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Efficient Implementations of Residue Generators
Mod 2n + 1 Providing Diminished-1 Representation

Stanisław J. Piestrak & Piotr Patronik

Abstract—The moduli of the form 2n + 1 belong to a class
of low-cost odd moduli, which have been frequently selected to
form the basis of various residue number systems (RNS). The
most efficient computations modulo (mod) 2n + 1 are performed
using the so-called diminished-1 (D1) representation. Therefore,
it is desirable that the input converter from the positional number
system to RNS (composed of a set of residue generators) could
generate the residues mod 2n + 1 in D1 form. In this paper,
we propose the basic architecture of the residue generator mod
2n + 1 with D1 output. It is universal, because its initial part
can be easily designed for an arbitrary p ≥ 4n, whereas its final
block—the 4-operand adder mod 2n + 1—preserves the same
structure for any p. If a pair of conjugate moduli 2n ± 1 belongs
to the RNS moduli set, the latter architecture can be easily
extended to build p-input bi-residue generators mod 2n±1, which
not only save hardware by sharing p − 4n full-adders, but also
generate the residue mod 2n + 1 directly in D1 form.

Index Terms—Residue arithmetic, residue number sys-
tem (RNS), residue generation, modulo 2n + 1 arithmetic,
diminished-1 representation, input converter, shared logic.

I. INTRODUCTION

THE residue arithmetic modulo (mod) 2n + 1 has found
numerous applications of which two distinct classes

involve the non-positional residue number system (RNS) and
the Fermat Number Transform (FNT) (where the Fermat
number Fn = 22

n

+ 1). The RNS is defined by a set of
pairwise prime natural numbers, called moduli, whose product
determines its dynamic range. Its major attraction, which
makes it competitive to the positional 2’s complement system,
is the possibility of particularly efficient (w.r.t. area, time, and
power consumption) implementation of algorithms involving
mostly sum of products operations. The numerous applications
of RNS include implementations of the algorithms related
to: RSA public-key cryptosystem [1], FIR filters [2], [3],
microprocessors [4], [5], artificial intelligence [6], as well
as many other DSP applications [7]. On the other hand, the
FNT with diminished-1 representation was used to implement
various DSP algorithms [8], to accelerate integer convolutional
neural networks [9] and to reduce the computational com-
plexity of the chromatic dispersion compensation in optical
communication systems [10].

In general, any set of pairwise prime moduli could be used
to form an RNS. Nevertheless, some moduli like those of
the type 2k and the conjugate moduli of the form 2n ± 1
have particularly hardware-efficient and fast implementations
of the residue datapaths, and hence are called low-cost moduli.
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Because only one even modulus can be used, of particular
interest are the remaining two classes, of which 2n − 1 is
unquestionably the best one. The next best class of odd
moduli are those of the form 2n + 1 for which, however,
some problems have been identified and resolved as follows.
The normal representation of residues mod 2n + 1 requires
n + 1 bits to represent all valid values from [0, 2n], which
means that only 2n + 1 out of 2n+1 combinations are actually
used. Amongst them, (10 . . . 0) is the only one out of n + 1
combinations with the Most Significant Bit (MSB) set to 1.
Leibowitz [11] observed that executing arithmetic operations
on (n + 1)-bit operands involves unnecessary hardware cost
and delay. Assuming that any zero operand is recognized by
a separate zero indication bit, the operations can be executed
on n-bit operands, provided that each of them is decremented
by 1. Such a notation was called the diminished-1 (D1) rep-
resentation. However, to make possible execution of cheaper
D1 operations, a designer must ensure two following features.

(i) The residue mod 2n + 1 is provided to the datapath mod
2n + 1 in D1 form.

(ii) Once the final result mod 2n + 1 is available, either
it is converted from the D1 form to the normal residue
representation—to make possible using generally available
reverse converters, or it is applied directly to specially con-
structed reverse converter accepting the D1 from.

Because here we are particularly interested in the circuitry
which involves the D1 representation, the following survey
concentrates only on the contributions specifically taking into
account the latter. The most efficient implementations of the
arithmetic circuits mod 2n + 1 using D1 representation are:
adders [12], [13], multi-operand modulo adders (MOMAs)
[13], multipliers [14], and multiplier-accumulators (MACs—
also called fused add-multiply units) [15], [16]. The reverse
converters for the special 3-moduli set {2n, 2n−1, 2n+1} and
its extensions which include the fourth modulus 22n+1, which
were designed explicitly assuming that the datapath channels
mod 2n + 1 and 22n+1 produce the D1 result, were proposed
in [17]. An improved version of the reverse converter for the
above 3-moduli set was proposed in [14] (Fig. 10).

The input (forward) converter for any RNS-based processor
essentially consists of a set of residue generators for all
moduli defining an RNS. Here, we are interested in designing
residue generators with two features: (1) they generate the D1
output for the 2n + 1 modulus, and (2) they are amenable
for hardware cost reduction by using shared logic with at
least one residue generator for some other modulus. Indeed,
relatively little works can be found on this subject. The
most obvious scheme of the residue generator mod 2n + 1
which provides the output in D1 form consists of any normal
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residue generator mod 2n + 1 (such as proposed in [18])
followed by the converter into D1 form, e.g. in the form of
the modified D1 adder connected to the CSA tree [13] (Fig.
5b). The 3n-bit input residue generator mod 2n + 1 (intended
only for the 3-moduli set {2n, 2n − 1, 2n + 1}) providing
directly the D1 output was proposed in [14] (Figs. 4 and
8). For some moduli sets, including those which contain the
pair of the conjugate moduli like 2n ± 1, hardware savings
can be obtained by using some shared circuitry to design
input converters. The problem of hardware sharing between
various residue generators for conjugate moduli 2n ± 1 was
considered in [19], [20]. However, these works deal only
with the standard representation of residues mod 2n + 1. To
our best knowledge, no design methods of the multi-residue
generators for conjugate moduli 2n ± 1 using shared logic
and providing diminished-1 representation have been reported
yet. Obviously, the most evident (but not necessarily the most
efficient) solution would be to use the bi-residue generator
mod 2n ± 1 from [20] whose mod 2n + 1 output feeds the
normal-to-D1 converter, such as for example one from [13].

Therefore, the goal of this paper is to study the possibility
of designing efficient residue generators mod 2n ± 1, which
would produce directly the operand in D1 form for any number
of input bits p and would be easily amenable for hardware
sharing with the mod 2n − 1 residue generator.

This paper is organized as follows. In Section II, some theo-
retical background on the D1 representation and the periodicity
properties of the series of |2k|A is summarized. In Section
III, a new architecture of the universal residue generator mod
2n + 1 providing the residue directly in D1 form, is detailed
along with the possibility of its extension to the bi-residue
generator mod 2n ± 1. Conclusions are given in Section IV.

II. PRELIMINARIES

A. Modulo 2n + 1 Diminished-1 (D1) Representation

The modulo 2n + 1 diminished-1 (D1) representation,
which was introduced in [11], includes a zero indication
bit. A number X ∈ [0, 2n + 1) is represented as X∗ =
(xz xn−1 . . . x0), where xz is the zero indication bit and
X−1 = (xn−1 . . . x0) is the diminished-1 magnitude of X .
Formally, the terms xz and X−1 are defined as

xz =

{
0 if X ̸= 0

1 if X = 0
(1)

so that X = x̄z +X−1.

B. Periodicity Properties of the Series of |2k|2n ± 1
In the designs considered here, we will need the following

notions, which characterize the periodicity of the series of∣∣2k∣∣2n ± 1 and are particularly useful to design efficient
arithmetic circuits mod 2n ± 1 [18]. The practical importance
of periodicity stems from the following equations, which hold
for any nonnegative integer j:∣∣2jn+k

∣∣
2n − 1 =

∣∣2k∣∣2n − 1 (2)∣∣2jn+k
∣∣
2n + 1 = (−1)j

∣∣2k∣∣2n + 1 . (3)

In particular, for k = 0 the above equations take the form:∣∣2jn∣∣
2n−1

= 1 (4)∣∣2jn∣∣2n + 1 =

{
1 if j even

2n = |−1|2n + 1 if j odd
(5)

In [18], it was shown how to exploit these properties to sim-
plify designing residue generators and multi-operand modulo
adders (MOMAs) by using carry-save adders (CSAs) with end-
around carry (EAC). In [18], it was shown that designing
any arithmetic circuit taking advantage of Eqn (3) allows
to invert all signals of weight

∣∣2jn+k
∣∣
2n + 1 for odd j and

handle them as signals of weight
∣∣2k∣∣2n + 1, provided that the

correction constant equal to | − 2k|2n + 1 is added. To avoid
unnecessary multiple additions of corrections, we can apply
a simple general rule to calculate the cumulative correction
value for any arithmetic circuit taking advantage of Eqn (3),
given in [21]: COR2n + 1 is obtained as the cumulative sum
of all inverted signals of weight

∣∣2k∣∣2n + 1 that appear in the
circuit taken mod 2n + 1, which can be added at some stage
of computation. In all circuits which will be considered here,
the total correction CORA must be taken into account prior
the final D1 representation is obtained.

Eqns (4) and (5) constitute the theoretical background
for designing bi-residue generators for the conjugate moduli
2n ± 1.

III. DESIGN OF RESIDUE GENERATORS MOD 2n + 1 WITH
D1 OUTPUT

A. Architecture Designed According to [18]

Here, we will first present the design method of residue
generators mod 2n + 1 according to [18] and then we will
consider the possibilities to generate the output in D1 form.

We assume that the input p-bit vector X is sufficiently
large, so that it can be partitioned into r = ⌈p/n⌉ > 2 n-bit
blocks Bj , beginning with the least significant bits (LSBs),
i.e., X = (Br−1 . . . B1B0), where B0 = (xn−1 . . . x1x0),
B1 = (x2n−1 . . . xn+1xn), etc. If p does not divide n, the
block Br−1 containing the most significant bits (MSBs) is
padded with r · n− p leading 0s.

Due to (3) we have

|X|2n + 1=

∣∣∣∣∣∣
r−1∑
j=0

2j·n ·Bj

∣∣∣∣∣∣
2n + 1

=

∣∣∣∣∣∣
r−1∑
j=0

(−1)jBj

∣∣∣∣∣∣
2n + 1

(6a)

=

∣∣∣∣∣∣
 r−1∑

j=0, j even

Bj

−

 r−1∑
j=1, j odd

Bj

∣∣∣∣∣∣
2n + 1

. (6b)

For any odd j, we can benefit from the following equality
to replace the second part of Eqn (6b) as follows∣∣∣−Bj

∣∣∣
2n + 1

=
∣∣∣B̄j −

(
n−1∑
i=0

bj,i2
i

)∣∣∣
2n + 1

= B̄j + 2. (7)

Eqn (7) indicates the correction constant equal to 2, which
must be added mod 2n + 1 to the final result.

Basically, Eqns (6b) and (7) can be used as a starting point
to design the residue generator mod 2n + 1 with D1 output.
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TABLE I
THE CORRECTIONS REQUIRED DUE TO COMPLEMENTED SIGNALS.

p B1 B3 B5 CSA Stages 1–3 COR(p, 9)

16 −7 −7 −1 −2− 1− 1 | − 19|9 = 8
17 −7 −7 −3 −2− 1− 1 | − 21|9 = 6
18 −7 −7 −7 −2− 1− 1 | − 25|9 = 2

However, the following example reveals some problems in-
volved with such a design approach.

Example 1: Consider the design of three residue generators
mod 9 according to Eqn (6b) for p = {16, 17, 18}. Initially,
the set of p = 18 input bits is partitioned into r = ⌈p/3⌉
3-bit blocks B0, B1, B2, B3, B4, and B5 (with padded two
and one 0’s, respectively for p = 16 and p = 17), in which
all nonzero bits of the odd-numbered blocks B1, B3, and B5

are complemented. To construct the CSA tree, the bits of the
blocks Bk, 0 ≤ k ≤ 5, are partitioned into HP (9) = 3 disjoint
sets Gk, 0 ≤ k ≤ 2, containing the bits of the same weight
|2k|9, i.e.:

G0 = {x0, x̄3, x6, x̄9, x12, x̄15}
G1 = {x1, x̄4, x7, x̄10, x13, x̄16}
G2 = {x2, x̄5, x8, x̄11, x14, x̄17}.

(Obviously, for p = 16 the bits x̄16 and x̄17 are omitted;
similarly, for p = 17 the bit x̄17 is omitted.) The CSA
parts of these residue generators can be described using the
following shorthand notation introduced in [18]. The contents
of a column Gk alternately indicates either how many bits
of residue weight |2k|9 are present at a given stage of
computation or specifies the number of full-adders (FAs) and
half-adders (HAs) that operate on the bits from a given set Gk

(the current number of such bits is provided by the entry in
the same column in the preceding row).

(a)

G2 G1 G0

5 5 6
FA HA FA HA 2 FAs CSA Stage 1

4 4 4
FA FA FA CSA Stage 2
3 3 3

FA FA FA CSA Stage 3
2 2 2

(b)

G2 G1 G0

5 6 6
FA HA 2 FAs 2 FAs CSA Stage 1

4 4 4
FA FA FA CSA Stage 2
3 3 3

FA FA FA CSA Stage 3
2 2 2

(c)

G2 G1 G0

6 6 6
2 FAs 2 FAs 2 FAs CSA Stage 1

4 4 4
FA FA FA CSA Stage 2
3 3 3

FA FA FA CSA Stage 3
2 2 2

Fig. 1. Shorthand notation of the CSA tree for the residue generator mod 9
with: (a) p = 16; (b) p = 17; and (c) p = 18 inputs.

In Fig. 1, it is seen that the CSA trees are virtually identical
for the three values of p with four identical inverted EACs (two
for Stage 2 and one for Stage 2 and 3); the only difference

results from one or two HAs replacing FAs for p = 17 and
p = 16, respectively. The final column of Table I shows that,
despite that the CSA tree reduces the input bits to the same
set of six equally distributed bits, in each case the nonzero
correction that must be added by the final adder mod 2n + 1
differs. Consequently, the final adder which generates the
residue mod 2n + 1 in D1 form must be adapted to include
the correction depending on the number of inputs p.

B. New Universal Architecture

The alternative new architecture of the residue generators
mod 2n + 1 proposed here will not have the previously indi-
cated drawback. Moreover, besides generating the D1 output
for any arbitrary p without the need to add any correction due
to complemented signals, it will also take into account the
possibility of hardware sharing with the residue generator mod
2n − 1. The latter relies on using two following equations:∣∣∣ |X|22n−1

∣∣∣
2n − 1

= |X|2n − 1 (8)∣∣∣ |X|22n−1

∣∣∣
2n + 1

= |X|2n + 1 , (9)

which are the special cases of the well-known identity

|a|b = ||a|bc|b . (10)

We assume that the input p-bit vector X is partitioned into
q = ⌈p/(2n)⌉ 2n-bit blocks Dj , beginning with the LSBs,
i.e., X = (Dq−1 . . . D1D0), where D0 = (x2n−1 . . . x1x0),
D1 = (x4n−1 . . . x2n+1x2n), etc. If p does not divide n, the
block Dq−1 containing the MSBs is padded with q · n − p
leading 0s. We assume that p is sufficiently large, so that X
can be partitioned into

q = ⌈p/2n)⌉ ≥ 4 (11)

2n-bit blocks.
First, the q-operand 2n-bit CSA with EAC reduces p input

bits to a pair of 2n-bit vectors DC and DS by realizing the
equation ∣∣∣∣∣∣

s−1∑
j=0

Dj

∣∣∣∣∣∣
22n−1

= |DC +DS |22n−1 . (12)

Now each of thus obtained 2n-bit vectors DC and DS can
be split into a pair of n-bit groups containing n MSBs and
LSBs denoted, respectively, by the indexes H and L: DC =
(DC,H∥DC,L) and DS = (DS,H∥DS,L). By taking into
account that DC = 2nDC,H +DC,L, DS = 2nDS,H +DS,L,
and |2n|2n + 1 = |−1|2n + 1, we obtain the identity

|X|2n + 1 =
∣∣∣ |DC +DS |22n−1

∣∣∣
2n + 1

=
∣∣∣DC +DS

∣∣∣
2n + 1

=
∣∣∣(DC,H∥DC,L) + (DS,H∥DS,L)

∣∣∣
2n + 1

=
∣∣∣2nDC,H +DC,L + 2nDS,H +DS,L

∣∣∣
2n + 1

=
∣∣∣−DC,H +DC,L −DS,H +DS,L

∣∣∣
2n + 1

.(13)



4

D1 D0Dq -1X
2n2n2n ...

q -operand CSA tree mod (2
2n

 -1)

nn

4-operand CSA mod (2
n

 +1)

nn

DC,H DC,L

X-1

n

xz

Adder mod (2
n

 +1)

nn

DS,H DS,L

4-operand adder

mod (2
n

 +1)

Fig. 2. New residue generator mod 2n + 1 with D1 output.

Eqn (13) can be realized using the 4-operand CSA mod 2n + 1
followed by the special adder mod 2n + 1 to obtain the (n+1)-
bit vector X∗, which appears directly in D1 form (see the proof
of Eqn (17) given below). (As the final adder mod 2n + 1 with
D1 output can be used one described in [22], whose detailed
structure can be found on Fig. 7 in [12].) Figure 2 shows the
internal structure of the new residue generator mod 2n + 1
with D1 output, designed according to the above procedure.
Obviously, for p = 4n, the whole circuits reduces to the final
4-operand adder mod 2n + 1.

The theorem given below will prove that the output pro-
duced by the circuit of Fig. 2 is in the D1 form indeed.
However, besides the following identity (a ∈ {0, 1})

−a = ā− 1, (14)

we will need the following properties.
Property 1: For three natural numbers 0 ≤ x, y, z < 2n, the

following equation holds:

|x+ y + z|2n + 1
CSA
= |2c+ s|2n + 1
=

∣∣2 · 2n−1cn−1 + 2(cn−2 . . . c0) + s
∣∣
2n + 1

= |2ncn−1 + 2(cn−2 . . . c0) + s|2n + 1
= |2(cn−2 . . . c0)− cn−1 + s|2n + 1
= |2(cn−2 . . . c0) + c̄n−1 − 1 + s|2n + 1
= |(cn−2 . . . c0∥cn−1)− 1 + s|2n + 1 (15)

Property 2: For three natural numbers 0 ≤ x, y < 2n and
0 ≤ t ≤ 2n, the following equation holds:

|x+ y|2n + 1 = |2ncn−1 + s|2n + 1
= |s− cn−1|2n + 1
= |s+ c̄n−1 − 1|2n + 1
= |t− 1|2n + 1 . (16)

Property 1 will be used twice to justify the computations
executed by two subsequent CSA stages, whereas Property 2
will be used to evaluate the final result provided by the special
version of the final adder mod 2n + 1.

Theorem 1: For the circuit of Fig. 2 the following two
equations hold:∣∣∣X∣∣∣

2n + 1
=

∣∣∣DC,L −DC,H +DS,L −DS,H

∣∣∣
2n + 1

=
∣∣∣X∗ + 1

∣∣∣
2n + 1

(17)

and
|X − 1|2n + 1 = X∗. (18)
Proof. Here, we will use the following identities: | −
DC,H |2n + 1 = |D̄C,H + 2|2n + 1 and | − DS,H |2n + 1 =
|D̄S,H + 2|2n + 1. Then∣∣∣X∣∣∣

2n + 1
(13)
=

∣∣∣DC,L −DC,H +DS,L −DS,H

∣∣∣
2n + 1

=
∣∣∣DC,L + D̄C,H + 2 +DS,L + D̄S,H + 2

∣∣∣
2n + 1

(15)
=

∣∣∣DC,1 +DC,2 − 1 + 2 + D̄S,H + 2
∣∣∣
2n + 1

=
∣∣∣DC,1 +DC,2 + D̄S,H + 3

∣∣∣
2n + 1

(15)
=

∣∣∣DC,3 +DC,4 − 1 + 3
∣∣∣
2n + 1

=
∣∣∣DC,3 +DC,4 + 2

∣∣∣
2n + 1

(16)
=

∣∣∣X∗ − 1 + 2
∣∣∣
2n + 1

=
∣∣∣X∗ + 1

∣∣∣
2n + 1

(19)

By subtracting 1 from both sides of Eqn (19), we obtain∣∣∣X − 1
∣∣∣
2n + 1

=
∣∣∣X∗ + 1− 1

∣∣∣
2n + 1

=
∣∣∣X∗

∣∣∣
2n + 1

= X∗.

We have shown that for any p, COR(2n + 1, p) = 0, i.e., no
correction needs to be added to obtain the D1 output. This is
because the initial s-operand CSA tree mod (22n−1) contains
no inverted signals, whereas the rest of the circuit remains
identical for any p.

C. Design of Bi-residue Generators mod 2n ± 1

The architecture of the bi-residue generator mod 2n ± 1
results from the following straightforward application of Eqns
(8) and (12)

|X|2n − 1 =
∣∣∣ |DC +DS |22n−1

∣∣∣
2n − 1

=
∣∣∣DC +DS

∣∣∣
2n − 1

=
∣∣∣(DC,H∥DC,L) + (DS,H∥DS,L)

∣∣∣
2n − 1

=
∣∣∣2nDC,H +DC,L + 2nDS,H +DS,L

∣∣∣
2n − 1

=
∣∣∣DC,H +DC,L +DS,H +DS,L

∣∣∣
2n − 1

. (20)

Obviously, the q-operand 2n-bit CSA with EAC, which re-
duces p input bits to a pair of 2n-bit vectors DC and DS

according to Eqn (12) can be shared. The detailed internal
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Fig. 3. New bi-residue generator mod 2n ± 1 with D1 output.

structure of thus obtained bi-residue generator mod 2n ± 1 is
shown in Fig. 3. Its upper part allows to save p−4n full-adders
(FAs).

IV. CONCLUSIONS

The diminished-1 (D1) encoding has been known for
several years as the efficient approach which could improve
performance of residue arithmetic circuitry modulo 2n + 1 in
arithmetic units using RNS. In this paper, we have proposed
the new architecture of the p-input residue generator mod
2n + 1 with D1 output. It can be useful to build an input
converter for any RNS moduli set containing one or more
moduli of the form 2n + 1. The circuit is universal, because
its initial part can be easily designed for an arbitrary p ≥ 4n,
whereas its final block—the 4-operand adder mod 2n + 1—
preserves the same structure for any p. The latter feature was
shown essential for the possible easy extension to build p-
input bi-residue generators mod 2n ± 1 with shared logic,
which allows to save p − 4n full-adders. The latter design
can be useful for any set of RNS moduli containing a pair of
conjugate moduli 2n±1. As far as we know, to date no general
design methods of residue generators mod 2n + 1 using shared
logic with an arbitrary number of inputs p and providing the
input in D1 form have been presented yet.
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