is a set of tuples 〈s,o,a,r,r′〉, where r is the

access results with C, r′ is the result with ∆C and r 6= r′. Our

definition of access-control change impact is consistent with

prior work [93].

To obtain the change impact, ACtests need to generate

test inputs to feed into P to find out the behavior change.

ACtests provide two ways to generate test inputs, in the form

of 〈s,o,a〉. First, ACtests allow sysadmins to provide access

logs which record the historical requests. The access logs

help ACtests cover the common requests. Second, ACtests

also allow sysadmins to specify the subjects, objects, and ac-

tions, which will be used to generate all possible combina-

tions to achieve a complete coverage.

3.2 Usage and Deployment Model

ACtests consists of production program, configuration and

data. To set up ACtests , sysadmins only need to specify a

few inputs: 1) the location of the production program P, con-

figuration C and data D; (2) the target configuration change

∆C; 3) a set of access logs, and/or a specification of target

subjects, actions and objects (e.g., the root directory of all

HTML files to test); and 4) optionally, the limit of CPU and

memory that ACtests are expected to take. Note that 1), 2)

and 4) have already been commonly done in today’s deploy-

ment practices with container images (e.g., those on Docker-

Hub [25]). Thus the true additional work to run ACtests is

only 3).

Multiple ACtest instances may need to be deployed to test

different programs. Multiple ACtest instances can be placed

in a single virtualized subnet so they can communicate with

each other but do not affect production processes (cf. §4.1.3).

Multiple ACtest instances can also be configured with some

of them running trimmed version while others not. This is

necessary when testing one instance requires the full exe-

cution of another instance. For example, to test access con-

trol implemented in PHP code, only the PHP code can be

trimmed but not the Httpd server; otherwise, the PHP code

won’t be executed.

Sysadmins can choose to run ACtests when they know a

4

change is going to be made, or run ACtests periodically and

get notified with behavior changes.

Compared with setting up a mirror environment for test-

ing, ACtests save sysadmins’ effort of maintaining test con-

figuration C and data D, as well as test running time. §4.1

will present how ACtests safely access production configura-

tion and data without causing side effect to them. §4.2 will

present how target programs are trimmed to accelerate the

execution of ACtests.

4 ACtest Generation

We present a general approach, ACtestGen, to help develop-

ers create ACtests from and for their web applications. To

achieve this, ACtestGen addresses three challenges:

• How to create safe ACtests from original applications?

Since ACtests will run in production, they cannot incur

side effects to production environments.

• How to make ACtests performance-efficient? ACtests may

need to test a large number of requests (the combination

space of subjects, objects and actions can be large).

• How to minimize users’ effort including effort on provid-

ing test inputs and on validating test results?

To make ACtests safe to run in production, ACtestGen sys-

tematically enable ACtests’ safe access to different types of

data. For file access, ACtestGen sets up ACtests in a copy-

on-write file system. For database access, ACtestGen grants

read-only permission for ACtest. For network access, ACtest-

Gen isolates ACtest in a virtual subnet.

To improve test performance, ACtestGen uses a novel trim-

ming technique to modify an original program to make it run

faster. The key idea is that access-control checks (ACCs) are

usually run before the main task execution in a program run.

Therefore, the main task execution can be skipped without

impacting the results of ACCs.

To minimize effort on providing test inputs, ACtests are

generated with two methods for users to specify how to gen-

erate test requests: using access logs and letting users specify

subjects, objects and actions. To minimize effort on validat-

ing test results, ACtests aggregate impacted requests by at-

tributes of subjects, objects and actions.

4.1 Creating Safe ACtests

To evaluate the access-control behavior of a system with

high fidelity, the best way is to test the access-control config-

urations with the production application and environments.

However, it is unsafe to test the application directly with pro-

duction environments, because it can cause side effects, like

writing to production data.

To eliminate the side effects, ACtestGen provides system-

atic mechanisms to handle different types of data accesses, as

!"# $%%&'()*'+,

-+%./+,/

!0'*"

!0'*"

10+*"(*'+,
23+&)*"4

56#,"*

7'&" 8)*)#)3" 9"*:+0;

Figure 4: Safe data access in ACtest.

shown in Figure 4. A web application accesses data mainly

through three ways: file system, database and network. Read-

ing from these production data is necessary for the web ap-

plication to produce real access-control decisions; however,

writing to the production data is not acceptable for testing.

4.1.1 Safe File Access

Web applications need to read files for loading configurations

(e.g. ‘.htaccess‘) or web pages (e.g. HTML or PHP files), and

needs to write files for editing or uploading files. ACtestGen

adopts file system Copy-on-Write (CoW) techniques [52,69]

to allow reading from production files while avoid writing to

production files. With CoW, the production files are directly

shared to ACtests for all read requests, while a copy is made

when ACtests try to modify any production configurations

and data. The modification is only applied to the copied ver-

sion, which is invisible to production systems, so it does not

affect the execution of production systems.

In our implementation, ACtestGen sets up an ACtest with

OverlayFS [52], a union mount filesystem supported by

Linux kernel mainline and Docker. The CoW mechanism

may slow down ACtests’ execution as writes to files may

need to copy them first. Luckily, read operations dominate

most server workloads [6, 10, 33, 38, 64, 79]. In addition, we

will present in §4.2 our method for removing I/O related code

that is irrelevant to access-control from the original program.

4.1.2 Safe Database Access

Web applications needs to access databases for querying or

updating configurations (e.g. user permission tables) as well

as data (e.g. web page content tables). To let web applications

generate real access-control results, it is necessary to have

the database queries return production data to applications.

ACtestGen provides a write-protection mechanism to allow

query production databases while block update production

databases.

There are multiple ways to implement write-protection

in modern database management systems (e.g. MySQL,

PostgreSQL). First, we can take advantages of databases’

5

own permission systems. Modern databases usually provides

read/write permission roles to different clients. To block

write while allow read, we can grant web applications a read-

only role. Second, we can also use file system’s CoW for

database write-protection. At the storage level, database ta-

bles are also stored as data files in file systems. We can mount

the production data files in a CoW file systems, so that the

database will read from production data but will write to a

shadow copy.

In our implementation, ACtestGen take the file system

CoW approach for database write-protection. ACtestGen

sets up a test database instance which has it db data files

mounted from the production db data files with CoW enabled.

A dedicated database instance for test is necessary, as we do

not want the test database’s in-memory states interfere with

the production database’s in-memory states.

4.1.3 Safe Network Access

Web applications may need to communicate with other ser-

vices (e.g. database instances, in-memory cache services) to

obtain the data it needs. However, it is problematic to let an

ACtest instance talk with production services as it may cause

an expected state change of the production services.

To address the issue, ACtestGen locates ACtest instances

in a virtualized subnet. Within a virtualized subnet, an ACtest

instance can only talk with other instances in the same sub-

net. To create a complete mini test environment for web ap-

plications, ACtestGen usually need to set up two ACtest in-

stances/services, including the web server and database, in a

same subnet. Note that not all services in production is re-

quired for access-control testing. For instance, a cache ser-

vice can be removed from testing environment, as it only af-

fect performance but not access-control results.

4.2 Making ACtests Performance-efficient

Running a whole original program for testing can take a long

time and consume a lot of resources. We developed a novel

trimming technique to modify the original program to accel-

erate test execution.

Our trimming technique is based on two code patterns we

observed about the access-control checks (ACCs) in server

programs and web applications:

• ACCs are executed in the early phase of server programs’

request handlers. Server programs call request handlers to

process incoming requests, and request handlers run ACCs

before executing the actual requested task that takes up the

most execution time.

• The results of ACCs are used as a condition to decide if

the requested task will be executed. Only when the results

are “allow”, the requested task will be run.

// entrance request handler

void ap_process_async_request(request_rec *r)

{

...

// do access checks

access_status = ap_process_request_internal(r);

if (access_status == OK) {

// sub-handler that executes the requested task

access_status = ap_invoke_handler(r);

}

...

}
access_status = ap_run_access_checker(r);

call

httpd-2.4.46

Figure 5: Code pattern of access-control checks (ACCs).

Each request is processed by an entry handler, which first

does ACCs and then calls a sub-handler to execute the re-

quested task. Strawman trimming removes the sub-handler

call completely.

We validate these patterns in five widely used server pro-

grams and web applications: Httpd, Nginx, Wordpress, Me-

diawiki and Dokuwiki. The patterns hold with all of them.

An example of the code pattern is shown in Figure 5. The

overall handler called for each request is denoted as an entry

request handler and the actual requested task is executed in a

sub-handler.

Based on the observed code patterns, we develop trim-

ming techniques to skip the execution of the actual requested

task, which is time-consuming. We start with a strawman

approach to remove sub-handlers in whole, which unfortu-

nately also remove some ACCs. Then we design an advanced

trimming algorithm to adopt hybrid program analysis for

fine-grained trimming.

4.2.1 Strawman trimming

Ideally, all the ACCs have been done before the sub-handlers

that execute the actual requested tasks. In this case, the

access-control results have been decided before the sub-

handlers. Since our testing goal is only about the access-

control results, our strawman approach removes the sub-

handlers in total.

However, this strawman approach can lead to wrong

access-control results. The reason is that the sub-handlers

may also perform additional task-specific ACCs. Our study

shows that there are two types of task-specific checks:

1) file permissions—programs typically check file permis-

sions only when they try to open files; 2) task-specific

configurations—depending on what kind of tasks to exe-

cute, sub-handlers may have further ACCs differing from the

global checks in the entry request handlers. For example, dif-

ferent HTTP requests in Apache need to check for different

permissions like for proxy redirection, cgi script execution

6

and directory listing.

We experimented with this strawman trimming. As we

will present in §5.3, for four systems, ACtests generated with

strawman trimming lead to false access-control results: three

of them can detect 46.4% - 52.7% of the change impacts, and

the remaining one can detect no change impact.

4.2.2 Advanced Trimming

To prevent ACCs from being trimmed, it is necessary to

delve into each sub-handler to perform a fine-grained trim-

ming. Such a fine-grained trimming needs to address two

challenges: 1) How to find the final ACCs so that the trim-

ming will not remove any ACCs before them? 2) How to

safely trim the code after the final ACCs so that the trimmed

program can be compiled and run correctly?

Finding final ACCs with static analysis. Our first attempt

is to build a static analysis tool to find the final ACCs that

are executed in a program’s execution paths. The idea is

to build an inter-procedural control-flow graph (CFG) for a

whole program, traverse all the paths from the entry node

(the main function), and identify the final ACCs in the paths.

This approach turns out not to work because of three reasons.

First, the number of paths in a whole-program CFG explodes,

and so the analysis cannot scale to real-world programs (e.g.

Httpd, Nginx, Wordpress and Mediawiki in our study). Sec-

ond, the inter-procedural property makes the analysis fragile

to function pointers. Function pointers set at run time make it

hard to statically decide functions’ accurate execution order.

And without knowing the accurate execution order, it is not

possible to decide which ACCs are the final ones. Third, the

analysis needs the knowledge of ACCs, which can be various

and can hardly be specified manually.

Finding final ACCs with hybrid analysis. To address the

challenges, we incorporate dynamic analysis with static anal-

ysis to form a hybrid approach. First, instead of building a

static CFG for a program, our approach runs the program

with various configurations and builds dynamic CFGs for it.

Second, since the CFGs are built dynamically, the function

pointers are decided and so the execution order is known.

Third, we designed a novel CFG diff algorithm to compare

the CFGs of the allowed runs (where requests are allowed)

and denied runs (where requests are denied) to identify ACCs

automatically.

Our hybrid analysis takes three steps: 1) Dynamic

analysis—it instruments a program, runs the program multi-

ple times with various configurations as well as requests, and

builds dynamic CFGs from the runs; 2) CFG-diff—it com-

pares the dynamic CFGs to identify the final ACCs in them;

3) Static analysis—starting with the dynamic CFGs and the

identified final ACCs, it performs a static analysis to find the

final ACCs that have not been included in the dynamic CFGs.

We detail each steps as following:

1) Dynamic analysis: Our dynamic analysis takes tuples

of 〈r,C,C′〉 as inputs to run a program, where r is a test re-

quest, C is a configuration that allows the request and C′ is a

small mutation to C that denies the request. Our analysis runs

the program with C and C′ separately to handle r and build a

pair of dynamic CFGs for step 2. The number of the inputs

decides how many execution paths can be trimmed; there-

fore, a good set of 〈r,C,C′〉 inputs is expected to exercise the

access-control of a program’s main functionalities.

We explored multiple ways to obtain the input for dynamic

analysis. At first, we expected that such inputs should be the

subset of programs’ functional tests, and we tried to find ex-

isting functional tests for our analysis. However, we only

found very few and incomplete functional tests for the pro-

grams we studied. As a result, we turned to software manu-

als to create 〈r,C,C′〉s by ourselves. Fortunately, most manu-

als [5,13,62,66] give clear guidance on how to set up and test

the main functionalities. Under the guidance of the manuals,

we successfully create test inputs for our experiments (the

scripts for creating inputs in our experiments can be found

online [16–18, 20]). Our experience shows that it is not hard

for even non-developers of a program (like us) to create the

inputs to cover the main functionalities. Note that an incom-

plete set of inputs is acceptable as this affects only the effec-

tiveness of trimming (trim fewer execution paths) but not the

correctness (trim ACCs by mistake). Static analysis in step 3

is designed to prevent an ACC from being trimmed even if it

is not exercised by the inputs.

2) CFG-diff: We propose a novel CFG-diff algorithm to

identify ACCs. The algorithm is based on an observation

that each pair of allowed and denied CFGs from the previous

step should diverge mainly on the final ACC. An example

is shown in Figure 6, where the file_open check diverges

the CFGs. To identify the diverging node, CFG-diff merges

CFG-allow and CFG-deny into one CFG, colors the nodes

differently, and finds the nodes with mixed color (“green-red-

mixed”) but has differently-colored children (“green” and

“red”), as shown in Algorithm 1 in appendix.

3) Static analysis: CFG-diff finds a final ACC in each

pair of allowed and denied dynamic CFG. However, the fi-

nal ACCs found are not complete as the dynamic CFGs may

not contain all the final ACCs. And the final ACCs found

may also not be the true final ones as a final ACC in one pair

of CFGs may appear before another ACC in another pair of

CFGs. To address this, we further incorporate static analy-

sis, including a forward analysis and a backward analysis, as

shown in Algorithm 2 in appendix. For each final ACC found

by CFG-diff, the forward analysis adds the ACCs performed

after it to the candidate final ACCs, while the backward anal-

ysis deletes the ACCs performed before it from the candidate

final ACCs. The forward and backward analysis also expand

the dynamic CFGs statically so that the new ACCs that are

not executed in previous dynamic analysis can also be found.

To identify the new ACCs, our analysis adopts the knowl-

7

Figure 6: An example of using CFG-diff to identify ACCs. CFG-allow: dynamic CFG for a run allows an request; CFG-

deny: dynamic CFG for a run denies an request; CFG-diff: a merged CFG with node colored differently. The examples are

simplified. Complete CFG-diffs generated in our experiments can be found online [15].

edge of check function names and the return types (e.g. the

ACCESS_DENY enum) learned from the identified ACCs from

step 2.

Trimming programs safely. To ensure the trimmed pro-

gram can be correctly compiled and run, we designed a trim-

ming method that makes minimal changes to the original pro-

gram. The idea is to modify the program so it always exe-

cutes the access deny branches after the final ACCs no mat-

ter whether the checks return “allow” or “deny”. As access

deny branches usually finalize a request handling quickly,

this saves much execution time compared with executing the

allowed branches.

Figure 7 presents an example of how our trimming method

works. First, it modifies the access-deny branch condition to

constant true. Second, it uses the original ACCs only for log-

ging the access-control results. Last, it advances the access-

control logging statements after the original checks to the

new checks, which makes sure the correct access-control re-

sults are recorded.

4.3 Minimizing Usage Effort

To minimize the usage effort of ACtests, we design three

techniques to generate test inputs with little human specifi-

cation, to simulate test requests automatically, as well as to

present test results effectively and perform automatic triage.

4.3.1 Generating Test Inputs

ACtests provides two options for sysadmins to specify what

requests to generate. The first one accepts a set of histori-

cal access logs along with annotations of the subject, object

and action fields. ACtests parse access logs into 〈s,o,a〉 tu-

ples and uses them as the test requests. The second option

accepts the sources of subjects, objects and actions in a cur-

rent system. Such sources include database tables that store

users (S), directories that store all file paths (O) and a list of

all actions (A). ACtests then traverse the Cartesian product

of the S×O×A to synthesize the test requests. Depending

on sysadmins’ specification, the synthesized requests can be

either the one related to a change or be all possible requests.

4.3.2 Simulating Requests

ACtests includes two simulating techniques. The first one is

simulating requests from various IP addresses. This is com-

monly needed as many access-controls are based on IP ad-

dresses, like blocking certain ones. We implement this with

the AnyIP [51] feature provided by Linux Kernel. This fea-

ture enables our testing container to bind the whole IPv4 or

IPv6 address space to its loopback device. In this case, a re-

quest sent to any third-party IP address will be routed back

to itself and will be recognized as from the third-party IP ad-

dress. This enables the server program to do access-control

with the correct source IP. The second one is concurrent re-

quests. Sending concurrent requests is essential for acceler-

ating the testing, besides the trimming method we proposed.

We implement a concurrent framework which uses multiple

processes and multiple threads to sends requests. We take

into account the dependencies between requests from the

same IP or the same user so that these requests will not be

concurrently sent.

4.3.3 Presenting Results And Performing Automatic

Triage

The number of impacted requests can be large even with a

small configuration change. Such examples include allow-

ing access to a directory with many files. The configuration

8

Figure 7: Safe trimming for an ACC in Httpd-2.4.46: 1.

The access deny branch condition is set to be always true; 2.

The original ACC is modified only to control logging.

change may only be a small change to the directory permis-

sion, but the impacted requests include the ones to all the

files under the directory. Asking sysadmins to validate every

access is time-consuming.

ACtests present the impacted requests in an efficient way

to assist sysadmins to validate them. ACtests aggregate im-

pacted requests based on the common attributes of subject

(user name and group), object (directory name and file suffix)

and action (action type). For example, if requests to all files

under a directory are impacted, ACtests only show the direc-

tory name to sysadmins. ACtests also show the file suffix

impacted under the directory, which may raise sysadmins’ at-

tention to dig more. The aggregation can be easily extended

to other attribute types and makes the validation efficient.

ACtests also perform automatic triage to classify the im-

pacted requests into dangerous and less dangerous. This al-

lows sysadmins to only validate the dangerous ones if they

have limited time. Currently, ACtests use a few conserva-

tive rules to identify dangerous change impacts: 1) the object

name starts with a dot (i.e. hidden system files); 2) the object

name ends with certain suffix (e.g. ".sql" for db dump); 3) the

object name contain certain text (e.g. "phpunit" for unit test

files); 4) the access method are dangerous (like "TRACE" for

http). Sysadmins can easily add or adjust the rules.

4.4 Implementation

We implement ACtestGen with existing container techniques.

First, a Dockerfile [24] is generated to pack a target program

into a container image. Second, an overlay network [26] is

set up for the image to make it run in an isolated subnet. The

name and IP address of the overlay network are generated

as configurable parameters for sysadmins to flexibly place

multiple ACtests in a single subnet. Third, OverlayFs [52]

is configured to allow ACtests access production data safely

through Copy-on-Write.

We implement our trimming algorithm both for C/C++

and PHP programs. Our implementation takes the source

code of a C/C++ or PHP program as input, and generates

a trimmed version of the program for testing. For C/C++ pro-

grams, we build a tool based on the LLVM framework [50] to

do dynamic and static analysis: 1) We implement an LLVM

transform pass [56] to inject code to dynamically trace the ex-

ecution of function calls and basic blocks; 2) We implement

an LLVM analysis pass [55] to do intra-procedural static

analysis. For PHP program, we use Xdebug [91] to do dy-

namic tracing and use PHP-Parser [63] to generate abstract

syntax tree (AST) for static analysis.

5 Evaluation

5.1 Methodology and Testing Environment

We conduct three sets of experiments to measure ACtests’

effectiveness and efficiency:

1. Detecting real-world vulnerabilities: We use ACtests to

analyze the impacts of configuration changes in public

Docker images and detect vulnerabilities.

2. Controlled experiments: We replicate five real-world

web systems, including Wikipedia and the web proxy

of a commercial company. We inject access-control con-

figuration changes to them and use ACtests to detect the

change impacts.

3. Performance: We run ACtests with different trimming

options to test the real systems as in the controlled ex-

periments and compare their performance.

5.2 Detecting Real-world Vulnerabilities

This experiment aims to evaluate ACtests’ effectiveness on

detecting misconfiguration vulnerabilities. We choose five

widely-used web applications: Wordpress [90], Drupal [29],

Joomla [47], Dokuwiki [27] and Mediawiki [88] as the eval-

uation targets. The images of each application were down-

loaded more than 10 million times on Dockerhub [25].

For each system, we download the images updated re-

cently and extract their configurations as well as data for

testing. These configurations include Apache configurations,

Nginx configurations and file permissions of web pages. We

use the official images’ configurations as the initial version

and the third-party images’ configurations as the changed

version (the official images are distributed by application

vendors, while the third-party images are uploaded by appli-

cation users who made some changes to the official ones).

ACtests are generated to test the change impact of each

changed version against the initial version. As historical logs

9

Systems Images Vulnerable images Vulnerabilities

Dokuwiki 57 19 67

Mediawiki 47 23 56

Wordpress 42 18 28

Drupal 29 8 11

Joomla 18 4 6

Total 193 72 168

Table 1: New vulnerabilities detected by ACtests in pub-

lic Docker images of popular web applications. 54 of the

vulnerabilities has been confirmed [21]. Many of the con-

firmed vulnerable images are widely-used: one image has

more than 10 million downloads on DockerHub, six images

have thousands of downloads each4. We were also able to

find the online websites correspond to some of the vulnera-

ble images [9, 65].

are not available for these systems, ACtests are set to syn-

thesize requests regarding to all the combinations of users,

actions and resources.

The experiment focuses on the impact of risky changes—

requests that are not allowed in the official images but are

allowed in the third-party images. As not all the detected re-

quest changes are vulnerabilities, we manually validate them.

We use a conservative standard to make the decision: if the

same type of allowed requests was identified as a vulnera-

bility in other systems or public vulnerability databases, we

count the corresponding change as a vulnerability. When

multiple requests are impacted by the same change (e.g. mul-

tiple file requests are allowed because of a change to the par-

ent directory), we only count it once.

Overall Results. ACtests reports 168 changes as dangerous

vulnerabilities from 72 public Docker images [21], as shown

in Table 1. We reported 135 vulnerabilities to the maintainers

of the images for which contact information is available. So

far, 54 of the vulnerabilities have been confirmed and 44 of

them have been fixed by the maintainers. Examples of the

detected vulnerabilities can be found in Figure 2 and 3.

In total, ACtests detected 874 risky access changes from

193 tested images. Besides the 168 dangerous changes,

ACtests report the remaining 706 changes as less dangerous.

Those changes can also be potential vulnerabilities. They ex-

pose system-specific resources and ACtests cannot decide if

they expose sensitive information or not. Therefore, sysad-

4Example popular vulnerable images: https://hub.docker.

com/r/linuxserver/dokuwiki, our report: https://github.com/

linuxserver/docker-dokuwiki/issues/33 image: https://

hub.docker.com/r/touch4it/drupal-php-fpm-nginx, our report:

https://github.com/touch4it/docker-php7/issues/18; image:
https://hub.docker.com/r/mwaeckerlin/dokuwiki, our report:

https://github.com/mwaeckerlin/dokuwiki/issues/1; image:

https://hub.docker.com/r/vincowl/dokuwiki, our report: https://

github.com/vincowl/dokuwiki-dockerfile/issues/1

Types of vul Examples # of vul

Dangerous

interface ex-

posure

Internal PHP interfaces for

testing, such as phpunit/*

are exposed.

46

Sensitive sys-

tem settings

exposure

System settings like

composer.json and

.htaccess are exposed.

40

Sensitive

metadata ex-

posure

Version control data like

.git/* are exposed

16

Dangerous ac-

cess method

enabled

HTTP diagnostic method

TRACE is enabled for public

access.

14

Database files

exposure

*.sql files are allowed to

public download.

10

Table 2: Most common types of vulnerabilities detected.

mins may choose to review them or search for sensitive key-

words from them.

Vulnerability Types. Table 2 shows the common types of

the detected vulnerabilities. Many of the types are rated as

high and medium severity [1, 2, 35, 36]. The most common

type is the exposure of dangerous web interfaces. Such ex-

amples include the exposure of PHP interfaces under direc-

tory “phpunit” and “vendor” to public access. These inter-

faces may disclose sensitive data and allow arbitrary code

execution [35,37]. These interfaces are located in third-party

extensions and are introduced when sysadmins install the ex-

tensions. As sysadmins have little knowledge of what a third-

party extension may introduce, it is hard for them to be aware

of the exposure of these interfaces. However, with ACtests re-

porting the impacts, sysadmins can inspect the impacts when

they install an extension and can disable the exposures.

False Positives. Besides the 54 vulnerabilities that were con-

firmed by the maintainers, eight reported vulnerabilities were

marked as false positives by the maintainers. We analyzed

the false positives, and here are the reasons: 1) The image

maintainers expect their users to further change the permis-

sions to block the data exposure, as they have documented

in their wizard. So they don’t consider the data exposure in

their settings as vulnerabilities [53]; 2) The image maintain-

ers think that the data exposure is not a problem because they

are used in their intranet; 3) The image maintainers think the

exposed data is already public, so is not a threat [32]; 4) Bugs

in our implementation identifies false changes. We have fixed

the bugs [80].

10

https://hub.docker.com/r/linuxserver/dokuwiki
https://hub.docker.com/r/linuxserver/dokuwiki
https://github.com/linuxserver/docker-dokuwiki/issues/33
https://github.com/linuxserver/docker-dokuwiki/issues/33
https://hub.docker.com/r/touch4it/drupal-php-fpm-nginx
https://hub.docker.com/r/touch4it/drupal-php-fpm-nginx
https://github.com/touch4it/docker-php7/issues/18
https://hub.docker.com/r/mwaeckerlin/dokuwiki
https://github.com/mwaeckerlin/dokuwiki/issues/1
https://hub.docker.com/r/vincowl/dokuwiki
https://github.com/vincowl/dokuwiki-dockerfile/issues/1
https://github.com/vincowl/dokuwiki-dockerfile/issues/1

Access-control Injected

Changes

Systems Applied

File permission allow/block file

access

Course, Group,

Center

Web server allow/block URL Course, Group,

Center

access-control allow/block IP Company

App access-

control

allow/block pages

edit

Wikipedia

Table 3: Different types of access-control configuration

changes injected in our experiments.

5.3 Detecting Change Impacts

This experiment aims to evaluate ACtests’ effectiveness on

detecting the impacted requests of various access-control

configuration changes in real-world deployed systems. We

collect configurations and data from five real-world deployed

web systems, including the Wikipedia website, a web proxy

of a commercial company, a department course website, a

research center website and a research group website. We

also collect access logs of them for ACtests’ test request

generation. For Wikipedia, because the whole website is too

big for our testing environment, we use a part of it, called

cowiki [86], as our testing target.

Based on the collected configurations, access-control con-

figuration changes are randomly injected to evaluate ACtests.

The injected changes are generated based on the access-

control mechanisms each system is configured with. Table 3

shows the three types of access-control mechanisms used in

the systems and the corresponding types of changes injected

to them. Two change types are from previous work [93] and

one change type is added by us for web application permis-

sions. For each change type, a number of the change targets

(e.g. file, directory, URL) are randomly chosen to apply the

change. The number of the change targets is set to be 10% of

all the available resources.

Two sets of experiments are conducted to measure

ACtests’ effectiveness under different settings: different trim-

ming methods and different ways to generate test inputs.

5.3.1 Comparing Different Trimming Methods

We use both strawman and advanced trimming methods as

discussed in §4.2 to generate ACtests for different systems.

To better understand the limit of trimming methods alone and

avoid the disturbance of historical logs, synthesized requests

are used as test inputs.

The advanced trimming works effectively on all systems

in terms of detecting impacted requests. Table 4 shows that

ACtests with the advanced trimming can detect all the im-

pacted requests in different systems. This indicates that the

Real-world # of Total # (%) of detection

systems injections Strawman trim Advanced trim

Wikipedia 930 0 (0%) 930 (100%)

Company 4861 4861 (100%) 4861 (100%)

Course 303 142 (47%) 303 (100%)

Center 710 329 (46%) 710 (100%)

Group 178 94 (53%) 178 (100%)

Table 4: Detecting change impacts with ACtests generated

by different trimming methods.

advanced trimming correctly keeps access-control checks

when removing unrelated computation and I/O.

The strawman trimming’s effectiveness varies on systems.

As Table 4 shows, Wikipedia’s ACtest with the strawman

trimming can detect none of the impacted requests, while

Company’s ACtest with strawman trimming can detect all

the impacted requests. For Course, Center and Group, the

ACtests can detect 46%-53% of the impacted changes. The

reason is that different systems have different implemen-

tations of access-control mechanisms. Wikipedia’s access-

control mechanism is implemented by PHP code, which is

done mostly in request sub-handlers that are removed by the

strawman trimming. Company uses Nginx’s access-control,

which is implemented out of request sub-handlers and so is

not removed by the strawman trimming. For Course, Center

and Group, they use both Nginx/Apache web server’s access-

control and file permissions checks. Nginx/Apache’s access

checks are kept with the strawman trimming but file permis-

sion checks are all removed by the strawman trimming.

5.3.2 Comparing Different Ways of Generating Test

Input

We evaluate ACtests’ effectiveness with test inputs from re-

playing historical logs and synthesizing requests separately.

Synthesizing requests use the specified source of subjects,

objects and actions (e.g., database tables and file directories)

to generate test requests.

By synthesizing requests, ACtests detect all the impacted

requests, as shown in Table 5. This illustrates that request

synthesis can generate a comprehensive set of test requests.

We admit that this depends on sysadmins’ knowledge on the

subjects, objects and actions. From our experience, most of

them can be specified as database tables and file directories,

and ACtests can automatically extract the possible values for

synthesis.

By replaying historical logs, ACtests can detect up to 80%

of the impacted requests, as shown in Table 5. ACtests work

best on Wikipedia and Course, because their logs have a good

coverage of possible requests. For Wikipedia, the logs span

18 years and cover requests to most pages. For Course, the

logs span 1 year and the web pages are also about classes in

11

Real-world # of total # (%) of detection

systems injections Replay logs Synthesize requests

Wikipedia 930 739 (80%) 930 (100%)

Company 4861 0 (0%) 4861 (100%)

Course 303 242 (80%) 303 (100%)

Center 710 106 (15%) 710 (100%)

Group 178 19 (11%) 178 (100%)

Table 5: Detecting change impacts with different ways of

generating test inputs.

the last one year. For Center and Group, the logs fail to cover

many obsolete web pages that were never modified in the last

five years. For Company, replaying log can detect no change,

as the time span is only 1.4 days. This illustrates that for sys-

tems with actively-accessed resources and complete histor-

ical logs, sysadmins may use historical logs to generate test

requests for ACtests; otherwise, it is better to use synthesized

requests to have a better coverage.

5.4 Performance

We measured the running time of using ACtests to test the

five real systems. Synthesizing requests are used to make

sure that ACtests have a good coverage of test requests. The

results show that for Company, Course, Center and Group,

it only takes less than 10 minutes to finish all the tests. For

Wikipedia, it takes a relatively longer time, 1.2 hours. The

main bottleneck for Wikipedia is the database queries that

cannot be trimmed.

We compared ACtests’ performance with different trim-

ming methods: no trimming, strawman trimming and ad-

vanced trimming. No trim means that original programs are

used as test programs, which is our baseline. The strawman

trimming does not ensure correct access-control results all

the time but can be treated as an upper bound performance

that can be achieved by trimming. The advanced trimming

precisely skips I/O and computation unrelated to access-

control checks and always ensures correct access-control re-

sults.

As shown in Figure 8, advanced trim can achieve com-

parable speedup as strawman trim. Advanced trim reduced

9.09%-98.61% running time compared with no trim, while

strawman trim reduced 9.09%-98.64%. Both advanced and

strawman trim work best (98.61% and 98.64% reduction) on

the Course system. The reason is that Course has many large

files in PDF and MP4 formats. It takes a long time to do I/O

with no trim, while advanced and strawman trim eliminate

the necessity to do I/O. Both advanced trim and strawman

trim have only a small speedup on the Company system. This

is because the system is a web proxy, which has a fast request

handler only for redirecting requests.

Wikipedia Company Course Center Group
Real-world Systems

0.0

0.5

1.0

No
rm

al
ize

d
Ru

nn
in
g-
tim

e

No trim Strawman trim Advanced trim

Figure 8: Normalized test running-time by different trim

methods.

6 Discussions

The generation and distribution of ACtests can be merged

into software vendors’ release process of their programs.

When a new version of a program is ready to release, vendors

can use our ACtestGen to generate an ACtest and distribute

the ACtest along with the new program. To use ACtestGen,

the developers need to provide inputs for the dynamic anal-

ysis. These are the same inputs for the functional tests of

the original programs’ access-control, which is necessary for

the development process in the first place. The users, such

as sysadmins, can download and setup the ACtest along with

the original program. In the future, when sysadmins make an

access-control configuration change, they can run the ACtest

to test the change impacts.

Our trimming method has several limitations. First, as it

uses dynamic analysis, it does not analyze every path and so

can erroneously trim access-control checks. Although we in-

troduced static analysis to avoid that, the static analysis still

does not explore all paths and so can still make mistakes.

This can make the trimmed programs generate wrong ac-

cess check results and so detect false changes as well miss

true changes. To filter out false changes, we introduced the

second-round test with non-trimmed programs. Missing true

changes is still a limitation, although our evaluation in §5.3

shows that no true change is missed because of trimming.

Second, trimming cannot eliminate all time-consuming I/Os.

Some I/Os may be needed for access-control checks to make

the decisions, like reading a user table. Luckily, these I/Os

usually do not account for the major execution time.

For test request generation, the choice between using ac-

cess logs and synthesizing requests can be made based on

the specific scenario. Access logs provide a convenient way

to generate test requests, but the test effectiveness depends

on the coverage of historical requests. With this, sysadmins

pay almost no effort and need no knowledge about the sub-

jects, objects and actions. On the other hand, test request syn-

thesis provides a complete set of test inputs. But it requires

12

sysadmins to specify the subjects, objects and actions. So this

may not suit for all sysadmins; however, it at least provides

a way for experienced sysadmins to thoroughly test their sys-

tems. Web scanners can also be used to generate test requests

for ACtests. Note web scanners cannot replace ACtests, be-

cause it doesn’t address the issue of running web applica-

tions safely and efficiently with production environment. In

addition, from our experiments, web scanners generate a sub-

set of the synthesized requests–web scanners can’t cover cus-

tomized paths.

7 Related Work

7.1 Access-control testing and verification

Testing and verification techniques for access-control poli-

cies were previously explored mainly by the software engi-

neering community, as a promising approach to detect access-

control misconfigurations [34, 39, 42, 44, 45, 58, 59, 61, 68].

The basic idea is to write or generate test cases that assert on

the access results of test requests (i.e., test inputs). With com-

prehensive test inputs and oracles, misconfigurations will fail

the tests.

Prior techniques on access-control testing and verification

are based on formal modeling (e.g. using ACML). How-

ever, it is non-trivial to encode the actual system configura-

tions using the modeling language, due to the diversity and

complexity of access-control implementations [93]. Further-

more, it takes significant effort to maintain the consistency

between the model and system configuration changes, which

has been reported as one of the main reasons that impair

access-control in real world [74]. Another major obstacle is

that the prior approaches require sysadmins to provide ora-

cles or specifications (to check the test results). With the ve-

locity of access-control changes [23, 74], it is untenable to

maintain consistency or oracles/specifications.

ACtests address the fundamental limitations of prior

access-control testing and verification approaches—

it requires neither formal policy models nor ora-

cles/specifications: 1) ACtests take advantage of the

original program to test its own access-control configura-

tions to achieve high fidelity; 2) ACtests focus on the impact

of access-control changes and flags high-impact changes,

without the need for sysadmins to write test oracles or

specifications.

7.2 Access-control misconfiguration detection

Prior work proposes to detect access-control misconfigura-

tions based on the heuristic that users tend to have similar

permissions to similar resources [8,23,73]. Those techniques

classify users and resources into groups and identify miscon-

figurations when the same group of users has different per-

missions to the same group of resources. Such techniques

can only detect limited types of misconfigurations where the

heuristic applies. As noted by Das et al. [23], “We do not

claim that techniques will find all misconfigurations, as the

notion of policy itself is not defined in most of our deployment

settings. Also, given that access permissions change very or-

ganically over time and several of these changes are linked to

adhoc and one-off access requirements, it is very difficult for

an automated system to deduce the exact and complete list of

all misconfigurations.” Our work presents a complementary

approach to focus on detecting changes of dynamic system

behaviors instead of the similarity of static permissions.

7.3 Configuration testing

A few recent works also propose to use testing techniques

to detect misconfigurations [75, 96]. We share the same

view that testing is a practical and effective approach for

misconfiguration detection; however, ACtests are fundamen-

tally different. First, no prior work can be applied to access-

control configurations, because they rely on failure symp-

toms to determine the correctness of configuration values

(e.g., crashing behavior, exceptions, and performance degra-

dation). However, access-control misconfigurations do not

lead to clear failure symptoms. For the same reason, most of

the existing misconfiguration detection techniques for func-

tional correctness and performance cannot address access-

control misconfigurations [7, 11, 41, 60, 67, 70, 77, 92, 98].

Moreover, existing configuration testing techniques are lim-

ited to unit-level tests [75, 96]. Differently, ACtests focus on

system-level tests to reason about end-to-end access-control.

This requires addressing the system challenges to run expen-

sive tests efficiently.

7.4 Execution acceleration

Existing techniques [28,48,76,82] for accelerating execution

aim to reduce the number of requests to execute. They aggre-

gate similar requests, execute them in one round for the most

part and only split the executions when there are divergences

on control or data flow. ACtests take an orthogonal approach.

It minimizes the execution time of each individual request by

trimming the original server program. We observe that server

programs typically perform access-control checks at the be-

ginning of a request handling; therefore, we can skip the

costly operations after the access-control checks. To make

ACtests easy to deploy, our approach does not introduce any

new dependency or record-and-replay systems as prior ap-

proaches. Combining our trimming and previous deduplica-

tion approaches may further reduce the testing time.

8 Conclusion

This paper presents ACtests, a new type of mini test environ-

ment for testing access control configuration changes in web

13

applications. ACtests can detect what requests are impacted

by access control configuration changes and warn sysad-

mins to validate if the impacts are intended. This can help

sysadmins detect vulnerabilities before they are exploited

by attackers. To help developers build ACtests, we present

a general technique to transform a target program into an

ACtest. Our evaluation on real-world Docker images shows

that ACtests detect 168 new vulnerabilities from 72 images.

So far 54 of these vulnerabilities have been confirmed and

44 of them have been fixed by image maintainers. Our evalu-

ation on five real-world deployed systems shows that ACtests

can effectively and efficiently detect all the change impacts.

As many other tools, ACtest is far from perfect. As for

future research, there are several promising directions to be

explored. First, test requests generation is a major challenge

for web application testing. Future work may need to explore

how to generate request parameters with a high coverage.

Second, automatic triage of access-control behavior changes

is a new problem to be explored. ACtest only uses several

simple rules to triage a limited number of changes; how-

ever, more advanced triage algorithms can improve the cover-

age. Third, ACtest only targets on web applications. Testing

access-control changes in other types of systems is still an

important but unsolved problem.

References

[1] Acunetix. Git repository found. https://

www.acunetix.com/vulnerabilities/web/

git-repository-found/, 2021.

[2] Acunetix. .htaccess file readable. https://

www.acunetix.com/vulnerabilities/web/

htaccess-file-readable/, 2021.

[3] W Richards Adrion, Martha A Branstad, and John C

Cherniavsky. Validation, verification, and testing of

computer software. ACM Computing Surveys (CSUR),

14(2):159–192, 1982.

[4] Ann Marie. Don’t test in production? test in pro-

duction! https://opensource.com/article/19/5/

dont-test-production, 2019.

[5] Apache Foundation. Httpd 2.4 documentation.

https://httpd.apache.org/docs/2.4/howto/

access.html, 2021.

[6] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba

Borthakur, and Mark Callaghan. Linkbench: a database

benchmark based on the facebook social graph. In

Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data, pages 1185–1196,

2013.

[7] Salman Baset, Sahil Suneja, Nilton Bila, Ozan Tuncer,

and Canturk Isci. Usable declarative configuration spec-

ification and validation for applications, systems, and

cloud. In Proceedings of the 18th ACM/IFIP/USENIX

Middleware Conference: Industrial Track, pages 29–35,

2017.

[8] Lujo Bauer, Scott Garriss, and Michael K Reiter.

Detecting and resolving policy misconfigurations in

access-control systems. ACM Transactions on Infor-

mation and System Security (TISSEC), 14(1):2, 2011.

[9] BrAPI. Brapi. https://wiki.brapi.org/

index.php/BrAPI is the deployed website

of the image https://hub.docker.com/r/

brapicoordinatorselby/brapi-wiki we detected

vulnerability, 2019.

[10] Zhichao Cao, Siying Dong, Sagar Vemuri, and

David HC Du. Characterizing, modeling, and bench-

marking rocksdb key-value workloads at facebook.

In 18th USENIX Conference on File and Storage

Technologies (FAST 20), pages 209–223, 2020.

[11] Qingrong Chen, Teng Wang, Owolabi Legunsen, Shan-

shan Li, and Tianyin Xu. Understanding and discover-

ing software configuration dependencies in cloud and

datacenter systems. In Proceedings of the 28th ACM

Joint Meeting on European Software Engineering Con-

ference and Symposium on the Foundations of Software

Engineering, pages 362–374, 2020.

[12] Runxiang Cheng, Lingming Zhang, Darko Marinov,

and Tianyin Xu. Test-case prioritization for configura-

tion testing. In Proceedings of the 30th ACM SIGSOFT

International Symposium on Software Testing and Anal-

ysis, pages 452–465, 2021.

[13] Chris Evans. Vsftpd man page. https://linux.die.

net/man/5/vsftpd.conf, 2021.

[14] Cindy Sridharan. Testing in production, the safe

way. https://copyconstruct.medium.com/

testing-in-production-the-safe-way-18ca102d0ef1 ,

2018.

[15] conf-test. Cfg-diff graphs. https://github.com/

conf-test/acl-test/tree/main/cfg-diff, 2021.

[16] conf-test. Httpd trim input. https://github.com/

conf-test/acl-test/blob/main/httpd/trim_

run.sh, 2021.

[17] conf-test. Nginx trim input. https://github.com/

conf-test/acl-test/blob/main/nginx/trim_

run.sh, 2021.

14

https://www.acunetix.com/vulnerabilities/web/git-repository-found/
https://www.acunetix.com/vulnerabilities/web/git-repository-found/
https://www.acunetix.com/vulnerabilities/web/git-repository-found/
https://www.acunetix.com/vulnerabilities/web/htaccess-file-readable/
https://www.acunetix.com/vulnerabilities/web/htaccess-file-readable/
https://www.acunetix.com/vulnerabilities/web/htaccess-file-readable/
https://opensource.com/article/19/5/dont-test-production
https://opensource.com/article/19/5/dont-test-production
https://httpd.apache.org/docs/2.4/howto/access.html
https://httpd.apache.org/docs/2.4/howto/access.html
https://wiki.brapi.org/index.php/BrAPI
https://wiki.brapi.org/index.php/BrAPI
https://hub.docker.com/r/brapicoordinatorselby/brapi-wiki
https://hub.docker.com/r/brapicoordinatorselby/brapi-wiki
https://linux.die.net/man/5/vsftpd.conf
https://linux.die.net/man/5/vsftpd.conf
https://copyconstruct.medium.com/testing-in-production-the-safe-way-18ca102d0ef1
https://copyconstruct.medium.com/testing-in-production-the-safe-way-18ca102d0ef1
https://github.com/conf-test/acl-test/tree/main/cfg-diff
https://github.com/conf-test/acl-test/tree/main/cfg-diff
https://github.com/conf-test/acl-test/blob/main/httpd/trim_run.sh
https://github.com/conf-test/acl-test/blob/main/httpd/trim_run.sh
https://github.com/conf-test/acl-test/blob/main/httpd/trim_run.sh
https://github.com/conf-test/acl-test/blob/main/nginx/trim_run.sh
https://github.com/conf-test/acl-test/blob/main/nginx/trim_run.sh
https://github.com/conf-test/acl-test/blob/main/nginx/trim_run.sh

[18] conf-test. Postgresql trim input. https://github.

com/conf-test/acl-test/blob/main/postgres/

trim_run.sh, 2021.

[19] conf-test. Sensitive files are exposed. https://

github.com/linuxserver/docker-dokuwiki/

issues/33, 2021.

[20] conf-test. Vsftpd trim input. https://github.com/

conf-test/acl-test/blob/main/vsftpd/trim_

run.sh, 2021.

[21] conf-test. The full list of our detected vul-

nerabilities (anonymous access). https://

docs.google.com/spreadsheets/d/18_

oaaoEawPJ-GNajqEL7t43tiKQ2iizZ9J6URCZMWc0,

2022.

[22] Dan Walters. How did confidential

gun permit data get leaked? https://

calmatters.org/commentary/2022/12/

how-did-confidential-gun-permit-data-get-leaked/,

2022.

[23] Tathagata Das, Ranjita Bhagwan, and Prasad Naldurg.

Baaz: A System for Detecting Access Control Miscon-

figurations. In Proceedings of the 19th USENIX Secu-

rity Symposium (USENIX Security’10), August 2010.

[24] Docker. Dockerfile reference. https://docs.docker.

com/engine/reference/builder/, 2021.

[25] Docker. Dockerhub. https://hub.docker.com/

search?q=&type=image, 2021.

[26] Docker. Overlay networks. https://docs.docker.

com/network/overlay/, 2021.

[27] dokuwiki. Dokuwiki. https://www.dokuwiki.org/

dokuwiki, 2021.

[28] Xianzheng Dou, Peter M Chen, and Jason Flinn. Short-

cut: accelerating mostly-deterministic code regions. In

Proceedings of the 27th ACM Symposium on Operating

Systems Principles, pages 570–585, 2019.

[29] Drupal. Drupal - open source cms. https://www.

drupal.org/, 2020.

[30] Drupal. Drupal modules. https://www.drupal.org/

project/project_module, 2021.

[31] Paul M Duvall, Steve Matyas, and Andrew Glover. Con-

tinuous integration: improving software quality and re-

ducing risk. Pearson Education, 2007.

[32] EliasHolzmann. Sensitive data exposed to pub-

lic access. https://github.com/EliasHolzmann/

mediawiki-docker/issues/1, 2021.

[33] Dennis Fetterly, Maya Haridasan, Michael Isard, and

Swaminathan Sundararaman. Tidyfs: A simple and

small distributed file system. In USENIX annual tech-

nical conference, pages 34–34, 2011.

[34] Kathi Fisler, Shriram Krishnamurthi, Leo A

Meyerovich, and Michael Carl Tschantz. Verifi-

cation and Change-Impact Analysis of Access-Control

Policies. In Proceedings of the 27th International

Conference on Software Engineering (ICSE’05), May

2005.

[35] hackerone. Potential server misconfiguration leads to

disclosure of vendor/ directory. https://hackerone.

com/reports/271391, 2017.

[36] hackerone. Development configuration file. https://

hackerone.com/reports/231267, 2018.

[37] hackerone. Sensitive data disclosure via exposed

phpunit file. https://hackerone.com/reports/

543775, 2020.

[38] Tyler Harter, Dhruba Borthakur, Siying Dong, Ami-

tanand Aiyer, Liyin Tang, Andrea C Arpaci-Dusseau,

and Remzi H Arpaci-Dusseau. Analysis of hdfs un-

der hbase: A facebook messages case study. In 12th

USENIX Conference on File and Storage Technologies

(FAST 14), pages 199–212, 2014.

[39] Vincent C Hu, Rick Kuhn, and Dylan Yaga. Verification

and test methods for access control policies/models.

NIST Special Publication, 800:192, 2017.

[40] JC Huang. An approach to program testing. ACM Com-

puting Surveys (CSUR), 7(3):113–128, 1975.

[41] Peng Huang, William J Bolosky, Abhishek Singh, and

Yuanyuan Zhou. Confvalley: A systematic configura-

tion validation framework for cloud services. In Pro-

ceedings of the Tenth European Conference on Com-

puter Systems, pages 1–16, 2015.

[42] Graham Hughes and Tevfik Bultan. Automated verifica-

tion of access control policies using a sat solver. Inter-

national journal on software tools for technology trans-

fer, 10(6):503–520, 2008.

[43] Jez Humble and David Farley. Continuous delivery: re-

liable software releases through build, test, and deploy-

ment automation. Pearson Education, 2010.

[44] Karthick Jayaraman, Vijay Ganesh, Mahesh Tripuni-

tara, Martin Rinard, and Steve Chapin. Automatic er-

ror finding in access-control policies. In Proceedings

of the 18th ACM conference on Computer and commu-

nications security, pages 163–174, 2011.

15

https://github.com/conf-test/acl-test/blob/main/postgres/trim_run.sh
https://github.com/conf-test/acl-test/blob/main/postgres/trim_run.sh
https://github.com/conf-test/acl-test/blob/main/postgres/trim_run.sh
https://github.com/linuxserver/docker-dokuwiki/issues/33
https://github.com/linuxserver/docker-dokuwiki/issues/33
https://github.com/linuxserver/docker-dokuwiki/issues/33
https://github.com/conf-test/acl-test/blob/main/vsftpd/trim_run.sh
https://github.com/conf-test/acl-test/blob/main/vsftpd/trim_run.sh
https://github.com/conf-test/acl-test/blob/main/vsftpd/trim_run.sh
https://docs.google.com/spreadsheets/d/18_oaaoEawPJ-GNajqEL7t43tiKQ2iizZ9J6URCZMWc0
https://docs.google.com/spreadsheets/d/18_oaaoEawPJ-GNajqEL7t43tiKQ2iizZ9J6URCZMWc0
https://docs.google.com/spreadsheets/d/18_oaaoEawPJ-GNajqEL7t43tiKQ2iizZ9J6URCZMWc0
https://calmatters.org/commentary/2022/12/how-did-confidential-gun-permit-data-get-leaked/
https://calmatters.org/commentary/2022/12/how-did-confidential-gun-permit-data-get-leaked/
https://calmatters.org/commentary/2022/12/how-did-confidential-gun-permit-data-get-leaked/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
https://www.dokuwiki.org/dokuwiki
https://www.dokuwiki.org/dokuwiki
https://www.drupal.org/
https://www.drupal.org/
https://www.drupal.org/project/project_module
https://www.drupal.org/project/project_module
https://github.com/EliasHolzmann/mediawiki-docker/issues/1
https://github.com/EliasHolzmann/mediawiki-docker/issues/1
https://hackerone.com/reports/271391
https://hackerone.com/reports/271391
https://hackerone.com/reports/231267
https://hackerone.com/reports/231267
https://hackerone.com/reports/543775
https://hackerone.com/reports/543775

[45] Somesh Jha, Ninghui Li, Mahesh Tripunitara, Qihua

Wang, and William Winsborough. Towards formal ver-

ification of role-based access control policies. IEEE

Transactions on Dependable and Secure Computing,

5(4):242–255, 2008.

[46] Jill McKeon. Inmediata health reaches

$1.13m settlement after 2019 data

breach. https://healthitsecurity.

com/news/inmediata-health-reaches-1.

13m-settlement-after-2019-data-breach,

2022.

[47] joomla. Joomla content management system (cms).

https://www.joomla.org/, 2021.

[48] Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich.

Efficient patch-based auditing for web application vul-

nerabilities. In 10th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 12), pages

193–206, 2012.

[49] Butler Lampson. Usable Security: How to Get It.

Communications of the ACM, 52(11):25–27,November

2009.

[50] Chris Lattner and Vikram Adve. Llvm: A compilation

framework for lifelong program analysis & transforma-

tion. In International Symposium on Code Genera-

tion and Optimization, 2004. CGO 2004., pages 75–86.

IEEE, 2004.

[51] Linux. ipv6: Implement any-ip support for ipv6.

https://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git/commit/?

id=ab79ad14a2d51e95f0ac3cef7cd116a57089ba828 ,

2010.

[52] Linux. Overlay filesystem. https://www.kernel.

org/doc/html/latest/filesystems/overlayfs.

html, 2021.

[53] linuxserver. Sensitive files are exposed. https://

github.com/linuxserver/docker-dokuwiki/

issues/33#issuecomment-820429021, 2021.

[54] linuxserver.io. linuxserver/dokuwiki. https://hub.

docker.com/r/linuxserver/dokuwiki, 2022.

[55] LLVM. Llvm analysis passes. https://llvm.org/

docs/Passes.html#analysis-passes, 2021.

[56] LLVM. Llvm transform passes. https://llvm.org/

docs/Passes.html#transform-passes, 2021.

[57] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis

Kafura, and Sumit Shah. First experiences using xacml

for access control in distributed systems. In Proceed-

ings of the 2003 ACM workshop on XML security,

pages 25–37, 2003.

[58] Evan Martin and Tao Xie. Automated Test Generation

for Access Control Policies via Change-Impact Analy-

sis. In Proceedings of the 3rd International Workshop

on Software Engineering for Secure Systems, 2007.

[59] Evan Martin and Tao Xie. A fault model and mutation

testing of access control policies. In Proceedings of

the 16th international conference on World Wide Web,

pages 667–676, 2007.

[60] Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan

Bansal, Chandra Maddila, B Ashok, Sumit Asthana,

Christian Bird, and Aditya Kumar. Rex: Preventing

bugs and misconfiguration in large services using corre-

lated change analysis. In 17th USENIX Symposium on

Networked Systems Design and Implementation (NSDI

20), pages 435–448, 2020.

[61] Aleksandar Nanevski, Anindya Banerjee, and Deepak

Garg. Verification of information flow and access con-

trol policies with dependent types. In 2011 IEEE Sym-

posium on Security and Privacy, pages 165–179. IEEE,

2011.

[62] Nginx. Nginx admin guide. https://docs.nginx.

com/nginx/admin-guide/security-controls/

configuring-http-basic-authentication/,

2021.

[63] Nikita Popov. A php parser written in php. https://

github.com/nikic/php-parser, 2023.

[64] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc

Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,

Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling

memcache at facebook. In 10th USENIX Symposium on

Networked Systems Design and Implementation (NSDI

13), pages 385–398, 2013.

[65] nlpub.ru. nlpub.ru. https://nlpub.ru/ is the de-

ployed website of the image https://hub.docker.

com/r/nlpub/mediawiki we detected vulnerability,

2019.

[66] PostgreSQL. Postgresql documentation. https://

www.postgresql.org/docs/current/ddl-priv.

html, 2021.

[67] Rahul Potharaju, Joseph Chan, Luhui Hu, Cristina Nita-

Rotaru, Mingshi Wang, Liyuan Zhang, and Navendu

Jain. Confseer: leveraging customer support knowledge

bases for automated misconfiguration detection. Pro-

ceedings of the VLDB Endowment, 8(12):1828–1839,

2015.

[68] Alexander Pretschner, Tejeddine Mouelhi, and Yves

Le Traon. Model-based tests for access control policies.

16

https://healthitsecurity.com/news/inmediata-health-reaches-1.13m-settlement-after-2019-data-breach
https://healthitsecurity.com/news/inmediata-health-reaches-1.13m-settlement-after-2019-data-breach
https://healthitsecurity.com/news/inmediata-health-reaches-1.13m-settlement-after-2019-data-breach
https://www.joomla.org/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ab79ad14a2d51e95f0ac3cef7cd116a57089ba828
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ab79ad14a2d51e95f0ac3cef7cd116a57089ba828
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ab79ad14a2d51e95f0ac3cef7cd116a57089ba828
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://github.com/linuxserver/docker-dokuwiki/issues/33#issuecomment-820429021
https://github.com/linuxserver/docker-dokuwiki/issues/33#issuecomment-820429021
https://github.com/linuxserver/docker-dokuwiki/issues/33#issuecomment-820429021
https://hub.docker.com/r/linuxserver/dokuwiki
https://hub.docker.com/r/linuxserver/dokuwiki
https://llvm.org/docs/Passes.html#analysis-passes
https://llvm.org/docs/Passes.html#analysis-passes
https://llvm.org/docs/Passes.html#transform-passes
https://llvm.org/docs/Passes.html#transform-passes
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://github.com/nikic/php-parser
https://github.com/nikic/php-parser
https://nlpub.ru/
https://hub.docker.com/r/nlpub/mediawiki
https://hub.docker.com/r/nlpub/mediawiki
https://www.postgresql.org/docs/current/ddl-priv.html
https://www.postgresql.org/docs/current/ddl-priv.html
https://www.postgresql.org/docs/current/ddl-priv.html

In 2008 1st International Conference on Software Test-

ing, Verification, and Validation, pages 338–347. IEEE,

2008.

[69] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The

linux b-tree filesystem. ACM Transactions on Storage

(TOS), 9(3):1–32, 2013.

[70] Mark Santolucito, Ennan Zhai, Rahul Dhodapkar,

Aaron Shim, and Ruzica Piskac. Synthesizing configu-

ration file specifications with association rule learning.

Proceedings of the ACM on Programming Languages,

1(OOPSLA):1–20, 2017.

[71] servarr. servarr/mediawiki:1.0.7.

https://hub.docker.com/layers/

servarr/mediawiki/1.0.7/images/

sha256-610718f59d235a7d7aab07bc59c1a86e1ede267361c38159942e705a13b7fa4b?

context=explore, 2022.

[72] Mojtaba Shahin, Muhammad Ali Babar, and Liming

Zhu. Continuous integration, delivery and deployment:

a systematic review on approaches, tools, challenges

and practices. IEEE access, 5:3909–3943, 2017.

[73] Riaz Ahmed Shaikh, Kamel Adi, and Luigi Logrippo.

A Data Classification Method for Inconsistency and

Incompleteness Detection in Access Control Policy

Sets. International Journal of Information Security,

16(1):91–113, 2017.

[74] Sara Sinclair and Sean W. Smith. What’s Wrong with

Access Control in the Real World? IEEE Security &

Privacy, 8(4):74–77, July 2010.

[75] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine

Ang, Owolabi Legunsen, and Tianyin Xu. Testing

configuration changes in context to prevent production

failures. In 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20), pages

735–751, 2020.

[76] Cheng Tan, Lingfan Yu, Joshua B Leners, and Michael

Walfish. The efficient server audit problem, dedupli-

cated re-execution, and the web. In Proceedings of

the 26th Symposium on Operating Systems Principles,

pages 546–564, 2017.

[77] Chunqiang Tang, Thawan Kooburat, Pradeep Venkat-

achalam, Akshay Chander, Zhe Wen, Aravind

Narayanan, Patrick Dowell, and Robert Karl. Holistic

configuration management at facebook. In Proceed-

ings of the 25th Symposium on Operating Systems

Principles, pages 328–343, 2015.

[78] Tech Times . Wordpress data breach af-

fects 100,000 exposed websites after using

responsive menu plugin. https://www.

techtimes.com/articles/257016/20210212/

wordpress-data-breach-affects-100-000-exposed-websites-

htm, 2021.

[79] Jeff Terrace and Michael J Freedman. Object stor-

age on craq: High-throughput chain replication for

read-mostly workloads. In USENIX Annual Technical

Conference, number June, pages 1–16. San Diego, CA,

2009.

[80] tkw1536. Risky data exposed to public access.

https://github.com/tkw1536/docker-dokuwiki/

issues/1, 2021.

[81] Tom Spring. Trump campaign website left open

to email server hijack. https://threatpost.com/

trump-campaign-website-allowed-email-hijack/

149278/, 2019.

[82] Joseph Tucek, Weiwei Xiong, and Yuanyuan Zhou. Ef-

ficient online validation with delta execution. In Pro-

ceedings of the 14th international conference on Archi-

tectural support for programming languages and oper-

ating systems, pages 193–204, 2009.

[83] vulfocus. vulfocus/drupal-cve_2019_6340. https://

hub.docker.com/r/vulfocus/drupal-cve_2019_

6340, 2019.

[84] Shuai Wang, Xinyu Lian, Darko Marinov, and Tianyin

Xu. Test selection for unified regression testing. In

2023 IEEE/ACM 45th International Conference on

Software Engineering (ICSE), pages 1687–1699. IEEE,

2023.

[85] Ryan West. The Psychology of Security. Communica-

tions of the ACM, 51(4):34–40, April 2008.

[86] wikimedia. cowikimedia dump progress). https://

dumps.wikimedia.org/cowikimedia/20221201/,

2022.

[87] WikiMedia Foundation . Extensions let you cus-

tomize how mediawiki looks and works. https://www.

mediawiki.org/wiki/Manual:Extensions, 2021.

[88] WikiMedia Foundation. Mediawiki is a collabora-

tion and documentation platform brought to you by a

vibrant community. https://www.mediawiki.org/

wiki/MediaWiki, 2020.

[89] Wordpress . Extend your wordpress experience with

58,390 plugins. https://wordpress.org/plugins/,

2021.

[90] wordpress. Wordpress.com: Create a free website or

blog. https://wordpress.com/read, 2021.

17

https://hub.docker.com/layers/servarr/mediawiki/1.0.7/images/sha256-610718f59d235a7d7aab07bc59c1a86e1ede267361c38159942e705a13b7fa4b?context=explore
https://hub.docker.com/layers/servarr/mediawiki/1.0.7/images/sha256-610718f59d235a7d7aab07bc59c1a86e1ede267361c38159942e705a13b7fa4b?context=explore
https://hub.docker.com/layers/servarr/mediawiki/1.0.7/images/sha256-610718f59d235a7d7aab07bc59c1a86e1ede267361c38159942e705a13b7fa4b?context=explore
https://hub.docker.com/layers/servarr/mediawiki/1.0.7/images/sha256-610718f59d235a7d7aab07bc59c1a86e1ede267361c38159942e705a13b7fa4b?context=explore
https://www.techtimes.com/articles/257016/20210212/wordpress-data-breach-affects-100-000-exposed-websites-using-responsive.htm
https://www.techtimes.com/articles/257016/20210212/wordpress-data-breach-affects-100-000-exposed-websites-using-responsive.htm
https://www.techtimes.com/articles/257016/20210212/wordpress-data-breach-affects-100-000-exposed-websites-using-responsive.htm
https://www.techtimes.com/articles/257016/20210212/wordpress-data-breach-affects-100-000-exposed-websites-using-responsive.htm
https://github.com/tkw1536/docker-dokuwiki/issues/1
https://github.com/tkw1536/docker-dokuwiki/issues/1
https://threatpost.com/trump-campaign-website-allowed-email-hijack/149278/
https://threatpost.com/trump-campaign-website-allowed-email-hijack/149278/
https://threatpost.com/trump-campaign-website-allowed-email-hijack/149278/
https://hub.docker.com/r/vulfocus/drupal-cve_2019_6340
https://hub.docker.com/r/vulfocus/drupal-cve_2019_6340
https://hub.docker.com/r/vulfocus/drupal-cve_2019_6340
https://dumps.wikimedia.org/cowikimedia/20221201/
https://dumps.wikimedia.org/cowikimedia/20221201/
https://www.mediawiki.org/wiki/Manual:Extensions
https://www.mediawiki.org/wiki/Manual:Extensions
https://www.mediawiki.org/wiki/MediaWiki
https://www.mediawiki.org/wiki/MediaWiki
https://wordpress.org/plugins/
https://wordpress.com/read

[91] Xdebug. Code coverage analysis. https://xdebug.

org/docs/code_coverage, 2023.

[92] Chengcheng Xiang, Haochen Huang, Andrew Yoo,

Yuanyuan Zhou, and Shankar Pasupathy. Pracextractor:

Extracting configuration good practices from manuals

to detect server misconfigurations. In 2020 USENIX

Annual Technical Conference (USENIX ATC 20), pages

265–280, 2020.

[93] Chengcheng Xiang, Yudong Wu, Bingyu Shen,

Mingyao Shen, Haochen Huang, Tianyin Xu, Yuanyuan

Zhou, Cindy Moore, Xinxin Jin, and Tianwei Sheng.

Towards continuous access control validation and

forensics. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications

Security, pages 113–129, 2019.

[94] Dianxiang Xu, Roshan Shrestha, and Ning Shen. Au-

tomated coverage-based testing of xacml policies. In

Proceedings of the 23nd ACM on Symposium on Access

Control Models and Technologies, pages 3–14, 2018.

[95] Dianxiang Xu, Roshan Shrestha, and Ning Shen. Auto-

mated strong mutation testing of xacml policies. In Pro-

ceedings of the 25th ACM Symposium on Access Con-

trol Models and Technologies, pages 105–116, 2020.

[96] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou,

Shan Lu, Long Jin, and Shankar Pasupathy. Early detec-

tion of configuration errors to reduce failure damage. In

Proceedings of the 12th USENIX Conference on Oper-

ating Systems Design and Implementation (OSDI’16),

November 2016.

[97] Tianyin Xu, Han Min Naing, Le Lu, and Yuanyuan

Zhou. How Do System Administrators Resolve Access-

Denied Issues in the Real World? In Proceedings of

the 35th Annual CHI Conference on Human Factors in

Computing Systems (CHI’17), May 2017.

[98] Jiaqi Zhang, Lakshmi Renganarayana, Xiaolan Zhang,

Niyu Ge, Vasanth Bala, Tianyin Xu, and Yuanyuan

Zhou. EnCore: Exploiting System Environment and

Correlation Information for Misconfiguration Detec-

tion. In Proceedings of the 19th International Con-

ference on Architecture Support for Programming Lan-

guages and Operating Systems (ASPLOS’14), March

2014.

18

https://xdebug.org/docs/code_coverage
https://xdebug.org/docs/code_coverage

A Algorithms

Algorithm 1 consists of two major steps. Firstly, it col-

ors a pair of cfgallow and cfgdeny to identify the diverg-

ing nodes as accCandidates. Secondly, it identifies true

acc from accCandidates. accCandidates may includes

non− acc nodes for which the divergence comes from non-

deterministic execution of the program. To filter out these

nodes, our algorithm only treats the node with the largest di-

vergence (most number of nodes in the diverged branches) as

the final ACC node. This relies on an assumption that access-

control decisions cause larger control flow divergence than

non-deterministic execution. This assumption holds well

throughout our experiments.

In our implementation of CFG-diff, we also need to han-

dle multiple threads. Server programs usually spawn multi-

ple threads to handle different requests. As a results, mul-

tiple dynamic CFG will be generated for each run, and we

need to decide which CFG to feed into CFG-diff. We take

two steps to handle the challenge. First, for our trimming

analysis (not the final ACtests), we run requests sequentially

so that only one thread is handling request. Second, we find

out the request-handling thread’s CFG by searching for the

CFG with the most nodes. Then we use the request-handling

thread’s CFG for CFG-diff.

Algorithm 1: CFG-diff to find the final ACC in a pair

of allowed and denied CFG

Function diffCFG(cfgallow, cfgdeny):

cfgdiff =merge(cfgallow,cfgdeny)

for node ∈ cfgdiff do

if node ∈ cfgallow and node ∈ cfgdeny then

node.color(“green-red-mixed”)

else if node ∈ cfgallow then

node.color(“green”)

else

node.color(“red”)
return cfgdiff

Function findFinalACCInCFG(cfgallow, cfgdeny):

cfgdiff = diffCFG(cfgallow,cfgdeny)

accCandidates= /0

for node ∈ cfgdiff do
if node.color() == “green-red-mixed” and

node.hasGreenChild() and

node.hasRedChild() then
accCandidates.add(node)

acc= nodeWithLargestDiverge(accCandidates)
return acc, cfgdiff

Algorithm 2: Static analysis to find the final ACCs

Function forwardAnalysis(acc, cfg):

accToAdd= {acc}
for function ∈ cfg.calledAfter(acc) do

for statement ∈ function do

cfg.staticExpand(function)
if isAcca(statement) then

accToAdd.add(statement)
return accToAdd,cfg

Function backwardAnalysis(acc, cfg):

accToDel= /0

for function ∈ cfg.calledBefore(acc) do

for statement ∈ function do

cfg.staticExpand(function)
if isAcc(statement) then

accToDel.add(acc)
return accToDel,cfg

Function findFinalACCs(accInCFGs b):

candidates= /0

for acc, cfg ∈ accInCFGs do

accToAdd,cfg′ = forwardAnalysis(acc,cfg)
candidates= candidates∪accToAdd

accInCFGs= accInCFGs∪accToAdd× cfg′

for acc, cfg ∈ accInCFGs do

accToDel,cfg′ = backwardAnalysis(acc,cfg)
candidates= candidates− accToDel

accInCFGs= accInCFGs∪accToDel× cfg′

return candidates

aisAcc is implemented by matching function names and return types

with the acc functions returned by Algorithm 1’s findFinalACCInCFG.
baccInCFGs is the results of Algorithm 1’s findFinalACCInCFG.

19

	Introduction
	Motivating Examples
	Dangerous web interfaces
	Openly-accessible database dump

	ACtest Overview
	ACtest Definitions
	Usage and Deployment Model

	ACtest Generation
	Creating Safe ACtests
	Safe File Access
	Safe Database Access
	Safe Network Access

	Making ACtests Performance-efficient
	Strawman trimming
	Advanced Trimming

	Minimizing Usage Effort
	Generating Test Inputs
	Simulating Requests
	Presenting Results And Performing Automatic Triage

	Implementation

	Evaluation
	Methodology and Testing Environment
	Detecting Real-world Vulnerabilities
	Detecting Change Impacts
	Comparing Different Trimming Methods
	Comparing Different Ways of Generating Test Input

	Performance

	Discussions
	Related Work
	Access-control testing and verification
	Access-control misconfiguration detection
	Configuration testing
	Execution acceleration

	Conclusion
	Algorithms

