
ar
X

iv
:2

50
5.

12
45

3v
2

 [
cs

.C
R

]
 7

 J
un

 2
02

5

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device
Recommender System with Large Embedding

Peihua Mai 1 * Youlong Ding 2 * Ziyan Lyu 3 Minxin Du 4 Yan Pang 1

Abstract

Federated recommender system (FedRec) has
emerged as a solution to protect user data through
collaborative training techniques. A typical Fe-
dRec involves transmitting the full model and
entire weight updates between edge devices and
the server, causing significant burdens to devices
with limited bandwidth and computational power.
While the sparsity of embedding updates provides
opportunity for payload optimization, existing
sparsity-aware federated protocols generally sac-
rifice privacy for efficiency. A key challenge in
designing a secure sparsity-aware efficient proto-
col is to protect the rated item indices from the
server. In this paper, we propose a lossless secure
recommender systems on sparse embedding up-
dates (SecEmb). SecEmb reduces user payload
while ensuring that the server learns no informa-
tion about both rated item indices and individual
updates except the aggregated model. The pro-
tocol consists of two correlated modules: (1) a
privacy-preserving embedding retrieval module
that allows users to download relevant embed-
dings from the server, and (2) an update aggrega-
tion module that securely aggregates updates at
the server. Empirical analysis demonstrates that
SecEmb reduces both download and upload com-
munication costs by up to 90x and decreases user-
side computation time by up to 70x compared
with secure FedRec protocols. Additionally, it
offers non-negligible utility advantages compared
with lossy message compression methods.

*Equal contribution 1National University of Singapore, Singa-
pore 2Hebrew University of Jerusalem, Jerusalem, Israel 3NUS
(Chongqing) Research Institute, Chongqing, China 4Hong Kong
Polytechnic University, Hong Kong SAR, China. Correspondence
to: Yan Pang <jamespang@nus.edu.sg>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Personalized recommendation systems (RecSys) model the
interactions between users and items to uncover users’ in-
terests. To understand the underlying preferences of users
and properties of items, various model-based approaches
have been developed to learn hidden representations of both
users and items (Koren et al., 2009; Xue et al., 2017; Rendle,
2010). These methods embed users and items into fixed-size
latent vectors, which are then used to predict interactions.
The parameters of these latent vectors are known as user
and item embeddings.

The development of personalized recommendation systems
(RecSys) relies heavily on collecting user profiles and behav-
ioral data, such as gender, age, and item interactions. How-
ever, the sensitive nature of this information often makes
users hesitate to share it with service providers. Recent
advancements in edge computing have provided a poten-
tial solution through federated learning (FL), which allows
users to collaboratively train models on their local devices
without exposing personal data (McMahan et al., 2017). In
a typical federated recommender system (FedRec), edge
devices download the model from the server, perform local
training, and upload weight updates for aggregation. During
update aggregation, plaintext gradients can reveal user infor-
mation. To mitigate this risk, secure aggregation (SecAgg)
(Bonawitz et al., 2017) is adopted to prevent the server from
inspecting individual updates during training.

Despite its effectiveness in preserving privacy, the above
paradigm suffers significant communication and computa-
tion overheads as it requires transmission of the full model
and complete updates (Bonawitz et al., 2019). This issue
becomes particularly problematic in latent factor-based Rec-
Sys, where the payload scales linearly with the number of
items, potentially leading to substantial burden on resource-
constrained edge devices with: (1) limited communication
bandwidth, as the communication bandwidth between edge
devices and the central server is often constrained; and (2)
limited user computational power and storage, since edge
devices generally have limited processing capabilities, mem-
ory, and storage compared to centralized servers.

Fortunately, users typically interact with only a small sub-

1

https://arxiv.org/abs/2505.12453v2

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

set of available items in practice, which presents two key
opportunities for payload optimization. First, only the em-
beddings of the items a user interacts with are relevant for
model updates. As a result, users can retrieve and store
only these relevant item embeddings, significantly reducing
computational and storage overhead. Secondly, the update
vector is highly sparse in that only a small subset of the item
embeddings are non-zero. Therefore, it is desirable to make
the per-user communication and computation succinct, i.e.,
independent of or logarithmic in the item size.

A key challenge in designing sparsity-aware efficient Fe-
dRec is to ensure that the indices or coordinates of non-zero
elements remain hidden from the server. Existing sparsity-
aware FL protocols reduce communication overhead at the
cost of increased privacy leakage (Lin et al., 2022; Liu et al.,
2023; Lu et al., 2023), as they inevitably reveal the coordi-
nates of non-zero elements or significantly narrow the set
of potential non-zero updates. Such coordinate information
is particularly sensitive in RecSys, as it directly indicates
which items a user has rated. This raises a critical question:
Can we achieve succinct user communication and computa-
tion cost in FedRec, while ensuring that the server learns
no information about both the rated item indices and user
updates except the aggregated model?

In this paper, we address the problem by proposing a
sparsity-aware secure recommender systems with large em-
bedding updates (SecEmb). The implementation is available
at https://github.com/NusIoraPrivacy/SecEmb. Our SecEmb
consists of two correlated modules: (1) a privacy-preserving
embedding retrieval module that allows users to download
relevant embeddings from the server, and (2) an update ag-
gregation module that securely aggregates updates at the
server. Our protocol is efficient, secure, and lossless:

• Efficient edge device update. SecEmb achieves suc-
cinct download and upload communication, with op-
timized user computation and memory costs as opera-
tions are performed only on rated item embeddings.

• Privacy-preserving model training. Both rated item
indices and user updates (including non-zero embed-
ding index and their gradient values) remain hidden
from the server throughout the training process.

• Lossless message compression. Unlike dimension
reduction or quantization methods, SecEmb reduces
communication costs without compromising accuracy.

The contribution of our work can be summarized as follows:

(1) Leveraging the sparsity of embedding updates, we de-
velop a lossless efficient FedRec training protocol that
achieves succinct user communication and computation
costs, while ensuring the privacy of individual updates.

(2) We further optimize the payload of SecEmb by exploit-
ing the row-wise sparsity of the embedding update matrix

as well as the correlation between privacy-preserving em-
bedding retrieval and update aggregation modules.

(3) Empirical studies demonstrate that SecEmb reduces both
download and upload communication costs by up to 90x
and decreases user-side computation time by up to 70x
compared with FedRec utilizing the most efficient SecAgg
protocol, with non-negligible utility advantages over lossy
message compression schemes.

2. Related Work
2.1. Cross-User Federated Recommender System

In recent years, federated recommender system (FedRec)
trained on individual users has gained growing interest in
research community. FCF (Ammad-Ud-Din et al., 2019)
and FedRec (Lin et al., 2020) are among the pioneering
implementations of federated learning for collaborative fil-
tering based on matrix factorization. Privacy guarantees are
enhanced through the application of cryptographic meth-
ods to the transmitted gradients (Chai et al., 2020; Mai &
Pang, 2023). FedMF (Chai et al., 2020) ensures privacy
with homomorphic encryption (HE) techniques, while in-
curring substantial computation overhead. LightFR (Zhang
et al., 2023) sacrifices utility for efficiency by binarizing
continuous user/item embeddings through learning-to-hash.
Difacto (Li et al., 2016) introduces a distributed factoriza-
tion machine algorithm that is scalable to a large number
of users and items. FedNCF (Perifanis & Efraimidis, 2022)
is a federated realization of neural collaborative iltering
(NCF), where secure aggregation is leveraged to protect
user gradients. FMSS (Lin et al., 2022) proposes a federated
recommendation framework for several recommendation
algorithms based on factorization and deep learning. (Rab-
bani et al., 2023) and (Xu et al., 2022) improve the training
efficiency for edge device using locality-sensitive hashing
(LSH) techniques (Chen et al., 2020; 2019). Despite the de-
velopment of various algorithms for FedRec systems, there
is a lack of research on designing sparsity-aware efficient
FedRec while simultaneously ensure privacy and utility.

2.2. Secure Aggregation for Machine Learning

Secure Aggregation (SecAgg) computes the summation of
private gradients without revealing any individual updates.
(Bonawitz et al., 2017) introduces a secure aggregation pro-
tocol for FL, leveraging a combination of pairwise masking,
Shamir’s Secret Sharing, and symmetric encryption tech-
niques. (Bell et al., 2020) reduces the communication and
computation overhead to depend logarithmic in the client
size. FastSecAgg (Kadhe et al., 2020) designs a multi-secret
sharing protocol based on Fast Fourier Transform to save
computation cost. SAFELearn (Fereidooni et al., 2021) de-
signs an secure two-party computation protocol for efficient

2

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

FL implementation. LightSecAgg (So et al., 2022) reduces
the computation complexity via one-shot reconstruction of
aggregated mask. The two-server additive secret sharing
(ASS) protocol (Xiong et al., 2020) represents the most effi-
cient SecAgg approach in terms of computation and com-
munication complexity. Refer to Table 6 for the complexity
of existing SecAgg algorithms. However, current SecAgg
protocols incur communication costs that scale linearly with
model size, and existing attempts on sparse update aggre-
gation (Ergun et al., 2021; Liu et al., 2023; Lu et al., 2023)
fail to ensure security for individual updates (including both
indices and values of non-zero updates).

3. Background and Preliminaries
3.1. Problem Statement

In FedRec, a number of users want to jointly train a recom-
mendation system based on their private data. Denote U =
{u1, u2, ..., un} as the set of users and I = {i1, i2, ..., im}
as the set of available items. Each user u ∈ U has a private
interaction set Ru = {(i, ru,i)|i ∈ Iu} ⊂ [m]× R, where
Iu denotes the set of items rated by user u and ru,i denotes
the rating user u gives to item i. Denote X ∈ Rn×lx and
Y ∈ Rm×ly as the user and item feature matrix, respectively,
capturing user and item attributes such as demographic de-
tails, genre, or price. Note that Ru reflects user-item in-
teractions, excluding these auxiliary features. Our goal is
to generate a rating prediction that minimizes the squared
deviation between actual and estimated ratings.

We focus on a class of RecSys that models low-dimensional
latent factors for user and items (Koren et al., 2009; Xue
et al., 2017; Rendle, 2010). The recommender fits a model f
comprising of d-dimensional latent factors (or embeddings)
for user P ∈ Rn×d and item Q ∈ Rm×d, along with the
remaining parameters θ. Denote pu ∈ Rd and qi ∈ Rd as
the latent factors (or embeddings) for user u and item i. A
general form of the rating prediction can be expressed as:

r̂u,i = f(xu, yi; pu, qi, θ), (1)

where xu ∈ Rlx and yi ∈ Rly denote the feature vector for
user u and item i, and r̂u,i is the estimated prediction for
user u on item i.

Denote l(·) as a general loss function. The model is trained
by minimizing:

L =
∑
u,i

l(ru,i, r̂u,i) (2)

The remaining parameters θ typically include but are not
limited to: (1) Feature extractors that convert user and item
feature vectors into fixed size representations, denoted as
Fx : Rlx → Rlx×d and Fy : Rly → Rly×d, respectively.

(2) The feed-forward layers within a deep neural network
model.

In each training round, users locally update their private pa-
rameters Θp and upload their updates of public parameters
gΘs to the server. To safeguard the privacy of individual
gradients, the server employs SecAgg to aggregate the gra-
dients from all active clients and update the public model
Θs.

3.2. Function Secret Sharing

Our protocol builds on function secret sharing (FSS) (Boyle
et al., 2015; 2016) to optimize the communication payload.
FSS secret shares a function f : {0, 1}n → G, for some
abelian group G, into two functions f1, f2 such that: (1)
f(x) =

∑2
i=1 fi(x) for any x, and (2) each description of

fi hides f .

Definition 3.1 (Function Secret Sharing). A function secret
sharing (FSS) scheme with respect to a function class F is
a pair of efficient algorithms (FSS.Gen,FSS.Eval):

• FSS.Gen(1λ, f): Based on the security parameter 1λ

and function description f , the key generation algo-
rithm outputs a pair of keys, (k1, k2).

• FSS.Eval(ki, x): Based on key ki and input x ∈
{0, 1}n, the evaluation algorithm outputs party i’s
share of f(x), denoted as fi(x). f1(x) and f2(x) form
additive shares of f(x).

FSS scheme should satisfy the following informal properties
(defined formally in Appendix B.2):

• Correctness: Given keys (k1, k2) of a function f ∈
F , it holds that FSS.Eval(k1, x) + FSS.Eval(k2, x) =
f(x) for any x.

• Security: Given keys (k1, k2) of a function f ∈ F , a
computationally-bounded adversary that learns either
k1 or k2 gains no information about the function f ,
except that f ∈ F .

A naive form of FSS scheme is to additively secret share
each entry in the truth-table of f . However, this approach
results in each share containing 2n elements. To obtain
polynomial share size, nontrivial scheme of FSS has been
developed for simple function classses, e.g., point functions
(Boyle et al., 2015; 2016). Our approach utilizes the ad-
vanced FSS scheme for the point function. In the following,
we provide the formal definition of point function.

Definition 3.2 (Point Function). For α ∈ {0, 1}n and β ∈
G, the point function fα,β : {0, 1}n → G is defined as
fα,β(α) = β and fα,β(x) = 0 for x ̸= α.

3

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

4. Methodology
Observing that the public gradients primarily consist of
highly sparse item embedding updates, we propose SecEmb,
a secure FedRec protocol optimized to reduce the costs
associated with item embeddings. Figure 1 illustrates the
design of SecEmb, which is comprised of two modules: (1)
a privacy-preserving embedding retrieval module and (2) an
update aggregation module.

Figure 1. Overview of SecEmb, which is comprised of two secure
and communication-efficient modules: (1) A secure embedding
retrieval module and (2) A secure embedding aggregation module.

4.1. Key observation

In most practical recommendation scenarios, the number
of items a user has previously interacted with is typically
much smaller than the total number of available items (see
Figure 2(a)). This observation is linked to the information
overload phenomenon, which recommender systems aim to
address. Consequently, the gradient of the item embedding
is zero for all items except those with which the user has
previously interacted.

Denote gQ as the gradient of item embedding Q, which is
a sparse matrix. In a typical FedRec with general-purpose
SecAgg, the communication cost to download embedding
Q and upload the sparse matrix gQ is at least O(bmd),
where b is number of bits required to represent a single
numerical value. The computation cost is at least O(md). It
is important to note that this corresponds to the bottleneck,
since the embedding layer dominates the total model size as
the item size increases (see Figure 2(b)).

Our goal is to optimize the payload for embedding layer, as
this can significantly reduce the overall overhead, particu-
larly under huge value of item size m.

4.2. Initial Construction of EmbSec

4.2.1. PRIVACY-PRESERVING EMBEDDING RETRIEVAL

In FedRec, only the embeddings for interacted items are
relevant for model updates. Therefore, the user can retrieve
and store only these item embeddings during training instead
of the entire embedding matrix. Accordingly, we design a
privacy-preserving embedding retrieval protocol that allows
users to download targeted embeddings from the server

without exposing the corresponding item indices.

Our key idea is to encode the rated item gQ ∈ Rm×d into
some point functions. Then we can construct a 2-server
private retrieval scheme based on the function secret sharing
(FSS) of these point functions. Suppose the user rates m′

u

items. The private retrieval process can be performed using
the following steps:

Step 1: Encode rated item with a point function, giu →
fu,i. User u begins by encoding each rated item i ∈ [m′

u]
with a point function fu,i : I → G, for some abelian group
G. The function fu,i takes an item id x ∈ I as input and
outputs fu,i(x) = 1 ∈ R if x = i, and 0 elsewhere.

Step 2: Generate keys for the point function. User u se-
cret shares each function fu,i with FSS scheme and outputs
a pair of keys, i.e., (reK0

u,i, reK
1
u,i) = FSS.Gen(1λ, fu,i).

The keys reK0
u,i and reK1

u,i are sent to server 0 and 1,
respectively.

Step 3: Compute secret shares of item embedding. On
receiving reKs

u, each server s ∈ {0, 1} computes their
secret shares of the target item embeddings as follows:

vs
u,i =

∑
j

FSS.Eval(reKs
u,i, j) ·Qj ∀i ∈ [m′

u]. (3)

Step 4: Reconstruct embedding of target item. On receiv-
ing vs

u,i from two servers, user u recovers the embeddings
of target items by:

Qidx(i) = v0
u,i + v1

u,i ∀i ∈ [m′
u], (4)

where idx(i) denotes the global index of the i-th rated item.

4.2.2. SECURE AGGREGATION ON EMBEDDING UPDATE

The update aggregation module also leverages FSS to re-
duce communication costs. Exploiting the sparsity of the
embedding update matrix gQ ∈ Rm×d, each non-zero gra-
dient value is encoded into some point functions. We begin
with the case where user u rates a single item, i.e., m′

u = 1.

Suppose user u’s item embedding update lies in a sparse
gradient matrix gQu ∈ Rm×d. Let i denote the item index
for the non-zero update. The SecAgg can be performed
using the following steps:

Step 1: Encode non-zero elements with d point functions,
gQu

ik
→ fu,i,k for k ∈ [d]. User u begins by encoding

each element gQu
ik
∈ R with a point function fu,i,k : I →

G. The function fu,i,k takes an item id x ∈ I as input
and outputs fu,i,k(x) = gQu

ik
∈ R if x = i, and 0 ∈ R

elsewhere.

Step 2: Generate keys for the point function. User u
performs FSS on fu,i,k and outputs d pairs of keys, i.e.,

4

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

(a) Distribution of # rated items (b) Proportion of parameters

Figure 2. (a) The long-tailed distribution of the number of rated items in ML10M. The x-axis is the user id sorted by their activeness, and
the y-axis represents the number of rated items for the user. For ML10M dataset with 27,278 items, nearly 90% users have rated only up
to 300 items. (b) The proportion of item embeddings and other parameters within a three-layer deep factorization machine (DeepFM) for
ML25M and Yelp, under two different embedding sizes d = 32 and d = 64.

(agK0
u,k, agK

1
u,k) = FSS.Gen(1λ, fu,i,k), which are then

sent to their corresponding servers.

Step 3: Aggregate secret shares from users. On receiving
agKs

u,k from all participating users, each server s ∈ {0, 1}
computes their secret shares of the aggregated matrix as
follows:

vs
Qjk

=
∑
u

FSS.Eval(agKs
u,k, j), ∀j ∈ I, k ∈ [d]. (5)

Step 4: Reconstruct gradient aggregation. The two
servers can collaborate to reconstruct the plaintext aggrega-
tion matrix. To be specific, server 1 sends the aggregated
secret shares to server 0, and the plaintext aggregation can
be recover by:

gQ = v0
Q + v1

Q. (6)

Below we extends the method to cases where m′
u > 1.

SecAgg for m′
u > 1: In step 1, user u generates m′

ud
point functions fu,i,k : I → G for i ∈ [m′

u]. Let idx(x)
denote the global index of the i-th rated item. Accord-
ingly, fu,i,k takes a item id x ∈ I as input and outputs
fu,i,k(x) = gQu

idx(i),k
∈ R if x = idx(i), and 0 ∈ R else-

where. In step 2, user u produces m′
ud pairs of secret keys

(agK0
u,i,k, agK

1
u,i,k) for i ∈ [m′

u], k ∈ [d]. In step 3, each
server s ∈ {0, 1} computes their secret shares of the aggre-
gated matrix as follows:

vs
Qjk

=
∑
u

∑
i∈[m′

u]

FSS.Eval(agKs
u,i,k, j),∀j ∈ I, k ∈ [d].

(7)

4.2.3. ANALYSIS OF INITIAL CONSTRUCTION

We briefly analyze the complexity and security for the above
construction as follows.

Commmunication cost: During privacy-preserving embed-
ding retrieval, only m′

u keys and embeddings are exchanged
between user u and server, rather than the entire embed-
ding matrix. For update aggregation, user u uploads only
m′

ud keys to each server instead of the whole sparse ma-
trix. Therefore, the communication cost is approximately
O(m′

ud · |Key|) for upload transmission and O(m′
ud) for

download transmission, where |Key| denotes the key size.

Computation cost: The user computation cost primarily
stems from the generation of FSS keys. In total, user u
generates m′

u(d+ 1) keys, resulting in a computation over-
head of O(m′

ud · FGen), where FGen represents the cost of
generating a single key.

Security: FSS security ensures that user updates and inter-
actions remain hidden from the server. In privacy-preserving
embedding retrieval, each server is ignorant of the targeted
item indices. During update aggregation, servers learn no
information about the rated item index i and its gradient
gQu

i
. To further hide the number of rated items m′

u from
servers, we can pre-specify a unified update size m′, and
accordingly pad or truncate the target indices as well as
updated vectors to contain m′ items (see Appendix C), thus
keeping the entire sparse update matrix and target item set
hidden from the server.

4.3. Optimization of SecEmb

We identify a crucial property of the FSS key—for party
b ∈ {0, 1}, the key, denoted as s0b ||t0b ||CW 1|| · · · ||CWn+1

5

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

(where n is the bit length of the input), consists of two
components: (1) s0b ||t0b ||CW 1|| · · · ||CWn, the seed and
correction words used to determine whether the input index
corresponds to the non-zero element, and (2) CWn+1, the
correction word used to convert the final seed into group
elements in the abelian group G (see Figure 3). The for-
mer part can be identical for point functions with the same
non-zero index, presenting an opportunity to eliminate re-
dundancy in FSS keys. Leveraging this insight, we propose
two optimizations of SecEmb to further reduce user payload.
Algorithm 3 outlines the improved SecEmb.

Figure 3. Evaluation of FSS scheme for party b ∈ {0, 1}. For
simplification, we use s0b (t0b) and s0 (t0) interchangeably.

4.3.1. EFFICIENT ROW-WISE ENCODING

The gradient update of item embeddings forms a row-wise
sparse matrix, with a few rows containing non-zero values.
The initial method generate FSS keys separately for each
element, introducing redundancy for updates from the same
item. A more efficient approach is to encode each non-zero
row as a point function, requiring only a single key pair per
embedding update (see Figure 4).

Figure 4. Row-wise encoding of item embedding gradient.

Specifically, user u encodes the embedding gradients for
targeted items into m′ point functions fu,i : I → G for
i ∈ [m′]. The function fu,i takes an item id x ∈ I as input
and outputs fu,i(x) = gQu

i
∈ Rd if x = idx(i), and 0 ∈ Rd

elsewhere. Then m′ pairs of FSS keys are generated cor-
respondingly, i.e., (agK0

u,i, agK
1
u,i) = FSS.Gen(1λ, fu,i)

for i ∈ [m′]. Each server s ∈ {0, 1} computes their secret

shares of the aggregated matrix as follows:

vs
Qj

=
∑
u

∑
i∈[m′]

FSS.Eval(agKs
u,i, j), ∀j ∈ I. (8)

After the optimization, each user generates and uploads only
m′ keys instead of m′d keys for update aggregation.

4.3.2. SHARING PATH FROM RETRIEVAL STAGE

For each user, the indices of relevant embeddings remain
the same across both stages. If user u generates an embed-
ding retrieval key reKs

u,i and an update aggregation key
agKs

u,i for item i, the former components of both keys can
be identical.

Consequently, in the update aggregation stage, each user
can generate and transmit CWn+1 instead of the whole FSS
key, leading to much lower computation and communication
cost. Furthermore, server s ∈ {0, 1} can reuse the binary
tree path identified in private embedding retrieval stage to
compute FSS.Eval(agKs

u,i, j) for u ∈ U , j ∈ I, i ∈ [m′].

The optimization reduces the key size in the update aggre-
gation stage from n + 2 seeds and corrections words to a
single correction word. Additionally, each user eliminates n
AES operations for pseudorandom generation when secret
sharing the embedding update.

4.4. Complexity and Security Analysis

4.4.1. COMPLEXITY ANALYSIS

Denote λ as the security parameter of FSS scheme, and b as
the number of bits required to represent a single numerical
value. The variables d and θ refer to the embedding size and
the parameters other than item embeddings. The keys sizes
for the private embedding retrieval and secure aggregation
stages are (λ+ 2) logm and bd, respectively (Boyle et al.,
2016). The computation cost to generate an FSS key in
private embedding retrieval stage is O(logm · AES), and
the cost to derive partial key in upload aggregation is negli-
gible compared with the AES operations. Considering m′

functions and |θ| dense updates, we have upload communi-
cation complexity of O (m′ (bd+ λ logm) + |θ|b), down-
load complexity of O (m′bd+ |θ|b), and computation cost
of O (m′ logm · AES + |θ|).

Table 1 compares the user-side cost between SecEmb and
secure FedRec (Xiong et al., 2020). Secure FedRec uti-
lizes full model download and adopts the most efficient
SecAgg for update aggregation (see Table 6). The com-
munication cost of SecEmb scales linearly with m′ and
logarithmically with m. SecEmb outperforms secure Fe-
dRec in upload communication cost as long as m′ <
mbd/ ((λ+ 2) logm+ b(d+ 1)), and in download cost as
long as m′ < m/2. In Appendix K.5 we demonstrate that

6

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

these inequalities usually hold for RecSys with sparse up-
date. The computation complexity of SecEmb primarily
arises from AES operations, which can be mitigated when
m′ is sufficiently small compared with m.

Table 1. User computation and communication cost of SecEmb and
secure FedRec. CommunDown and CommunUp refer to download
and upload communication cost, respectively.

SecEmb Secure FedRec

CommunDown O (m′bd+ |θ|b)) O (mbd+ |θ|b)
CommunUp O (m′(λ logm+ bd) + |θ|b) O (mbd+ |θ|b)
Computation O (m′ logm · AES + |θ|) O (md+ |θ|)

4.4.2. SECURITY ANALYSIS

The FSS security property ensures that the two non-
colluding servers learn no more information than just the
aggregated gradients. The FSS keys hide the rated item
index as well as the values of updated gradients from each
server. Under a pre-determined m′, servers are ignorant
about the number of rated item for each user. Consequently,
no information about the individual updates is revealed to
the servers except the aggregation. Below is the formal
security formulation for the update aggregation stage; a
comprehensive security analysis is provided in Appendix F.

For C ⊂ U ∪ {b} (b ∈ {0, 1}), let RealCλ,agg be the joint
view of colluding parties C in experiments executing secure
update aggregation in SecEmb. Denote {(gQu , θu)}u∈U as
the set of gradients from all users. Then we have the security
of the aggregation protocol as follows.
Theorem 4.1 (Security of secure update aggregation). There
exists a PPT simulator SimC

λ,agg, such that for all user in-
put {(gQu , θu)}u∈U and C ⊂ U ∪ {b} (b ∈ {0, 1}), the
output of SimC

λ,agg and RealCλ,agg are computationally indis-
tinguishable:

RealCλ,agg(1
λ, {(gQu , θu)}u∈U\C)

= SimC
λ,agg(1

λ, (m′,G1, ...,Gm′ ,gθ,gQ)),
(9)

where gQ and gθ denote the aggregated gradients for item
embedding and the remaining parameters, respectively.

It is important to note that our algorithm can be integrated
with differential privacy (DP) to achieve stronger privacy
protection. In particular, each server can independently
add calibrated noises to the aggregated secret shares matrix,
so that recovered aggregation matrix adheres to (ϵ, δ)-DP
(Dwork, 2006; Cormode et al., 2018) (see Appendix G).

5. Experiment Evaluation
5.1. Experiment Setting

We evaluate our SecEmb on five public datasets: Movie-
Lens 100K (ML100K), MovieLens 1M (ML1M), Movie-

Table 2. Upload communication cost (in MB) per user for SecEmb
and Secure FedRec (SecFedRec) in one iteration. Reduction ratio
is computed as the communication overhead of SecFedRec by that
of SecEmb.

ML100K ML1M ML10M ML25M Yelp
Item Size m 1,682 3,883 10,681 62,423 93,386

MF

SecFedRec 0.86 1.99 5.47 31.96 47.81
SecEmb 0.17 0.27 0.28 0.51 0.52
Red. Ratio 4.99 7.35 19.22 62.07 91.22

NCF

SecFedRec 0.44 1.00 4.11 23.98 29.89
SecEmb 0.13 0.20 0.26 0.46 0.44
Red. Ratio 3.44 5.02 15.93 51.80 68.46

FM

SecFedRec 0.91 2.01 5.48 31.97 47.82
SecEmb 0.18 0.28 0.29 0.53 0.53
Red. Ratio 5.05 7.22 18.76 60.87 91.05

DeepFM

SecFedRec 14.95 8.84 8.63 35.13 50.45
SecEmb 14.22 7.10 3.45 3.68 3.16
Red. Ratio 1.05 1.24 2.50 9.54 15.98

Lens 10M (ML10M), MovieLens 25M (ML25M), and Yelp
(Harper & Konstan, 2015; Yelp, 2015). For the Yelp dataset,
we sample a portion of top users ranked in descending order
by their number of rated items, and obtain a subset contain-
ing 10,000 users and 93,386 items. Table 7 summarizes the
statistics for the datasets.

Our framework is tested with four latent factor-based recom-
mender models: matrix factorization with biased term (MF)
(Koren et al., 2009), neural collaborative filtering (NCF) (He
et al., 2017), factorization machine (FM) (Rendle, 2010),
and deep factorization machine (DeepFM) (Guo et al., 2017).
Detailed hyperparameters for each model are provided in
Appendix I. We provide a coarse-grained comparison be-
tween SecEmb and existing FL protocols in Appendix J.

5.2. Efficiency Analysis

5.2.1. COMMUNICATION COST

To evaluate the communication efficiency of our framework,
we conduct a comparative analysis of the communication
payload between SecEmb and secure FedRec as presented
in Table 2 and 12. We use the two-server ASS, which
has the minimal communication overhead, to compute the
upload cost for secure FedRec (see Table 6). A key finding
is that SecEmb’s communication overhead increases at a
significantly slower rate with item size compared to secure
FedRec, particularly for models characterized by a higher
proportion of sparse updates.

For upload communication, our protocol reduces costs by
approximately 4x to 90x for MF and FM, which have mini-
mal dense updates, depending on the dataset item size. For

7

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

ML1M ML10M ML25M Yelp

SecEmb Secure FedRec

0

1

2

3

4

5

6

7

8

9

MF NCF FM DeepFM

0

1

2

3

4

5

6

7

8

9

MF NCF FM DeepFM

0

10

20

30

40

50

60

MF NCF FM DeepFM

0

10

20

30

40

50

60

MF NCF FM DeepFM

Figure 5. User computation time (in milliseconds) for secret shares generation during training phase.

NCF that includes a small share of dense updates, SecEmb
achieves overhead reductions ranging from roughly 3.5x to
70x. For DeepFM, the reduction is less pronounced for the
ML100K and ML1M datasets with item sizes lower than
4k, while the cost savings become more substantial as the
item size exceeds 10k. A similar pattern is observed for
download communication (see Appendix K.1).

We also compare our SecEmb with existing sparse aggrega-
tion protocols in Appendix K.3.

5.2.2. COMPUTATION COST

Figure 5 compares the user computation time to generate
the secret shares for SecEmb and secure FedRec with the
most efficient SecAgg protocol. SecEmb has an advantage
over secure FedRec in terms of the computation overhead,
since each user generates fewer shares when m′ ≪ m.
Furthermore, the computation time for SecEmb scales more
slowly with an increase in item size compared to secure
FedRec. This results in a significantly higher reduction
ratio for datasets encompassing a greater number of items,
achieving nearly 70x for Yelp withs MF and FM.

5.3. Utility Analysis

We evaluate the utility of SecEmb against several lossy mes-
sage compression methods for communication efficiency, in-
cluding: (1) Singular value decomposition (SVD) (Nguyen
et al., 2024), (2) Correlated Low-rank Structure (CoLR)
(Nguyen et al., 2024), (3) 8-bit quantization (Bit8Quant)
(Dettmers, 2015), and (4) Ternary Quantization (TernQuant)
(Wen et al., 2017). The first two methods represent di-
mension reduction approaches, and the latter two employ
gradient quantization method. For fair comparison, the lossy
message compressions are applied only to item embeddings.

Table 3 presents the prediction accuracy and reduction ratio
of communication cost. We focus on the upload commu-
nication as most baselines do not optimize download costs
(see Table 11). It can be observed that: (1) While SecEmb

achieves similar reduction ratios on datasets with smaller
item sizes, its communication benefits significantly surpass
those of other compression methods on ML25M and Yelp,
where the item size exceeds 60k. (2) The performance is de-
graded on an average by 1.29%, 1.74%, 1.95%, and 2.04%
for Bit8Quant, TernQuant, SVD, and CoLR, respectively,
suggesting that SecEmb offers non-negligible advantages
over the lossy message compression mechanisms.

5.4. Application to Sequential Recommendation

We extend our framework to sequential recommendation
tasks, which predict the next item a user will interact with
based on their historical interactions. Specifically, we apply
SecEmb to the item embedding layers of sequential recom-
mendation models. We evaluate our approach using two
sequence models, Caser (Tang & Wang, 2018) and SAS-
Rec (Kang & McAuley, 2018), on the ML1M and Amazon
datasets. Experimental settings are detailed in Appendix
K.6.

Our findings in Table 4 indicate that compared with Se-
cEmb, applying existing message compression techniques
results in average reductions of 0.5%, 2.7%, 2.6%, and 2.6%
for Bit8Quant, TernQuant, SVD, and CoLR, respectively.
Notably, for the Amazon dataset, which has a vast item
set and exhibits high sparsity (density< 0.002‰), our Se-
cEmb method achieves up to a 2500× reduction in upload
communication cost.

5.5. Ablation Studies

To investigate the effectiveness of our optimizations, we
compare SecEmb with two variants: (1) initial construction
of SecEmb (SecEmb-Init), and (2) initial construction of
SecEmb optimized by efficient row-wise encoding (SecEmb-
RowEnc). Table 5 presents the user cost with MF model,
and for full results refer to Section K.7. The initial construc-
tion of SecEmb suffers substantially higher communication
overhead than the improved one, and its cost can be higher
than that for secure FedRec on dataset with item size lower

8

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

Table 3. RMSE and Reduction Ratio (R.R.) for SecEmb and various message compression methods. The values for RMSE denote the
mean ± standard deviation of four rounds of experiments. R.R. refers to the ratio of upload communication cost before and after the
application of the compression mechanism.

ML100K ML1M ML10M ML25M Yelp

RMSE R.R. RMSE R.R. RMSE R.R. RMSE R.R. RMSE R.R.

MF

Bit8quant 0.948±0.004 4.00 0.914±0.000 4.00 0.872±0.001 4.00 0.870±0.000 4.00 1.050±0.001 4.00
Ternquant 0.951±0.002 8.00 0.916±0.002 8.00 0.873±0.001 8.00 0.874±0.000 8.00 1.050±0.001 8.00
SVD 0.952±0.006 5.22 0.917±0.001 6.39 0.872±0.001 16.15 0.873±0.000 16.23 1.050±0.001 16.24
CoLR 0.951±0.001 5.42 0.916±0.001 6.50 0.872±0.001 16.25 0.873±0.000 16.25 1.049±0.002 16.25
SecEmb 0.944±0.003 4.99 0.903±0.002 7.35 0.868±0.003 19.22 0.864±0.002 62.07 1.050±0.001 91.22

NCF

Bit8quant 0.950±0.011 3.86 0.898±0.002 3.94 0.832±0.004 3.97 0.820±0.001 3.99 1.035±0.002 4.00
Ternquant 0.951±0.005 7.37 0.901±0.007 7.71 0.833±0.001 7.84 0.825±0.002 7.97 1.036±0.004 7.98
SVD 0.952±0.006 3.15 0.903±0.007 4.02 0.838±0.002 11.81 0.824±0.000 12.17 1.035±0.002 10.22
CoLR 0.947±0.005 3.21 0.912±0.005 4.06 0.856±0.000 11.87 0.839±0.001 12.18 1.032±0.001 10.22
SecEmb 0.949±0.014 3.44 0.897±0.006 5.02 0.819±0.003 15.93 0.786±0.008 51.80 1.035± 0.001 68.46

FM

Bit8quant 0.945±0.001 3.41 0.912±0.000 3.86 0.845±0.000 3.98 0.836±0.001 4.00 1.009±0.001 4.00
Ternquant 0.948±0.002 5.70 0.913±0.001 7.37 0.856±0.000 7.90 0.850±0.000 7.98 1.010±0.002 7.99
SVD 0.946±0.001 4.21 0.913±0.001 6.00 0.870±0.003 15.71 0.856±0.002 16.16 1.009±0.001 16.20
CoLR 0.944±0.004 4.33 0.915±0.001 6.10 0.867±0.000 15.81 0.851±0.001 16.17 1.008±0.001 16.21
SecEmb 0.937±0.004 5.05 0.906 ±0.000 7.22 0.848±0.002 18.76 0.789±0.003 60.87 1.008±0.003 91.05

DeepFM

Bit8quant 0.947±0.007 1.05 0.912±0.003 1.21 0.840±0.004 1.92 0.832±0.003 3.16 1.012±0.002 3.47
Ternquant 0.949±0.004 1.06 0.914±0.002 1.25 0.847±0.000 2.26 0.842±0.001 4.94 1.018±0.001 5.88
SVD 0.954±0.005 1.05 0.913±0.001 1.24 0.853±0.002 2.48 0.847±0.000 6.90 1.014±0.001 9.09
CoLR 0.952±0.001 1.05 0.905±0.001 1.24 0.856±0.001 2.49 0.841±0.001 6.90 1.017±0.002 9.10
SecEmb 0.939±0.006 1.05 0.902±0.001 1.24 0.821±0.001 2.50 0.791±0.001 9.54 1.011±0.002 15.98

Table 4. RMSE and Reduction Ratio (R.R.) for SecEmb and various message compression methods on Sequential Recommender System.
R.R. refers to the ratio of upload communication cost before and after the application of the compression mechanism.

ML1M (3,883 items) Amazon (9,267,503 items)

HR@10 NDCG@10 R.R. HR@10 NDCG@10 R.R.

Caser

Bit8quant 0.473 0.267 3.51 0.628 0.481 4
Ternquant 0.468 0.261 6.03 0.623 0.478 8
SVD 0.471 0.266 9.71 0.627 0.483 38
CoLR 0.465 0.263 9.78 0.625 0.480 38
SecEmb 0.475 0.270 4.79 0.629 0.483 2549

SASRec

Bit8quant 0.468 0.266 2.55 0.636 0.485 4
Ternquant 0.443 0.248 3.44 0.635 0.483 8
SVD 0.444 0.249 3.00 0.621 0.472 12
CoLR 0.464 0.262 3.02 0.600 0.463 12
SecEmb 0.472 0.268 3.86 0.639 0.485 2342

than 11k. Additionally, sharing the binary path between the
two modules reduces the communication cost by around
36%. Similarly, the two optimizations substantially improve
user computation costs.

Table 5. Upload communication cost and computation cost for
secret generation per user for SecEmb and its variants with MF.

ML100K ML1M ML10M ML25M Yelp

Upload communication cost (in MB)

SecEmb-Init 4.56 7.60 8.51 16.83 17.43
SecEmb-RowEnc 0.28 0.43 0.45 0.78 0.79
SecEmb 0.17 0.27 0.28 0.51 0.52

Computation cost (in milliseconds)

SecEmb-Init 5.34 15.35 22.56 28.53 26.43
SecEmb-RowEnc 0.37 0.90 0.91 1.34 1.47
SecEmb 0.31 0.47 0.47 0.72 0.74

6. Conclusion
This paper proposes SecEmb, a lossless privacy-preserving
recommender system designed for resource-constrained de-
vices with optimized payload on sparse embedding updates.
SecEmb achieves succinct communication costs, i.e., cost
independent of item size m for downloads and logarithmic
in m for uploads, while preserving the secrecy of individ-
ual gradients. Additionally, it reduces device-side memory
and computation overhead by processing only relevant item
embeddings. The empirical evaluation demonstrates that:
(1) SecEmb reduces communication costs by up to 90x and
decreases user computation time by up to 70x compared
with secure FedRec. (2) SecEmb offers non-negligible util-
ity advantages compared with lossy message compression
methods. Further discussions on our framework are pro-
vided in Appendix L.

9

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

Acknowledgements
Ding was supported in part by a grant from the Israel Science
Foundation (ISF Grant No. 1774/20), and by the European
Union (ERC, SCALE,101162665). Views and opinions
expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or the
European Research Council. Neither the European Union
nor the granting authority can be held responsible for them.

Impact Statement
This paper presents work aimed at advancing the field of
privacy-preserving computation, particularly focusing on
improving user privacy in federated recommender system
through our SecEmb framework. Our proposed framework
contributes to the technical evolution of federated learning
and presents substantial benefits in data protection. We be-
lieve that the ethical impacts and social consequences align
with established principles in responsible AI development.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning with
differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pp. 308–318, 2016.

Addanki, S., Garbe, K., Jaffe, E., Ostrovsky, R., and Poly-
chroniadou, A. Prio+: Privacy preserving aggregate statis-
tics via boolean shares. In International Conference on
Security and Cryptography for Networks, pp. 516–539.
Springer, 2022.

Aji, A. F. and Heafield, K. Sparse communication for dis-
tributed gradient descent. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language
Processing, pp. 440–445, 2017.

Ammad-Ud-Din, M., Ivannikova, E., Khan, S. A., Oyomno,
W., Fu, Q., Tan, K. E., and Flanagan, A. Federated collab-
orative filtering for privacy-preserving personalized rec-
ommendation system. arXiv preprint arXiv:1901.09888,
2019.

Bell, J. H., Bonawitz, K. A., Gascón, A., Lepoint, T., and
Raykova, M. Secure single-server aggregation with (poly)
logarithmic overhead. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 1253–1269, 2020.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the

2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1175–1191, 2017.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Inger-
man, A., Ivanov, V., Kiddon, C., Konečnỳ, J., Mazzocchi,
S., McMahan, B., et al. Towards federated learning at
scale: System design. Proceedings of Machine Learning
and Systems, 1:374–388, 2019.

Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., and
Ishai, Y. Lightweight techniques for private heavy hitters.
In 2021 IEEE Symposium on Security and Privacy (SP),
pp. 762–776. IEEE, 2021.

Boyle, E., Gilboa, N., and Ishai, Y. Function secret shar-
ing. In Annual international conference on the theory
and applications of cryptographic techniques, pp. 337–
367. Springer, 2015.

Boyle, E., Gilboa, N., and Ishai, Y. Function secret shar-
ing: Improvements and extensions. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1292–1303, 2016.

Boyle, E., Gilboa, N., Ishai, Y., and Kolobov, V. I.
Information-theoretic distributed point functions. In
3rd Conference on Information-Theoretic Cryptography,
2022.

Chai, D., Wang, L., Chen, K., and Yang, Q. Secure federated
matrix factorization. IEEE Intelligent Systems, 36(5):11–
20, 2020.

Chen, B., Medini, T., Farwell, J., Gobriel, S., Tai, C., and
Shrivastava, A. Slide: In defense of smart algorithms
over hardware acceleration for large-scale deep learning
systems. arXiv preprint arXiv:1903.03129, 2019.

Chen, B., Liu, Z., Peng, B., Xu, Z., Li, J. L., Dao, T., Song,
Z., Shrivastava, A., and Re, C. Mongoose: A learnable
lsh framework for efficient neural network training. In
International Conference on Learning Representations,
2020.

Chen, R., Wu, Y., Chen, L., Liu, G., He, Q., Xiong, T., Liu,
C., Guo, J., and Huang, H. Your vision-language model
itself is a strong filter: Towards high-quality instruction
tuning with data selection. In ACL (Findings), 2024a.

Chen, R., Wu, Y., Guo, J., and Huang, H. De-mark: Water-
mark removal in large language models. arXiv preprint
arXiv:2410.13808, 2024b.

Chen, R., Wu, Y., Guo, J., and Huang, H. Improved unbiased
watermark for large language models. arXiv preprint
arXiv:2502.11268, 2025.

10

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

Cheon, J. H., Kim, A., Kim, M., and Song, Y. Ho-
momorphic encryption for arithmetic of approximate
numbers. In Advances in Cryptology–ASIACRYPT
2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings,
Part I 23, pp. 409–437. Springer, 2017.

Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivastava, D.,
and Wang, T. Privacy at scale: Local differential privacy
in practice. In Proceedings of the 2018 International
Conference on Management of Data, pp. 1655–1658,
2018.

Corrigan-Gibbs, H. and Boneh, D. Prio: Private, robust,
and scalable computation of aggregate statistics. In 14th
USENIX symposium on networked systems design and
implementation (NSDI 17), pp. 259–282, 2017.

Cramer, R., Damgård, I. B., et al. Secure multiparty
computation. Cambridge University Press, 2015.

Dettmers, T. 8-bit approximations for parallelism in deep
learning. arXiv preprint arXiv:1511.04561, 2015.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Dwork, C. Differential privacy. In International colloquium
on automata, languages, and programming, pp. 1–12.
Springer, 2006.

Ergun, I., Sami, H. U., and Guler, B. Sparsified secure aggre-
gation for privacy-preserving federated learning. arXiv
preprint arXiv:2112.12872, 2021.

Fereidooni, H., Marchal, S., Miettinen, M., Mirhoseini,
A., Möllering, H., Nguyen, T. D., Rieger, P., Sadeghi,
A.-R., Schneider, T., Yalame, H., et al. Safelearn: Se-
cure aggregation for private federated learning. In 2021
IEEE Security and Privacy Workshops (SPW), pp. 56–62.
IEEE, 2021.

Guo, H., Tang, R., Ye, Y., Li, Z., and He, X. Deepfm: a
factorization-machine based neural network for ctr pre-
diction. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pp. 1725–1731,
2017.

Gupta, V., Choudhary, D., Tang, P., Wei, X., Wang, X.,
Huang, Y., Kejariwal, A., Ramchandran, K., and Ma-
honey, M. W. Training recommender systems at scale:
Communication-efficient model and data parallelism. In
Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 2928–2936,
2021.

Han, Z., Gao, C., Liu, J., Zhang, J., and Zhang, S. Q.
Parameter-efficient fine-tuning for large models: A com-
prehensive survey. arXiv preprint arXiv:2403.14608,
2024.

Harper, F. M. and Konstan, J. A. The movielens datasets:
History and context. Acm transactions on interactive
intelligent systems (tiis), 5(4):1–19, 2015.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua,
T.-S. Neural collaborative filtering. In Proceedings of
the 26th international conference on world wide web, pp.
173–182, 2017.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,
L., Chen, W., et al. Lora: Low-rank adaptation of
large language models. In International Conference on
Learning Representations, 2022.

Hua, J., Xia, C., and Zhong, S. Differentially pri-
vate matrix factorization. In Proceedings of the 24th
International Conference on Artificial Intelligence, IJ-
CAI’15, pp. 1763–1770. AAAI Press, 2015. ISBN
9781577357384.

Kadhe, S., Rajaraman, N., Koyluoglu, O. O., and Ram-
chandran, K. Fastsecagg: Scalable secure aggregation
for privacy-preserving federated learning. arXiv preprint
arXiv:2009.11248, 2020.

Kang, W.-C. and McAuley, J. Self-attentive sequential
recommendation. In 2018 IEEE international conference
on data mining (ICDM), pp. 197–206. IEEE, 2018.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Koren, Y., Bell, R., and Volinsky, C. Matrix factorization
techniques for recommender systems. Computer, 42(8):
30–37, 2009.

Li, M., Liu, Z., Smola, A. J., and Wang, Y.-X. Difacto:
Distributed factorization machines. In Proceedings of
the Ninth ACM International Conference on Web Search
and Data Mining, pp. 377–386, 2016.

Lin, G., Liang, F., Pan, W., and Ming, Z. Fedrec: Federated
recommendation with explicit feedback. IEEE Intelligent
Systems, 36(5):21–30, 2020.

Lin, Z., Pan, W., Yang, Q., and Ming, Z. A generic federated
recommendation framework via fake marks and secret
sharing. ACM Transactions on Information Systems, 41
(2):1–37, 2022.

Liu, K., Hu, S., Wu, S. Z., and Smith, V. On privacy and per-
sonalization in cross-silo federated learning. Advances
in neural information processing systems, 35:5925–5940,
2022.

11

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

Liu, T., Wang, Z., He, H., Shi, W., Lin, L., An, R., and Li,
C. Efficient and secure federated learning for financial
applications. Applied Sciences, 13(10):5877, 2023.

Lu, S., Li, R., Liu, W., Guan, C., and Yang, X. Top-k spar-
sification with secure aggregation for privacy-preserving
federated learning. Computers & Security, 124:102993,
2023.

Mai, P. and Pang, Y. Privacy-preserving multiview ma-
trix factorization for recommender systems. IEEE
Transactions on Artificial Intelligence, 5(1):267–277,
2023.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of
deep networks from decentralized data. In Artificial
intelligence and statistics, pp. 1273–1282. PMLR, 2017.

Mohassel, P. and Zhang, Y. Secureml: A system for
scalable privacy-preserving machine learning. In 2017
IEEE symposium on security and privacy (SP), pp. 19–
38. IEEE, 2017.

Nguyen, N.-H., Nguyen, T.-A., Nguyen, T., Hoang, V. T.,
Le, D. D., and Wong, K.-S. Towards efficient communi-
cation and secure federated recommendation system via
low-rank training. In Proceedings of the ACM on Web
Conference 2024, pp. 3940–3951, 2024.

Perifanis, V. and Efraimidis, P. S. Federated neural collabo-
rative filtering. Knowledge-Based Systems, 242:108441,
2022.

Rabbani, T., Bornstein, M., and Huang, F. Large-scale dis-
tributed learning via private on-device locality-sensitive
hashing. In Proceedings of the 37th International
Conference on Neural Information Processing Systems,
pp. 16153–16171, 2023.

Rendle, S. Factorization machines. In 2010 IEEE
International conference on data mining, pp. 995–1000.
IEEE, 2010.

Sanh, V. Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter. In Proceedings of Thirty-third
Conference on Neural Information Processing Systems
(NIPS2019), 2019.

So, J., He, C., Yang, C.-S., Li, S., Yu, Q., E Ali, R., Guler,
B., and Avestimehr, S. Lightsecagg: a lightweight and
versatile design for secure aggregation in federated learn-
ing. Proceedings of Machine Learning and Systems, 4:
694–720, 2022.

Tang, J. and Wang, K. Personalized top-n sequential
recommendation via convolutional sequence embed-
ding. In Proceedings of the eleventh ACM international

conference on web search and data mining, pp. 565–573,
2018.

Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F.,
Jin, S., Quek, T. Q., and Poor, H. V. Federated learning
with differential privacy: Algorithms and performance
analysis. IEEE transactions on information forensics and
security, 15:3454–3469, 2020.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and
Li, H. Terngrad: Ternary gradients to reduce communi-
cation in distributed deep learning. Advances in neural
information processing systems, 30, 2017.

Xiong, L., Zhou, W., Xia, Z., Gu, Q., and Weng, J. Efficient
privacy-preserving computation based on additive secret
sharing. arXiv preprint arXiv:2009.05356, 2020.

Xu, Z., Liu, L., Xu, Z., and Shrivastava, A. Adaptive sparse
federated learning in large output spaces via hashing. In
Workshop on Federated Learning: Recent Advances and
New Challenges (in Conjunction with NeurIPS 2022),
2022.

Xue, H.-J., Dai, X., Zhang, J., Huang, S., and Chen, J. Deep
matrix factorization models for recommender systems. In
IJCAI, volume 17, pp. 3203–3209. Melbourne, Australia,
2017.

Yelp. Yelp dataset. 2015. URL https://www.yelp.
com/dataset.

Zhang, H., Luo, F., Wu, J., He, X., and Li, Y. Lightfr:
Lightweight federated recommendation with privacy-
preserving matrix factorization. ACM Transactions on
Information Systems, 41(4):1–28, 2023.

12

https://www.yelp.com/dataset
https://www.yelp.com/dataset

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

A. Complexity of Existing SecAgg Algorithms
In Table 6, we summarize the computation and communication complexity of existing SecAgg algorithms. It can be observed
that a) two-server ASS represents the most efficient algorithm in terms of both computation and communication complexity,
and b) the per-client communication cost depends linear in the model size l for all protocols.

Table 6. Computation and communication complexity of existing SecAgg algorithms. SecAgg and SecAgg+ refer to the algorithm
proposed by (Bonawitz et al., 2017) and (Bell et al., 2020) respectively. n and l denote client size and model size, respectively.

Server Client Rounds
Computation Communication Computation Communication

SecAgg O(n2l) O(nl + n2) O(nl + n2) O(l + n) 4
SecAgg+ O(nl logn+ n log2 n) O(nl + n logn) O(l logn+ log2 n) O(l + logn) 3
FastSecAgg O(l logn) O(nl + n2) O(l logn) O(l + n) 3
LightSecAgg O(nl log2 n) O(nl) O(nl log2 n) O(nl) 2
SAFELearn O(nl) O(nl) O(l) O(l) 2
Two-server ASS O(nl) O(nl) O(l) O(l) 1

B. Preliminaries
B.1. Additive Secret Sharing

Additive secret sharing (ASS) (Cramer et al., 2015) divides a secret x ∈ Fp from a finite field into n shares, such that∑n
i=1 xi (mod p) = x. Consequently, any n− 1 shares reveal nothing about the secret s. Furthermore, given two secret

shares JxK = (x1, ..., xn) and JyK = (y1, ..., yn) from Fp, it holds that Jx+ yK = (x1 + y1, ..., xn + yn).

B.2. Function Secret Sharing

In this section we formally define the correctness and security properties of FSS scheme.

Definition B.1 (FSS Correctness and Security). Let FSS = (FSS.Gen,FSS.Eval) be a FSS scheme for a function class F ,
satisfying the following properties:

• Correctness: For every x in the domain of f , it holds that:

Pr

(
2∑

i=1

FSS.Eval(ki, x) = f(x) ∈ F : (k1, k2)← FSS.Gen(1λ, f)

)
= 1. (10)

• Security: For any party s ∈ {1, 2}, there exists a PPT algorithm Sim (simulator), such that for every function f ∈ F ,
the outputs of the following experiments REAL and IDEAL are computationally indistinguishable:

– REAL(1λ, f) = {ks : (k1, k2)← FSS.Gen(1λ, f)}
– IDEAL(1λ, f,F) = {ks ← Sim(1λ,F)}

C. Standardization of Uploaded Item Size
To conceal m′

u from the server, a uniform m′ can be applied to all users. An optimal m′ should be substantially smaller than
m to reduce communication overhead, yet not excessively small to encompass the rated items of a majority of users. To
determine a suitable value of m′, the server can compute the average number of rated items from all users via a SecAgg
protocol and select m′ as follows:

m′ = α · 1
n
·
∑
u

m′
u, (11)

where α is a pre-specified multiplier on the average. Note that the SecAgg operation on the number of rated items is cheap,
incurring O(1) communication and computation overheads per user.

Given the unified m′, each user can: (1) convert their target item indices set into size of m′ according to Algorithm 1, and
(2) standardize their non-zero updates for item embedding to be a m′ × d matrix according to Algorithm 2.

13

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

Algorithm 1 PadOrTruncIdx
Input: m′ and Iu = {i1, ..., im′

u
}.

Output: I ′u = {i1, ..., im′}.
if |Iu| < m′ then

Randomly sample m′ − |Iu| elements from I\Iu, and insert them into Iu to form I ′u.
else if m′

u > m′ then
Randomly sample m′ elements from Iu to form I ′u

else
Let I ′u = Iu

end if
return I ′u

Algorithm 2 PadOrTruncEmb

Input: m′ and gQu
∈ Rm′

u×d.
Output: g′

Qu
∈ Rm′×d.

if m′
u < m′ then

Create padding matrix of zero elements 0 ∈ R(m′−m′
u)×d

Concatenate gQu
and 0 to form g′

Qu
∈ Rm′×d

else if m′
u > m′ then

Randomly sample m′ rows from gQu to form g′
Qu
∈ Rm′×d

else
Let g′

Qu
= gQu

end if
return g′

Qu

D. Secure Aggregation on Dense Update
We employ additive secret sharing for SecAgg on the dense update gθ. In particular, user u generates a pair of additive
secret shares for the gradients JgθK = (v1

θ ,v
2
θ), and sends the secret shares to the corresponding servers. Each server s

aggregates the secret shares from all participating users:

vs
θ =

∑
u

vs
θu (12)

Same as step 4 in Section 4.2.2, the two servers can subsequently collaborate to reconstruct the plaintext aggregated update.

E. Algorithm of SecEmb
Algorithm 3 outlines the final version of SecEmb, which consists of two modules: (1) privacy-preserving embedding
retrieval, and (2) secure update aggregation.

F. Formal Security Analysis
For security, we require that the two servers should be non-colluding. However, no restriction is placed on the collusion
between one server and the clients. User privacy is guaranteed as long as at least one server is honest, even if the other
colludes with any number of clients.

F.1. Security Analysis for Private Embedding Retrieval

Let C ⊂ U ∪ {b} (b ∈ {0, 1}) denote the union of one server and any subset of the users. Given a security parameter λ, let
RealCλ,ret be the combined view of colluding parties C in experiments executing privacy-preserving embedding retrieval in
SecEmb. Denote IU as the target indices of all users. We show that the joint view of each non-colluding server and the
clients can be simulated given the allowable leakage. In other words, the collusion between one server and any number of
clients reveals no information about the honest clients.

14

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

Algorithm 3 SecEmb
Server s ∈ {0, 1}:
Initialize public parameters Θs.
for t ∈ [1, T] do

Privacy-preserving embedding retrieval:
- Receive FSS keys {reKs

u,i}i∈[m′] from users u ∈ At.
- Compute secret shares of item embedding via equation 3, and store immediate values from the evaluation
(tu,i,j , su,i,j) = FSS.PathEval(s, reKs

u,i, j).
- Send secret shares {vs

u,i}i∈[m′] to users u ∈ At.
Secure update aggregation:
- Receive partial FSS keys {CWu,i}i∈[m′] and secret shares for dense update vs

θu
from users u ∈ At.

- Compute the secret shares of the aggregated sparse update via:
vs
Qj

=
∑

u

∑
i∈[m′] FSS.ConvertEval(s, tu,i,j , su,i,j , CWu,i) for j ∈ I.

- Aggregate the secret shares of the dense update via equation 12.
- if s = 0 then

- Receive the aggregated secret shares (v1
Q,v

1
θ) from server 1

- Recover the gradients for public parameters gQ,gθ.
- Update public parameters Θs = (Q, θ) with the gradients.
- Synchronize public parameters with server 1.

- else
- Send the aggregated secret shares (v1

Q,v
1
θ) to server 0.

- Receive updated public parameters from server 0.
- end if

end for

User u ∈ U:
for t ∈ [1, T] do

if u ∈ At then
Privacy-preserving embedding retrieval:
- Standardize the size of target indices, i.e., I ′u = PadOrTruncIdx(m′, Iu).
- Encode each index in I ′u with a point function, obtaining {fu,i}i∈[m′].
- Generate FSS keys (reK0

u,i, reK
1
u,i) = FSS.Gen(1λ, fu,i) for i ∈ [m′], and store the intermediate values from the

generation (t1u,i, s
0
u,i, s

1
u,i) = FSS.PathGen(1λ, idx(i)) for i ∈ [m′].

- Send {reksu,i}i∈[m′] to server s ∈ {0, 1}.
- Receive {vs

u,i}i∈[m′] from server s ∈ {0, 1}, discard irrelevant embeddings, and reconstruct targeted embedding
Qu using equation 4.
Secure update aggregation:
- Calculate gradients locally and update private parameters Θp.
- Construct additive secret shares (v0

θu
,v1

θu
) for dense gradient gθu .

- Pad or truncate the sparse gradient into a m′ × d matrix, g′
Qu = PadOrTruncEmb(m′,gQu).

- Generate partial FSS keys for the sparse gradients {CWu,i}i∈[m′] = FSS.ConvertGen(1λ, t1u,i, s
0
u,i, s

1
u,i,g

′
Qu

i
) for

i ∈ [m′].
- Send (vs

θu
, {CWu,i}i∈[m′]) to server s ∈ {0, 1}.

end if
end for

Algorithm 4 FSS.ConvertEval
Let ConvertG : {0, 1}λ → G be a map converting a random λ-bit string to a pseudorandom group element of
G.

Input: b, t(n), s(n), CW (n+1)

Output: v ∈ G
v = (−1)b

[
Convert(s(n)) + t(n) · CW (n+1)

]
return v

15

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

Algorithm 5 FSS.ConvertGen
Let ConvertG : {0, 1}λ → G be a map converting a random λ-bit string to a pseudorandom group element of
G.

Input: 1λ, t(n)1 , s(n)0 , s(n)1 , β ∈ G
Output: CW (n+1) ∈ G
CW (n+1) ← (−1)t

(n)
1

[
β − Convert(s(n)0) + Convert(s(n)1)

]
return CW (n+1)

Algorithm 6 FSS.PathEval

Let G : {0, 1}λ → {0, 1}2(λ+1) a pseudorandom generator.
Input: b, kb and x
Output: t(n) ∈ {0, 1} and s(n) ∈ {0, 1}λ
Parse kb = s(0)||t(0)||CW (1)|| · · · ||CW (n+1)

for i = 1 to n do
Parse CW (i) = sCW ||tLCW ||tRCW

τ (i) ← G(s(i−1))⊕
(
t(i−1) · [sCW ||tLCW ||sCW ||tRCW]

)
Parse τ (i) = sL||tL||sR||tR ∈ {0, 1}2(λ+1)

if xi = 0 then
s(i) ← sL, t(i) ← tL

else
s(i) ← sL, t(i) ← tL

end if
end for
return (t(n), s(n))

Algorithm 7 FSS.PathGen

Let G : {0, 1}λ → {0, 1}2(λ+1) a pseudorandom generator.
Input: 1λ and α

Output: t(n)1 ∈ {0, 1}, s(n)0 ∈ {0, 1}λ, and s
(n)
1 ∈ {0, 1}λ

Let α = α1, ..., αn ∈ {0, 1}n be the bit decomposition of α.
Sample random s

(0)
0 ← {0, 1}λ and s

(0)
1 ← {0, 1}λ.

Sample random t
(0)
0 ← {0, 1} and let t(0)1 ← t

(0)
0 ⊕ 1.

for i = 1 to n do
sL0 ||tL0 ||sR0 ||tR0 ← G(s

(i−1)
0)

sL1 ||tL1 ||sR1 ||tR1 ← G(s
(i−1)
1)

if αi = 0 then
Keep← L, Lose← R

else
Keep← R, Lose← L

end if
sCW ← sLose

0 ⊕ sLose
1

tLCW ← tL0 ⊕ tL1 ⊕ αi ⊕ 1
tRCW ← tR0 ⊕ tR1 ⊕ αi

CW (i) ← sCW ||tLCW ||tRCW

s
(i)
b ← sKeep

b ⊕ t
(i−1)
b · sCW for b = 0, 1

t
(i)
b ← tKeep

b ⊕ t
(i−1)
b · tKeep

CW for b = 0, 1
end for
return (t

(n)
1 , s

(n)
0 , s

(n)
1)

16

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

Theorem F.1 (Security of private embedding retrieval). There exists a PPT simulator SimC
λ,ret, such that for all user input

IU and C ⊂ U ∪ {b} (b ∈ {0, 1}), the output of SimC
λ,ret and RealCλ,ret are computationally indistinguishable:

RealCλ,ret(1
λ, IU\C) = SimC

λ,ret(1
λ, (m′,G1, ...,Gm′)). (13)

Proof. For each j ∈ {0, 1, ...,m′}, we consider a distribution Hybj as follows:

• If i ≤ j, each user u ∈ U\C construct rekbu,i to server b by: (1) sample s
(0)
b ← {0, 1}λ at random, and t

(0)
b = b;

(2) choose CW (1), ..., CW (⌈logm⌉) ← {0, 1}λ+2 at random; (3) sample CW (⌈logm⌉+1) ← G at random; (4) output
reKs

u,i = s
(0)
b ||t

(0)
b ||CW (1)|| · · · ||CW (⌈logm+1⌉).

• If i > j, compute reKb
u,i to server b honestly using the function secret sharing algorithm.

• The output of the experiment is {reKb
u,i}i∈[m′] to server b ∈ {0, 1}.

The FSS security ensures that Hybj and Hybj+1 are computationally indistinguishable for j ∈ {0, 1, ...,m′ − 1}. Note that
Hyb0 corresponds to the RealCλ,ret distribution in the execution of SecEmb, where as Hybm′ generates a completely random
key.

Hence, we complete the proof.

F.2. Security Analysis for Secure Update Aggregation

Proof. For each j ∈ {0, 1, ...,m′}, we consider a distribution Hybj as follows:

• Compute vb
θu

honestly using ASS to server b.
• If i ≤ j, sample CWu,i ← G at random.
• If i > j, compute CWu,i ← G honestly following steps in SecEmb.
• The output of the experiment is

(
vb
θu
, {CWu,i}i∈[m′]

)
to server b ∈ {0, 1}.

The proof of Theorem 4.1 requires to demonstrate that Hybj and Hybj+1 are computationally indistinguishable. To justify
this argument, we consider a intermediate distribution Hybj→j+1 between Hybj and Hybj+1:

• Compute vb
θu

honestly using ASS to server b.
• If i < j, sample CWu,i ← G at random.
• If i = j, construct CWu,i = HybCW(1λ, idxu(i)) via Algorithm 8, where idxu(i) denotes the global index of the i-th

item for user u.
• If i > j, compute CWu,i ← G honestly following steps in SecEmb.
• The output of the experiment is

(
vb
θu
, {CWu,i}i∈[m′]

)
to server b ∈ {0, 1}.

The security of the pseudorandom generator G ensures that Hybj and Hybj→j+1 are computationally indistinguishable
(see Claim 3.7 in (Boyle et al., 2016)). The security of the pseudorandom Convert ensures that Hybj→j+1 and Hybj+1 are
computationally indistinguishable (see Claim 3.8 in (Boyle et al., 2016)).

Next,we consider the following distribution Hybm′+1:

• Sample vb
θu
← Gθ randomly to server b.

• Sample CWu,i ← G at random for i ∈ [m′].
• The output of the experiment is

(
vb
θu
, {CWu,i}i∈[m′]

)
to server b ∈ {0, 1}.

The properties of additive secret sharing guarantee that the distribution of Hybm′+1 is identical to Hybm′ . Note that Hyb0

corresponds to the RealCλ,agg distribution in the execution of SecEmb, where as Hybm′+1 outputs a set of random secrets
and keys.

Hence, we complete the proof.

17

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

Algorithm 8 HybCW
Let ConvertG : {0, 1}λ → G be a map converting a random λ-bit string to a pseudorandom group element of
G.

Input: 1λ, α
Output: CW (n+1)

Let α = α1, ..., αn ∈ {0, 1}n be the bit decomposition of α.
Sample s

(0)
b ← {0, 1}λ, and let t(0)b = b.

for i = 1 to ⌈logm⌉ do
Compute sLb ||tLb ||sRb ||sLb = G(s

(i−1)
b)

if αi = 0 then
Keep← L, Lose← R

else
Keep← R, Lose← L

end if
Sample CW (i) ← {0, 1}λ+2

Parse CW (i) = sCW ||tLCW ||tRCW

s
(i)
b ← sKeep

b ⊕ t
(i−1)
b · sCW

t
(i)
b ← tKeep

b ⊕ t
(i−1)
b · tKeep

CW

end for
CW (n+1) ← (−1)t

(n)
1

[
β − Convert(s(n)0) + Convert(s(n)1)

]
return CW (n+1)

G. Providing Differential Privacy
G.1. Implementation of Differentially Private Protocol

During the update aggregation stage, SecEmb ensures that each server learns only the aggregated updates. Consequently, we
only need to ensure that the aggregated updates-equivalent to the servers’ view-satisfy differential privacy (DP) throughout
the training process.

Our protocol is possible to achieve the record-level DP that obfuscates a single user-item interaction’s contribution (Liu
et al., 2022; Wei et al., 2020; Hua et al., 2015). To implement DP in the two-server setting, each user conducts per-sample
clipping on their local gradients ḡ ← g · max{1,∆2/g} (Abadi et al., 2016), and secret shares the clipped gradients
for aggregation. On computing the secret shares of aggregated update vs, each server s ∈ {0, 1} adds Gaussian noise
independently v′s ← vs +N (0, σ2). To achieve (ϵ, δ)-DP, the noise scale can be set as:

σ =
√
ln(1.25/δ) ·∆2/ϵ. (14)

G.2. Empirical Analysis

We deploy the SecEmb with (ϵ, δ)-DP guarantee on ML1M dataset under experiment settings described in Section 5.1,
using batch sizes of 100 and 500. The privacy budget is analyzed with moments accountant (Abadi et al., 2016), which
provides a tight bound over multiple iterations. Figure 6 shows that: (1) MF has the best trade-off between privacy and
utility, where the uility loss is within 2% for ϵ ≥ 2. This suggests that models with fewer parameters better preserve utility
under similar privacy guarantees. (2) Increasing the batch size improves the privacy-utility trade-off, as noise is amortized
over more samples.

While DP is sufficient to provide formal privacy guarantee, combining DP with SecAgg reduces the overall magnitude of
noise, thus offering significantly better privacy-utility trade-off than local DP. In Figure 7, we compare the utility between
SecEmb and DP-FedRec with MF model. DP-FedRec operates without SecAgg, where each user independently adds
Guassian noises to their uploaded gradients to satisfy (ϵ, δ)-local DP. Integrating SecAgg with DP improve the performance
by over 57% under ϵ < 1.5 on ML1M, and over 47% under ϵ < 13 on Yelp.

18

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

Figure 6. Performance on ML1M dataset under various differential privacy budget ϵ.

Figure 7. Performance of SecEmb and DP-FedRec under various privacy budget ϵ using MF.

H. Dataset and Pre-processing
For each dataset, we encode the user and item features into binary vectors for model training. The features we select for
binary encoding are given as follows:

• ML100K: movie genre, user gender, user age, and user occupation.

• ML1M: movie genre, user gender, user age, and user occupation.

• ML10M: movie genre.

• ML25M: movie genre.

• Yelp: restaurant state.

The statistics of the datasets are listed in Table 7.

Table 7. Statistics of the datasets. Yelp refers to the subset sampled from the whole dataset.

Users # Items # Ratings # User Features # Item Features Density

ML100K 943 1,682 100,000 84 19 6.30%
ML1M 6,040 3,883 1,000,209 30 18 4.26%
ML10M 69,878 10,681 10,000,054 0 20 1.34%
ML25M 162,541 62,423 25,000,095 0 20 0.25%
Yelp 10,000 93,386 1,007,956 0 16 0.11%

I. Hyperparameters of Recommender System
Each dataset is divided into 80% training and 20% testing data. For all cases, the recommender system is trained for 200
epochs. Each user represents an individual client and 100 clients are selected in each iteration. The parameters are updated

19

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

using Adaptive Moment Estimation (Adam) (Kingma, 2014) method. We use the combination of MSE and the regularization
term as the loss function. The security parameter is set to λ = 128. Each experiment is run for four rounds and the average
values are reported. Table 8 lists the specific hyperparameters for each dataset and model.

Table 8. Hyperparameters for federated training of recommender system.
ML100K ML1M ML10M ML25M Yelp

MF
Embedding size 64 64 64 64 64
Learning rate 0.025 0.025 0.01 0.01 0.01
Regularization weight 0.01 0.001 0.001 0.001 0.01

NCF
Embedding size 16 16 24 24 20
Learning rate 0.001 0.0001 0.001 0.001 0.001
Regularization weight 0.001 0 0 0 0

FM
Embedding size 64 64 64 64 64
Learning rate 0.025 0.025 0.005 0.005 0.01
Regularization weight 0.1 0.001 0 0 0.01

DeepFM
Embedding size 64 64 64 64 64
Learning rate 0.025 0.025 0.005 0.005 0.01
Regularization weight 0.1 0.001 0 0 0.001

For NCF, we fix the the architecture of the neural network layers to 2d → d → d/2. For DeepFM, the neural network
layers are fixed to (lx + ly + 2)d → 4d → 2d. We set the number of selected items m′ for ML100K, ML1M, ML10M,
ML25M, and yelp as 200, 300, 300, 500, and 500, respectively. Table 9 presents the size of sparse and dense parameters,
corresponding to the item embedding (including item bias term) and the remaining parameters.

Table 9. Size of dense and sparse parameters. # Sparse, # Non-zero Spr., and # Dense denote, respectively, the size of sparse update, size
of non-zero elements in sparse update, and size of dense update.

ML100K ML1M ML10M ML25M Yelp
(1.7k Items) (3.9k Items) (10.7k Items) (62.4k Items) (93.4k Items)

MF
Sparse 109,330 252,395 694,265 4,057,495 6,070,090
Non-zero Spr. 6,893 10,764 9,295 9,945 6,552
Dense 0 0 0 0 0

NCF
Sparse 55,506 128,139 523,369 3,058,727 3,828,826
Non-zero Spr. 3,499 5,465 7,007 7,497 4,133
Dense 688 688 1,512 1,512 1,060

FM
Sparse 109,330 252,395 694,256 4,057,495 6,070,090
Non-zero Spr. 6,893 10,764 9,295 9,945 6,552
Dense 6,696 3,121 1,301 1,301 1,041

DeepFM
Sparse 109,330 252,395 694,256 4,057,495 6,070,090
Non-zero Spr. 6,893 10,764 9,295 9,945 6,552
Dense 1,761,065 856,370 395,798 395,798 330,002

In FedRec using SVD and CoLR message compression techniques, the rank of the reduced matrix is specified in Table 10.
A lower value of rank indicates higher level of reduction ratio.

Table 10. Rank for reduced update matrix in FedRec with SVD and CoLR compression techniques.
ML100K ML1M ML10M ML25M Yelp

MF 12 10 4 4 4
NCF 10 8 4 4 4
FM 12 10 4 4 4
DeepFM 12 10 4 4 4

20

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

J. Comparison among FL Protocols
We compare our SecEmb with the following FL protocols:

• Secure FedRec that downloads full model and utilizes the most efficient SecAgg protocol.

• Two FL protocols with sparsity-aware aggregation on top-k sparsified gradients (Gupta et al., 2021; Aji & Heafield,
2017): Secure Aggregation with Mask Sparsification (SecAggMask) (Liu et al., 2023) and Top-k Sparse Secure
Aggregation (TopkSecAgg) (Lu et al., 2023).

• Two quantization methods: 8-bit quantization (Bit8Quant) (Dettmers, 2015) and Ternary Quantization (TernQuant)
(Wen et al., 2017).

• Two low-rank update methods: singular value decomposition (SVD) (Nguyen et al., 2024), and correlated Low-rank
Structure (CoLR) (Nguyen et al., 2024).

Table 11 summarizes the comparison along four dimensions:

• Secure FL training: The training process should be secure, or compatible with SecAgg. In other words, the server
learns no information about client updates, including non-zero indices and their values, except the aggregated model.
SecAggMask and TopkSecAgg are not secure as they leak information about the non-zero indices. Kvsagg leaks more
information to the server than SecEmb as it also exposes the exact number of clients who rated each item within a
batch beside aggregated results. The quantization and low-rank methods are compatible with SecAgg protocols.

• Reduced model download: The client can download model in reduced size from the server, rather than the full model.
Only CoLR and SecEmb allow to download the reduced model from the server.

• Reduced gradient transmission: The client can upload parameter gradients in reduced size to the server, rather
than the entire gradients. The listed algorithms, except secure FedRec, compress the transmitted gradients for
communication-efficient aggregation.

• Operation on reduced model: The client can store and operate on a reduced-size model locally for improved memory
and computation efficiency. Unlike other algorithms, which assume users maintain a full model for local updates,
SecEmb enables efficient operation without this requirement.

• Lossless: The training process should be lossless. Only secure FedRec and SecEmb are lossless in principle, and thus
lossless in practice. Kvsagg has a minor failure rate, occasionally yielding inaccurate aggregation results, whereas
SecEmb ensures error-free aggregation.

Among the FL protocols, only SecEmb simultaneously ensures efficiency, security, and utility for resource-constrained edge
devices.

Table 11. Coarse-grained comparison among FL protocols.
Secure FL

training
Reduced model

download
Reduced gradient

transmission
Operation on

reduced model Lossless

Secure FedRec ✓ × × × ✓

SecAggMask × × ✓ × ×
TopkSecAgg × × ✓ × ×
Kvsagg √∖ × ✓ × √∖

Bit8Quant ✓ × ✓ × ×
TernQuant ✓ × ✓ × ×
SVD ✓ × ✓ × ×
CoLR ✓ ✓ ✓ × ×
SecEmb ✓ ✓ ✓ ✓ ✓

21

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

K. Additional Experiment Evaluation
K.1. Download Communication Cost

The download communication cost is presented in Table 12. We compare our SecEmb against secure FedRec that downloads
the full model for local update. For MF and NCF, our protocol reduces costs by approximately 4x to 90x, depending on
dataset item size. For FM, SecEmb achieves overhead reductions ranging from roughly 10x to 116x. In DeepFM, cost
savings are modest (within 2x) for ML100K and ML1M (item size less than 4k) but become more significant as item size
increases, reaching around 20x for the Yelp dataset.

Table 12. Download communication cost (in MB) per user for SecEmb and Secure FedRec in one iteration. Reduction ratio is computed
as the communication overhead of Secure FedRec by that of SecEmb.

ML100K ML1M ML10M ML25M Yelp
(1.7k Items) (3.9k Items) (10.7k Items) (62.4k Items) (93.4k Items)

MF
Secure FedRec 0.43 0.99 2.73 15.98 23.91
SecEmb 0.10 0.15 0.15 0.26 0.26
Reduction Ratio 4.21 6.47 17.80 62.42 93.39

NCF
Secure FedRec 0.22 0.50 2.06 11.99 14.95
SecEmb 0.05 0.08 0.12 0.20 0.44
Reduction Ratio 4.04 6.28 16.96 60.55 91.00

FM
Secure FedRec 1.12 1.74 3.59 20.97 29.88
SecEmb 0.11 0.16 0.16 0.26 0.26
Reduction Ratio 10.50 11.00 22.76 80.32 116.50

DeepFM
Secure FedRec 8.14 5.15 5.17 22.55 31.20
SecEmb 7.12 3.57 1.74 1.84 1.57
Reduction Ratio 1.14 1.44 2.98 12.26 19.84

K.2. Training Memory and Storage Analysis

In Figure 8 we present the training memory and storage cost for two cases: (1) SecEmb where each user utilizes merely the
related item embeddings for model training. (2) Secure FedRec where users maintain the full model for training. It can
be observed that SecEmb leads to substantial saving in memory and storage cost when the sparse item embedding matrix
dominates the model parameters. For memory cost, the average savings are 12x, 21x, 101x, and 214x for ML1M, ML10M,
ML25M, and Yelp, respectively. For storage cost, the average savings are 13x, 23x, 111x, and 247x for ML1M, ML10M,
ML25M, and Yelp, respectively.

K.3. Comparison with Sparse Aggregation Protocol

In this section, we discuss the advantages of our SecEmb over existing sparse aggregation protocols. We consider two
SOTA frameworks, Secure Aggregation with Mask Sparsification (SecAggMask) (Liu et al., 2023) and Top-k Sparse Secure
Aggregation (TopkSecAgg) (Lu et al., 2023). The key problem with the two frameworks is that they fail to ensure that the
server learns nothing except the aggregated gradients. In particular:

• Leakage of rated item index. For SecAggMask, each user transmits the union of gradients with non-zero updates and
masks to the server. For TopkSecAgg, each user is required to upload the coordinate set of non-zero gradients along
with a small portion of perturbed coordinates. In both methods, the server could narrow down the potential rated items
to a much smaller set.

• Leakage of gradient values. While TopkSecAgg protects the values of non-zero updates against the server, SecAggMask
would reveal the plaintext values to the server. Specifically, SecAggMask randomly masks a portion of the gradients to
reduce communication cost, and fails to ensure that all non-zero gradients would be masked against any attackers.

As the above sparse aggregation protocols focus on minimizing the transmission during update aggregation stage, we
compare the upload communication between our SecEmb and these protocols in Table 13. For SecAggMask, we adopt a
mask threshold such that 60% non-zero gradients would be masked in expectation. For TopkSecAgg, we set the perturbation
proportion µ to be 0.1, following (Lu et al., 2023). Both approaches result in higher communication cost than SecEmb

22

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

ML1M ML10M ML25M Yelp

SecEmb Secure FedRec

M
em

o
ry

 c
o

st
 (

M
B

)
St

o
ra

ge
 c

o
st

 (
K

)

0

1

2

3

4

5

6

7

8

9

MF NCF FM DeepFM

0

1

2

3

4

5

6

7

8

9

10

MF NCF FM DeepFM

0

5

10

15

20

25

30

35

40

MF NCF FM DeepFM

0

10

20

30

40

50

60

MF NCF FM DeepFM

0

1000

2000

3000

4000

5000

6000

7000

MF NCF FM DeepFM

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

MF NCF FM DeepFM

0

200

400

600

800

1000

1200

MF NCF FM DeepFM

0

200

400

600

800

1000

1200

MF NCF FM DeepFM

Figure 8. Average memory cost (in MB) and storage cost (in 103 parameters) per user during training phase. The memory cost is computed
with batch size of 1.

because: (1) Besides the non-zero embedding gradients, SecAggMask requires the user to send a certain proportion of
randomly masked zero updates to the server. (2) To cancel out the mask values, in TopkSecAgg each user sends the union of
rated item embeddings for all participating user, rather than the those for each single user.

Table 13. Communication cost (in MB) per user for SecEmb and Sparse SecAgg during upload transmission in one iteration. General
SecAgg adopts two-server ASS that has minimum communication overhead.

ML100K ML1M ML10M ML25M Yelp
(1.7k Items) (3.9k Items) (10.7k Items) (62.4k Items) (93.4k Items)

MF

General SecAgg 0.87 2.02 5.55 32.46 48.56
SecAggMask 0.27 0.61 1.66 9.60 14.35
TopkSecAgg 0.32 0.66 0.91 1.17 1.95
Kvsagg 1.21 2.49 3.41 4.37 7.31
SecEmb 0.17 0.27 0.28 0.51 0.52

NCF

General SecAgg 0.45 1.03 4.20 24.48 30.64
SecAggMask 0.14 0.31 1.25 7.21 8.98
TopkSecAgg 0.17 0.34 0.69 0.89 1.23
Kvsagg 0.61 1.25 2.57 3.29 4.58
SecEmb 0.13 0.20 0.26 0.46 0.43

FM

General SecAgg 0.93 2.04 5.56 32.47 48.57
SecAggMask 0.27 0.61 1.66 9.60 14.35
TopkSecAgg 0.32 0.66 0.91 1.17 1.95
Kvsagg 1.21 2.49 3.41 4.37 7.31
SecEmb 0.22 0.29 0.29 0.52 0.53

DeepFM

General SecAgg 14.96 8.87 8.72 35.63 51.20
SecAggMask 14.30 7.44 4.81 12.76 16.99
TopkSecAgg 14.36 7.49 4.07 4.32 4.58
Kvsagg 15.25 9.31 6.57 7.53 9.94
SecEmb 14.26 7.12 3.45 3.68 3.16

23

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

K.4. Server Computation Cost

To validate the practicality of SecEmb, we evaluate the server computation cost under increasing number of devices during
the training stage. Note that the server computation can be speed up utilizing the efficient full domain evaluation in (Boyle
et al., 2016). Table 14 compares the computation time of our framework with homomorphic encryption (HE) approaches
with CKKS cryptosystem (Cheon et al., 2017). Though both frameworks scales linearly with the number of participating
devices, SecEmb is approximately 1600x faster than the typical HE protocol on average.

Table 14. Server computation cost (in minutes) per iteration for ML1M dataset.
of Active Users 100 200 300 400 500

HE (CKKS) 127.26 244.51 391.76 519.05 646.38
SecEmb 0.08 0.16 0.25 0.33 0.41

K.5. Breakpoint Analysis of Communication Cost

In Section 5.2.1 we show that SecEmb offers advantages over the secure FedRec in terms of upload communication as long
as m′ < mbd/ ((λ+ 2) logm+ bd). The inequality usually holds for recommender system with sparse update. Note that
the benefit on download communication is obvious where most users should rate over 50% of the total items to break the
inequality—an unrealistic scenario in practice.

Table 15 presents the maximum number of m′ for each dataset where the aforementioned inequality holds. We use security
parameter λ = 128 and 32-bit precision b = 32. It can be observed that the breakpoint of m′ is sufficiently large, over 50%
of the total item size m. It is highly improbable for a user to rate such a substantial proportion of items in practical scenarios.

Table 15. Maximum Value of m′ for Communication Cost Advantage over secure FedRec under Various Embedding Dimension d.
ML100K ML1M ML10M ML25M Yelp

(1.7k Items) (3.9k Items) (10.7k Items) (62.4k Items) (93.4k Items)

d = 64 1001 2210 5775 31038 45418
d = 128 1255 2817 6408 37453 56031
d = 512 1550 3547 9655 55418 82495

K.6. Hyperparameters of Sequence Recommendation

We filter out users with less than 3 ratings in Amazon dataset (https://cseweb.ucsd.edu/˜jmcauley/
datasets/amazon/links.html), resulting in 9,267,503 items and 6,775,277 users. In each training round, 100
clients participate, and approximately 50,000 rounds are required to train the model on this extensive dataset. SecEmb and
the four message compression baselines utilize the same hyperparameters as those used in prior sequence models. For SVD
and CoLR, the rank of the reduced item embedding update matrix is set to 4 for the Amazon dataset and 8 for ML1M.

K.7. Ablation Study

We compare SecEmb with two variants that eliminates one or two optimizations describe in Section 4.3. Table 16 and 17
present the per user upload communication cost and computation cost, respectively. The initial construction of SecEmb
incurs over 20x higher communication and computation costs on average compared to the improved version, and the cost
can be higher than that for secure FedRec on dataset with lower item size (m <11k). Furthermore, sharing the binary path
between the two modules reduces the communication and computation cost by around 1.5x.

L. Discussion
L.1. Assumption of Two Non-Colluding Servers

Our protocol relies on two non-colluding servers for security. Note that user privacy is guaranteed as long as one of the
servers is honest, even if the other colludes with any number of clients. In practice, the two servers can be: (1) a cloud
service provider who makes the recommendation, and a third party who provides the cryptography or evaluation service; or
(2) two third parties who provide the cryptography or evaluation service.

24

https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

Table 16. Upload communication cost (in MB) for SecEmb and its variants.

ML100K ML1M ML10M ML25M Yelp

MF

Secure FedRec 0.86 1.99 5.47 31.96 47.81
SecEmb-Init 4.56 7.60 8.51 16.83 17.43
SecEmb-RowEnc 0.28 0.43 0.45 0.78 0.79
SecEmb 0.17 0.27 0.28 0.51 0.52

NCF

Secure FedRec 0.44 1.00 4.11 23.98 29.89
SecEmb-Init 2.32 3.86 6.42 12.70 11.00
SecEmb-RowEnc 0.18 0.28 0.38 0.67 0.61
SecEmb 0.13 0.20 0.26 0.46 0.44

FM

Secure FedRec 0.91 2.01 5.48 31.97 47.82
SecEmb-Init 4.80 7.84 8.74 17.16 17.47
SecEmb-RowEnc 0.29 0.44 0.46 0.80 0.79
SecEmb 0.18 0.28 0.29 0.53 0.53

DeepFM

Secure FedRec 14.95 8.84 8.63 35.13 50.45
SecEmb-Init 18.84 14.66 11.89 20.23 20.10
SecEmb-RowEnc 14.33 7.27 3.61 3.95 3.43
SecEmb 14.22 7.10 3.45 3.68 3.16

Table 17. Computation cost (in milliseconds) for secret generation per user for SecEmb and its variants.

ML100K ML1M ML10M ML25M Yelp

MF

Secure FedRec 0.79 1.80 4.91 28.67 51.04
SecEmb-Init 5.34 15.35 22.56 28.53 26.43
SecEmb-RowEnc 0.37 0.90 0.91 1.34 1.47
SecEmb 0.31 0.47 0.47 0.72 0.74

NCF

Secure FedRec 0.40 0.92 3.71 21.68 27.09
SecEmb-Init 5.50 8.76 15.03 25.95 21.76
SecEmb-RowEnc 0.57 0.65 0.70 1.27 1.15
SecEmb 0.37 0.44 0.48 0.81 0.80

FM

Secure FedRec 0.83 1.82 4.91 28.65 51.14
SecEmb-Init 18.30 19.04 29.02 29.28 37.95
SecEmb-RowEnc 0.69 0.75 0.70 1.07 1.15
SecEmb 0.46 0.50 0.48 0.74 0.74

DeepFM

Secure FedRec 13.16 7.84 7.69 38.84 53.90
SecEmb-Init 38.94 35.74 37.78 34.85 39.94
SecEmb-RowEnc 13.15 7.88 4.84 5.48 6.33
SecEmb 12.99 6.67 3.45 3.77 3.54

While two non-colluding parties is a common assumption in multi-party computation (MPC) protocols (Corrigan-Gibbs
& Boneh, 2017; Addanki et al., 2022; Boneh et al., 2021; Mohassel & Zhang, 2017), it would be valuable to increase the
colluding threshold of our protocol for enhanced security. A multi-party FSS for point function with full threshold t > 2
achieves a key size subpolynomial in domain size (Boyle et al., 2015; 2022), as opposed to the exponential reduction in the
two-party case. For item embedding updates, the communication cost scales roughly with the square root of the item size m,
rather than logarithmic in m as in the two-party setting. A scalable solution with an increased collusion threshold requires a
more communication-efficient scheme.

L.2. Practical Considerations for Implementation of SecEmb

First, users might drop out during the implementation of our protocol. Our algorithm consists of two communication
rounds per iteration: one for private embedding retrieval and another for secure update aggregation. Let U1 and U2 denote
the participating users in these rounds, with U2 ⊆ U1. If users drop out in the update aggregation phase, servers could

25

SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding

simply aggregate the gradients from users in U2. Since each user independently generates their upload messages, the update
aggregation on the retaining users remains unaffected.

Second, the aggregated gradients and updated models should be within the range [−R,R] to avoid overflow in group
operation. Consider np participating users in each iteration, each user’s input should be constrained to [−Ru, Ru], where
Ru = (R−1)/np. In SecEmb, this can be enforced by limiting the size of CW (n+1) to ⌊log2 Ru⌋·d bits, thereby restricting
the range of values each user can transmit.

Finally, we consider a dynamic setting where users rate new items during the training process. Since m′ is a pre-specified,
unified value determined at the start based on the average m′

u, additionally ratings might increase each user’s m′
u, potentially

making m′ insufficient for most users. To address this issue, we periodically update m′ based on the average of m′
u. While

a larger m′ increases user payload, the efficiency gains remain substantial as long as m′ is sufficiently small compared with
m.

L.3. Application to Language Model Training

Our framework optimizes training efficiency in the embedding layer, making it applicable beyond RecSys to models with
sparse embeddings updates, such as language models (LM) (Dubey et al., 2024; Sanh, 2019; Chen et al., 2024b;a; 2025). In
the federated training of LM, users retrieve related token embeddings via our private embedding retrieval protocol, update
the model locally, and upload the gradients in our secure update aggregation module. Specifically, each user encodes the
relevant token ids (i.e., token ids appear in their local dataset) with FSS keys, and the server computes secret shares of token
embeddings for embedding retrieval or aggregates the secret shares of token embedding updates for SecAgg. For scalable
federated LM training, it is essential to integrate our framework with other parameter-efficient finetuning methods (Han
et al., 2024; Hu et al., 2022).

26

