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Abstract. Malware are malicious programs that are grouped into
families based on their penetration technique, source code, and other
characteristics. Classifying malware programs into their respective
families is essential for building effective defenses against cyber
threats. Machine learning models have a huge potential in malware
detection on mobile devices, as malware families can be recognized
by classifying permission data extracted from Android manifest files.
Still, the malware classification task is challenging due to the high-
dimensional nature of permission data and the limited availability of
training samples. In particular, the steady emergence of new mal-
ware families makes it impossible to acquire a comprehensive train-
ing set covering all the malware classes. In this work, we present a
malware classification system that, on top of classifying known mal-
ware, detects new ones. In particular, we combine an open-set recog-
nition technique developed within the computer vision community,
namely MAXLOGIT, with a tree-based GRADIENT BOOSTING clas-
sifier, which is particularly effective in classifying high-dimensional
data. Our solution turns out to be very practical, as it can be seam-
lessly employed in a standard classification workflow, and efficient,
as it adds minimal computational overhead. Experiments on public
and proprietary datasets demonstrate the potential of our solution,
which has been deployed in a business environment.

1 Introduction

Malware programs are designed to disrupt, damage, or gain unau-
thorized access to computer systems or data. Android, the most used
mobile device operating system [21} 22]], has gained the attention of
malware developers thanks to its popularity and increased use for
business and financial activities. Malware programs have very dif-
ferent behaviors and characteristics, thus are classified into distinct
families based on their attributes. Classifying malware is very im-
portant to enable quick identification and an effective response to
potential attacks. Furthermore, analyzing malware families provides
insights into evolving attack trends and patterns, informing security
researchers with an updated view of the threat landscape, thus help-
ing organizations assess their risk exposure, prioritize security ef-
forts, and allocate resources more effectively to protect themselves
and their customers.

Malware programs targeting Android devices often exploit per-
missions declared in the manifest file to gain unauthorized access to
sensitive resources [18]. These malicious applications may request

permissions beyond what is necessary for their stated functionality,
tricking users into granting access to sensitive data or system re-
sources. For example, malware programs can leverage permissions
to carry out activities such as sending SMS messages, stealing bank-
ing or payment app data, or downloading and executing additional
malicious payloads. By abusing permissions declared in the manifest
file, malware programs can operate stealthily, posing a significant
threat to users’ privacy and security.

Malware classification often relies on rule-based approaches
crafted by experts [18], but these are ineffective in identifying com-
plex patterns in the huge space of permission requests and are prone
to introducing human biases. Conversely, machine learning models
learn distinctive patterns directly from data, leading to a more accu-
rate malware classification. Permission information is typically one-
hot encoded, resulting in a very sparse and high-dimensional binary
feature vector for each malware program. In such high-dimensional
settings, tree-based classifiers like decision trees and gradient boost-
ing machines are considered state-of-the-art, as they are particularly
effective and efficient in capturing complex nonlinear relationships
between binary features [[13} 23]

Malware developers continuously craft new malicious programs to
elude classification by security systems. The emergence of new mal-
ware families poses significant challenges to cybersecurity, as these
cannot be classified from a previously trained model. Therefore, a ro-
bust malware classification system must effectively identify known
classes and also detect unknown ones, to ensure overall protection
for Android devices. This challenge, known as Open-Set Recognition
(OSR), is typically addressed by assessing the classifier’s degree of
uncertainty. OSR has been widely addressed within the computer vi-
sion community, thus most solutions are tailored for neural network
classifiers [2, [7 [15]], which are not well suited for malware classifi-
cation. To the best of our knowledge, OSR methods have not been
extended to tree-based classifiers that are widely used in malware
classification.

In this work, we present a practical and efficient solution for iden-
tifying unknown malware families — namely those not represented
in the training set — by extending MAXLOGIT, a simple yet widely
used OSR technique developed for neural networks, to tree-based
GRADIENT BOOSTING classification models. In contrast with recent
malware OSR solutions, which involve sophisticated deep learn-
ing architectures often requiring ad-hoc training procedures, such
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as Generative Adversarial Networks (GANs) [8]], Transformer-based
models [16], or multimodal deep embeddings [9], our solution can
be seamlessly integrated into an existing tree-based malware classi-
fier, without even modifying the training procedure. The above-cited
methods poorly fit with real-world industrial scenarios as they of-
ten require large volumes of training data, high computational costs,
complex training procedures, and lack of compatibility with existing
systems.

Specifically, we show that MAXLOGIT can be readily applied
on decision values already produced by a GRADIENT BOOSTING
classifier, enabling OSR on tree-based models — widely adopted in
malware detection systems — without requiring any changes to the
existing pipelines. Our solution is, therefore, tailored for resource-
constrained industrial environments, prioritizing low latency, data ef-
ficiency, and ease of integration with existing infrastructures. We val-
idate our solution on both public and proprietary real-world datasets,
demonstrating its effectiveness and superior performance over a
nearest-neighbor OSR baseline [17] in handling high-dimensional
binary data, which can be a viable alternative to ours, as it can also
be seamlessly integrated into a pre-trained tree-based classifier. Im-
portantly, our solution has been successfully deployed in a business
environment, and it is currently part of their engine.

2 Background

Malware classification approaches typically rely on heuristic rules,
and can be divided in static, such as signature-based and permission-
based, and dynamic [18]. Dynamic analysis involves observing ap-
plication behavior within a sandbox environment, and monitoring
system calls to construct a function call graph which is analyzed
to identify malicious behaviour. Some dynamic approaches employ
machine learning algorithms to classify malware programs, usually
trained using function call graphs as input [10]. Depending on the
classification model, this approach can easily integrate with open-set
recognition techniques to discover new malware families [11} [14].
Despite the high potential of dynamic analysis, the runtime testing
required to construct the function call graph makes it inefficient and
unsuitable for high throughput scenarios.

In signature-based approaches, unique identifiers of known mal-
ware programs are stored in a database, and any application is com-
pared to them and eventually flagged as malware [6]]. Although
signature-based analysis proves efficient, it is effective only for mal-
ware families that are already stored in the database, making it not
appropriate to identify new ones.

Permission analysis, on the other hand, consists in classifying pro-
grams based solely on the permissions they request from the oper-
ating system [19]. In this work, we focus on permission analysis as
it is more flexible than signature-based analysis and more efficient
compared to dynamic analysis.

Android applications specify required permissions in a mandatory
file named AndroidManifest, which includes both custom and sys-
tem permissions. Custom permissions do not require access to sen-
sitive data such as contacts or filesystem, whereas system permis-
sions encompass all permissions exposed by the system, with only
the most sensitive ones requiring explicit user approval. Our study
focuses solely on the latter, due to their potential security risks for
the user.

The permission extraction process involves filtering out custom
permissions and applying one-hot encoding to system permissions,
enabling malware analysis through a machine learning model. One-
hot encoding is a common preprocessing method, where each per-

mission is represented by a binary value (1 for requested, 0 for not
requested). This results in each application being represented by a
high-dimensional binary vector of length P, where P is the total
number of permissions. However, the limited number of samples typ-
ically available in real-world malware classification scenarios (small
n), coupled with the high-dimensional feature space (large P) poses
challenges for effectively training classification models.

3 Problem formulation

A malicious application is represented by a vector of permissions
p € {0,1}%, where P is the total number of permissions considered,
and p; = 1 if the i-th permission is listed in the application manifest.
These malicious applications might either belong to a known class
¢ € L indicating a known malware family, or to a novel family that
has never been observed before.

Our goal is to train an open-set classifier K that associates to each
malicious application p either a known class label £(p) € L or the

Novel label, i.e.:
Novel
K =1~ 1
(p) {e(p) cr. (1

We assume that we are provided with a training set TR =
{(p;,¢:) | i € L}i=1,...,n of annotated malicious applications be-
longing to known families and with a test set TS = {(p,, ¢;) | 4; €
L U{Novel}}i=1,... m of annotated malicious applications belong-
ing to both known and novel families.

4 Related work

Using the manifest file permissions alongside machine learning
models for malware classification is a well-established practice.
In [[19,13], the permissions vector serves as behavioral marker and it
is fed to machine learning models ranging from Support Vector Ma-
chines and Gaussian Naive Bayes to Random Forests. Their findings
indicate that machine learning models trained solely on manifest file
permissions significantly outperform traditional anti-virus engines,
with Random Forest achieving the highest accuracy. In [23]], they
employ a tree-based GRADIENT BOOSTING model to classify six
malware classes using three permission categories, highlighting that
boosting is particularly suited for malware classification. However,
all these methods operate as closed-set classifiers and are therefore
unable to discover new malware families.

An effective machine learning malware classification system
should both accurately classify known malware programs and iden-
tify novel, unknown malware families. This challenge, known as
OSR [2], is typically addressed by assessing the classifier’s degree
of uncertainty. OSR systems can be categorized into two types.
The first type distinguishes between instances of known families
and unknown ones, but does not differentiate among known fam-
ilies [20} 13, 4]. This kind of OSR approach, also referred to as
anomaly detection, does not address the known malware classifica-
tion task, which is a primary requirement in our setting. Conversely,
the second type of OSR systems can both classify known families as
well as identify instances of unknown ones [2} 15].

The OSR problem has been extensively studied in the computer
vision community [2} 7} [15124]], with most solutions relying on con-
volutional neural networks. Neural networks have also been used for
OSR in malware detection [[11}[14], where applications are executed
in a sandbox to extract function call graphs, which are then con-
verted into adjacency matrices. These matrices are used to train a



convolutional neural network using various loss functions to learn a
discriminative representation of malware families in a latent space.
During testing, an instance is classified as unknown if the distance to
its closest centroid exceeds a threshold. While effective, the extrac-
tion of function call graphs is time-consuming, making it impracti-
cal for high throughput scenarios. Alternative approaches to extend
closed-set classification systems for OSR have also been proposed.
In [25] they use permission-based footprinting to classify samples
of known Android malware families and then apply heuristics-based
filtering to identify specific behaviors exhibited by unknown mali-
cious families. When an application classified as malicious does not
appear in the database, they consider it as novel and generate the cor-
responding permission-based footprint in a feedback loop. However,
their heuristic-based approach targets only specific Android features
that may be exploited to load new code, thus limiting the ability to
identify different types of unknown malware programs.

Recent advances in OSR for malware detection have moved
toward increasingly complex deep learning architectures. For in-
stance, in [8]] they propose a Conservative Novelty Synthesizing Net-
work based on GANs to generate marginal malware samples that
help distinguish unknown families. In [16] they introduce DOMR,
a Transformer-based OSR method that relies on episodic training
and meta-learning, while in [9] they further extend OSR to mul-
timodal settings using dual-embedding networks combining CNNs
and BERT-like Transformers. Although these methods report strong
performance on large-scale datasets, they rely heavily on abundant
labeled data, high-end computing resources, and ad-hoc training pro-
cedures, making them unsuitable for many industrial environments.

In industrial environments, it is preferable to address OSR us-
ing models trained through efficient procedures that require minimal
changes to existing closed-set classifiers, facilitating their deploy-
ment and maintenance. A lightweight example is Open-Set Nearest-
Neighbor (OSNN) [17]], which extends a 1-NN classifier to address
the OSR task. OSNN computes the ratio of distances between a sam-
ple and its two nearest neighbors from different families and classi-
fies the sample as unknown if the ratio falls below a specified thresh-
old. However, our experiments show that OSNN performs poorly on
high-dimensional data. Tree-based models like GRADIENT BOOST-
ING, on the other hand, are widely used in cybersecurity due to their
efficiency and strong performance on high-dimensional sparse data
like one-hot encoded Android permissions, integrating well with ex-
isting infrastructures and industrial pipelines.

In this work, we combine the effectiveness and efficiency of
GRADIENT BOOSTING in classifying malware programs, with the
MAXLOGIT OSR technique, originally developed within the com-
puter vision community. Our approach classifies malware instances
into known families while detecting unknown ones by relying exclu-
sively on permission analysis, making it faster than methods that re-
quire function call graph extraction and manipulation. To the best of
our knowledge, OSR techniques have not been applied to tree-based
classifiers, and by extending MAXLOGIT to operate with GRADIENT
BOOSTING, our work fills this gap providing an OSR solution that
is practically feasible in real-world settings.

S Proposed approach

Our proposed open-set classifier KC, depicted in Figure[T] consists of
a closed-set classifier C and an open-set recognition module O. The
closed-set classifier assigns to each malicious application p a known
class label, expressed as C(p) = ¢(p) € L. The open-set recogni-
tion module O(zp) € {Novel, Not novel} determines whether p
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Figure 2: Analogy between the LOGITS vector in a neural network-based
classifier (a) and the decision values in a tree-based GRADIENT BOOSTING
classifier (b). In both cases, the vector z, represents the raw output values
before applying the softmax function o (2p).

belongs to a novel (unknown) or not novel (known) class based on
the raw output values z, assigned to p by the classifier C. Therefore,
we can restate () in the following way:

Novel if O(zp) =
Kp) =47 =)
{(p)  otherwise.

Novel

In our approach, we employ tree-based GRADIENT BOOSTING [12]
as closed-set classifier, that is a set of boosted classification trees C =
{T;}i=1,....t, and MAXLOGIT [24]] as open-set recognition module
O, that is a threshold 7 € R set on the classifier’s raw output values
zp to ensure a specified false alarm rate.

5.1 LOGIT extraction

MAXLOGIT has been originally developed within the computer vi-
sion community and has traditionally been coupled with neural
network-based classifiers. In this context, MAXLOGIT operates on
the raw output scores zp, = [z1, . . . , 2] generated by the last layer of
the neural network, known as the LOGITS, before the softmax func-
tion. In Figure Za we illustrated a neural network classifier, where p
is the input point and /¢ ( ) is the predicted label. Since the softmax
does not change the order of the scores in zp, the predicted class 7| (p)
corresponds to the entry having the maximum value within the prob-
ability vector o(zp) = [0(21), - . ., o(21)], which denotes the output
of the softmax function to each element z; of the LOGITS vector zp,
ie.: B

o(z) = ———. )

2o €%



MAXLOGIT approach operates directly on the raw output values
zp because LOGITS display clearer separation between known and
unknown classes when compared to normalized probability values
o(zp) [24]]. Unfortunately, neural networks are not well suited for
handling high-dimensional sparse binary data. Hence, we opted for
tree-based GRADIENT BOOSTING as the classification algorithm due
to its effectiveness in managing such data. To the best of our knowl-
edge, this is the first time that the MAXLOGIT approach is used in
conjunction with classifiers other than those based on neural net-
works.

GRADIENT BOOSTING classifier does not have proper LOGITS,
but it produces decision values, which are essentially the raw, un-
normalized scores assigned to each class by the ensemble model be-
fore being transformed into probabilities (Figure@ In GRADIENT
BOOSTING, in order to obtain the final prediction £(p) for a given
input sample p, decision values are aggregated across all the trees
in the ensemble, resulting in a final vector zp = [z1,..., #]. Each
zi = 23:1 zi; is obtained by summing the decision values for the
i-th label along all the trees, as illustrated in Figure[2b] Subsequently,
similarly to neural network classifiers, the softmax (2)) is applied to
zp, and the class corresponding to the highest probability in o (zp)
is designated as the predicted class for the input sample p. Our intu-
ition is to use GRADIENT BOOSTING decision values as the LOGITS
vector produced by neural networks.

5.2 MAXLOGIT computation

The MAXLOGIT open-set recognition module O operates as a bi-
nary classifier, employing the maximum LOGIT value obtained from
C to distinguish between novel and not novel classes. When a sam-
ple p is put into the GRADIENT BOOSTING classifier C, we extract
the LOGITS vector zp = [z1,..., 2] and identify the maximum
value max(zp) = max(z1,...,z2). To decide whether a sample
belongs to a novel class, we apply a threshold 7 to max(zp) and, if
max(zp) < 7, it indicates that the classifier is not confident in its
classification, thereby we classify p as novel:

O(zp) = {Novel

if max(zp) <7

Not novel  otherwise.

The value of the threshold 7 is fundamental to control false alarms
raised by the OSR module, i.e., the amount of samples belonging
to not novel malware families classified as instances of a novel
family. Since the classification of a sample p as belonging to a new
family leads to a subsequent manual inspection by a human expert,
the tuning of threshold 7 is essential to avoid waste in human time
resources. Threshold 7 is typically tuned using an external train-
ing set 7T = {(p;,4) | &i € L}s=1,...,k, Which is composed
only of samples belonging to known classes. This is due to the fact
that the false positive rate is solely impacted by misclassifications
of known samples as novel. In particular, given a trained closed-set
classifier C, an external training set 77 and a desired false positive
rate FPR € [0, 1], we set the threshold 7 such that:

P(max(zp) <7 |p e TT) < FPR

where P is the probability symbol. In practice, it is enough to set the
threshold 7 equal to the F'P R-quantile of the empirical distribution
of max(zp) computed from the elements of 77 .

We remark that our method does not add any complexity to the
GRADIENT BOOSTING closed-set classifier C. The open-set recog-
nition module O is seamlessly integrated into the classification work-
flow, preserving an inference time complexity of O(t d) per sample,
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Figure 3: Imbalance in the cardinality # of each malware family ¢ in our
proprietary dataset, where malware families with less than 10 samples are
represented by pale-colored bars.

where ¢ is the number of trees in the ensemble and d is the maximum
tree depth.

6 Experiments

In this section, we assess the benefits of our open-set recognition so-
lution in identifying new malware families on both a publicly avail-
able dataset and a proprietary dataset provided by our industrial part-
ner. We first introduce the datasets in Section [6.1} and detail the ex-
perimental methodology in Section [6.2] Subsequently, we validate
our approach for the open-set recognition task on the considered
datasets, and discuss its performance within our industrial partner’s
real-world deployment settings in Section[6.3]

6.1 Dataset

The public dataset used is Drebin [1]], which consists of n = 5560
applications from 179 different malware families, collected in the
period from August 2010 to October 2012. Each application is char-
acterized by several features grouped into the following categories:
hardware components, required permission, app components, filtered
intents, restricted API calls, used permission, suspicious API calls
and network addresses. Since this study focuses on system permis-
sions, we considered only features in the required permission group
explicitly referring to the Android operating system.

The proprietary dataset, kindly provided by our industrial partner,
comprises records of n = 499 malicious applications, identified as a
subset of the threat intelligence telemetry provided by an online cy-
bersecurity software. The considered telemetry contains applications
identified as potentially malicious on user devices worldwide, with a
particular focus on Europe, in the period from February 2022 to Jan-
uary 2023. The malware labels were assigned through manual anal-
ysis of malware programs conducted by a highly specialized threat
intelligence team with strong domain expertise. Figure [3] illustrates
the various malware families present in the proprietary dataset and
their cardinalities, highlighting the imbalanced nature of the classifi-
cation problem.

Each application is described by a binary vector p, € {0, l}P ,
where P is 154 and 1800 for the public and proprietary dataset
respectively, containing the one-hot encoding of the requested An-
droid permissions, along with the corresponding label ¢; € L de-
noting the malware family. The resulting datasets are in the form of
D ={(p;;ti) | ti € L}i=1,.n.



6.2 Methodology

We evaluate the closed-set recognition performance of GRADIENT
BOOSTING, on both public and proprietary datasets, through strat-
ified 10-fold cross-validation and average results over the 10 test
folds. Malware families with less than 10 samples were excluded
from the 10-fold validation procedure, therefore they are not consid-
ered in closed-set recognition performance assessment. We grouped
these samples in a dummy class labeled as others, which we then
subsequently employed as the novel class for evaluating the open-
set recognition performance of our solution. This results in an open-
set recognition problem with 54 and 11 known malware families for
Drebin and proprietary dataset respectively, while the others class
includes 125 and 8 families respectively. We perform an additional
experiment on the public dataset, where we grouped all the malware
families other than the top 10 most populous ones into the others
class, and we refer to this configuration as Drebinjo. This setup al-
lows us to investigate a different scenario, where the closed-set clas-
sifier C has to deal with a low number of populous families, while the
open-set recognition module O has to identify a larger, more hetero-
geneous set of samples as novel.

We perform an additional experiment following a leave-one-class-
out approach, by training our model on all the populous classes of
Drebinjo except a single malware class, which we consider novel at
test time. By doing so, we evaluate the effectiveness of our model in
recognizing each malware class as novel when trained on the other
classes. We do not consider leave-k-class-out procedures with & > 1,
as increasing k reduces the number of known classes, thereby sim-
plifying both the closed-set and open-set recognition tasks. This is
further supported by the comparison of results between Drebin and
Drebin;o, which differ significantly in the number of known classes.
We employ stratified 10-fold cross-validation within each leave-one-
class-out iteration, and average the results over the 10 test folds. To
further assess the capability of our solution in identifying each in-
dividual malware class as novel, we plot the ROC curves for each
novel class detection problem, treating the novel malware class as
the positive class and merging all the classes used for training into
the negative class.

Unfortunately, we have no external training set to estimate the
threshold 7, nor can we use a portion of our datasets D solely for
this purpose due to their limited size. Therefore, we set a desired
false positive rate F'PR = 0.005 and tuned the threshold 7 on train-
ing data, aware that by doing so we are underestimating the real false
positive rate at test time. A very low F'PR is mandatory in our set-
tings, as classifying a sample p as belonging to a new family triggers
manual inspection, which incurs a significant human resource cost.

6.3 Results and discussion

We first assess the effectiveness of the tree-based GRADIENT
BOOSTING classifier C for closed-set recognition on the 10-fold ex-
periment on both public and proprietary datasets. A good perfor-
mance in closed-set recognition is closely tied to the reliability of
the subsequent open-set recognition procedure [24]]. Subsequently,
we assess the effectiveness of our open-set recognition classifier
by comparing it against OSNN. In the latter experiment, we further
investigate the relation between misclassified samples in the closed-
set recognition task and the false positive rate in the open-set recog-
nition task. Ultimately, we discuss the performance of our solution
within our industrial partner’s anti-fraud business environment since
its deployment on their engine.

Table 1: Micro-average (accuracy) and macro-average recall for closed-set C
and open-set /C classifiers on both public and proprietary datasets. The results
are shown for the two tested settings (a) and (b).

(a) Less popolous malware families grouped into a dummy class others and
considered as the novel class.

C K
Micro | Macro | Micro | Macro
Drebinjg 0.931 | 0.949 | 0.711 | 0.874
Drebin 0.823 | 0.856 | 0.772 | 0.839
Proprietary | 0.863 | 0.869 | 0.842 | 0.844

(b) Each populous malware family, in turn, designated as the novel class in a
leave-one-class-out fashion.

C K
Micro | Macro | Micro | Macro
Drebinjg 0.935 | 0.953 | 0.858 | 0.874
Drebin 0.825 | 0.850 | 0.810 | 0.835
Proprietary | 0.871 | 0.881 | 0.858 | 0.860

6.3.1 Malware classification

Table[T]summarizes the aggregated classification performance of the
closed-set classifier C. We observe similar performance levels on the
public and proprietary dataset in both scenarios (a) and (b), with
slightly better results on the proprietary dataset, and this could be
attributed to the smaller number of families to classify (11 com-
pared to 54). This is confirmed by the scenario where only the top
10 classes of the public dataset are retained, resulting in significantly
higher micro-average and macro-average recall. We observe also that
dealing with a higher-dimensional space (1800 compared to 154)
does not necessarily make it easier to separate different classes, as
in the Drebin;o scenario C achieves higher performance despite deal-
ing with a comparable number of classes with respect to the propri-
etary dataset (10 compared to 11). The slightly lower micro-average
recall, compared to the macro-average, is due to some misclassifi-
cations within the most populous classes, as the micro-average ac-
counts for different class sizes. Overall, GRADIENT BOOSTING clas-
sifier proves effective in classifying malware families based on high-
dimensional binary permission vectors.

6.3.2 Malware family discovery

Table [1] also reports the performance of the open-set classifier /C,
which is, as expected, consistently lower than the closed-set classi-
fier C due to the additional challenge of recognizing novel malware
families and the subsequent impact of false positives.

In Figuresfaland[d] we show the recall confusion matrices of the
open-set classifier IC when the instances of the 10 and 11 underrep-
resented classes, respectively for the public and proprietary datasets,
are grouped in the others class and considered as novel. The re-
call confusion matrices reveal some false positives, where known
malware families are misclassified as novel, especially for the pro-
prietary dataset, with cerberus and irata families being the most
affected. This suggests that these are classes where the closed-set
classifier exhibits great uncertainty, resulting in low confidence lev-
els in classification. We also observe that, while families of the public
dataset are easily separable, as shown by the almost clean outer di-
agonal recall matrix, this does not hold for the proprietary dataset.
Specifically, we observe a tendency to misclassify instances belong-
ing to alien and cerberus, as evidenced by the prominent errors
highlighted. We explain these results as a consequence of the fact
that alien is a more recent version of cerberus, hence, we expect a
substantial overlap in the permissions they require to the system.
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Figure 4: Recall confusion matrix of the open-set classifier C, on the public (first row) and proprietary (last row) datasets, when (a),(d) instances of the less
populous classes are grouped in the dummy class others and treated as novel, and (b),(e) each class is sequentially treated as novel in the leave-one-class-out

process, along with the associated novelty detection ROC curves (c),(f).

Figures [4b] and ¢ present the recall confusion matrices obtained
when each individual class is sequentially designated as novel in a
leave-one-class-out procedure, where similar observations to those
previously discussed hold. Figures fic| and ] show the ROC curves
for the novelty detection task, together with respective AUC values
in round brackets, when the specified class was considered as the
positive novel class. A low AUC value highlights the tendency of
the open-set classifier to incorrectly classity, with a high confidence,
the unknown class as belonging to one of the known classes used in
the training process. This happens in the proprietary dataset for the
alien and cerberus families due to their similarity, consistent with
the classification errors observed before, while in the public dataset,
values are overall higher and more stable, aligning with the results
shown in the confusion matrices.

We conducted the same latter experiment on OSNN, and we show
the resulting ROC curves and AUC values in Figure 5} OSNN ex-
hibits very low T'PR values at low F'PR, making it unsuitable
for our requirements. In fact, a low F'PR is mandatory in our set-
tings, as classifying a sample p as belonging to a new family trig-
gers manual inspection, which involves a significant human resource
cost. When comparing OSNN to our approach in Figure we ob-
serve that at similarly low F'PR values, our method achieves signif-

icantly higher T'P R, further highlighting its suitability for the mal-
ware family discovery task. The piecewise linear shape of OSNN’s
ROC curve reflects its limitations in handling high-dimensional bi-
nary data. Specifically, OSNN classifies a malware sample as be-
longing to a new family if the ratio of the distances to its two nearest
neighbors from different families falls below a given threshold. How-
ever, when dealing with binary data, the number of distinct distance
values is limited and highly redundant, leading to a discrete and heav-
ily skewed distribution of distance ratios, and ultimately causing the
piecewise progression in 7'P R values we observe in Figure 5]

A comparison of computational time between our method and
OSNN highlights the greater efficiency of our approach, with in-
ference times of 1.359 - 1075 and 1.620 - 10~ * seconds respectively,
showing a difference of more than an order of magnitude. This dis-
parity stems from OSNN ’s higher computational complexity, which
is dominated by the O(nlogn) sorting of distances between the query
sample and the training dataset. This step is required to compute the
ratio of distances to the two nearest neighbors, which is necessary to
determine whether the query sample should be classified as novel.
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Figure 5: Novelty detection ROC curves for
OSNN on the public dataset, with each class
treated as novel in the leave-one-class-out pro-

cess. open-set classifier .

6.3.3 False alarms analysis

In this paragraph, we focus on examining the composition of false
alarms on the public dataset Drebinjo. To this end, we decom-
posed the false positives of the open-set recognition module into two
groups: those originating from instances that were correctly classi-
fied by C before introducing the open-set recognition module O, and
those that would have been misclassified regardless of O.

Figure [6a] shows the false positive rate computed over these two
groups and we observe that most of the false positives of O, in partic-
ular at low ' P R values, are samples that would have been misclassi-
fied by C if the open-set module were not in place. This was expected,
as instances misclassified by C are typically associated with low con-
fidence values. We argue that those samples are worth being checked
by the threat analysts, since incorrect malware classification results
in ineffective solutions against the threat. Therefore, if we do not
consider misclassified samples as false positives, thus we compute
the false positive rate only from samples belonging to known fam-
ilies that would have been correctly classified if there was no OSR
module O, the false positive rate drops considerably. Figure [6b] dis-
plays the corresponding recall confusion matrix when these instances
are treated as novel, where the model shows attains a micro-average
recall of 0.714 alongside a macro-average recall of 0.877.

6.3.4 Real-world deployment performance

Our solution is currently used by analysts at our industrial partner as a
complementary tool to enhance malware classification and discover
new families. Testing our solution in their operational environment
began in the latter half of 2023, and is currently in use in monitoring
telemetry gathered by the threat intelligence division, for the analysis
of data from worldwide sources.

The closed-set classification performance of our deployed solu-
tion resembles closely those reported in experiments on the propri-
etary dataset, achieving an accuracy of 83% when tested on about
300 telemetry applications. Unfortunately, the portion of the teleme-
try data used for testing did not allow us to obtain a final judgment
on the model’s performance in detecting new families. The ability

Figure 6: (a) Different contributions made by samples correctly (green curve) and incorrectly (red curve)
classified by C in composing the total false positive rate of the open-set recognition module O on the
public dataset. (b) Treating the misclassified instances as novel results in better real performance for the

to discover new real malware families cannot be assessed on the de-
ployed system by means of strategies like the leave-one-class-out we
adopted before, and recently there have been no cases of completely
different malware families within the Android landscape. However,
there have been a couple of noteworthy cases. In the first case, the
OSR system reported as novel a new version of a known malware.
In this case, the malware detected as novel had a few significant dif-
ferences with respect to the other, but not enough to consider this to
belong to a new family (contrary to alien and cerberus). In the sec-
ond case, a variation of a known malware was labeled as novel due
to different permissions requirements compared to the known one.
Additionally, a manual review revealed that hundreds of known mal-
ware instances classified as novel actually belonged to families not
represented in the training set, indicating they were correctly iden-
tified as novel. In fact, most of the false alarms concerned malware
programs other than banking malware programs (the primary interest
for our industrial partner’s system), and therefore correctly classified
as novel. Our industrial partner prefers not to disclose further infor-
mation on deployment performance for strategic reasons.

7 Conclusion and future works

In this study, we combined for the first time a tree-based GRADI-
ENT BOOSTING classifier with the MAXLOGIT open-set recognition
technique to tackle the problem of malware family discovery. We
conducted comprehensive experiments on both a public and a propri-
etary dataset to validate the suitability of our approach and discussed
its deployment performance in a real-world environment. Further-
more, our analysis on false alarms and the impact of misclassified
instances emphasized the practical value of an open-set recognition
approach in malware classification.

We envisage several potential future directions. This includes ad-
vanced feature engineering techniques to enhance the performance of
open-set recognition further. Another interesting direction involves
developing a dynamic thresholding system that adjusts the F'PR
threshold 7 adaptively, taking into account contextual information
such as the current threat landscape to achieve the desired sensibility
of the OSR module.
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