

TPM2.0-Supported Runtime Customizable TEE on FPGA-SoC
with User-Controllable vTPM

Jingkai Mao, Xiaolin Chang

ABSTRACT
Constructing a Trusted Execution Environment (TEE) on
Field Programmable Gate Array System on Chip (FPGA-SoC)
in Cloud can effectively protect users’ private intellectual
Property (IP) cores. In order to facilitate the widespread de-
ployment of FPGA-SoC TEE, this paper proposes an ap-
proach for constructing a TPM 2.0-compatible runtime cus-
tomizable TEE on FPGA-SoC. This approach leverages a
user-controllable virtual Trusted Platform Module (vTPM)
that integrates sensitive operations specific to FPGA-SoC
TEE. It provides TPM 2.0 support for a customizable FPGA-
SoC TEE to dynamically measure, deploy, and invoke IP dur-
ing runtime. Our main contributions include: (i) Propose an
FPGA-vTPM architecture that enables the TPM 2.0 specifica-
tion support for FPGA-SoC TEE; (ii) Explore the utilization
of FPGA-vTPM to dynamically measure, deploy, and invoke
users’ IPs on FPGA-SoC TEE; (iii) Extend the TPM command
set to accommodate the sensitive operations of FPGA-SoC
TEE, enabling users to perform sensitive tasks in a secure and
verifiable manner according to the TPM 2.0 specification. We
implement a prototype of TRCTEE on the Xilinx Zynq Ul-
traScale+ MPSoC platform and conducted security analysis
and performance evaluations to prove the practicality and en-
hanced security features of this approach.

Keywords
Field Programmable Gate Array, Virtual Trusted Platform
Module, Trusted Execution Environment, Trusted Compu-
ting

1. Introduction
Cloud service providers are now introducing hardware-based
acceleration devices such as Field Programmable Gate Array
(FPGA) [1], graphics processing unit (GPU) [2], and Appli-
cation Specific Integrated Circuit (ASIC) [3] to meet the de-
mand for massively parallel computing. In particular, FPGA
is widely used by CSPs such as Amazon, Microsoft, and
Alibaba, for their dynamic reconfigurability with higher flex-
ibility and energy efficiency [4]. However, the security issues
of the cloud data centers [5] decrease end users’ confidence in
cloud FPGAs and then prevent end users from moving sensi-
tive work such as users’ Intellectual Properties (IPs) to clouds.
Major CSPs are also exploring how to address the issues of
data security and IP protection [6].

Trusted Execution Environment (TEE) [7] is a security so-
lution, which can provide a secure and verifiable execution
environment for sensitive data and code that is physically iso-
lated from insecure runtime environments. There existed re-
searches to explore TEE support on FPGA devices [8]-[11],
especially for building FPGA-System on Chip (FPGA-SoC)
TEE [12]-[18]. This is because FPGA-SoCs are significantly

more secure than pure FPGA architectures because they add
processing units containing built-in ARM TrustZone technol-
ogy to FPGAs. It enables the construction of hardware-iso-
lated FPGA-SoC TEEs. However, existing FPGA-SoC TEE
solutions lack of dynamic measurement and verification of
sensitive operations for customizing TEE at its runtime,
downgrading the user trust. Sensitive operations considered in
this paper include dynamically deploying and invoking the
user’s IPs. Moreover, the lack of unified security standards
has also limited their widespread adoption on the cloud [19].

The Trusted Platform Module 2.0 (TPM 2.0) standards
[20] in Trusted Computing (TC) technology as a unified secu-
rity standard are widely used in cloud TEE [21]-[25]. There-
fore, utilizing TPM to unify the security standards of FPGA-
SoC TEEs and provide support for their sensitive operations
to build FPGA-SoC TEEs based on TPM standards can effec-
tively solve the above problems.

(b) FPGA-fTPM Architecture

User Execution Path

(a) FPGA-dTPM Architecture

Remote
User

FPGA-SoC

User Node

(c) Our Solution (FPGA-vTPM Architecture)

vTPM

Enhanced
Security

Unified
Execution

TPM Execution Path

Trusted

Untrusted

dTPM

FPGA-SoC

REE TEE

fTPM

FPGA-SoC

REE TEE

REE TEE

Figure 1: State-of-the-art Solutions and Our Solution
The common existing TPM implementations compliant

with the TPM 2.0 specification include three main types: (i)
firmware TPM (fTPM) [26] deployed in firmware, (ii) virtual
TPM (vTPM) [27] as a software-only implementation of the
TPM, and (iii) discrete TPM (dTPM) as a standalone
chip[28]-[31]. It is noticed that the dTPM type approaches can
support pure FPGAs [28]-[30], but none of them can be ap-
plied to FPGA-SoCs. There exists researches to provide TPM
support for FPGA-SoC TEEs, which can be categorized into
the following types according to the type of TPM:

(Solution a) FPGA-dTPM Architecture. The architec-
ture for using dTPM to provide TC support for FPGA-SoC
TEE for secure boot proposed in [31] is shown in Figure 1 (a).
This architecture can enhance the FPGA-SoC’s security in the
boot process with dTPM.

(Solution b) FPGA-fTPM Architecture. Implementing
fTPM into a TEE built by TrustZone in the FPGA-SoC [13] is
illustrated in Figure 1 (b). This architecture can protect fTPM
implementation with TEE and improve FPGA-SoC security
with fTPM.

Although these existing TPM-enabled FPGA-SoC TEE
solutions enhance the security of FPGAs, there are still some

problems. For example, Solution a uses dTPM which has
many security issues in clouds [32] that make it difficult to be
applied on cloud FPGA-SoC TEEs. Solution b solves the
problems of Solution a, but still has some problems such as
unreliable fTPM that degrades the user’s confidence in using
it, as detailed in Section 4.2.

All the above discussions motivate our work. This paper
explores an approach (denoted as TRCTEE, TPM2.0-Com-
patible Runtime Customizable TEE on FPGA-SoC). TRCTEE
can build a runtime customizable TEE on FPGA-SoCs with
user-controllable vTPM to provide users with not only a secu-
rity-enhanced TEE but also a TPM 2.0-compatible method for
executing sensitive operations. Specifically, our approach pro-
poses the FPGA-vTPM architecture as shown in Figure 1 (c).
User-side reliable vTPM provides TPM support for FPGA-
SoC TEEs. The users can utilize this vTPM to perform sensi-
tive operations in FPGA-SoC TEEs in a unified manner.
Based on this architecture, we further enhance the security of
FPGA-SoC TEE by combining the TPM 2.0 standard. Mean-
while, we design a dynamic measurement methodology as
well as a unified execution method for sensitive operations on
the user’s IP, e.g., IP deployment and invocation. Furthermore,
TRCTEE leverages vTPM to build TEEs with wide applica-
bility and has the potential to integrate with other vTPM-
based TEE architectures to co-construct a unified TEE plat-
form in clouds. We implemented a prototype of TRCTEE on
Xilinx Zynq UltraScale+ XCZU15EG 2FFVB1156 MPSoC,
analyzed the security capabilities, and evaluated the perfor-
mance to indicate TRCTEE’s practicability.

We summarize the main contributions as follows:
1) We propose a new architecture (FPGA-vTPM) that pro-

vides a more secure TPM for FPGA-SoC TEE. We explore
TPM-enabled FPGA-SoC architecture using vTPM. Specifi-
cally, we implement a user-controllable vTPM at the user side
and design secure initialization, secure communication, and
dynamic session key update schemes by combining tech-
niques such as Static Random Access Memory (SRAM) Phys-
ical Unclonable Function (PUF) and Public Key Infrastructure
authentication. This ensures that the vTPM used by the
FPGA-SoC TEE is always secure and trusted.

2) We propose a security-enhanced runtime customizable
FPGA-SoC TEE based on FPGA-vTPM architecture. We ex-
plore the use of TPM to measure and record sensitive opera-
tions on user’s IPs located in FPGA-SoC TEE. Specifically,
we enhance the secure boot scheme for FPGA-SoCs by utiliz-
ing the measurement of the vTPM. Moreover, we implement
the user’s IP deployments and IP invocations in the TEE and
utilize vTPM to record these operations for user verification.

3) We extend the set of TPM commands and responses to
provide users with a unified method of executing sensitive op-
erations. We extend the TPM operation set to incorporate the
sensitive operations of FPGA-SoC TEEs into the TPM 2.0
standard. Specifically, we design commands/responses that
conform to the TPM 2.0 standard for three sensitive opera-
tions: updating session keys, deploying user’s IPs, and invok-
ing user’s IPs. Users can execute sensitive operations directly
with these commands, thus unifying operations on FPGA-

SoC TEEs.
The structure of this paper is organized as follows: Section

2 presents background information. Section 3 outlines the
threat model and requirements. Section 4 reviews related
work. Sections 5 and Section 6 detail the design and imple-
mentation of our approach. In Section 7, we analyze and eval-
uate the security and performance of TRCTEE. Section 8 con-
cludes the paper.

2. Background
This section presents the background, including the ZYNQ
Ultrascale+ Platform and built-in security technology in Sec-
tion 2.1 and the TPM specification in Section 2.2.

2.1 ZYNQ Ultrascale+ Platform and Built-in Security
Technology
The Zynq Ultrascale+ MPSOC series devices, introduced by
Xilinx, represent a heterogeneous multiprocessor scalable
platform and include ARM TrustZone technology as a built-in
security technology.

ZYNQ Ultrascale+ Platform. This device integrates a
high-performance Processing System (PS) and PL [1]. The PL
includes hardware-programmable FPGA structures and con-
figuration memory. The hardware logic functions of the FPGA
are determined by the bitstream stored in the configuration
memory. Configuring the bitstream involves programming a
bitstream, which is composed of multiple IP cores, into the
configuration memory. The PS comprises the ARM Cortex-
A53 Application Processing Unit (APU), the Platform Man-
agement Unit (PMU), and the Configuration Security Unit
(CSU). The CSU integrates cryptographic primitives and key
storage modules necessary for trusted boot mechanisms and
implements anti-tamper detection and response mechanisms.
Additionally, the CSU includes the Processor Configuration
Access Port (PCAP) for bitstream configuration and built-in
Direct Memory Access (DMA), referred to as CSUDMA. The
PMU firmware (PMU_FW) is primarily responsible for
power management and monitoring of system components.
The device also includes two types of system memory: On-
Chip Memory (OCM) and Double Data Rate (DDR) external
memory [33]. The OCM is a type of SRAM used for storing
sensitive data and code, such as the First Stage Boot Loader
(FSBL) [34] during boot processes.

ARM TrustZone. ARM TrustZone is a technology that
creates isolation between the TEE and the Rich Execution En-
vironment (REE) within a processor [35]. ARM Trusted Firm-
ware (ATF) serves as the reference implementation for the se-
cure monitor, managing state transitions, and communication
between TEE and REE. OP-TEE [36], an open-source TEE
software framework, supports running Linux as the REE op-
erating system (OS) and OP-TEE as the TEE OS on the APU.
OP-TEE provides the APIs [37][38] for developing Trusted
Applications (TAs) and Client Applications (CAs). Each TA
is uniquely identified by a Universally Unique Identifier
(UUID). ARM TrustZone also offers a method to extend se-
curity to the PL. Setting security bits in the AXI Interconnect
IP cores and introducing the AWPROT and ARPROT control
signals in the AXI slave devices can prevent unauthorized

REE access to secure IP cores belonging to the TEE [39].
Therefore, the security of the PS TEE can be extended to the
PL.

CMD Tag
 (2 Bytes)

CMD Length
(4 Bytes)

CMD Code
(4 Bytes) CMD Date

TPM Command
Format

Resp Tag
 (2 Bytes)

Resp Length
(4 Bytes)

Resp Code
(4 Bytes) Resp DateTPM Responce

Format ：

：

Figure 2: TPM Commands/Responses Format.

2.2 TPM Specification
The TPM 2.0 specification [40] is proposed by the Trusted
Computing Group (TCG). It supports a broader range of func-
tions, algorithms, and capabilities. Common implementations
include the vTPM [27]. It supports the TCG standards of Root
of Trust for Storage (RTS) and Root of Trust for Measurement
(RTM). The RTM, controlled by the Core Root of Trust for
Measurement (CRTM), performs integrity measurements via
hashing. The RTS aggregates these integrity measurements
and extends them to the Platform Configuration Registers
(PCRs). The vTPM typically supports 24 PCRs (PCR0-PCR23).

The TPM standard defines the communication format be-
tween TPM and external entities [41], namely TPM com-
mands and responses, as illustrated in Figure 2. A TPM com-
mand comprises a fixed-length 10-byte command header (de-
picted in orange in Figure 2) and a variable-length command
body (shown in yellow). The command header includes a 2-
byte tag identifying the command type, a 4-byte total com-
mand length, and a 4-byte command code. The command
body contains the parameters and data necessary for the spe-
cific command. Similarly, a TPM response consists of a 10-
byte response header and a variable-length response body. The
response header includes a 4-byte response code that repre-
sents the outcome of the command execution. The response
body contains the results and data returned from the execution
of the command.

Note that the vTPM instance is implemented as software
within the OS and its communication is unprotected. There-
fore, specific protection measures are required to ensure the
security and trustworthiness of the vTPM.

3. Threat Model and Requirements
This section describes the threats to TRCTEE in Section 3.1.
Section 3.2 gives the function requirements and the security
requirements based on the threats.

3.1 Threat Model
To achieve the goal of building a TPM2.0-compatible runtime
customizable TEE on FPGA-SoC using user-controllable
vTPM, the following threats need to be considered.

Threats against the vTPM. The vTPM needs to ensure
its security and trustworthiness throughout its lifecycle.
TRCTEE uses a user-controllable vTPM running on the user
side that can ensure the security of the data and code at rest
and in use after proper initialization. However, the security of
the transmission cannot be guaranteed. Therefore, the vTPM
is exposed to the following main threats:

1) Incorrectly vTPM initialization. An adversary may ma-
liciously initialize the vTPM by constructing malicious data

causing the vTPM to enter an abnormal state and to fail to
provide secure TC functionality.

2) Transmitted data leakage. An adversary can listen to the
communication data between the FPGA-SoC and the vTPM
or modify it to obtain the sensitive data.

Threats against the FPGA-SoC. Adversaries wishing to
gain access to the user’s IP and data in the FPGA-SoC [9] are
the main threats to the FPGA-SoC as follows:

1) IP and data leakage. An adversary may wish to obtain
data about private IPs from static bitstream files or from de-
ploying bitstreams to the PL [15]. As well, an adversary may
obtain or tamper with the private IPs of the user deployed to
the PL, e.g., by injecting a malicious IP into the PL.

2) Unauthorized access to FPGA-SoC. An adversary can
read back bitstreams deployed in the PL by reconfiguration
interfaces [15], as well as obtain data by unauthorized invoca-
tion to user-deployed IPs, etc.

Note that, physical attacks utilizing hardware are not con-
sidered in our threat model. Meanwhile, denial-of-service at-
tacks are also not considered in our threat model.

3.2 Requirements
We give the function requirements (FR) and the security re-
quirements (SR) that TRCTEE needs to fulfill.
Function Requirements:

To accomplish the goal, TRCTEE needs to satisfy FR1-
FR3:

1) FR1: Establishing vTPM Architecture for FPGA-
SoC. Build FPGA-SoC-enabled vTPM architecture (FPGA-
vTPM) that meets existing TPM 2.0 APIs available and sup-
ports the full TPM 2.0 standard.

2) FR2: Creating Runtime Customizable FPGA-SoC
TEEs with vTPM Support. Enhance the security of FPGA-
SoC TEE runtime customization, e.g., deployment and invo-
cation IPs, by utilizing the TC capabilities (e.g., measure-
ments) provided by vTPM.

3) FR3: Extending the TPM Command Set to Support
FPGA-SoC TEE. Extend some of the sensitive operations re-
quired for FPGA-SoC TEE to the TPM command set to build
a unified FPGA-SoC TEE based on the existing TPM 2.0
standard.
Security Requirements:

To against the threat given in the threat model, the
TRCTEE needs to fulfill SR1-SR5:

1) SR1: Secure Initialization and Binding of vTPM.
Need to ensure that the vTPM is properly initialized and there
is no data leakage. Moreover, the data of FPGA-SoC needs to
be prevented from being redirected to a malicious vTPM.

2) SR2: Secure Transmission. All data transferred be-
tween the vTPM and the FPGA-SoC need to ensure confiden-
tiality and integrity and should not be leaked to third parties.

3) SR3: Trusted Boot and Authentication for FPGA-
SoC. FPGA-SoC needs to be trusted booted with vTPM sup-
port and can be authenticated.

4) SR4: Secure and Verifiable Customization of FPGA-
SoC TEE. Need to ensure that only authorized parties can
customize the FPGA-SoC TEE, e.g. deploy IPs. Meanwhile,
the bitstreams of the IPs need to ensure confidentiality and

integrity. The customization process needs to be logged for
verification.

5) SR5: Secure and Verifiable IP Invocation. Need to
ensure that only authorized parties can invoke IPs already se-
curely deployed in FPGA-SoC TEEs and all invocations can
be logged and verified with the support of vTPM.

4. Related Work
This section focuses on FPGA-SoC TEE solutions and the re-
search on building TPM-enabled FPGAs.

4.1 FPGA-SoC TEE
Utilizing the ARM TrustZone technology built into the FPGA-
SoC to divide TEEs and REEs across PS and PL [15][18] can
effectively solve the problems of other solutions that do not
use ARM TrustZone technology [14][16][17] or do not build
TEEs on FPGA-SoCs [8]-[13]. Therefore, the following parts
focus on analyzing the FPGA-SoC TEE that constructed TEE
across PS and PL, and Table 1 summarizes the solutions ac-
cording to the SRs defined in Section 3.2.

Khan et al. in [15] proposed a security framework SFW
that divides both PS and PL into TEE and REE. Wang et al. in
[18] proposed to build secure runtime customizable TEEs on
FPGA-SoC. However, [15] does not consider remote attesta-
tion of device authenticity and IPs execution as well as pro-
tection of input and output data of the execution process. Our
previous work [18] proposed the SrcTEE to construct a secure
runtime-customizable TEE on FPGA-SoC, addressing the
weaknesses in SFW [15]. However, it did not consider the dy-
namic measurement of runtime customizable TEE, specifi-
cally for IP deployment and invocation. This prevented users
from verifying the trustworthiness of the customized FPGA-
SoC TEE.

Table 1: Comparison of TRCTEE and Existing Solutions

 SR1 SR2 SR3 SR4 SR5 Type of
TPM

Without
TPM

[15] - - × √ × -
[18] - - √ √ √ -

With
TPM

[13] × × √ √ × fTPM
[31] × × √ × × dTPM

Ours √ √ √ √ √ vTPM
*√ support √ partial support × not support - not applicable or unknown.

4.2 FPGAs Supported by TPM
Solutions that utilize TPMs to provide TC support for FPGAs
include solutions that provide TPM support for pure FPGAs
[28]-[30] and solutions that provide TPM support for FPGA-
SoCs [13][31]. The solutions for building TPM support for
pure FPGAs propose to utilize TPMs to secure embedded sys-
tems, measure FPGA configurations, and provide TC support
for FPGAs. However, none of these solutions can be applied
in FPGA-SoC that are more secure compared to pure FPGAs.
Meanwhile, none of them support hardware-isolated TEE. The
solution for building TPM support for FPGA-SoCs solves
some of the above problems. Next, we present TPM-enabled
FPGA-SoC solutions in terms of TPM implementation classi-

fications (introduced in Section 1). Table 1 lists the SRs satis-
fied by our approach and existing approaches.

Nicholas et al. in [31] adopted PUF and dTPM to design
a secure boot scheme for FPGA-SoC, protecting the security
of hardware application bitstreams during boot and runtime.
However, the lack of detection of OS and bitstream tampering
makes this secure boot scheme unable to trusted boot FPGA-
SoCs. Moreover, using dTPM for cloud FPGA-SoC support
is a challenge. Because the dTPM is the standalone hardware
in CSPs’ cloud infrastructure, where initialization and com-
munication security cannot be assured.

Gross et al. in [13] proposed constructing TEE using ARM
TrustZone technology built into FPGA-SoC and implement-
ing fTPM within the TEE. This approach also enhances fTPM
security using PUF as a random number generator and pro-
poses an encrypted bitstream deployment scheme using
TPM’s sealing function. The solution using fTPM solves the
challenge of dTPM solutions that are difficult to implement
on cloud FPGA-SoCs, but still have some problems.

In contrast, our approach solves the above challenges.
Specifically, our approach uses a user-controllable vTPM run-
ning on the user side and designs a secure initialization proto-
col that can solve the challenge of unreliable TPM (detailed in
Section 5.2.1). The secure communication protocol and key
update protocol in our approach address the challenge of in-
secure communication (detailed in Sections 5.2.2). Addition-
ally, our secure TEE construction includes trusted boot (de-
tailed in Section 5.3.1), secure and verifiable IP deployment
(detailed in Section 5.3.2), and invocation for FPGA-SoC (de-
tailed in Section 5.3.3) that address the challenge of untrusted
operation of FPGA-SoCs.

5. TRCTEE Approach
In this section, we describe our approach in detail, including
the TRCTEE approach overview, FPGA-vTPM architecture,
security-enhanced runtime customizable FPGA-SoC TEE
with vTPM, and the TPM commands/responses for FPGA-
SoC TEE extended by TRCTEE in Section 5.1-Section 5.4,
respectively.

Cloud Service Provider (CSP)
FPGA-SoCPL SRAM PUF

PS

User Node

vTPM

TPM-
Agent

OP-TEE

Trusted Management Module
(TMM)

Linux
Kernel

Trusted Third Party
(TTP)

Enrollment
vTPM

Enrollment Cloud
FPGA-SoC

TPM
Management

FPGA-SoC
Management

User
Space

Kernel
Space

Figure 3: Illustration of TRCTEE Architecture.

5.1 Overview
The TRCTEE approach consists of an FPGA-vTPM architec-
ture, an approach for constructing the security-enhanced
runtime customizable TEEs on FPGA-SoC formed on top of
that architecture in conjunction with the FPGA-SoC TEEs
proposed in our previous work [18], and an extension of the
TPM command/response set applicable to TRCTEE approach.

Here’s a brief overview of participants, components, and so-
lutions of the requirements.

Participants. As shown in the purple letters in Figure 3,
there are three participants:

1) Trusted Third Party (TTP), represents the role of
trusted authority for FPGA-SoC device fabrication and initial-
ization in clouds and initialization of user-controllable vTPM.

2) Cloud Service Provider (CSP) owns and maintains
physical equipment and provides services to remote users over
the network.

3) User Node, a host owned by the remote user who is the
CSP’s consumer.

Components. As shown in the blue parts in Figure 3, there
are four components implemented in TRCTEE (implemented
in Section 6).

1) SRAM PUF is used to authenticate devices using a
challenge-response process utilizing the features of the PUF.

2) Trusted Management Module (TMM) is a manage-
ment module implemented in OP-TEE.

3) TPM-Agent is an agent running in REE that forwards
encrypted TPM commands and responses.

4) vTPM is a vTPM instance running on a user node that
supports the full TPM 2.0 standard.

5.2 FPGA-vTPM Architecture
This section provides a detailed description of the FPGA-
vTPM architecture in the TRCTEE.
5.2.1 Initialization
The FPGA-SoC initialization is divided into three steps: de-
vice enrollment, device launch, and remote authentication and
session key generation.

1) Device Enrollment. Device enrollment includes
FPGA-SoC for CSPs and vTPM instances for users. For
FPGA-SoC, TTP gets and stores the device ID (#𝐷𝐷𝐷𝐷)
generated by the device vendors as the device identification.
A customized bootable image is generated for the device,
which includes images of FSBL with TTP’s public key (𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇)
pre-stored, a full bitstream of SRAM PUF, PMU_FW, ATF,
OP-TEE, Linux, and root filesystem (Rootfs) with TMM
included. Finally, TTP collects the CRPs of the device.

For vTPM instance enrollment, we default that the owner
of the vTPM instance (i.e., the user) is already registered with
the TTP, and the TTP can accurately recognize the user’s iden-
tity and communicate securely with the user. The user then
first requests TTP to generate 𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇/𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇 of the vTPM in-
stance for this remote authentication process and generate the
certificate (Ca(𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇)). After that, TTP stores Ca(𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇) in
the security database for the subsequent authentication pro-
cess. Finally, TTP sends the 𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇/𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇, Ca(𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇) and
𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇 to user.

2) Device Launch. Device launch is also divided into
FPGA-SoC launch and vTPM instance launch. For the FPGA-
SoC launch, we consider that the bootable image provided by
TTP for FPGA-SoC already supports the trusted boot scheme
in the TRCTEE approach (detailed in Section 5.3.1).

For the vTPM instance, the user gets the information of the
FPGA-SoC device from TTP when launching the vTPM in-
stance.

3) Remote Authentication and Session Key Generation.
When vTPM launches, it performs remote authentication with
the cloud FPGA-SoC and generates a session key (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆).
This protocol combines PUF-based authentication with public
key infrastructure, which is divided into 9 steps, as shown in
the upper part of the dashed line in Figure 4. See Appendix
2.1 for details on remote authentication and session key gen-
eration protocol. Through this protocol, vTPM can be bi-di-
rectionally verified with the cloud FPGA-SoC to securely in-
itialize the FPGA-vTPM architecture to support subsequent
functionality (Security analysis in Appendix 1).
5.2.2 Dynamically Update Session Key

The TRCTEE includes the function to dynamically update
the session key. This function allows updating the session key
using the present system state without disconnecting the
FPGA-SoC from the vTPM. Usually, two situations can trig-
ger the key update process: (i) setting the vTPM’s counter
threshold and automatically updating the key when the vTPM
self-increment counter’s value exceeds the set value. (ii) The
user sends a key update command (Update_CMD, detailed in
Section 5.4.1) to update the key in a user-controllable manner.

FPGA-SoC

TPM-AgentSRAM PUF

① Launch vTPM
 Generate Random r0

TMM
SRAM PUF
vTPM

TMM vTPM

 ② Ca(PKTPM), C1, r0
 ③ Generate PKATTEST and SKATTEST
 a=Sig(PKATTEST; SKTMM)
 Get HBOOT and Generate H1=Hash(HBOOT|| #DI)

 ④ C1
⑤ Invoke SRAM PUF
 R1= PUF(C1) ⑥ R1

 ⑦ Generate ShaVal={PKTPM ;SKATTEST}
 Generate SessKey=Hash(ShaVal||H1||R1)
 Generate H2=Hash(HBOOT||#DI||R1||Hash(r0))

 ⑧ PKATTEST, a, H2
⑨ Verify PKATTEST , H2 , Hash(r0) and Compute H1
 Generate ShaVal={PKATTEST ;SKTPM}
 Generate SessKey=Hash(ShaVal||H1||R1)

Initialize key
U

pdate key

① Compute HPCR=Hash(HPCR0||...||HPCR23)
 Compute H1=Hash(HPCR||#DI)
 Generate SessKeynew=Hash(ShaVal||H1||R2)

 ② Enc{C2||HPCR;SessKeyold}
 ③ Decrypt and Get C2, HPCR
 Generate H1=Hash(HPCR||#DI)

 ④ C2
⑤ Invoke SRAM PUF
 R2= PUF(C2)

 ⑥ R2

 ⑦ Generate SessKeynew=Hash(ShaVal||H1||R2)
 ⑧ Enc{R2;SessKeynew} ⑨ Verify R2

 Enable New Session Key

Figure 4: Key Initialization and Key Update Protocols for TRCTEE.

Specifically, when a user uses the Update_CMD or the
counter reaches a set threshold, the vTPM generates a new key
based on the current system state (the hash from PCR0 to
PCR23) in conjunction with a CRP that has never been used.
The necessary information is then sent to the TMM for the
TMM to update the key. Finally, the two parties verify the new
key and use it to communicate. The key update protocol com-
bines public key infrastructure and PUF-based authentication
in 9 steps, as shown in the lower part of the dashed line in
Figure 4. See Appendix 2.2 for details on dynamically updated
session key protocol.

Bitstream

BootRom

ATF

Linux

U-Boot

Rootfs

vTPM

PCR0

PCR1

PCR2

PCR3

PCR4

PCR5

PCR6

PCR7

FSBL

PMU_FW

OP-TEE

Figure 5: FPGA-SoC Trusted Chain built by TRCTEE.

5.3 Security-Enhanced Runtime Customizable FPGA-
SoC TEE
In this section, we describe the security-enhanced runtime
customizable FPGA-SoC TEE constructed by the TRCTEE. It
mainly includes a trusted boot scheme for FPGA-SoC and two
sensitive operations (user’s IPs deployment and IPs invocation)
for secure and trusted customized FPGA-SoC TEE at runtime.
5.3.1 Trusted Boot Scheme
The trusted boot scheme refers to the FPGA-SoC secure boot
scheme proposed in [18] and combines the TPM 2.0 standards
provided by vTPM to form the vTPM-supported FPGA-SoC
trusted boot scheme. This scheme uses BootROM as a CRTM
to measure and execute securely customized FSBL, the bit-
stream of SRAM PUF, PMU_FW, ATF, OP-TEE, U-Boot,
Linux, and Rootfs, respectively, and extends them to PCR0 to
PCR7 of the vTPM, as shown in Figure 5.
5.3.2 User’s IP Deployment
Deploying the user’s IP is usually realized by invoking PCAP

in the CSU or Internal Configuration Access Port (ICAP) in
the static logic of the PL. However, in FPGAs divided be-
tween TEE and REE, only processes or applications with priv-
ileges in the TEE should be allowed to invoke PCAP or ICAP
to ensure the trustworthiness of the IPs deployed in the PL and
to restrict the attacks [13][15]. In TRCTEE, only the TMM
has the privilege to deploy IPs and record the IP deployment
operation in the PCR. TRCTEE restricts REE access to PCAP
using customized PMU_FW that removes the ability to inter-
act with PCAP and integrates the PCAP and permission
checking in the OP-TEE kernel space to make the IP deploy-
ment functionality available only to the TMM. Meanwhile,
TRCTEE extends the TPM commands (Deploy_CMD, de-
tailed in Section 5.4.2) so that the user can only deploy IPs
through vTPM and record it, which also ensures that any de-
ploying operation is logged in PCRs for later verification by
the user.

When a user wants to deploy IPs, it first creates a bitstream
locally or fetches it and encrypts it. The prepared data (de-
tailed in Assumption 1 in Appendix 2.3) is then stored locally
and the encrypted bitstream is uploaded to the file system of
the FPGA-SoC. Afterward, the user invokes vTPM using the
Deploy_CMD. vTPM will collaborate with the TMM to de-
ploy the IPs, measure the deployment process, and extend it
to PCR8. The protocol for deploying a user’s IP by TRCTEE,
which consists of 9 steps, is shown in the upper part of the
dashed line in Figure 6. See Appendix 2.3 for details on the
user’s IP deployment protocol. User’s IP Invocation

As with IP deployment, invocation of the IPs should also
be isolated from the REE, blocking access from untrustworthy
processes and allowing access only from authorized parties in
the TEE. In TRCTEE, only the TMM has the invocation priv-
ilege and each invocation is logged in the vTPM with the TPM
commands (Invoke_CMD, detailed in Section 5.4.3) extended
by TRCTEE. Specifically, we refer to the scheme in [18] and
design an address-based input/output format to invoke the IP
and extend the input data to PCR9 and the output data to PCR10
to record each invocation. Next, we introduce the IP invoca-
tion protocol for TRCTEE, which consists of 9 steps, as
shown in the lower part of the dashed line in Figure 6. See
Appendix 2.4 for details on the user’s IP invocation protocol.

User NodeFPGA-SoC

TPM-Agent

③ Get BinKey and Hash(Bin)
 Compute SigKEY=Sig(Hash(BinKey); SKTPM)
 Compute SigBIN=Sig(Hash(Bin); SKTPM)

TMM
User
vTPM

TMM vTPM

 ⑤ Decrypt and Verify SigKEY SigBIN

① Prepare IP and Date

⑦ Enc{Hash(Bin);SessKey}

⑧ Extend to PCR8=Hash(PCR8||Hash(Bin))

D
eploy IP

Invoke IP

 ④ Enc{AddrInput||Input||AddrFlag||
Flag||AddrOutput;SessKey}

⑦ Enc{Output||HOutput;SessKey}

User

② Deploy_CMD(IP_NUM) ④ Enc{BinKey||SigKEY||SigBIN;SessKey}

 ⑥ Get and Decrypt Enc{Bin; BinKey}
 Verity Hash(Bin) and Reconfiguration FPGA ⑨ Deploy_Resp(Hash(Bin))

① Prepare Date② Invoke_CMD(Input, Flag)

③ Get Input Flag and Output Address
 Extend to PCR9=Hash(PCR9||Hash(Input))

 ⑤ Decrypt AddrInput ,Input, AddrFlag ,Flag, AddrOutput

 ⑥ Invoke IP
 Get Output and Compute HOutput=Hash(Output)

⑧ Extend to PCR10=Hash(PCR10||HOutput)⑨ Invoke_Resp(Output)

Figure 6: User’s IP Deployment and Invocation Protocols for TRCTEE.

5.4 Extended TPM Commands and Responses
In this section, we introduce the TRCTEE-extended TPM

command/response set that enables users to perform sensitive
operations on FPGA-SoC TEEs in a unified TPM 2.0 standard,
consisting of the command/response for: (i) dynamically up-
dating the key (Update_CMD/Resp); (ii) deploying the IP
(Deploy_CMD /Resp) and (iii) invoking IP (In-
voke_CMD/Resp).

CMD
Tag

CMD
Length

Update_CMD Code
(0x1F 0x00 0x00 0x00) ChallengeUpdate_CMD

Resp
Tag

Resp
Length

Update_Resp Code
(0x00 0x00 0x00 0x00) State CodeUpdate_Resp

Update_CMD Code
(0x2F 0x00 0x00 0x00) IP_NUM

Resp Code
(0x00 0x00 0x00 0x00)

Hash(Bin)
(E.g., SHA3-384)

Invoke_CMD Code
(0x3F 0x00 0x00 0x00)

IP
NUM

Resp Code
(0x00 0x00 0x00 0x00)

Output
Length

Input
Length

Input
Data Flag

Output
Data

CMD
Tag

CMD
Length

Resp
Tag

Resp
Length

CMD
Tag

CMD
Length

Resp
Tag

Resp
Length

Deploy_CMD

Deploy_Resp

Invoke_CMD

Invoke_Resp

Figure 7: TRCTEE Extended TPM Command/Response
Structure.

5.4.1 Update_CMD/Resp
Update_CMD, a TPM command that is extended to update the
session key (detailed in Section 5.2.2). The command length
is fixed at 14 bytes, which includes the command header and
additional data, as shown in Figure 7. The 10-byte command
header includes a 2-byte command tag, a 4-byte command
length, and a 4-byte unique command code (0x1F 0x00 0x00
0x00). The additional data is a 4-byte challenge for updating
the key.

Update_Resp is the response to Update_CMD. The length
of this response is fixed at 12 bytes, including a 10-byte re-
sponse header and 2 bytes of additional data. The response
header is the same as the response header definition of other
responses in the TPM 2.0 standard (detailed in Section 2.2). 2
bytes of additional data is the return code of the execution sta-
tus of Update_CMD. If the return code is 0, it means the ses-
sion key was successfully updated, and 1 means the update
process failed.
5.4.2 Deploy_CMD/Resp
Deploy_CMD, which is the TPM command used to deploy a
user’s IP (detailed in Section 5.3.2). Deploy_CMD has a fixed
length of 12 bytes, with 10 bytes for the command header con-
taining the special command code (0x2F 0x00 0x00 0x00),
and 2 bytes for the IP serial number (𝐼𝐼𝐼𝐼_𝑁𝑁𝑁𝑁𝑁𝑁) of the IP the
user wishes to deploy, as shown in Figure 7. The 𝐼𝐼𝐼𝐼_𝑁𝑁𝑁𝑁𝑁𝑁
with a length of 2 bytes means that it can support up to 65536
IP deployments.

Deploy_Resp is the response to Deploy_CMD. The re-
sponse length is fixed at 58 bytes, containing a 10-byte re-
sponse header and a 48-byte 𝐻𝐻𝐻𝐻𝐻𝐻ℎ(𝐵𝐵𝐵𝐵𝐵𝐵) . 𝐻𝐻𝐻𝐻𝐻𝐻ℎ(𝐵𝐵𝐵𝐵𝐵𝐵) is the
hash of the deployed IP, here the SHA3-384 algorithm is used
to compute a 48-byte hash. When successfully deployed, the
response code is 0 and the user can verify the hash, otherwise,
the response code is 1, representing a deployment failure.
5.4.3 Invoke_CMD/Resp
Invoke_CMD is a TRCTEE extended TPM command to in-
voke the user’s IP (detailed in Section 5.3.3). The length of

this command is variable and depends on the length of the in-
put data when the user invokes IP, as shown in Figure 7. We
define the command format as a 10-byte command header
containing a special command code (0x3F 0x00 0x00 0x00)
and additional data of variable length. The additional data
contains a 2-byte serial number (𝐼𝐼𝐼𝐼_𝑁𝑁𝑁𝑁𝑁𝑁), 4-byte input data
length (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ), input data, and a 4-byte execution
state identifier (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹). The 𝐼𝐼𝐼𝐼_𝑁𝑁𝑁𝑁𝑁𝑁 is used to indicate the IP
of this invocation, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ indicates the number of
bytes of the input data. The 2-byte 𝐼𝐼𝐼𝐼_𝑁𝑁𝑁𝑁𝑁𝑁 can support up to
65536 IP invocations, and the 4-byte 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ supports
up to 2^32 bytes of input. In general, the long length of input
data should be avoided because the excessively long data will
cause the command transmission to be fragmented.

Invoke_Resp is the response to the corresponding com-
mand, including a 10-byte response header and response data
of variable length. The length of the response data depends on
the return data of this IP invocation which includes a 4-byte
output length (𝑂𝑂𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ) and output data of variable
length. As with commands, the 4-byte output length can sup-
port output data of 2^32-byte length, but the output data
should not be excessively long to avoid fragmentation.

6. Implementation
We implemented a prototype system of our concept. This sys-
tem consists of an FPGA-SoC device and a vTPM instance
running on Linux Server as a user-controllable vTPM. A Xil-
inx Zynq UltraScale+ XCZU15EG 2FFVB1156 MPSoC is
chosen as the FPGA-SoC device, and an AMD server running
Ubuntu 22.04 LTS is used as the Linux Server to simulate the
user’s local environment.

The software stack on the FPGA-SoC follows Xilinx rec-
ommendations. We generated the corresponding boot compo-
nents using the included Xilinx Vitis Design Suite 2020.1, Xil-
inx Vivado Design Suite 2020.1, and corresponding PetaL-
inux Tools, and have customized them to support trusted boot-
ing of FPGA-SoC that meet our system.

7. Evaluation of TRCTEE
This section first analyzes the security of TRCTEE in Section
7.1. Then we evaluate its performance in Section 7.2.

7.1 Security Analysis
We will present some of the attacks related to security
requirements defined in Section 3.2 (SR1-SR5), focusing on
how TRCTEE can defend against these attacks and thus
satisfy SRs. Due to space limitations, the detailed formal
analysis is given in Appendix.

7.2 Performance Evaluation
We evaluated TRCTEE’s performance from three aspects:
hardware resource utilization, TPM command/response exe-
cution time, and the time overhead of the sensitive operation.

Two devices were utilized: one as a user node running a
user-controllable vTPM, and the other as an FPGA-SoC
device. The user node was a server with an AMD EPYC 7763
64-core processor and 256GB of memory, running Ubuntu
22.04 LTS with kernel version 6.1.0, and a software stack

including OpenSSL 1.1.1q and Libtpms v0.9.6. The FPGA-
SoC device was a Xilinx Zynq UltraScale+ XCZU15EG
2FFVB1156 MPSoC, running Xilinx-recommended Linux
v5.4.0 as the REE OS, and OP-TEE v3.16.0 as the TEE OS.
To evaluate TRCTEE’s performance, we designed and
exported three Convolutional Neural Network (CNN)
accelerators [48] using Vivado, with sizes of 2172KB, 672KB,
and 372KB respectively.

Table 2: The Reconfigurable Resource Utilization Rate

Resource Used Available Utilization Rate

LUT 716 341280 0.21%
LUTRAM 85 184320 0.05%

FF 1119 682560 0.16%
CARRY8 32 42660 0.07%
F7 Muxes 37 170640 0.21%

CLB 255 42660 0.59%
BRAM 0 744 0%

Table 3: Comparison of Resource Consumption

Ref. Device LUT FF CLB BRAM

2021[9] Xilinx Virtex-6 78244 48048 - 14
2021[10] Xilinx VCU118 21393 112922 - 30
2021[11] Xilinx Virtex-7 175854 91549 - 339
2019[14] Xilinx ZCU102 48572 25719 - 84
2022[16] AWS F1 15573 - - 2
2021[17] Xilinx 7000 45064 44238 - 90
2024[18] Xilinx AXU15EG 53989 801 0 0

Ours Xilinx AXU15EG 716 1119 255 0
* - indicates that no corresponding reconfigurable resource consumption is published for
the existing solutions.

7.2.1 Hardware Resource Utilization
Since the implementation of the SRAM PUF components
static logic occupies reconfigurable resources in the PL, it is
essential to evaluate the reconfigurable resource usage of
TRCTEE. We examine the utilization of common reconfigu-
rable resources, including LUT, LUTRAM, FF, CARRY8, F7
Muxes, CLB, and BRAM, as shown in Table 2. We introduce
a resource utilization rate to assess the reconfigurable resource
usage of TRCTEE.
7.2.2 Performance of TPM Commands
TRCTEE provides comprehensive support for the TPM 2.0
standard on FPGA-SoC, and we evaluate its performance us-
ing common TPM commands. Due to the secure communica-
tion protocol designed within TRCTEE, it is necessary to
evaluate the overhead introduced by secure communication.
We utilize the tpm2-tools [49] utility in the user space to in-
voke vTPM, and compare the transmission bytes (Bytes) and
execution time (Time) between TRCTEE and architecture
without secure communication:

(i) Without Enc, denotes the removal of secure commu-
nication protocols in our FPGA-vTPM architecture.

(ii) Ours, denotes our approach (TRCTEE).
Table 4 presents the transmission bytes and execution time

of common commands.

Table 4: Time for TPM Commands Execution

tpm2-tools Cmds TPM
Cmds

Without Enc Ours

Bytes Time Bytes Time
tpm2_getrandom

(16B) 6 481 46.7ms 637 109.5ms

tpm2_pcrread
(SHA384) 8 1595 49.4ms 1803 169.4ms

tpm2_pcrextend
(SHA384) 4 132 38.7ms 236 82.0ms

tpm2_hash
(SHA256) 4 178 38.2ms 282 82.2ms

tpm2_rsaencrypt
(RSA2048) 24 8256 53.1ms 8880 360.3ms

tpm2_rsadecrypt
(RSA2048) 54 14740 78.0ms 16144 664.1ms

tpm2_encrypt
(AES128) 54 7743 71.4ms 9147 682.9ms

tpm2_decrypt
(AES128) 54 7743 70.9ms 9147 682.4ms

8. Conclusions and Future Work
This paper presents a TPM2.0-compatible runtime customiza-
ble TEE (TRCTEE) on FPGA-SoC, leveraging a user-control-
lable vTPM to build a runtime customizable TEE on FPGA-
SoCs. Our approach integrates the TPM 2.0 specification with
FPGA-SoC to enhance security and create a uniform platform
for executing sensitive operations.

References
[1] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei

Ma, Sarma B. K. Vrudhula, Jae-sun Seo, Yu Cao, “Throughput-
Optimized OpenCL-based FPGA Accelerator for Large-Scale
Convolutional Neural Networks,” in Proceedings of the 2016
ACM/SIGDA international symposium on field-programmable gate
arrays, pp. 16-25, 2016.

[2] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu,
Christopher J. Rossbach, Emmett Witchel, “Telekine: Secure Computing
with Cloud GPUs,” in 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pp. 817-833, 2020.

[3] Wolkerstorfer, Johannes, Elisabeth Oswald, and Mario Lamberger, "An
ASIC implementation of the AES SBoxes," in The Cryptographers’
Track at the RSA Conference, pp. 18–22, 2002.

[4] Francesco Restuccia, Alessandro Biondi, “Time-Predictable
Acceleration of Deep Neural Networks on FPGA SoC Platforms,” in
2021 IEEE Real-Time Systems Symposium (RTSS), pp. 441-454, 2021.

[5] Sun, PanJun, "Security and privacy protection in cloud computing:
Discussions and challenges," Journal of Network and Computer
Applications, vol. 160, 2020.

[6] Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad
Ewais, Naif Tarafdar, Juan Camilo Vega, Ken Eguro, Dirk Koch,
Suranga Handagala, Miriam Leeser, Martin C. Herbordt, Hafsah Shahzad,
Peter Hofste, Burkhard Ringlein, Jakub Szefer, Ahmed Sanaullah,
Russell, “Tessier: The Future of FPGA Acceleration in Datacenters and
the Cloud,” in ACM Transactions on Reconfigurable Technology and
Systems (TRETS), vol. 15, pp. 34-42, 2022.

[7] GlobalPlatform, “GlobalPlatform Technology TEE System Architecture,”
GlobalPlatform, 2018. https://globalplatform.org/wp-content/uploads/
2018/09/GPD_TEE_SystemArch_v1.1.0.10-for-v1.2_PublicReview.pdf
(accessed Jan. 01, 2025).

[8] Jo Vliegen, Md Masoom Rabbani, Mauro Conti, Nele Mentens, “A Novel
FPGA Architecture and Protocol for the Self-attestation of Configurable
Hardware,” Cryptology ePrint Archive, 2019.

[9] Muhammad E. S. Elrabaa, Mohammed Alasli, Marwan H. Abu-Amara,
“Secure Computing Enclaves Using FPGAs,” IEEE Transactions on
Dependable and Secure Computing, vol. 18, pp. 593-604, 2021.

[10] Shaza Zeitouni, Jo Vliegen, Tommaso Frassetto, Dirk Koch, Ahmad-

Reza Sadeghi, Nele Mentens, “Trusted Configuration in Cloud FPGAs,”
in IEEE 29th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2021, pp. 233-241.

[11] Ke Xia, Yukui Luo, Xiaolin Xu, Sheng Wei, “SGX-FPGA: Trusted
Execution Environment for CPU-FPGA Heterogeneous Architecture,” in
58th ACM/IEEE Design Automation Conference (DAC), 2021, pp. 301-
306.

[12] Nakai, Tsunato, Daisuke Suzuki, and Takeshi Fujino, "Towards isolated
AI accelerators with OP-TEE on soc-FPGAs," in International
Conference on Applied Cryptography and Network Security, 2022, pp.
200-217.

[13] Mathieu Gross, Konrad Hohentanner, Stefan Wiehler, Georg Sigl,
“Enhancing the Security of FPGA-SoCs via the Usage of ARM
TrustZone and a Hybrid-TPM,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 15, pp.1-26, 2022.

[14] Han-Yee Kim, Rohyoung Myung, Boeui Hong, Heon-Chang Yu,
Taeweon Suh, Lei Xu, Weidong Shi, “SafeDB: Spark Acceleration on
FPGA Clouds with Enclaved Data Processing and Bitstream Protection,”
in IEEE 12th International Conference on Cloud Computing (CLOUD),
2019, pp. 107-114.

[15] Nadir Khan, Sven Nitzsche, Asier Garciandia López, Jürgen Becker,
“Utilizing and Extending Trusted Execution Environment in
Heterogeneous SoCs for a Pay-Per-Device IP Licensing Scheme,” in
IEEE Transactions on Information Forensics and Security, vol. 16, pp.
2548-2563, 2021.

[16] Mark Zhao, Mingyu Gao, Christos Kozyrakis, “ShEF: shielded enclaves
for cloud FPGAs,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 1070-1085.

[17] Wei Ren, Junhao Pan, Deming Chen, “AccGuard: Secure and Trusted
Computation on Remote FPGA Accelerators,” in IEEE International
Symposium on Smart Electronic Systems (iSES), 2021, pp. 378-383.

[18] Yanling Wang, Xiaolin Chang, Haoran Zhu, Jianhua Wang, Yanwei
Gong and Lin Li, “Towards Secure Runtime Customizable Trusted
Execution Environment on FPGA-SoC,” IEEE Transactions on
Computers, vol. 73, pp. 1138-1151, 2024.

[19] Ott Simon, Orthen Benjamin, Weidinger Alexander, Horsch Julian,
Nayani Vijayanand and Ekberg Jan-Erik, “MultiTEE: Distributing
Trusted Execution Environments,” in Proceedings of the 19th ACM Asia
Conference on Computer and Communications Security, 2024, pp. 1617-
1629.

[20] Trusted Computing Group, “Trusted Platform Module (TPM) Summary,”
Trusted Computing Group, 2007. https://trustedcomputinggroup.org/r
esource/trusted-platform-module-tpm-summary/ (accessed Jan. 01,
2025).

[21] Bryan Parno, Jonathan M. McCune, Adrian Perrig, “Bootstrapping Trust
in Commodity Computers,” in Proceedings of the 2010 IEEE Symposium
on Security and Privacy, 2010, pp. 414–429.

[22] Joana Pecholt, Sascha Wessel, “CoCoTPM: Trusted Platform Modules
for Virtual Machines in Confidential Computing Environments,” in
Proceedings of the 38th Annual Computer Security Applications
Conference, 2022, pp. 989–998.

[23] Juan Wang, Jie Wang, Chengyang Fan, Fei Yan, Yueqiang Cheng,
Yinqian Zhang, Wenhui Zhang, Mengda Yang, Hongxin Hu, “SvTPM:
SGX-based Virtual Trusted Platform Modules for Cloud Computing,”
IEEE Transactions on Cloud Computing, pp. 1–18, 2023.

[24] Vikram Narayanan, Claudio Carvalho, Angelo Ruocco, Gheorghe
Almasi, James Bottomley, Mengmei Ye, Tobin Feldman-Fitzthum,
Daniele Buono, Hubertus Franke, Anton Burtsev, “Remote attestation of
confidential VMs using ephemeral vTPMs,” in Proceedings of the
Annual Computer Security Applications Conference, 2023, pp. 732–743.

[25] Jingkai Mao, Haoran Zhu, Junchao Fan, Lin Li, Xiaolin Chang,
“Towards Trust Proof for Secure Confidential Virtual Machines,” arXiv:
2405.01030 [cs.CR], 2024.

[26] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah
Cox, Paul England, Chris Fenner, Kinshuman Kinshumann, Jork Loeser,
Dennis Mattoon, Magnus Nystrom, David Robinson, Rob Spiger, Stefan
Thom, and David Wooten, “fTPM: A Firmware-based TPM 2.0
Implementation,” Microsoft, 2015. https://www.microsoft.com/en-
us/research/wp-content/uploads/2016/02/msr-tr-2015-84.pdf/ (accessed
Jan. 01, 2025).

[27] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez,
Reiner Sailer, Leendert van Doorn, “vTPM: Virtualizing the Trusted
Platform Module,” USENIX Security Symposium, 2006, pp. 305-320.

[28] Huaqiang Huang, Chen Hu and Jianhua He, “A security embedded
system base on TCM and FPGA,” in IEEE International Conference on
Computer Science and Information Technology, 2009, pp. 605-609.

[29] B. Glas, A. Klimm, K. D. Müller-Glaser and J. Becker, “Configuration
Measurement for FPGA-based Trusted Platforms,” in IEEE/IFIP
International Symposium on Rapid System Prototyping, 2009, pp. 123-
129.

[30] Thomas Eisenbarth, Tim Güneysu, Christof Paar, Ahmad-Reza Sadeghi,
Dries Schellekens, and Marko Wolf, “Reconfigurable trusted computing
in hardware,” in Proceedings of the 2007 ACM workshop on Scalable
trusted computing (STC ‘07), 2007, pp. 15–20.

[31] Geraldine Shirley Nicholas, Ali Shuja Siddiqui, Sam Reji Joseph,
Gregory Williams, Fareena Saqib, “A Secure Boot Framework with
Multi-security Features and Logic-Locking Applications for
Reconfigurable Logic,” in Journal of Hardware and Systems Security,
vol. 5, pp. 260-268, 2021.

[32] Kursawe, Klaus, Dries Schellekens, and Bart Preneel, “Analyzing trusted
platform communication,” in cryptographic advances in secure
hardware, 2005.

[33] Xilinx, “Zynq UltraScale+ MPSoC Software Developer Guide,” Xilinx,
2020,
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022 _2
/ug1137-zynq-ultrascale-mpsoc-swdev.pdf/ (accessed Jan. 01, 2025).

[34] Xilinx, “Zynq UltraScale+ Device Technical Reference Manual,” Xilinx,
2023,
https://www.xilinx.com/content/dam/xilinx/support/documents/user
_guides/ug1085-zynq-ultrascale-trm.pdf/ (accessed Jan. 01, 2025).

[35] Arm, “ARM Security Technology: Building a Secure System using
TrustZone Technology,” ARM, 2009, https://developer.arm.com/
documentation/PRD29-GENC-009492/latest/ (accessed Jan. 01, 2025).

[36] Linaro, “OP-TEE Documentation,” 2024, https://optee.readthedocs.io
/en/latest/ (accessed Jan. 01, 2025).

[37] GlobalPlatform, “GlobalPlatform Technology TEE Internal Core API
Specification,” GlobalPlatform, 2021, https://globalplatform.org/specs-
library/tee-internal-core-api-specification/ (accessed Jan. 01, 2025).

[38] GlobalPlatform, “GlobalPlatform Device Technology Tee Client API
Specification,” GlobalPlatform, 2021, https://globalplatform.org/wp-
content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf/
(accessed Jan. 01, 2025).

[39] E. M. Benhani, C. Marchand, A. Aubert and L. Bossuet, “On the security
evaluation of the ARM TrustZone extension in a heterogeneous SoC,” in
IEEE International System-on-Chip Conference (SOCC), 2017, pp. 108-
113.

[40] Trusted Computing Group, “Trusted Platform Module (TPM) Summary,”
Trusted Computing Group, 2007. https://trustedcomputinggroup.org/r
esource/trusted-platform-module-tpm-summary/ (accessed Jan. 01,
2025).

[41] Trusted Computing Group, “Trusted Platform Module Library Part 3:
Commands,” Trusted Computing Group, 2016. https://
trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-
Commands-01.38.pdf/ (accessed Jan. 01, 2025).

[42] Xilinx, “Isolation Methods in Zynq UltraScale+ MPSoCs,” Xilinx, 2021,
https://docs.xilinx.com/v/u/en-US/xapp1320-isolation-methods/
(accessed Jan. 01, 2025).

[43] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin
Yang, “High-speed high-security signatures,” J. Cryptogr. Eng. Vol. 2,
pp. 77-89, 2012.

[44] Stefan Berger, “SWTPM.” GitHub, 2014.
https://github.com/stefanberger /swtpm (accessed: Jan. 01, 2025).

[45] Stefan Berger, “Libtpms.” GitHub, 2013. https://github.com/stefanberger
/libtpms (accessed: Jan. 01, 2025).

[46] OpenSSL, “OpenSSL Library,” GitLab, https://github.com/openssl/
openssl (accessed Jan. 01, 2025).

[47] Trusted Computing Group, “PC Client Specific TPM Interface
Specification (TIS),” Trusted Computing Group, 2013, https://
trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientTPM
InterfaceSpecification_TIS__1-3_27_03212013.pdf/ (accessed Jan. 01,
2025).

https://dl.acm.org/doi/proceedings/10.1145/3503222
https://dl.acm.org/doi/proceedings/10.1145/3503222
https://dl.acm.org/doi/proceedings/10.1145/3503222
https://arxiv.org/search/cs?searchtype=author&query=Zhu,+H
https://arxiv.org/search/cs?searchtype=author&query=Fan,+J
https://arxiv.org/search/cs?searchtype=author&query=Li,+L
https://arxiv.org/search/cs?searchtype=author&query=Chang,+X

[48] Laith Alzubaidi, Jinglan Zhang, Amjad J. Humaidi, Ayad Q. Al-Dujaili,

Ye Duan, Omran Al-Shamma, José Santamaría, Mohammed A. Fadhel,
Muthana Al-Amidie, Laith Farhan, “Review of deep learning: concepts,
CNN architectures, challenges, applications, future directions,” in
Journal of Big Data, vol. 8, pp. 1-74, 2021.

[49] TPM2-Software, “tpm2-tools,” GitHub, 2015. https://github.com/ tpm2-
software/tpm2-tools. (accessed: Jan. 01, 2025).

	1. Introduction
	2. Background
	2.1 ZYNQ Ultrascale+ Platform and Built-in Security Technology
	2.2 TPM Specification

	3. Threat Model and Requirements
	3.1 Threat Model
	3.2 Requirements

	4. Related Work
	4.1 FPGA-SoC TEE
	4.2 FPGAs Supported by TPM

	5. TRCTEE Approach
	5.1 Overview
	5.2 FPGA-vTPM Architecture
	5.2.1 Initialization
	5.2.2 Dynamically Update Session Key

	5.3 Security-Enhanced Runtime Customizable FPGA-SoC TEE
	5.3.1 Trusted Boot Scheme
	5.3.2 User’s IP Deployment

	5.4 Extended TPM Commands and Responses
	5.4.1 Update_CMD/Resp
	5.4.2 Deploy_CMD/Resp
	5.4.3 Invoke_CMD/Resp

	6. Implementation
	7. Evaluation of TRCTEE
	7.1 Security Analysis
	7.2 Performance Evaluation
	7.2.1 Hardware Resource Utilization
	7.2.2 Performance of TPM Commands

	8. Conclusions and Future Work
	References

