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Abstract

Deep learning-based weather forecasting models have recently demonstrated sig-
nificant performance improvements over gold-standard physics-based simulation
tools. However, these models are vulnerable to adversarial attacks, which raises
concerns about their trustworthiness. In this paper, we first investigate the fea-
sibility of applying existing adversarial attack methods to weather forecasting
models. We argue that a successful attack should (1) not modify significantly its
original inputs, (2) be faithful, i.e., achieve the desired forecast at targeted locations
with minimal changes to non-targeted locations, and (3) be geospatio-temporally
realistic. However, balancing these criteria is a challenge as existing methods
are not designed to preserve the geospatio-temporal dependencies of the original
samples. To address this challenge, we propose a novel framework called FABLE
(Forecast Alteration By Localized targeted advErsarial attack), which employs
a 3D discrete wavelet decomposition to extract the varying components of the
geospatio-temporal data. By regulating the magnitude of adversarial perturbations
across different components, FABLE can generate adversarial inputs that maintain
geospatio-temporal coherence while remaining faithful and closely aligned with the
original inputs. Experimental results on multiple real-world datasets demonstrate
the effectiveness of our framework over baseline methods across various metrics.

1 Introduction

Weather forecasting plays a crucial role in a wide range of human activities, influencing decision-
making in numerous sectors such as agriculture, energy, insurance, transportation, and public safety.
With the growing impact of extreme weather events, the demand for accurate weather forecasting
continues to increase, with more industries recognizing the value of precise and timely weather
information to mitigate risks and capitalize on opportunities. In recent years, deep learning-based
weather forecasting models [14, 22, 21, 2] have achieved significant improvements in prediction
accuracy compared to traditional physics-based approaches. However, these models are susceptible
to adversarial attacks [15, 7], in which malicious actors can manipulate the models by introducing
subtle alterations to the input data, leading to incorrect predictions. For weather forecasting, such
attacks could result in misguided management decisions, inefficient resource allocation, and a failure
to adequately prepare for extreme weather events.

In this paper, we investigate the problem of designing localized, targeted adversarial attacks on
weather forecasting models. A localized targeted attack involves malicious manipulation of the input
data so that the model’s outputs for a pre-defined set of locations at a specific future time period
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Figure 1: The left two panels show the original input data and its adversarial sample produced by
the TAAOWPF adversarial attack method [16] for the NLDAS precipitation dataset. The right two
panels show their corresponding original and adversarial forecasts generated by the CLCRN weather
forecasting model [22]. The red circle indicates the targeted locations for forecast manipulation.

closely match the values desired by the attacker. For instance, consider an attacker who wants to
influence agricultural markets by creating a false forecast of heavy rainfall in a major farming region.
They could manipulate the input data fed into the deep learning model, causing it to predict significant
rainfall when none is actually expected. Figure 1 shows an example of a tampered precipitation
forecast for Iowa, generated by making alterations to the original input data using the TAAOWPF
adversarial attack method [16]. This false forecast could lead farmers to delay planting, alter irrigation
schedules, or take unnecessary corrective actions based on incorrect predictions. The resulting market
disruptions could benefit the attacker financially, especially if they have investments that would gain
from such changes.

We argue that the generated adversarial inputs for weather forecasting models should satisfy three key
criteria: (1) faithfulness, ensuring that the adversarial inputs yield the intended forecasts at the target
locations and specific time periods, with minimal changes to non-targeted locations, (2) closeness,
making the adversarial inputs harder to detect by closely resembling the original inputs, and (3)
geospatio-temporal realisticness, preserving the dependencies within the original samples to enhance
stealthiness. However, managing the trade-offs among these criteria can be challenging for existing
adversarial attack methods [15, 16, 24]. For instance, as shown in Figure 1, the adversarial sample
introduces noticeable perturbations to other, non-targeted locations, making the attack more easily
perceivable. The added perturbations would also alter the spatial autocorrelations inherent in the
original data.

To balance the competing criteria in adversarial input generation, we propose a new framework called
FABLE (Forecast Alteration By Localized targeted advErsarial attack). Unlike conventional methods
that directly perturb the original input, FABLE applies adversarial perturbation on different compo-
nents of the geospatio-temporal input, which are obtained using a 3D discrete wavelet decomposition.
We show that, by applying larger magnitudes of perturbations on the high-frequency components,
FABLE was able to achieve better geospatio-temporal realisticness and closeness while maintaining
comparable faithfulness as other baseline approaches.

2 Related works

Weather forecasting has long been an active area of research due to its critical impact on our
environment and society. Traditional models [10, 28, 17] employ numerical simulations based on
physical equations to predict future weather conditions. However, accurately modeling the chaotic
nature of Earth’s meteorological system remains a challenging problem. Towards this end, deep
learning models have recently emerged as effective tools for weather forecasting due to their ability
to capture complex geospatio-temporal patterns in data. These models, utilizing CNN [2, 14],
GCN [22, 21, 26], Vision Transformer [3], and Swin Transformer [4, 5], have improved both single-
step [13] and multi-step [22, 21] forecasts using univariate [22] and multivariate [21] weather data.

As deep learning models become more prevalent, the risk of adversarial attacks on these systems has
grown. Adversarial attack techniques, such as FGSM [15], PGD [24], and MIM [12], work by subtly
perturbing the input data to mislead models into making incorrect predictions. Specifically, given a
forecast model g, the adversarial attack would modify an input sample X by adding a perturbation
δX , producing the adversarial sample X+ δX. The goal of the attack is to ensure that the adversarial
forecast g(X+ δX) differs substantially from the original forecast g(X).
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Adversarial attacks can be categorized in terms of their objectives as untargeted, semi-targeted, or
targeted attacks [16]. Untargeted attacks aim to generate predictions that deviate significantly from
the original forecast, i.e., δX = argmaxδ L [g(X+ δ), g(X)], where L is the loss function. Semi-
targeted attacks constrain the predictions within attacker-specified boundaries, while targeted attacks
steer the predictions toward a specific adversarial target Ŷ

′
, i.e., δX = argminδ L

[
g(X+ δ), Ŷ

′
]
.

The adversarial attacks can also be categorized based on attacker’s level of access to the model [23]—
black-box (access only to inputs and outputs), grey-box (partial knowledge of architecture or training
techniques), or white-box (full knowledge of architecture, pre-trained parameters, and data).

Adversarial attacks have been successfully applied to various domains. In computer vision, these
methods subtly alter input images or videos to produce misclassification or generation errors [9, 29,
30]. For spatial-temporal data, adversarial attacks have been studied in renewable energy forecasting
and traffic prediction. Previous studies of energy forecasting [16, 18] primarily applied standard
attack methods such as FGSM [15] or PGD [24] to perturb temporal weather inputs, while ignoring
their spatial information [16, 27, 18]. In traffic forecasting, existing methods mainly focus on
untargeted attacks that disrupt overall traffic flow predictions, aiming to create congestion [32, 23].
However, localized targeted attacks, which are designed to manipulate multi-step predictions at
specific locations while minimizing the impact elsewhere, remain largely unexplored.

3 Problem Statement

Consider a geospatio-temporal dataset D = (Z1Z2 · · ·Zt · · · ), where Zt ∈ Rr×c corresponds to
the weather observations for r × c locations at time step t. We further denote Ztij as the value of
the weather variable at time step t at a given location, whose latitude and longitude are indexed
by (i, j), where i ∈ {1, 2, · · · , r} and j ∈ {1, 2, · · · , c}. At each time step t0, we construct a
pair of tensors: (1) X(t0) ∈ R(α+1)×r×c, a predictor time window of length α + 1 containing
observations for all locations at t0 and its preceding α time steps; and (2) Y(t0) ∈ Rβ×r×c, a
forecast window of length β containing observations for all locations over the subsequent β time
steps. Thus, Xτij(t0) = Zt0−α−1+τ,ij , where τ ∈ {1, 2, · · · , α + 1}, while Yτij(t0) = Zt0+τ,ij ,
where τ ∈ {1, 2, · · · , β}. For notational convenience, we abbreviate X(t0) as X and Y(t0) as Y.

Given X ∈ R(α+1)×r×c as the predictor, a weather forecasting model g outputs a multi-step prediction
Ŷ ∈ Rβ×r×c as follows: Ŷ = g(X). Let SŶ =

{
(τ, i, j)|t ∈ ΓŶ; (i, j) ∈ Ω

}
be the in-target

geospatio-temporal domain for a localized adversarial attack on Ŷ, where ΓŶ = {1, 2, ..., β} and
Ω = {1, . . . , r} × {1, . . . , c}. The localized, adversarial target is defined as Ŷ′ = Ŷ + δŶ, where
δŶτij

̸= 0 if and only if (τ, i, j) ∈ SŶ and zero elsewhere.

Our goal is to learn an adversarial predictor X′ ∈ R(α+1)×r×c that alters the original forecast
Ŷ = g(X) to a new adversarial forecast g(X′) ∈ Rβ×r×c that meets the following criteria: (1)
Closeness: The adversarial predictor X′ is said to be ϵ-close to its original predictor X if ∥δX∥ =
∥X′ −X∥ ≤ ϵ, where ϵ > 0. (2) Faithfulness: Let Ŷ′

in = {Ŷ ′
τij |(τ, i, j) ∈ SŶ} and g(X′)in =

{g(X′)τij |(τ, i, j) ∈ SŶ}. The adversarial forecast g(X′) is said to be µ-in-target faithful if
L
(
g(X′)in, Ŷ

′
in

)
≤ µ, where L(·) is a loss function. Similarly, let Ŷ′

out = {Ŷ ′
τij |(τ, i, j) ̸∈ SŶ}

and g(X′)out = {g(X′)τij |(τ, i, j) ̸∈ SŶ. The adversarial forecast g(X′) is said to be ν-out-
target faithful if L

(
g(X′)out, Ŷ

′
out

)
≤ ν. (3) Realisticness: The adversarial predictor X′ is

σ-spatially realistic if RS(X
′,X) ≤ σ, where RS(·) measures the consistency between the spatial

autocorrelation in X′ and X. Analogously, X′ is κ-temporally realistic if RT (X
′,X) ≤ κ, where

RT (·) measures the consistency between the temporal autocorrelation in X′ and X.

In this study, we consider a white-box threat model, wherein the adversary is assumed to have full
access to the forecast model g. This assumption is justified, as numerous deep learning-based weather
forecasting models—–such as those referenced in Section 2—–have publicly released their source
code and pre-trained checkpoints. The white-box attacks also facilitate a principled assessment of
worst-case robustness by enabling the derivation of theoretical lower bounds [1, 6], and have been
employed in recent works [8]. Extending our study to a black-box scenario is deferred to future work.
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Figure 2: Performance comparison of existing adversarial attack methods on NLDAS precipitation
dataset in terms of faithfulness and closeness. Lower metric values indicate better performance.

4 Feasibility of Adversarial Attacks on Weather Forecasting Models

In this section, we empirically investigate the feasibility of applying existing adversarial attack
methods to weather forecasting models. Specifically, we consider 4 representative methods: (1)
Noise Attack, which adds random perturbation to the input predictor, (2) ALA [27], which uses the
Adam optimizer to learn the perturbation, (3) TAAOWPF [16], which leverages the projected gradient
descent (PGD) method, and (4) STPGD [23], which extends the PGD-based method by selectively
perturbing a subset of locations whose gradients have the most impact on the loss. As none of these
methods are originally designed for localized, targeted adversarial attacks, Appendix F describes
how they can be adapted to our problem setting. We evaluated the faithfulness and closeness of
their generated adversarial samples using the in-AE, out-AE, and closeness measures as defined in
Section 6.1. Furthermore, to ensure the stealthiness of the attack, the adversarial sample X′ should
preserve the spatial and temporal autocorrelations inherent in the original predictor X. Towards this
end, we employ the following metrics to measure their spatial (RS) and temporal (RT ) realisticness:

RS(X
′) =

1

α+ 1

α+1∑
τ=1

|I(X′
τ )− I(Xτ )|; RT (X

′) =
1

r × c

r∑
i=1

c∑
j=1

1

α+ 1

α+1∑
l=1

|ρl(X
′
ij)− ρl(Xij)|, (1)

where

I(Xτ ) =
r2 × c2

W

∑
(i,j)(k,l) wij,kl(Xτij −Xτ )(Xτkl −Xτ )∑

(i,j)(Xτij −Xτ )2

is the Moran’s I metric, which quantifies the spatial autocorrelation of a map Xτ ∈ Rr×c, and

ρl(Xij) =

∑α+1−l
τ=1 (Xτij −Xij)(Xτ+l,ij −Xij)∑T

τ=1(Xτij −Xij)2

is the temporal autocorrelation at lag l for the time series at location (i, j). Furthermore, Xτ ∈ R
is the average value of the spatial map Xτ and W =

∑
(i,j),(k,l) wij,kl denotes the total sum of an

(r× c)× (r× c) weight matrix representing the spatial relationship between locations (i, j) and (k, l).
The matrix encodes the degree of influence between two locations, capturing their spatial proximity,
with zeros along the diagonal. Specifically, the weights are computed as follows: ωij,kl = 1/dij,kl,
where dij,kl is the geographical distance between the two locations. For temporal autocorrelation,
Xij ∈ Rα+1 is the time series of length α+ 1 at location (i, j) while Xij ∈ R denotes its average
value. SinceRS andRT measure the difference in autocorrelation between the original and adversarial
input, a smaller value of these measures would imply higher geospatio-temporal realisticness.

We first compare the faithfulness and closeness of these methods when applied to the NLDAS
precipitation dataset. Details on the dataset and adversarial target construction are provided in
Appendix G. Since the output of the various adversarial attack methods depends on the magnitude of
perturbation ϵ, for fair comparison, we compare their performances at varying levels of ϵ. The results
are shown in Figure 2. As expected, the random noise approach struggles to produce the desired
adversarial target forecast Ŷ′, unlike learning-based methods. Furthermore, as ϵ increases, allowing
for larger perturbations in X, observe that the learning-based methods, such as ALA, TAAOWPF
and STPGD, achieve better in-target faithfulness, as evidenced by their smaller values of in-MAE.
However, this comes at the expense of poorer out-target faithfulness, i.e., larger out-MAE, and
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Figure 3: Impact of adversarial attack on spatial and temporal autocorrelations for NLDAS temperature
dataset. On the left panel, the x-axis represents individual test samples on different days, while the
y-axis represents Moran’s I values for the original predictor X as well as the adversarial samples
X′ generated by different attack methods. On the right panel, the x-axis represents different lags of
temporal autocorrelation while the y-axis represents temporal autocorrelation values of X and X′.

worse closeness, i.e., higher discrepancy between the original and adversarial predictor. This result
underscores the difficulty of balancing faithfulness and closeness when applying existing adversarial
attack methods to weather forecasting models. For instance, ALA appears to produce the best in-
target faithfulness, but its closeness is considerably worse than other learning-based methods. See
Appendix A for a comparative example of the adversarial samples generated by the different methods.

Next, we evaluate the spatial and temporal realisticness of the different adversarial attack methods on
the NLDAS temperature dataset (see Appendix G). We use this instead of the NLDAS precipitation
dataset since the latter inherently has limited spatial and temporal autocorrelations. Figure 3 shows the
Moran’s I and temporal autocorrelation of adversarial predictors X′ generated by different methods
in comparison to the original X. Observe that there is a significant difference in spatial and temporal
autocorrelations between the original input and the adversarial samples generated by ALA, TAAOWPF,
and STPGD. This demonstrates the limitations of existing methods in preserving the spatial and
temporal coherence of the original data. The figure also shows that our proposed method (FABLE),
to be discussed in the next section, follows the spatial and temporal autocorrelations of the original
predictor more closely than existing adversarial attack methods.

5 Proposed Framework: FABLE

To address the limitations of existing methods and improve the geospatio-temporal realisticness of
the generated adversarial predictor X′, we propose a novel adversarial attack framework, FABLE
(Forecast Alteration By Localized targeted advErsarial attack). The overall architecture is illustrated
in Figure 4. The original predictor X is initially decomposed into distinct subspaces using wavelet
analysis, each capturing specific frequency bands corresponding to different spatial and temporal
scales. Unlike conventional adversarial attack methods that directly perturb the original X, FABLE
strategically adjusts the perturbation magnitude across these decomposed frequency components. By
leveraging this wavelet-based decomposition, FABLE achieves control over the trade-offs among
faithfulness, closeness, and geospatio-temporal realisticness in the generated adversarial predictor.

To decompose the original predictor X into its subspace representation, we employ a level-one, 3D
Haar wavelet decomposition1. Conceptually, this decomposition maps X into sets of high-frequency
and low-frequency components along the temporal, longitudinal (column), and latitudinal (row)
dimensions. Technically, it involves sequentially applying pairs of low-pass and high-pass filters
across each dimension of X ∈ R(α+1)×r×c. The low-pass filter, defined as hL = [ 1√

2
, 1√

2
], extracts

smooth, large-scale patterns corresponding to the low-frequency (L) components of X. Conversely,
the high-pass filter, defined as hH = [ 1√

2
,− 1√

2
], captures localized, fine-grained variations that

represent its high-frequency (H) components of X. In the 3D case, these filters operate along the
three dimensions of X. Let f = [f1, f2, f3] denote the combination of filters along the temporal,

1Compared to other wavelet bases, the Haar wavelet is relatively more intuitive and computationally efficient.
Its simplicity facilitates manual implementation, enabling effective gradient propagation during backpropagation
when optimizing the adversarial predictor X′. In contrast, more complex wavelets often require API-based
implementations that rely on gradient estimation, which may introduce inaccuracies and inefficiencies in
adversarial sample generation.
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Figure 4: Framework of FABLE. The original forecast Ŷ is produced by applying a weather
forecasting model g to the original input X. Let Ŷ′ be the adversarial target for Ŷ. To generate an
adversarial sample, X is first decomposed into its 3D Haar wavelet coefficients C. The coefficients
are iteratively updated to minimize the total loss to obtain C′. The adversarial sample X′ is obtained
from C′ using inverse wavelet decomposition, which is passed to g to obtain its forecast, g(X̂′).

longitudinal (column), and latitudinal (row) dimensions of X, respectively, where each fd ∈ {L,H}
specifies whether a low- or high-frequency filter is applied along the d-th dimension.

Applying these filters to X yields a total of eight sub-bands: one low-frequency component (LLL), six
mixed-frequency components (LLH, LHL, LHH, HLL, HLH, HHL), and one high-frequency component
(HHH). Let Cf ∈ R

α+1
2 × r

2×
c
2 be the wavelet coefficients associated with the sub-band f . The original

predictor X ∈ R(α+1)×r×c can therefore be decomposed into the following tensors of wavelet
coefficients: CLLL, CLLH , CLHL, CLHH , CHLL, CHLH , CHHL, and CHHH as follows:

Cf
k1,k2,k3

=

1∑
n1=0

1∑
n2=0

1∑
n3=0

[
1√
2
(−1)ξ(f1)n1

] [
1√
2
(−1)ξ(f2)n2

] [
1√
2
(−1)ξ(f3)n3

]
X2k1−n1,2k2−n2,2k3−n3

=
1√
8

1∑
n1=0

1∑
n2=0

1∑
n3=0

(−1)ξ(f1)n1+ξ(f2)n2+ξ(f3)n3 ·X2k1−n1,2k2−n2,2k3−n3 , (2)

where k1 ∈
{
1, 2, . . . , α+1

2

}
, k2 ∈

{
1, 2, . . . , r2

}
, k3 ∈

{
1, 2, . . . , c2

}
2 denotes the translation

indices along the temporal, longitudinal (row), and latitudinal (column) dimensions of X, respectively,
while

ξ(fd) =

{
0, if fd = L;

1, if fd = H,

and nd ∈ {0, 1} is the discrete index of the filter hfd . Based on the decomposed wavelet coefficients
Cf ∈ R

α+1
2 × r

2×
c
2 and their corresponding scaling and wavelet functions (see Appendix B), the

original predictor X ∈ R(α+1)×r×c can be reconstructed as follows:

X2k1−n1,2k2−n2,2k3−n3 =
1√
8

∑
f1,f2,f3∈{L,H}

(−1)ξ(f1)n1+ξ(f2)n2+ξ(f3)n3 · Cf
k1,k2,k3

. (3)

Equation (3) enables FABLE to perturb the wavelet coefficients C = {Cf} ∈ R8×α+1
2 × r

2×
c
2 to

indirectly induce the perturbation δX to the original predictor X. Given an adversarial target Ŷ′,
FABLE is designed to learn a set of perturbed wavelet coefficients, C′, such that the reconstructed
predictor X′ (or X′(C′)), obtained using Equation (3), induces a forecast g(X′(C′)) that closely
aligns with the target Ŷ′. Given a weather forecasting model g, the optimization objective for
generating the adversarial sample X′ using FABLE is

argmin
C′

Lf

(
Ŷ′, g

(
X′(C′)

))
+ λLC

(
C,C′;ω

)
s.t. ∥X−X′(C′)∥∞ ≤ ϵ (4)

2By default, α+ 1, r, and c are assumed to be even.
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whereLf

(
Ŷ′, g(X′(C′))

)
=

√
1

β×r×c∥Ŷ′ − g(X′(C′))∥22, LC

(
C,C′;ω

)
=

∑
f ω

f∥Cf−Cf ′∥22,

and ∥Z∥22 =
∑

tij Z
2
tij . The first term, Lf (·) ensures faithfulness of the adversarial sample X′ by

aligning its forecast g(X′(C′)) to the target Ŷ′. The second term, LC(·), ensures that the perturbation
focuses more on high-frequency instead of low-frequency components by choosing the appropriate
set of penalty weights, ωf ∈ R. The hyperparameter λ balances these objectives, offering FABLE
the flexibility to tailor adversarial predictors under varying conditions. The constraint enforces the
closeness of X′ to the original predictor X. We use the Adam optimizer [19] to solve this optimization
problem. At each iteration, we enforce the perturbation constraint by clipping the updated input X′

using X′ ← min(X+ ϵ,max(X− ϵ,X′)).

We argue that achieving better geospatio-temporal realisticness and closeness requires applying
more perturbation to the high-frequency components in Cf instead of the low-frequency ones. This
intuition is motivated by Theorems 1 and 2 below and the empirical results given in Appendix C.

Theorem 1. Consider the following level-one Haar wavelet decomposition for a 1-D signal of
length T : f(2k − n) = a0(k)√

2
+ (−1)1−nd0(k)√

2
, where n ∈ {0, 1}, k ∈ {1, . . . , T/2}, {a0(k)} is the

set of approximation (low-frequency) coefficients, and {d0(k)} is the set of detail (high-frequency)
coefficients. Let f ′A(t) and f ′D(t) be signals obtained by perturbing only the approximation and
detail coefficients of f(t). Denote their autocorrelations at lag l by ρf (l), ρf ′A(l), and ρf ′D (l). If∑T/2

k=1 |a0(k)| ≥
∑T/2

k=1 |d0(k)|, then supl
∑T−1

l=0 |ρf ′A(l)− ρf (l)| ≥ supl
∑T−1

l=0 |ρf ′D (l)− ρf (l)|.

Remark 1. The condition
∑T/2

k=1 |a0(k)| ≥
∑T/2

k=1 |d0(k)| generally holds for most real-world
signals since the approximation coefficients {a0(k)} often capture the majority of the signal’s energy
at the coarse scale, whereas the detail coefficients {d0(k)} represent the finer fluctuations or noise.

Theorem 2. Let f(t) be a 1-D signal of even length T . Let f ′A and f ′D denote the signals obtained by
perturbing only the approximation and detail coefficients of f(t), respectively, with perturbations δA
and δD. Then, ∥f ′A − f∥2 = ∥δA∥2 and ∥f ′D − f∥2 = ∥δD∥2. Moreover, if ∥δA∥2 ≥ ∥δD∥2, then
∥f ′A − f∥2 ≥ ∥f ′D − f∥2.

Remark 2. Empirically, whenever the condition
∑T/2

k=1 |a0(k)| ≥
∑T/2

k=1 |d0(k)| holds, it typically
follows that ∥δA∥2 ≥ ∥δD∥2, since the perturbation strength is observed to be proportional to the
magnitude of the corresponding wavelet coefficients. The conclusion of Theorem 2 is extensible to a
3-D signal by expanding the 3-D tensor into a 1-D vector.

The proofs for Theorems 1 and 2 are provided in Appendix D and E, respectively.

6 Experimental Evaluation

6.1 Experimental Setup

We use two well-known meteorological datasets for our experiments. (1) North American Land
Data Assimilation System (NLDAS)3: This dataset provides daily weather observations for 1,320
locations over a 1◦ × 1◦ grid covering North America from 1979 to 2023. Our study considers 2
of the 9 variables: NLDAS-TMP2M (2-meter air temperature) and NLDAS-PRESSFC (surface
pressure) (2) ERA5 Reanalysis Data4: This dataset provides global hourly reanalysis weather data
on a 5.625◦ × 5.625◦ grid, covering 2,048 locations from 1979 to 2018. We focus on 2-meter
air temperature (T2M) and total incident solar radiation (TISR), referred to as ERA5-T2M and
ERA5-TISR, respectively. We selected these weather variables for our experiments due to their
inherent autocorrelations. See Appendices G.1 and G.2 for data statistics and preprocessing details.

We compare the performance of FABLE against the following baselines: (1) Noise Attack [16], which
adds Gaussian random noise to the input; (2) FGSM [15], which performs a one-step projected gradi-
ent descent (PGD) update; (3) ALA [27], which leverages Adam-based updates; (4) TAAOWPF [16],
an iterative version of FGSM; and (5) STPGD [23], which restricts perturbations to victim locations.
As some of these methods are originally designed for classification or untargeted attacks only, they
must be adapted to a localized targeted attack setting. Details of the baseline adaptation are described

3https://ldas.gsfc.nasa.gov/nldas
4https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
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Table 1: Performance comparison on different datasets with adapted baselines. Within the comparative
results for each metric, red entries indicate the best performance, and blue entries indicate the second-
best performance. All the results are based on standardized data. On NLDAS datasets, CLCRN [22]
is the attacked weather forecasting model. On ERA5 datasets, FourCastNet [25] is the attacked
weather forecasting model.

NLDAS-TMP2M NLDAS-PRESSFC
Method in-AE ↓ out-AE ↓ Proximity ↓ RS ↓ RT ↓ in-AE ↓ out-AE ↓ Proximity ↓ RS ↓ RT ↓

FABLE 0.3801
(±0.0650)

2.9123
(±1.4331)

0.0072
(±0.0033)

0.0375
(±0.0282)

0.0191
(±0.0097)

0.5392
(±0.0829)

3.7255
(±0.6604)

0.0069
(±0.0028)

0.0018
(±0.0013)

0.0288
(±0.0104)

ALA 0.3491
(±0.0502)

2.3762
(±1.9276)

0.0156
(±0.0043)

0.0463
(±0.0337)

0.0341
(±0.0090)

0.4701
(±0.0659)

4.2165
(±1.6794)

0.0111
(±0.0047)

0.0023
(±0.0013)

0.0340
(±0.0101)

TAAOWPF 0.3891
(±0.0697)

9.7225
(±1.3211)

0.0351
(±0.0042)

0.0902
(±0.0594)

0.1043
(±0.0236)

0.4810
(±0.070)

15.8075
(±0.4081)

0.0507
(±0.0063)

0.0099
(±0.0021)

0.1621
(±0.0192)

STPGD 0.4434
(±0.2581)

7.8781
(±1.4791)

0.0289
(±0.0057)

0.0942
(±0.0733)

0.0821
(±0.0190)

0.6441
(±0.3026)

14.4016
(±1.5583)

0.0442
(±0.0067)

0.0121
(±0.0081)

0.1270
(±0.0134)

Noise Attack 2.2111
(±0.2745)

288.3196
(±18.7261)

0.0623
(±0.0006)

0.1445
(±0.0574)

0.1543
(±0.0221)

2.4656
(±0.7911)

946.8651
(±21.0277)

0.1303
(±0.0003)

0.0497
(±0.0024)

0.2181
(±0.0147)

FGSM 0.7491
(±0.1546)

1355.4685
(±244.0365)

0.0993
(±0.0004)

0.1207
(±0.0631)

0.1434
(±0.0412)

0.7661
(±0.1113)

1137.3585
(±25.9655)

0.0997
(±0.000)

0.0061
(±0.0016)

0.1454
(±0.0138)

ERA5-T2M ERA5-TISR
Method in-AE ↓ out-AE ↓ Proximity ↓ RS ↓ RT ↓ in-AE ↓ out-AE ↓ Proximity ↓ RS ↓ RT ↓

FABLE 3.5990
(±0.8337)

17.8061
(±4.1142)

0.0077
(±0.0016)

0.0007
(±0.0003)

0.0306
(±0.0049)

15.5797
(±2.4477)

38.9485
(±5.9158)

0.0039
(±0.0006)

0.0001
(±0.0000)

0.0235
(±0.0101)

ALA 0.6213
(±0.2364)

19.2709
(±0.9344)

0.0178
(±0.0032)

0.0017
(±0.0008)

0.0657
(±0.0083)

5.9011
(±0.9918)

21.3194
(±2.9044)

0.0132
(±0.0021)

0.0005
(±0.0003)

0.0259
(±0.0096)

TAAOWPF 0.6915
(±0.2196)

40.6883
(±1.4362)

0.0205
(±0.0020)

0.0017
(±0.0007)

0.0786
(±0.0051)

17.1935
(±1.0650)

86.8436
(±3.9767)

0.0172
(±0.0012)

0.0005
(±0.0002)

0.0268
(±0.0101)

STPGD 4.9234
(±6.7289)

48.5430
(±20.0840)

0.0199
(±0.0140)

0.0019
(±0.0014)

0.0563
(±0.0204)

28.7617
(±9.4164)

64.0957
(±8.1363)

0.0092
(±0.0013)

0.0003
(±0.0002)

0.0177
(±0.0111)

Noise Attack 37.7747
(±7.9806)

6236.1825
(±221.9222)

0.1709
(±0.0008)

0.0434
(±0.0043)

0.2253
(±0.0027)

1992.5065
(±76.1890)

11767.8657
(±605.8123)

0.1535
(±0.0011)

0.0429
(±0.0028)

0.0792
(±0.0075)

FGSM 22.1184
(±13.1868)

3520.1989
(±117.1853)

0.0999
(±0.0000)

0.0089
(±0.0009)

0.1876
(±0.0039)

1891.5453
(±132.6871)

5262.2087
(±290.1196)

0.0843
(±0.0007)

0.0076
(±0.0006)

0.0509
(±0.0093)

in Appendix F. We use the pre-trained CLCRN [22] and FourCastNet [25] (see Appendix G.3) as our
underlying weather forecasting models. Appendix G.4 details the construction of adversarial targets
for both datasets, with 960 samples constructed for each NLDAS and 600 samples for each ERA5. To
ensure convergence, the number of iterations N is set to 1000. Following the approach in [16], the
learning rates for FABLE, ALA, TAAOWPF, and STPGD are set to 2ϵ

N , with ϵ = 2.5 as the clipping
threshold. For STPGD, the number of salient locations is selected to be 990 and 1536 on NLDAS and
ERA5 datasets, respectively, to ensure faithfulness. More details are in Appendix G.5.

We employ the following metrics to evaluate each method: (1) faithfulness, measured by in-target
absolute error, in-AE(g(X′)in, Ŷ

′
in) =

∑β
τ=1

∣∣∣g(X′)in,τ − Ŷ′
in,τ

∣∣∣ and out-target absolute error,

out-AE(g(X′)out, Ŷ
′
out) =

∑β
τ=1

∥∥∥g(X′)out,τ − Ŷ′
out,τ

∥∥∥
1
. (2) Closeness, measured by the average

ℓ1 distance between X and X′, Proximity(X′,X) = 1
α+1

∑α+1
τ=1 ∥X′

τ −Xτ∥1 . (3) Geospatio-
temporal realisticness, measured by the difference in spatial (RS) and temporal (RT ) autocorrela-
tions (see Equation (1)). An effective adversarial sample must be faithful to the target, close to the
original predictor, and geospatio-temporally realistic.

6.2 Experimental Results

Performance Comparison. Table 1 compares the performance of FABLE against other baselines
across 4 datasets (2 NLDAS and 2 ERA5 variables) and 2 weather forecasting models (CLCRN and
FourCastNet). While FABLE may not achieve the best faithfulness (in terms of their in-AE and
out-AE scores), it consistently ranks among the top performers (2nd or 3rd) across all 4 datasets.
In terms of closeness, spatial and temporal realisticness, FABLE consistently outperforms all the
baselines, except for temporal realisticness on the ERA5-TISR dataset, where it has the second-best
result. This supports our rationale for adding more perturbation to the high-frequency components of
the data, instead of perturbing the input predictor directly, which is the strategy employed by existing
methods such as ALA, TAAOWPF, STPGD, and FGSM. The preservation of geospatio-temporal
realisticness by FABLE is also evident from the Moran’s I and temporal autocorrelation plots shown
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Table 2: Performance evaluation in terms of run-
time and memory usage.
Method CLCRN (NLDAS-TMP2M) FourCastNet (ERA5-T2M)

Total
Runtime (s)

Peak
Memory (MB)

Total
Runtime (s)

Peak
Memory (MB)

FABLE 345.87 77.81 112.53 477.57
ALA 482.13 93.40 150.49 501.83
TAAOWPF 498.58 76.14 149.74 483.83
STPGD 490.24 96.30 158.25 502.07
Noise Attack 143.71 70.67 40.43 244.09
FGSM 2.11 76.12 1.07 493.01

Table 3: Impact of the regularization strength
λ on FABLE’s attack performance on the
NLDAS-TMP2M dataset.
λ In-AE ↓ Out-AE ↓ Proximity ↓ RS ↓ RT ↓
0 0.3751 3.3224 0.0254 0.0903 0.0824

1e-6 0.3757 3.3326 0.0236 0.0855 0.0762
1e-5 0.3828 3.2717 0.0158 0.0597 0.0524
1e-4 0.4308 3.4489 0.0072 0.0322 0.0272
1e-3 0.5959 4.6936 0.0027 0.0120 0.0113

in Figure 3. In short, by emphasizing perturbations on higher-frequency coefficients, FABLE achieves
a better balance among faithfulness, closeness, and geospatio-temporal realisticness.

Runtime and Memory Usage. Table 2 reports the wall-clock runtime and peak GPU memory usage
of FABLE and the baselines under two setups: CLCRN on NLDAS-TMP2M and FourCastNet on
ERA5-T2M. All experiments were conducted for 500 attack steps, except for FGSM, on a single
NVIDIA L4 GPU (22.5 GB), with batch sizes of 48 (CLCRN) and 30 (FourCastNet). To avoid cross-
batch memory interference, we run each batch independently. As presented in Table 2, non-learning
(Noise Attack) and one-step (FGSM) baselines are fast but yield weaker performance, as evident
in Table 1. Compared to other methods (ALA, TAAOWPF, STPGD), FABLE demonstrates better
runtime and lower peak memory usage. This efficiency benefits from excluding the perturbations on
the LLL frequency component, thereby reducing the number of parameters to be estimated.

Hyperparameter Sensitivity. We analyze the sensitivity of FABLE to the regularization strength
λ and the frequency-specific penalty weights ωf . (1) As presented in Table 3, we observe a clear
trade-off: increasing λ improves spatial-temporal realisticness but weakens attack effectiveness. (2)
Guided by Theorems 1 and 2, smaller penalties were assigned to higher-frequency coefficients to
permit larger perturbations. The penalty weights ωf were selected via grid search on the NLDAS-
TMP2M dataset to balance different metrics . This configuration was reused in other datasets, and
the results show that FABLE remains robust without requiring explicit tuning of the weights. For
detailed analysis and configurations, please refer to Appendix G.6.

Table 4: Detection performance of the
wavelet-based method against adversar-
ial predictors.

Method CLCRN on NLDAS-TMP2M
Precision ↓ Recall ↓ F1 ↓

FABLE 0.86 0.32 0.47
ALA 0.99 0.69 0.81
TAAOWPF 0.97 1.00 0.98
STPGD 0.98 1.00 0.99
Noise Attack 0.98 1.00 0.99
FGSM 0.98 1.00 0.99

Detectability. Table 4 presents the precision, recall,
and F1-score of a wavelet-based anomaly detection
method [31] applied to detect adversarial predictors gen-
erated by FABLE and other baselines. This method
first performs level-2 wavelet decomposition using the
Daubechies-4 basis, then extracts features by computing
the energy and entropy of each sub-band. An autoencoder
is then trained on these features to minimize reconstruc-
tion error. In the detection phase, if an input produces a
reconstruction error that exceeds the training mean plus
three standard deviations (µ + 3σ) using the trained au-
toEncoder, it will be flagged as adversarial. The results in
Table 4 demonstrate that the samples generated by FABLE are stealthier, and thus, harder to detect.

7 Conclusion

In this work, we explore adversarial attacks on weather forecasting models and highlight the key
challenges of generating stealthy adversarial samples. We introduce metrics to quantify the spa-
tiotemporal realisticness of adversarial samples and propose FABLE, a novel framework that perturbs
wavelet-decomposed coefficients instead of the raw inputs. By focusing on higher-frequency compo-
nents, this facilitates its generation of adversarial samples that satisfy the realisticness, closeness,
and faithfulness criteria. The generality of Theorems 1 and 2 suggests that FABLE’s strategy is
to generate attacks on other spatiotemporal data. Future directions include exploring higher-level
decompositions and alternative wavelet bases for adversarial attacks, as well as extending FABLE
to multivariate geospatio-temporal settings, where ensuring physical consistency and realisticness
across correlated variables remains a key challenge.
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Appendix

A Examples of Adversarial Samples by Existing Attack Methods

Figure 5 shows an example of the adversarial samples X′ generated by existing adversarial attack
methods on one of the test samples from the NLDAS precipitation dataset, along with its corre-
sponding adversarial forecast g(X ′). Observe that the random noise attack, which randomly adds
Gaussian noise toX , produces an adversarial forecast that affects a significant number of non-targeted
locations, leading to poor in-target and out-target faithfulness. While ALA and TAAOWPF achieve
better in-target faithfulness, their closeness is much worse compared to STPGD. These results are
consistent with the findings of Figure 2 in Section 4.

Figure 5: Comparison of adversarial samples generated by existing attack methods and their cor-
responding forecasts. The first row shows the original predictor X , the original forecast Ŷ , and
the perturbation magnitude |δŶ | used to generate the adversarial target. Subsequent rows show
the adversarial predictors X ′ generated from each baseline and its adversarial forecast g(X ′). The
leftmost column shows the perturbation magnitude |δX | on X while the rightmost column shows the
difference |g(X ′)− Ŷ | on Ŷ . The maximum magnitude of perturbation on X is set to ϵ = 2.5.

B Haar Wavelet Transform

B.1 1-dimensional Haar Wavelet Decomposition

Wavelet decomposition can be used to enable multiresolution analysis of a signal by decomposing it
into its underlying frequency components at multiple scales. For the one-dimensional case, the multi-
level decomposition of a signal f(t) can be expressed as a linear combination of its low-frequency
component at a coarse scale j0 and higher-frequency details at finer scales j = {j0, j0 + 1, · · · } as

f(t) =
∑
k

aj0(k)2
j0/2ϕ(2j0t− k) +

∞∑
j=j0

∑
k

dj(k)2
j/2ψ(2jt− k),

where aj0(k) and dj(k) are known as the approximation and detail coefficients, respectively. The
function ϕ(t), known as the scaling function, is responsible for approximating the low-frequency
components of f(t), while ψ(t), known as the wavelet function, captures high-frequency variations
and localized details. The index k denotes the translation parameter, which determines the spatial or
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temporal shifts of the wavelet basis functions. It ensures that ϕ(2j0t− k) and ψ(2jt− k) are properly
translated to localize the representation of f(t) at different scales.

In this study, we consider a 1-level decomposition of a signal f(t), which can be expressed as

f(t) =
∑
k

a0(k)ϕ(t− k) +
∑
k

d0(k)ψ(t− k).

Various types of wavelet bases [11] that can be applied to construct the decomposition. Here, we
utilize the Haar wavelet basis, whose scaling and wavelet functions are defined by

ϕ(t) =

{
1, 0 ≤ t < 1,

0, otherwise.

and

ψ(t) =


1, 0 ≤ t < 0.5,

−1, 0.5 ≤ t < 1,

0, otherwise.
respectively. A key advantage of using the Haar wavelet for the decomposition is that the coefficients
a0(k) and d0(k) can be efficiently computed via the filter bank method. Specifically, by employing a
low-pass filter hL =

[
1√
2
, 1√

2

]
, the approximation coefficients a0(k) are given by

a0(k) =
f(2k − 1) + f(2k)√

2
, k ∈

{
1, 2, . . . ,

T

2

}
,

where |f(t)| = T denotes the length of the signal f(t), which is assumed to be a multiple of 2 (with
appropriate padding). In contrast, a high-pass filter hH =

[
1√
2
,− 1√

2

]
can be used to derive the detail

coefficients d0(k) as

d0(k) =
f(2k − 1)− f(2k)√

2
, k ∈

{
1, 2, . . . ,

T

2

}
.

Based on the computed coefficients, along with the scaling and wavelet functions, the original signal
f(t) can be reconstructed as follows:

f(2k − 1) =
a0(k)√

2
+
d0(k)√

2
and f(2k) =

a0(k)√
2
− d0(k)√

2
,

where k ∈ {1, 2, . . . , T2 }.

B.2 2-dimensional Haar Wavelet Decomposition

For a two-dimensional data, X ∈ Rr×c, its decomposition is performed in two steps. For brevity, we
denote the approximation component of the decomposition as L and its detail component as H .

First, a one-dimensional decomposition is applied to each column k∗3 of Xi,j along the rows, produc-
ing intermediate low-frequency (CL

k2,k∗
3
) and high-frequency (CH

k2,k∗
3
) coefficients:

CL
k2,k∗

3
=
X2k2−1,k∗

3
+X2k2,k∗

3√
2

, k2 ∈ {1, 2, . . . , r/2},

CH
k2,k∗

3
=
X2k2−1,k∗

3
−X2k2,k∗

3√
2

, k2 ∈ {1, 2, . . . , r/2}.

Next, a secondary one-dimensional decomposition is applied to each row of CL
k2,k∗

3
and CH

k2,k∗
3

along
the columns, producing the final approximation (CLL

k2,k3
) and detail coefficients (CLH

k2,k3
, CHL

k2,k3
, and

CHH
k2,k3

), where:

CLL
k2,k3

=
CL

k2,2k3−1 + CL
k2,2k3√

2
, CLH

k2,k3
=
CL

k2,2k3−1 − CL
k2,2k3√

2
,

CHL
k2,k3

=
CH

k2,2k3−1 + CH
k2,2k3√

2
, CHH

k2,k3
=
CH

k2,2k3−1 − CH
k2,2k3√

2
,
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where k2 ∈ {1, 2, . . . , ⌊r/2⌋} and k3 ∈ {1, 2, . . . , ⌊c/2⌋}. Note that the coefficients CLL, CLH ,
CHL, and CHH can be directly expressed in terms of the original X as follows

CLL
k2,k3

=
X2k2−1,2k3−1 +X2k2,2k3−1 +X2k2−1,2k3

+X2k2,2k3

2
,

CLH
k2,k3

=
X2k2−1,2k3−1 +X2k2,2k3−1 −X2k2−1,2k3 −X2k2,2k3

2
,

CHL
k2,k3

=
X2k2−1,2k3−1 −X2k2,2k3−1 +X2k2−1,2k3

−X2k2,2k3

2
,

CHH
k2,k3

=
X2k2−1,2k3−1 −X2k2,2k3−1 −X2k2−1,2k3 +X2k2,2k3

2
.

The original X can be reconstructed from the coefficients CLL, CLH , CHL, and CHH by

X2k2−1,2k3−1 =
CLL

k2,k3
+ CLH

k2,k3
+ CHL

k2,k3
+ CHH

k2,k3

2
,

X2k2−1,2k3
=

CLL
k2,k3

− CLH
k2,k3

+ CHL
k2,k3

− CHH
k2,k3

2
,

X2k2,2k3−1 =
CLL

k2,k3
+ CLH

k2,k3
− CHL

k2,k3
− CHH

k2,k3

2
,

X2k2,2k3 =
CLL

k2,k3
− CLH

k2,k3
− CHL

k2,k3
+ CHH

k2,k3

2
.

B.3 3-dimensional Haar Wavelet Decomposition

For a three-dimensional sequence X ∈ R(α+1)×r×c, the coefficients can be derived by sequentially
applying the one-dimensional decomposition along the temporal, longitude (row), and latitude
(column) dimensions. The resulting coefficients are:

CLLL
k1,k2,k3

=
1√
8

(
X2k1−1, 2k2−1, 2k3−1 +X2k1−1, 2k2−1, 2k3 +X2k1−1, 2k2, 2k3−1 +X2k1−1, 2k2, 2k3

+X2k1, 2k2−1, 2k3−1 +X2k1, 2k2−1, 2k3 +X2k1, 2k2, 2k3−1 +X2k1, 2k2, 2k3

)
,

CLLH
k1,k2,k3

=
1√
8

(
X2k1−1, 2k2−1, 2k3−1 −X2k1−1, 2k2−1, 2k3 +X2k1−1, 2k2, 2k3−1 −X2k1−1, 2k2, 2k3

+X2k1, 2k2−1, 2k3−1 −X2k1, 2k2−1, 2k3 +X2k1, 2k2, 2k3−1 −X2k1, 2k2, 2k3

)
,

CLHL
k1,k2,k3

=
1√
8

(
X2k1−1, 2k2−1, 2k3−1 +X2k1−1, 2k2−1, 2k3 −X2k1−1, 2k2, 2k3−1 −X2k1−1, 2k2, 2k3

+X2k1, 2k2−1, 2k3−1 +X2k1, 2k2−1, 2k3 −X2k1, 2k2, 2k3−1 −X2k1, 2k2, 2k3

)
,

CLHH
k1,k2,k3

=
1√
8

(
X2k1−1, 2k2−1, 2k3−1 −X2k1−1, 2k2−1, 2k3 −X2k1−1, 2k2, 2k3−1 +X2k1−1, 2k2, 2k3

+X2k1, 2k2−1, 2k3−1 −X2k1, 2k2−1, 2k3 −X2k1, 2k2, 2k3−1 +X2k1, 2k2, 2k3

)
,

CHLL
k1,k2,k3

=
1√
8

(
X2k1−1, 2k2−1, 2k3−1 +X2k1−1, 2k2−1, 2k3 +X2k1−1, 2k2, 2k3−1 +X2k1−1, 2k2, 2k3

−X2k1, 2k2−1, 2k3−1 −X2k1, 2k2−1, 2k3 −X2k1, 2k2, 2k3−1 −X2k1, 2k2, 2k3

)
,

CHLH
k1,k2,k3

=
1√
8

(
X2k1−1, 2k2−1, 2k3−1 −X2k1−1, 2k2−1, 2k3 +X2k1−1, 2k2, 2k3−1 −X2k1−1, 2k2, 2k3

−X2k1, 2k2−1, 2k3−1 +X2k1, 2k2−1, 2k3 −X2k1, 2k2, 2k3−1 +X2k1, 2k2, 2k3

)
,
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CHHL
k1,k2,k3

=
1√
8

(
X2k1−1, 2k2−1, 2k3−1 +X2k1−1, 2k2−1, 2k3 −X2k1−1, 2k2, 2k3−1 −X2k1−1, 2k2, 2k3

−X2k1, 2k2−1, 2k3−1 −X2k1, 2k2−1, 2k3 +X2k1, 2k2, 2k3−1 +X2k1, 2k2, 2k3

)
,

CHHH
k1,k2,k3

=
1√
8

(
X2k1−1, 2k2−1, 2k3−1 −X2k1−1, 2k2−1, 2k3 −X2k1−1, 2k2, 2k3−1 +X2k1−1, 2k2, 2k3

−X2k1, 2k2−1, 2k3−1 +X2k1, 2k2−1, 2k3 +X2k1, 2k2, 2k3−1 −X2k1, 2k2, 2k3

)
.

The original X can be reconstructed from the coefficients by

X2k1−1, 2k2−1, 2k3−1 =
CLLL

k1,k2,k3
+ CLLH

k1,k2,k3
+ CLHL

k1,k2,k3
+ CLHH

k1,k2,k3
+ CHLL

k1,k2,k3
+ CHLH

k1,k2,k3
+ CHHL

k1,k2,k3
+ CHHH

k1,k2,k3√
8

,

X2k1−1, 2k2−1, 2k3
=

CLLL
k1,k2,k3

− CLLH
k1,k2,k3

+ CLHL
k1,k2,k3

− CLHH
k1,k2,k3

+ CHLL
k1,k2,k3

− CHLH
k1,k2,k3

+ CHHL
k1,k2,k3

− CHHH
k1,k2,k3√

8
,

X2k1−1, 2k2, 2k3−1 =
CLLL

k1,k2,k3
+ CLLH

k1,k2,k3
− CLHL

k1,k2,k3
− CLHH

k1,k2,k3
+ CHLL

k1,k2,k3
+ CHLH

k1,k2,k3
− CHHL

k1,k2,k3
− CHHH

k1,k2,k3√
8

,

X2k1−1, 2k2, 2k3
=

CLLL
k1,k2,k3

− CLLH
k1,k2,k3

− CLHL
k1,k2,k3

+ CLHH
k1,k2,k3

+ CHLL
k1,k2,k3

− CHLH
k1,k2,k3

− CHHL
k1,k2,k3

+ CHHH
k1,k2,k3√

8
,

X2k1, 2k2−1, 2k3−1 =
CLLL

k1,k2,k3
+ CLLH

k1,k2,k3
+ CLHL

k1,k2,k3
+ CLHH

k1,k2,k3
− CHLL

k1,k2,k3
− CHLH

k1,k2,k3
− CHHL

k1,k2,k3
− CHHH

k1,k2,k3√
8

,

X2k1, 2k2−1, 2k3
=

CLLL
k1,k2,k3

− CLLH
k1,k2,k3

+ CLHL
k1,k2,k3

− CLHH
k1,k2,k3

− CHLL
k1,k2,k3

+ CHLH
k1,k2,k3

− CHHL
k1,k2,k3

+ CHHH
k1,k2,k3√

8
,

X2k1, 2k2, 2k3−1 =
CLLL

k1,k2,k3
+ CLLH

k1,k2,k3
− CLHL

k1,k2,k3
− CLHH

k1,k2,k3
− CHLL

k1,k2,k3
− CHLH

k1,k2,k3
+ CHHL

k1,k2,k3
+ CHHH

k1,k2,k3√
8

,

X2k1, 2k2, 2k3
=

CLLL
k1,k2,k3

− CLLH
k1,k2,k3

− CLHL
k1,k2,k3

+ CLHH
k1,k2,k3

− CHLL
k1,k2,k3

+ CHLH
k1,k2,k3

+ CHHL
k1,k2,k3

− CHHH
k1,k2,k3√

8
,

C Effect of Varying Perturbation on Different Frequency Components

Figure 6 presents an ablation study on the effect of varying the perturbation magnitude ω of FABLE
to different frequency coefficients of the input sample. The experiment is performed on the NLDAS-
TMP2M dataset, using 96 samples from its test set. A larger penalty weight (ω) applied to a frequency
coefficient in the loss function shown in Equation (4) leads to a smaller perturbation of the coefficient.
The top-left panel of Figure 6 shows the penalty weights associated with four different configuration
schemes. As we go from configuration 1 to configuration 4, the perturbation magnitude will be
increasingly geared towards the low-frequency components rather than the high-frequency ones.
In other words, configuration 1 is biased towards adding more perturbations to the high frequency
components, whereas configuration 4 is biased towards more perturbations on the low frequency
ones.

The remaining 5 panels in Figure 6 shows the performance of FABLE under the different config-
urations. By varying the perturbation magnitude on different frequency coefficients, we observe
the trade-offs among faithfulness, geospatio-temporal realisticness, and closeness measures. Our
results indicate that increasing the perturbation magnitude on low-frequency coefficients leads to
improvements in faithfulness, as shown by the decreasing trend in both in-AE and out-AE. However,
the proximity, spatial realisticness (RS), and temporal realisticness (RT ) metrics show an increasing
trend when emphasis is placed on perturbing the low-frequency components.

These findings suggest that adding perturbation primarily to the high-frequency coefficients can
enhance adversarial attack performance in terms of closeness and geospatial-temporal realisticness,
albeit at the expense of degrading its faithfulness.
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Figure 6: Effect of varying the perturbation magnitude to different frequency coefficients of the input
sample. Lower metric values indicate better performance.

D Proof of Theorem 1

Theorem (Restatement of Theorem 1). Consider the following level-one Haar wavelet decomposition
for a 1-D signal of length T : f(2k−n) = a0(k)√

2
+ (−1)1−nd0(k)√

2
, where n ∈ {0, 1}, k ∈ {1, . . . , T/2},

{a0(k)} is the set of approximation (low-frequency) coefficients, and {d0(k)} is the set of detail (high-
frequency) coefficients. Let f ′A(t) and f ′D(t) be signals obtained by perturbing only the approximation
and detail coefficients of f(t). Denote their autocorrelations at lag l by ρf (l), ρf ′A(l), and ρf ′D (l). If∑T/2

k=1 |a0(k)| ≥
∑T/2

k=1 |d0(k)|, then supl
∑T−1

l=0 |ρf ′A(l)− ρf (l)| ≥ supl
∑T−1

l=0 |ρf ′D (l)− ρf (l)|.

Proof. Consider a 1-dimensional time series f(t) of length T whose level-one Haar decomposition
can be written as follows:

f(2k − n) = a0(k)√
2

+
(−1)1−nd0(k)√

2
≡ fA(2k − n) + fD(2k − n), (5)

where fA(2k − n) = a0(k)√
2

is known as the approximation coefficient, fD(2k − n) = (−1)1−n d0(k)√
2

is the detail coefficient, n ∈ {0, 1}, and k ∈ {1, 2, . . . , T
2
}. Let {δA(k)} and {δD(k)} denote the

perturbations added to the approximation and detail coefficients, respectively, and assume:

∀k : δA(k) ≤ ϵA and δD(k) ≤ ϵD. (6)

Case 1: Perturbation on approximation coefficients. Consider the perturbed time series f ′A(2k−n)
obtained by modifying only the approximation coefficients of the original time series. We may write

f ′A(2k − n) = f(2k − n) +
δA(k)√

2
≡ f(2k − n) + ∆fA(2k − n),

where ∆fA(2k − n) = δA(k)√
2

. Based on the definition of autocorrelation function, we have

|ρf ′
A
(l)− ρf (l)| =

∣∣∑
n

∑
k

[
f(2k − n) + ∆fA(2k − n)

] [
f(2k − n− l) + ∆fA(2k − n− l)

]
−
∑
n

∑
k

f(2k − n)f(2k − n− l)
∣∣,
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where l ∈ {0, 1, 2, ..., 2k−n−1} for each k and n. Expanding the product inside the sum, we obtain∣∣ρf ′
A
(l)− ρf (l)

∣∣ = ∣∣∑
n

∑
k

f(2k − n)∆fA(2k − n− l)︸ ︷︷ ︸
(I)

+
∑
n

∑
k

∆fA(2k − n) f(2k − n− l)︸ ︷︷ ︸
(II)

+
∑
n

∑
k

∆fA(2k − n)∆fA(2k − n− l)︸ ︷︷ ︸
(III)

∣∣. (7)

(1) Analysis for term (I). Using (5), we split f(2k − n) into fA(2k − n) + fD(2k − n), yielding

(I) =
∑
n

∑
k

fA(2k − n)∆fA(2k − n− l) +
∑
n

∑
k

fD(2k − n)∆fA(2k − n− l). (8)

The first term on the right-hand side can be bounded from above as follows:∑
n∈{0,1}

T
2∑

k= l+2
2

fA(2k − n)∆fA(2k − n− l) ≤ ϵA

T
2∑

k= l+2
2

a0(k)

when l is even (note that the upper bound of k in the summation arises from the constraint max{2k−
n, 2k−n− l} = T for l ≥ 0 and n ∈ {0, 1}; and the lower bound of k in the summation arises from
the constraint min{2k − n, 2k − n− l} = 1 for l ≥ 0 and n ∈ {0, 1}), and∑

n∈{0,1}

T
2∑

k= l+1
2

fA(2k − n)∆fA(2k − n− l) ≤ ϵA

T
2∑

k= l+3
2

a0(k) +
1

2
a0(

l + 1

2
)ϵA

when l is odd, where n ̸= 1 when k = l+1
2 (note that the upper bound of k in the summation follows

from the same constraint discussed above; and the lower bound of k in the summation arises from
the constraint min{2k − n, 2k − n − l} = 1 for l ≥ 1 and n ∈ {0, 1}). The second term on the
right-hand side of (8) can be simplified as follows:∑

n∈{0,1}

T
2∑

k= l+2
2

fD(2k − n)∆fA(2k − n− l) =
∑

n∈{0,1}

T
2∑

k= l+2
2

(−1)1−nd0(k)√
2

δA(k − l
2 )√

2

=

T
2∑

k= l+2
2

d0(k)δA(k − l
2 )

2

∑
n∈{0,1}

(−1)1−n

= 0

when l is even (note that the upper and lower bounds of k follows from the same constraint discussed
above when l is even), and∑

n∈{0,1}

T
2∑

k= l+1
2

fD(2k − n)∆fA(2k − n− l) = 0 + fD(2× l + 1

2
− 0)∆fA(T − l)

≤ −
d0(

l+1
2
)ϵA

2

when l is odd, where n ̸= 1 when k = l+1
2 (note that the upper and lower bounds of k follows from

the same constraint discussed above when l is odd). In summary,

(I) ≤



ϵA

T
2∑

k= l+2
2

a0(k) if l mod 2 = 0,

ϵA

T
2∑

k= l+3
2

a0(k) +
a0(

l+1
2
)ϵA

2
−

d0(
l+1
2
)ϵA

2
if l mod 2 = 1.
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(2) Analysis for term (II). Similarly, we have

(II) =
∑
n

∑
k

∆fA(2k − n)fA(2k − n− l) +
∑
n

∑
k

∆fA(2k − n)fD(2k − n− l).

On the one hand, we have∑
n∈{0,1}

T
2∑

k= l+2
2

∆fA(2k − n)fA(2k − n− l) ≤ ϵA

T
2∑

k= l+2
2

a0(k − l

2
)

when l is even, and∑
n∈{0,1}

T
2∑

k= l+1
2

∆fA(2k − n)fA(2k − n− l) ≤ ϵA

T
2∑

k= l+3
2

a0(k − l + 1

2
) +

ϵAa0(
T
2
− l−1

2
)

2

when l is odd, where n ̸= 1 when k = l+1
2 . On the other hand,

∑
n∈{0,1}

T
2∑

k= l+2
2

∆fA(2k − n)fD(2k − n− l) =
∑

n∈{0,1}

T
2∑

k= l+2
2

δA(k)√
2

(−1)1−nd0(k − l
2
)

√
2

=0

when l is even, and ∑
n∈{0,1}

T
2∑

k= l+1
2

∆fA(2k − n)fD(2k − n− l) ≤
d0(

T
2
− l−1

2
)ϵA

2

when l is odd, where n ̸= 1 when k = l+1
2 . In summary,

(II) ≤



ϵA

T
2∑

k= l+2
2

a0(k − l

2
) if l mod 2 = 0,

ϵA

T
2∑

k= l+3
2

a0(k − l + 1

2
) +

a0(
T
2
− l−1

2
)ϵA

2
+

d0(
T
2
− l−1

2
)ϵA

2
if l mod 2 = 1.

(3) Analysis for term (III). We obtain

(III) ≤ T − l

2
ϵ2A.

Substitute these inequalities back to Equation (7), we obtain that

|Rf ′
A
(l)−Rf (l)| ≤ |ϵA

T
2∑

k= l+2
2

a0(k) + ϵA

T
2∑

k= l+2
2

a0(k − l

2
) +

T − l

2
ϵ2A| (9)

when l is even, and

|ρf ′
A
(l)− ρf (l)| ≤ |ϵA

T
2∑

k= l+3
2

a0(k) +
a0(

l+1
2
)ϵA

2
−

d0(
l+1
2
)ϵA

2

+ ϵA

T
2∑

k= l+3
2

a0(k − l + 1

2
) +

a0(
T
2
− l−1

2
)ϵA

2
+

d0(
T
2
− l−1

2
)ϵA

2
+

T − l

2
ϵ2A| (10)

when l is odd. Summing over all l, we obtain
T−1∑
l=0

|ρf ′
A
(l)− ρf (l)| ≤

T
2∑

k=1

|a0(k)(2k − 1)ϵA|+

T
2∑

i=1

|a0(k)(T − 2k + 1)ϵA|

+
T 2 + T

4
ϵ2A +

T
2∑

k=1

|a0(k)ϵA|+ 0

≤|ϵA|(T + 1)

T
2∑

k=1

|a0(k)|+
T 2 + T

4
ϵ2A. (11)
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Case 2: Perturbation in the detailed coefficients. Consider a function fD(2k− n) that is perturbed
by modifying only its detail coefficients in the Haar wavelet decomposition. We write

f ′
D(2k − n) = f(2k − n) +

(−1)1−nδD(k)√
2

.

Define

∆fD(2k − n) =
(−1)1−nδD(k)√

2
. (12)

So, we can obtain ∣∣ρf ′
D
(l)− ρf (l)

∣∣ = ∣∣∑
n

∑
k

f(2k − n)∆fD(2k − n− l)︸ ︷︷ ︸
(I)

+
∑
n

∑
k

∆fD(2k − n) f(2k − n− l)︸ ︷︷ ︸
(II)

+
∑
n

∑
k

∆fD(2k − n)∆fD(2k − n− l)︸ ︷︷ ︸
(III)

∣∣. (13)

(1) Analysis of term (I). We can obtain

(I) ≤



ϵD

T
2∑

k= l+2
2

d0(k) if l mod 2 = 0,

ϵD
2
a0(

l + 1

2
)− ϵD

T
2∑

k= l+3
2

d0(k)−
ϵD
2
d0(

l + 1

2
) if l mod 2 = 1.

(2) Analysis of term (II). We can obtain

(II) ≤



ϵD

T
2∑

k= l+2
2

d0(k − l

2
) if l mod 2 = 0,

−ϵD

T
2∑

k= l+3
2

d0(k − l + 1

2
)− ϵD

2
a0(

T

2
− l − 1

2
)− ϵD

2
d0(

T

2
− l − 1

2
) if l mod 2 = 1.

(3) Analysis of term (III).

(III) ≤


T − l

2
ϵ2D if l mod 2 = 0,

−T − l

2
ϵ2D if l mod 2 = 1.

Substitute there inequalities back to Equation (13), we obtain that

|ρf ′
D
(l)− ρf (l)| ≤ |ϵD

T
2∑

k= l+2
2

d0(k) + ϵD

T
2∑

k= l+2
2

d0(k − l

2
) +

T − l

2
ϵ2D| (14)

when l is even, and

|ρf ′
D
(l)− ρf (l)| ≤ | ϵD

2
a0(

l + 1

2
)− ϵD

T
2∑

k= l+3
2

d0(k)−
ϵD
2
d0(

l + 1

2
)

− ϵD

T
2∑

k= l+3
2

d0(k − l + 1

2
)− ϵD

2
a0(

T

2
− l − 1

2
)− ϵD

2
d0(

T

2
− l − 1

2
)− T − l

2
ϵ2D|

(15)
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when l is odd. Summing over all l, we obtain

T−1∑
l=0

|ρf ′
D
(l)− ρf (l)| ≤ |ϵD|(T + 1)

T
2∑

k=1

|d0(k)|+
T 2 + T

4
ϵ2D. (16)

Compare the upper bounds in Equations (11) and (16). Obviously, the problem of comparing the

two upper bounds can be equivalent to comparing the values of

T
2∑

k=1

|a0(k)| and

T
2∑

k=1

|d0(k)|. Thus,

for any one-dimensional signal f(t) of length T . If it satisfies the condition
T
2∑

k=1

|a0(k)| ≥

T
2∑

k=1

|d0(k)|,

then we obtain,

sup
l

(
T−1∑
l=0

|ρf ′
A
(l)− ρf (l)|

)
≥ sup

l

(
T−1∑
l=0

|ρf ′
D
(l)− ρf (l)|

)
.

To explore the extension of Theorem 1 to the three-dimensional setting, we introduce Corollary 1.
Let f ∈ RT×H×W be a 3-D signal. For any spatial-temporal coordinate (X1, X2, X3) in the domain
of f , the autocorrelation function is defined analogously as

ρ(l1, l2, l3) = f(X1, X2, X3) · f(X1 − l1, X2 − l2, X3 − l3),

where l1, l2, l3 ∈ Z denote the lags along an arbitrary of the three dimensions. We define the following
sets of lags:

S = {(l1, l2, l3) | 0 ≤ l1 ≤ T − 1, 0 ≤ l2 ≤ H − 1, 0 ≤ l3 ≤W − 1},

S1 = {(l1, 0, 0) | 0 ≤ l1 ≤ T − 1},
S2 = {(0, l2, 0) | 0 ≤ l2 ≤ H − 1},
S3 = {(0, 0, l3) | 0 ≤ l3 ≤W − 1}.

Let f ′A and f ′D denote the signals obtained by perturbing only the approximation coefficients and only
the detail coefficients of f , respectively. Define

∆ρfA(l1, l2, l3) =
∣∣ρf ′A(l1, l2, l3)− ρf (l1, l2, l3)∣∣ ,

∆ρfD (l1, l2, l3) =
∣∣ρf ′D (l1, l2, l3)− ρf (l1, l2, l3)∣∣ .

Corollary 1. maxi=1,2,3 supSi
∆ρfD ≤ maxi=1,2,3 supSi

∆ρfA .

Proof. Under the 1-D condition of Theorem 1, along each dimension, we have

sup
(l1,0,0)∈S1

∆ρfD(l1, 0, 0) ≤ sup
(l1,0,0)∈S1

∆ρfA(l1, 0, 0),

sup
(0,l2,0)∈S2

∆ρfD(0, l2, 0) ≤ sup
(0,l2,0)∈S2

∆ρfA(0, l2, 0),

sup
(0,0,l3)∈S3

∆ρfD(0, 0, l3) ≤ sup
(0,0,l3)∈S3

∆ρfA(0, 0, l3).

So, we obtain

max{ sup
(l1,0,0)∈S1

∆ρfD(l1, 0, 0), sup
(0,l2,0)∈S2

∆ρfD(0, l2, 0), sup
(0,0,l3)∈S3

∆ρfD(0, 0, l3)}

≤ max{ sup
(l1,0,0)∈S1

∆ρfA(l1, 0, 0), sup
(0,l2,0)∈S2

∆ρfA(0, l2, 0), sup
(0,0,l3)∈S3

∆ρfA(0, 0, l3)}.
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E Proof of Theorem 2

Theorem (Restatement of Theorem 2). Let f(t) be a 1-D signal of even length T . Let f ′A and f ′D
denote the signals obtained by perturbing only the approximation and detail coefficients of f(t),
respectively, with perturbations δA and δD. Then, ∥f ′A − f∥2 = ∥δA∥2 and ∥f ′D − f∥2 = ∥δD∥2.
Moreover, if ∥δA∥2 ≥ ∥δD∥2, then ∥f ′A − f∥2 ≥ ∥f ′D − f∥2.

Proof. Given a one-dimensional time series f(t) of length T . The level-one wavelet decomposition
of f based on the Haar wavelet in the one-dimensional space can be represented as

f(2k − n) =
a0(k)√

2
+

(−1)1−nd0(k)√
2

,

where n ∈ {0, 1}, and k ∈ {1, 2, . . . , T
2
}.

Let f ′A and f ′D be the perturbed versions of f , reconstructed from coefficient perturbations applied
only to the approximation or detail components, respectively. Let W ∈ RT×T denote the orthogonal
Haar decomposition matrix such that f = W[a0;d0], where [a0;d0] ∈ RT concatenates the level-1
approximation and detail coefficients. That is,

 f(1)
f(2)
...

f(2k)

 = W ·



a0(1)
a0(2)
...

a0(k)
d0(1)
d0(2)
...

d0(k)


=

1√
2



1 0 0 · · · 0 1 0 0 · · · 0
1 0 0 · · · 0 −1 0 0 · · · 0
0 1 0 · · · 0 0 1 0 · · · 0
0 1 0 · · · 0 0 −1 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 1 0 0 0 · · · 1
0 0 0 · · · 1 0 0 0 · · · −1


·



a0(1)
a0(2)
...

a0(k)
d0(1)
d0(2)
...

d0(k)


Then the perturbed signals are

f ′A = W [a0 + δA; d0] = f +W[δA;0],

f ′D =W [a0; d0 + δD] = f +W [0; δD].

As WWT = I, we have
∥f ′A − f∥2 = ∥W[δA;0]∥2 = ∥δA∥2,
∥f ′D − f∥2 = ∥W[0; δD]∥2 = ∥δD∥2.

If
∥δA∥2 ≥ ∥δD∥2,

clearly, we obtain
∥f ′A − f∥2 ≥ ∥f ′D − f∥2.

F The Adaptation of Adversarial Attack Methods for Weather Forecasting

Several representative adversarial attack methods are considered for adaptation in this study.

F.1 Noise Attack

It was used in [16] as a baseline, based on a searching algorithm that constructs X′ by adding random
Gaussian noise to X. It seeks to search the optimal X′ such that g(X′) ≈ Ŷ′.

F.2 FGSM

FGSM [15] was originally proposed as a single-step adversarial method in the context of image
classification. It crafts an adversarial sample by moving the input in the direction of the gradient
sign. To adapt FGSM to our targeted forecasting problem, we aim to find an adversarial predictor X′

within an ϵ-ball centered at X such that g(X′) ≈ Ŷ′. Formally, we define

X
′
= X− α sign(∇XL(g(X, Ŷ′))

where α controls the perturbation magnitude.
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F.3 ALA

ALA [27] was originally designed for untargeted adversarial attacks on one-step temporal forecasts
of renewable power production, Ŷτij , at location (i, j) and time step τ in the forecast window. The
forecasts are produced using the observed time series data Ttij , t ∈ {t0 − α, t0 − α + 1, ..., t0}
(abbreviated as Tij) within the time interval [t0 − α, t0], and the meteorological data Zt0+1,ij ∈ RL

at time step t0 + 1 predicted from external APIs , such that Ẑt0+1,ij = g(Tij , Zt0+1,ij). The
objective is to learn an adversarial Z ′

t0+1,ij that minimizes γ(g(Tij , Z
′
t0+1,ij) − Ẑt0+1,ij), where

γ ∈ {−1,+1} specifies the attack direction (increase or decrease). This is achieved using an Adam-
based ALA-solving algorithm. In contrast, our study focuses on targeted adversarial attacks where
the forecasts remain semantically consistent with the spatiotemporal predictor data, with the attacking
objective specifically targeting a localized region rather than the overall performance. Therefore,
essential adaptations to the aforementioned methods are required to align them with our problem.
ALA can be adapted to our problem as a gradient-based method that iteratively perturbs X to X′ by
minimizing the objective ∥g(X′)− Ŷ′∥2 using the Adam [19] optimizer, performed by

X
′(i+1) = ClipX,ϵ{X

′(i) − α · m̂t√
v̂t + ϵ

}

at each epoch i, where m̂t = mt

1−βt
1

and v̂t = vt
1−βt

2
are the first and second order moments,

respectively, where vt = β2vt−1 + (1 − β2)g
2
t , mt = β1mt−1 + (1 − β1)gt. Here, gt =

∇X′(i)L(g(X
′(i)), Ŷ′) = ∥g(X′(i))− Ŷ′∥2.

F.4 TAAOWPF

TAAOWPF [16] was originally designed for targeted adversarial attacks on multi-step temporal
forecasts of overall wind power production, using spatiotemporal wind speed data collected from
various locations within the region. Given the historical wind speed data X at different locations, the
multi-step forecasts of overall wind power production, denoted as Ŷtotal, are predicted by Ŷtotal =

g(X). With an adversarial target Ŷ′
total, the objective is to learn an adversarial predictor X′ that

minimizes L(Ŷ′
total, Ŷtotal), where Ŷ′

total = g(X′) and L(·, ·) represents the loss function. This
optimization is carried out using the Projected Gradient Descent (PGD) attack. TAAOWPF can be
adapted to our problem as a projected gradient-based method that iteratively perturbs X to X′ by

X
′(i+1) = ClipX,ϵ{X

′(i) − α sign(∇
X

′(i)L(g(X
′(i)), Ŷ′))}

at each epoch i, where X
′(0) = X, L(g(X′(i)), Ŷ′) = ∥g(X′(i))− Ŷ′∥2, and ClipX,ϵ ensures that

X
′(i) remains within the ϵ-ball centered at X.

F.5 STPGD

STPGD [23] was originally developed for untargeted adversarial attacks on traffic condition prediction
models, such as those predicting traffic speed. Given a traffic network G[t0−α:t0] = (V, E ,X) over
the previous α + 1 time steps, where V represents a set of n nodes (e.g., regions, road segments,
or roadway sensors), E represents a set of edges, and X denotes the spatiotemporal features of
traffic conditions (e.g., traffic volume or speed) associated with the nodes, the traffic states Ŷ for
all nodes over the next β time steps are predicted as Ŷ = g(V, E ,X). The objective is to maximize
L(g(V, E ,X′), Ŷ), where X′ represents the adversarial spatiotemporal features associated with the
nodes. Instead of attacking all nodes, STPGD first identifies a victim set of nodes based on the
time-dependent node saliency (TDNS) scores calculated for each node, ranked from high to low. The
attack is then applied only to these victim nodes using the Projected Gradient Descent (PGD) method.
STPGD can be adapted to our problem in two steps. First, it calculates the saliency for each location
(i, j) as ∥ReLU(∇XijL(g(Xij), Ŷ

′
ij))∥2, identifying the locations with the top−K highest saliency

as the victim locations. Then, the perturbation process is performed by

X
′(i+1) = ClipX,ϵ{X

′(i) − α sign(∇
X

′(i)L(g(X
′(i)), Ŷ′)) ·V}

at each epoch i, where V ∈ {0, 1}(r×s)×(r×s) is a diagonal matrix indicating whether location (i, j)

is a victim location, and L(g(X′(i)), Ŷ′) = ∥g(X′(i))− Ŷ′∥2.
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G Details on Experimental Settings

G.1 Data Statistics

This section presents the statistical properties of the data used in this study. All values are reported
either in scientific notation or rounded to four decimal places.

North American Land Data Assimilation System (NLDAS) provides daily weather observations at
1,320 locations on a 1◦ × 1◦ grid across North America, spanning the period from 1979 to 2023. In
this study, we utilize three variables from this dataset: precipitation (apcpsfc), 2-meter air temperature
(tmp2m), and surface pressure (pressfc). The raw apcpsfc variable (in kg/m2) has the following
statistical properties: a mean of 8.3229 × 10−2 kg/m2, a standard deviation of 0.2071 kg/m2, a
maximum of 10.1873 kg/m2, and a minimum of 0 kg/m2. The 25th, 50th, 75th, 90th, 95th, and 99th
percentiles are 0 kg/m2, 5.0207× 10−3 kg/m2, 6.2073× 10−2 kg/m2, 23.8847 kg/m2, 0.4357 kg/m2,
and 1.0476 kg/m2 respectively. After applying the transformation log(1 + x), the apcpsfc variable
has the following statistical properties: a mean of 6.7189 × 10−2 kg/m2, a standard deviation of
0.1450 kg/m2, a maximum of 2.4148 kg/m2, and a minimum of 0 kg/m2. The 25th, 50th, 75th, 90th,
95th, and 99th percentiles are 0 kg/m2, 5.0081× 10−3 kg/m2, 6.0222× 10−2 kg/m2, 0.2142 kg/m2,
0.3617 kg/m2, and 0.7167 kg/m2, respectively. The raw tmp2m variable has the following statistical
properties: a mean of 283.9300K, a standard deviation of 38.3300K, a maximum of 314.5700K,
and a minimum of 232.5900K. The 25th, 50th, 75th, 90th, 95th, and 99th percentiles are 275.4700K,
285.3900K, 293.4100K, 298.9900K, 301.2700K, and 304.4300K respectively. The raw pressfc
variable has the following statistical properties: a mean of 9.3937× 104 Pa, a standard deviation of
9.8661 × 103 Pa, a maximum of 1.0491 × 105 Pa, and a minimum of 6.8401 × 104 Pa. The 25th,
50th, 75th, 90th, 95th, and 99th percentiles are 8.9354× 104 Pa, 9.6659× 104 Pa, 9.9077× 104 Pa,
1.0089× 105 Pa, 1.0151× 105 Pa, and 1.0221× 105 Pa, respectively.

ERA5 Reanalysis Data provides global hourly reanalysis weather data on a 5.625◦ × 5.625◦ grid,
covering 2,048 locations from 1979 to 2018. In this study, we utilize two variables from this dataset:
2-meter air temperature (T2M) and total incident solar radiation (TISR). The raw tisr variable has the
following statistical properties: a mean of 278.2700K, a standard deviation of 21.0500K, a maximum
of 317.8200K, and a minimum of 193.6600K. The 25th, 50th, 75th, 90th, 95th, and 99th percentiles
are 268.8100K, 283.2100,K, 295.9000K, 299.6300K, 300.5300K, and 302.3900K respectively.
The raw t2m variable has the following statistical properties: a mean of 6.4406×106 J/m2, a standard
deviation of 7.7218× 106 J/m2, a maximum of 2.7871× 107 J/m2, and a minimum of 0 J/m2. The
25th, 50th, 75th, 90th, 95th, and 99th percentiles are 0 J/m2, 2.8250× 106 J/m2, 1.1292× 107 J/m2,
1.9387× 107 J/m2, 2.2900× 107 J/m2, and 2.5913× 107 J/m2 respectively.

G.2 Data Preprocessing

For NLDAS datasets, we first remove outliers where the values are −999.900024 in both datasets. In
accordance with the preprocessing procedures described in [22], we standardized the values in both
the datasets using the formula z = x−µ

σ , where µ and σ represent the mean and standard deviation
calculated across all spatial locations and temporal instances. To construct training, validation, and
test sets, we split the data non-overlappingly by year, with the training set spanning 1979–2015, the
validation set 2016–2019, and the test set 2020–2023. Following the experimental setup in [22],
both the predictor and forecast windows are set to a length of 12. For ERA5 datasets, to match the
FourCastNet [25] input format, hourly data is aggregated into six-hourly intervals by averaging on
ERA5-T2M and by accumulating on ERA5-TISR. We standardize the values as z = x−µ

σ , where
µ and σ are the mean and standard deviation computed across all spatial and temporal points. To
construct training, validation, and test sets, we split the data non-overlappingly by year, with the
training set spanning 1979–2016, the validation set 2017, and the test set 2018. Unlike NLDAS-based
12-day medium-range forecasting, our six-hourly ERA5 dataset enables 3-day short-term forecasting.

G.3 Pre-train CLCRN and FourCastNet Weather Forecasting Models

Figure 7 presents the training and validation loss curves for the forecasting models employed in
this study. Specifically, three CLCRN [22] models were trained for forecasting three NLDAS
variables: precipitation (apcpsfc), 2-meter air temperature (tmp2m), and surface pressure (pressfc),
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Figure 7: Epoch-wise training (blue) and validation (red) loss curves for CLCRN on NLDAS-TMP2M,
NLDAS-PRESSFC and NLDAS-APCPSFC (top row) and for FourCastNet on ERA5-T2M and ERA5-
TISR (bottom row).

and two FourCastNet [25] models were trained for forecasting two ERA5 variables: 2-meter air
temperature(t2m), and total incident solar radiation (tisr). While CLCRN inherently supports the
multi-step forecasting setup defined in our problem statement, FourCastNet was originally designed
to predict multiple variables at a single future time step from a historical sequence of multi-variable
inputs. To adapt FourCastNet to our setting, we modified its forecasting task from multi-variable
single-step prediction to single-variable multi-step prediction. All models were trained using their
original hyperparameter configurations5, with necessary adjustments limited only to input/output
formatting and task-specific adaptations, based on the preprocessed training and validation data
illustrated in Appendix G.2.

The final reported test errors correspond to the models that achieved the lowest validation loss during
training, summarized as follows. For the CLCRN models trained on NLDAS data, the mean absolute
errors (MAE) on the test set were 0.4399 (on NLDAS-APCPSFC), 0.0908 (on NLDAS-TMP2M), and
0.0487 (on NLDAS-PRESSFC). For the FourCastNet models trained on ERA5 data, the mean squared
errors (MSE) were 0.017137 (on ERA5-T2M) and 0.000579 (on ERA5-TISR). These results indicate
that all models achieve satisfactory predictive performance prior to the implementation of adversarial
perturbations.

It is worth noting that our proposed method and the existing baselines are model-agnostic, and thus
can be applied to any forecasting model or adapted variants that align with our problem statement.

G.4 Construct Adversarial Targets

Unlike most existing strategies for constructing adversarial targets, which are primarily tailored for
classification problems6, in this study, we focus on constructing adversarial attack targets specifically
for forecasting problems. Given an input predictor X ∈ R(α+1)×r×c and a weather forecasting model

5The codes of CLCRN and FourCastNet are publicly available at https://github.com/EDAPINENUT/
CLCRN and https://github.com/NVlabs/FourCastNet, respectively.

6Different strategies have been proposed for constructing adversarial attack targets Ŷ′. For classification
problems, the adversarial target for each sample is typically the least likely class of it predicted by classification
model [20]. For regression problems, for example, [16] identifies four types of adversarial targets: increasing,
decreasing, constant, and zig-zag-shaped predictions. The first three reflect realistic scenarios, while the zig-zag
pattern is used to explore the extent of potential manipulation in predictions. Similarly, in [27], three levels of
untargeted attack strength are introduced, allowing for maximum perturbations of 10%, 20%, and 30% of the
initial predictor values.
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g, let Ŷ = g(X) ∈ Rβ×r×c be the model forecast7. We construct the adversarial target Ŷ′ for each
model forecast Ŷ as follows.

We select a target location (ic, jc) ∈ {1, ..., r} × {1, ..., c} and time step τc for applying the perturba-
tion. The adversarial target at time step τc is given by Ŷ ′

τcicjc
= Ŷτcicjc + δŶτcicjc

, where δŶτcicjc
is

randomly chosen from a uniform distribution in a range between (δmin, δmax) with the upper and
lower bounds chosen based on domain knowledge.

To ensure the adversarial target is geospatio-temporally realistic, we also perturb its neighboring
locations and adjacent time steps as follows. For other time steps τ ̸= τc at location (ic, jc), we set

Ŷ ′
τicjc

= Ŷτicjc + δŶτcicjc
e
− (τ−τc)

2

σ2
τ , where στ controls the realisticness of relative changes along

the temporal dimension. Similarly, to ensure spatial realisticness, we construct the adversarial target

for neighboring locations (i, j) of (ic, jc) as δŶτij
= δŶτicjc

e
−

d(icjc),(ij)
σd , where σd controls the

realisticness of relative changes over the neighborhood locations, and d(·),(·) measures the distance
between two locations.

On the NLDAS datasets, the selected location (i, j) can be one of the major U.S. cities: New York,
Miami, Chicago, Houston, Dallas, Minneapolis, Los Angeles, Denver, Seattle, and New Orleans. For
the dataset NLDAS-APCPSFC, tc is randomly selected from the forecast window. Values at or above
the 95th percentile are defined as extreme. If the original prediction at tc is not extreme, it is replaced
with a value randomly sampled between the 95th percentile and the maximum value. To ensure
realisticness, predictions at other time steps are scaled proportionally to the ratio of the original value
at tc and the new target value. Conversely, if the original forecasted value at tc is extreme, it is
replaced with a value randomly sampled between the minimum and the 25th percentile, with other
time steps scaled proportionally. For the dataset NLDAS-TMP2M, tc is randomly selected from
the range of [5, 6]. If the predicted temperature at the center, Ŷijtc , is less than the 50th percentile
value, it is decreased by a random value within the range [9, 10]. Conversely, if Ŷijtc exceeds the
50th percentile value, it is increased by a random value within the same range. For the dataset
NLDAS-PRESSFC, the construction of adversarial targets is similar to that for NLDAS-TMP2M.
The only difference is that the increased or decrease value at tc is within the range [2500, 2800]. On
the NLDAS dataset, our test set contains a total of 96 samples. For each sample, we independently
construct adversarial targets by treating each of the 10 specified cities as a localized, targeted location.
As a result, we generate 960 samples in total, which serve as the basis for our adversarial attack
experiments.

On the datasets ERA5-T2M and ERA5-TISR, instead of performing a one-location attack as in the
NLDAS datasets, we extend the adversarial target construction to consider neighborhood locations,
ensuring spatial realisticness in the perturbations. Furthermore, unlike the adversarial attacks on
NLDAS datasets, where attack locations are restricted to major U.S. cities, we randomly select attack
locations across the entire global grid in ERA5. This allows for a more diverse and comprehensive
evaluation of forecasting models under adversarial conditions. On the ERA5 dataset, our test set
contains a total of 60 samples. For each sample, we independently and randomly construct 10
adversarial targets. As a result, we generate 600 samples in total, which serve as the basis for our
adversarial attack experiments.

G.5 Select Hyperparameters for Baselines

Figure 8 presents the performance of STPGD on the NLDAS-APCPSFC dataset under varying salient
location set sizes. The experimental setup follows Section 4. We search different salient location
set sizes over 330, 660, 990, corresponding to 1

4 , 1
2 , and 3

4 of all spatial locations. As the size
decreases, STPGD becomes less effective in achieving the target (lower in-faithfulness), despite
improvements in out-faithfulness and closeness, indicating that strong location constraints can hinder
attack validity. Given the importance of effectiveness in localized targeted attacks, and in comparison
with unconstrained baselines (Figure 2), we adopt a salient location set size of 990 for the NLDAS

7In this study, we use CLCRN [22] and FourCastNet [25] as the forecasting models as they align with our
formulated scenario. Our choice was also influenced by their code availability, ensuring a transparent and
reproducible analysis. Nevertheless, the baseline and our proposed attack methods are applicable to other
forecasting models.
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Figure 8: Effect of salient location set size on STPGD performance on the NLDAS-APCPSFC dataset
in terms of faithfulness and closeness. Lower metric values indicate better performance.

dataset. Similarly, we set the salient location set size 1536 for ERA5 dataset. This setup allows us to
study the role of spatial constraints without sacrificing attack effectiveness, striking a better trade-off.

Based on the results presented in Figure 2, we observe that as ϵ increases, baseline performance in In-
Faithfulness consistently improves, while performance in Out-Faithfulness and Closeness deteriorates,
though the magnitude of change diminishes progressively. As our goal emphasizes effectiveness in
localized targeted attacks, we select ϵ = 2.5 as the trade-off.

Finally, in terms of the number of iterations N , we set the maximum number of iterations to 1000 and
save the final result as the one corresponding to the lowest loss observed during the entire optimization
process. In practice, we observe that the baselines typically converge well within 500 iterations.

G.6 Select Hyperparameters for FABLE

The key hyperparameters of FABLE include the regularization strength λ and the penalty weights ωf

applied to different wavelet-decomposed frequency components f .

First, to evaluate the effect of the regularization strength λ in FABLE, the Table 3 reports key metrics
on the NLDAS-TMP2M dataset. As λ increases, we observe a clear trade-off: stronger regularization
improves realisticness (lower RS , RT and proximity), but at the cost of reduced attack effectiveness
(higher In-AE and Out-AE). To systematically choose λ, we first evaluate the λ = 0 case to establish
a faithfulness upper bound and a baseline for realisticness. We then perform a logarithmic sweep over
λ (e.g., 10−7 to 10−2) to characterize the trade-off. To quantify this balance, we define a normalized
trade-off index (NTI), computed as the ratio of aggregated realisticness metrics (RS , RT , Proximity)
to faithfulness metrics (In-AE, Out-AE), with all values normalized to [0, 1]. We select λ at the point
where NTI saturates, indicating diminishing marginal gains in realisticness.

Second, we examined the sensitivity of the weighting hyperparameters that control the magnitude of
perturbations applied to wavelet coefficients at different frequencies, both empirically and theoreti-
cally. Under a simplified setting using level-one Haar wavelets decomposition, our analysis shows
that emphasizing higher-frequency perturbations leads to smaller changes in autocorrelation, helping
preserve realisticness. While this result is specific to the chosen wavelet and decomposition level,
it offers useful guidance for frequency-aware regularization. Empirically, we find that assigning
greater weight to high-frequency components consistently improves the realisticness of adversarial
examples. In our experiments, the penalty coefficients used in FABLE were: penalty_weights =
{LLH: 0.8, LHL: 0.8, HLL: 0.8, LHH: 0.5, HLH: 0.5, HHL: 0.5, HHH: 0.2}, as evi-
denced in our submitted code. These were selected via a grid search on the NLDAS-TMP2M dataset
with the CLCRN model, using search ranges of [0.9, 0.8, 0.7] (for each coefficient component that
contains 1 H), [0.6, 0.5, 0.4] (contains 2 Hs), and [0.3, 0.2, 0.1] (contains 3 Hs), as presented in
Figure 6 in Appendix C, targeting an optimal trade-off between faithfulness and realisticness. This
configuration was then consistently applied to other datasets.
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