
ar
X

iv
:2

50
5.

11
88

0v
1 

 [
cs

.A
R

] 
 1

7 
M

ay
 2

02
5

IEICE Electronics Express, Vol.21, No.1, 1–6

LETTER

AES-RV: Hardware-Efficient RISC-V Accelerator with Low-Latency AES
Instruction Extension for IoT Security

Van Tinh Nguyen A1, Phuc Hung Pham1, Vu Trung Duong Le A2, a), Hoai Luan Pham2, Tuan Hai Vu2, and Thi Diem
Tran3

Abstract The Advanced Encryption Standard (AES) is a fundamental
cryptographic algorithm widely used to secure data in embedded sys-
tems, IoT devices, and cloud computing platforms. However, recent re-
search on AES hardware accelerators face challenges in achieving high
performance and hardware efficiency, particularly when supporting multi-
ple modes and key sizes. To address these limitations, this paper proposes
a hardware-efficient RISC-V accelerator with low-latency AES instruction
extension (AES-RV), designed to enhance both processing speed and en-
ergy efficiency across various AES configurations. Specifically, AES-RV
incorporates three key optimizations: high-bandwidth internal buffers for
continuous data processing, a specialized AES unit with low-latency cus-
tom instructions, and system pipelining with a ping-pong memory transfer
mechanism. The AES-RV accelerator is implemented and evaluated on
a real-time Xilinx ZCU102 FPGA system-on-chip (SoC), utilizing 29,608
FFs, 32,483 LUTs, and 12 BRAMs. Performance comparisons against a
baseline RISC-V implementation for multiple AES modes and key sizes
demonstrate latency improvements ranging from 195.5 times to 255.97
times. Additionally, evaluations against powerful CPUs and GPUs in real-
time AES executions reveal energy efficiency gains of 9.92 times to 453.04
times. Compared to state-of-the-art AES hardware accelerators, AES-RV
achieves throughput improvements of 13.56 times to 33.52 times, energy
efficiency enhancements of 2.36 times to 58.76 times, and area efficiency
gains of 91.42 times to 638.8 times.
Keywords: FPGA, cryptography, RISC-V, SoC, low-power, AES
Classification: Devices, circuits and hardware for IoT and biomedical
applications

1. Introduction

RISC-V, introduced by the Berkeley research group in the
late 2010s, is an open-source CPU architecture designed to
promote flexibility and innovation. Its open Instruction Set
Architecture (ISA) enables developers to design custom pro-
cessors without licensing fees, facilitating advancements in
specialized hardware. With high compatibility across var-
ious applications and superior energy efficiency, RISC-V
is an ideal choice for resource-constrained devices [1–6].
Specifically, RISC-V accelerates encryption for IoT devices,
supporting the implementation of traditional security algo-
rithms such as SM3, SM4, and SHA-256 [7]. These appli-

1 Le Quy Don Technical University, 236 Hoang Quoc Viet Street,
Bac Tu Liem District, Hanoi, Vietnam

2 Nara Institute of Science and Technology, 8916–5 Takayama-
cho, Ikoma, Nara, 630-0192 Japan

3 University of Information Technology, Vietnam National Uni-
versity, Ho Chi Minh City, 700000, Vietnam

a) le.duong@naist.ac.jp

cations ensure data security and enhance performance in IoT
systems. Although RISC-V offers numerous advantages, its
ISA continues to evolve to meet emerging demands in fields
like artificial intelligence and cloud computing.

The Advanced Encryption Standard (AES) [7–11], stan-
dardized by the National Institute of Standards and Technol-
ogy (NIST), is fundamental to modern digital security. Its
adoption has expanded to cost-sensitive systems such as IoT
devices, edge servers, fog servers, personal computers, and
smartphones, where it secures data, meetings, video con-
tent, and confidential files [12–18]. These platforms require
AES processing solutions that are energy-efficient to pre-
serve battery life, high-performing to meet server security
demands, and flexible to support various AES modes (ECB,
CBC, CTR, CFB) and key sizes (AES-128, AES-192, AES-
256) [19–26]. Implementing AES processors on the RISC-V
architecture addresses these needs by offering customizable,
high-speed, and low-cost hardware solutions. RISC-V al-
lows for tailored AES integration, enhancing performance
and reducing hardware complexity. Integrating AES capa-
bilities into RISC-V-based systems enables the development
of cost-effective, high-performance security solutions tai-
lored to the specific requirements of contemporary informa-
tion security infrastructures.

Several studies have explored AES acceleration [27],
which is crucial for securing IoT, edge, and personal com-
puting devices while maintaining efficiency and flexibility
[19]. In [28], an AES-256 accelerator based on a 5-stage
RV32IMFC RISC-V core improved speed by 82–84% over
software solutions. However, it lacked a dedicated AES ISA
extension, limiting integration flexibility. Similarly, [29]
proposed a custom ISA for AES on the IBEX core, achieving
up to 662 times higher energy efficiency than TinyAES. Yet,
its design prevented parallel execution with the processor,
reducing throughput in multi-task IoT applications. Mean-
while, [12] introduced a RISC-V cryptographic accelerator
with dual concatenable 32-bit ALUs, enabling either two par-
allel 32-bit operations or a combined 64-bit operation. De-
spite achieving a 1.7–3.0 times processing speedup, it only
supported AES-128 and lacked key expansion optimization,
limiting its flexibility. Additionally, [27] proposed a flexible
cryptographic unit supporting multiple cryptographic func-
tions. However, it did not optimize AES key expansion or
support multiple AES modes, leading to reduced throughput
and flexibility. Overall, these RISC-V-based AES imple-
mentations still struggle to balance flexibility and hardware
efficiency, leaving room for further improvements in inte-

This work is licensed under a Creative Commons Attribution NonCommercial, No Derivatives 4.0 License.
Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

1

https://orcid.org/0000-0001-7583-8631
https://orcid.org/0000-0002-0438-3809
mailto:le.duong@naist.ac.jp
https://creativecommons.org/licenses/by-nc-nd/4.0/deed
https://arxiv.org/abs/2505.11880v1


IEICE Electronics Express, Vol.21, No.1, 1–6

Fig. 1 (a) System architecture overview of AES-RV at the SoC. (b) AES-
RV architecture.

gration, parallelism, and mode support.
To overcome current challenges, this paper proposes

AES-RV, a hardware-efficient RISC-V accelerator with low-
latency AES instruction extensions for enhanced flexibility
and energy efficiency. AES-RV integrates three key opti-
mizations: high-bandwidth buffers for continuous data flow,
a specialized AES unit with low-latency instructions, and
pipelined processing with a ping-pong memory mechanism.
Implemented on a Xilinx ZCU102 SoC FPGA, AES-RV
outperforms existing AES platforms by supporting all AES
modes and key sizes while meeting edge device constraints.

The remainder of this paper is organized as follows: Sec-
tion 2. presents the details of the AES-RV proposal. Next,
Section 3. shows the evaluation results of the AES-RV. Fi-
nally, section 4. concludes the paper.

2. Proposed AES-RV Architecture

2.1 System Architecture Overview
The overview SoC architecture of the AES Co RISC-V, as il-
lustrated in Fig. 1(a), comprises two main components: the
Processing System (PS) and the AES-RV module. The PS,
controlled by an embedded CPU, executes the C environ-
ment to run both standard AES and RISC-V AES programs.
The RISC-V AES program is compiled and transferred to the
AES-RV for storage in the instruction memory. Meanwhile,
the computational data is prepared by the Data Scheduler and
SoC driver, facilitating data exchange with the AES-RV’s
data memory. To optimize data transfer efficiency, instruc-
tion data is transmitted via PIO transfer, while large-scale
computational data is transferred through Direct Memory
Access (DMA).

The AES-RV module consists of two primary compo-
nents: the AXI Manager and the AES-RV core. The AXI
Manager decodes data exchanged between the PS and the
AES-RV. Specifically, computational data is stored in data

‘
Fig. 2 High-bandwidth Buffer Set for Fast Continuous Data Accessing

0612

funct7
Buffer Accessing Instruction

14

rs2 rs1 funct3 rd

Opcode = 

0101011

711151920242531

Opcode funct3

0101011 000 Latch the value of base_addr and amount

0101011 001 Set a flag to allow storing into the buffer

Description

Fig. 3 Structure of the Buffer Accessing Instructions.

memory (DM), compiled hexadecimal code is stored in in-
struction memory (IM), and control signals such as start and
done are managed by two controllers within the AES-RV.
Similar to conventional RISC-V architectures, the AES-RV
core features a five-stage pipeline: instruction fetch (IF),
instruction decode (ID), execution (EXE), memory access
(MEM), and writeback (WB). However, traditional RISC-V
cores utilize a basic ALU with two input sources, performing
one operation per instruction, which results in high latency
for AES computations. To address this, the AES-RV core,
illustrated in Fig. 1(b) integrates a Specialized AES Unit
(SAU) to accelerate cryptographic operations. The SAU is
a highly flexible ALU designed to support multiple AES
modes, including ECB, CBC, CTR, and CFB, with various
key sizes (128, 192, and 256 bits). The SU is controlled via a
custom instruction set extension, enabling faster multi-mode
AES operations compared to standard RISC-V instructions.
To ensure high-performance operation of the SU, a high-
bandwidth buffer system is implemented for intermediate
data exchange between the SU and DM.

2.2 High-Bandwidth Internal Buffers for Fast Contin-
uous Data Accessing

The use of the ALU in the RISC-V core, following the tra-
ditional RISC-V resource usage rules, requires many in-
structions to organize the data needed for primary process-
ing. As a consequence, the AES computation performance
of the conventional RISC-V core is extremely low since it
does not meet the current security requirements. There-
fore, the proposed AES-RV is improved by using a SAU that
contains specialized components optimized to handle multi-
mode AES. Accordingly, the SAU block requires substantial
data for continuous computations through the computation
loops. To ensure that the computation efficiency is not af-
fected, a set of 256 32-bit buffers is placed before the SAU
to hold large amounts of data such as the key, initial vector
(IV), plain text, and cipher text. This buffer set can load and
store large amounts of data in just one cycle, allowing the
SAU to compute continuously without data interruption.

Fig. 2 shows the detailed communication mechanism of

2



IEICE Electronics Express, Vol.21, No.1, 1–6

Fig. 4 Specialized AES Unit and Multi-mode AES Core architecture.

the high-bandwidth buffer set with the data memory. In this
scheme, a quantity of data can be transferred between the
data memory (DM) and the buffer based on the management
of the values in registers r8 and r20. Register r8 stores the
DM address for reading or writing, while register r20 con-
tains the number of 32-bit values to be read or written. This
process is executed by the buffer accessing instruction de-
scribed in Fig. 3. The buffer consists of one instruction that
specifies the address and amount and another instruction to
set the flag to start the read/write process. Once the buffer
set is fully loaded with data, the SAU can load the entire con-
tent and immediately perform the AES Key Expansion and
main round computation. When using the original RISC-V
instruction set, after one round of computation, the system
has to execute many instructions to rearrange the data and
store it in the BRAM. By using the high-bandwidth buffer
set, this process is completely eliminated. It should be noted
that each data rearrangement requires many instructions and
takes even longer than the AES computation process.

2.3 Specialized AES Unit (SAU) with Low-Latency
Custom Instruction Extension

The use of conventional RISC-V instructions to implement
AES results in high latency due to the large number of in-
structions required. To address this issue, we propose a
Specialized AES Unit (SAU) as shown in Fig. 4 to accel-
erate AES computation. The SAU processes data includ-
ing plain text, key, IV, and cipher text. Its control signals
consist of start and done, while the configuration data,
which contains the operating mode, determines the number
of rounds and key size for the AES multi-mode core. The
multi-mode AES core comprises three main components:
the cipher part, the key expansion part, and the controller.
The cipher part executes the main AES computation loop
through four steps: AddRoundKey, SubByte, ShiftRow, and
MixColumn. The number of computation rounds and the

AES ModeFunc3

000

001

010

011

Func3

000

001

010

011

Custom 1

Custom 1

Custom 1

Custom 1

Opcode

00 010 11

00 010 11

00 010 11

00 010 11

Custom 2

Custom 2

Custom 2

Custom 2

Custom 3

Custom 3

Custom 3

Custom 3

ECB 128

CFB 128

CBC 128

CTR 128

ECB 128

CFB 128

CBC 128

CTR 128

ECB 192

CFB 192

CBC 192

CTR 192

ECB 192

CFB 192

CBC 192

CTR 192

ECB 192

CFB 192

CBC 192

CTR 192

000

001

011

010

000

001

010

011

10 010 11

10 010 11

10 010 11

10 010 11

11 010 11

11 010 11

11 010 11

11 010 11

AES ModeFunc3

000

001

010

011

Custom 1

Custom 1

Custom 1

Custom 1

Opcode

00 010 11

00 010 11

00 010 11

00 010 11

Custom 2

Custom 2

Custom 2

Custom 2

Custom 3

Custom 3

Custom 3

Custom 3

ECB 128

CFB 128

CBC 128

CTR 128

ECB 192

CFB 192

CBC 192

CTR 192

ECB 192

CFB 192

CBC 192

CTR 192

000

001

011

010

000

001

010

011

10 010 11

10 010 11

10 010 11

10 010 11

11 010 11

11 010 11

11 010 11

11 010 11

Opcode = 

0001011

AES Custom Instruction

0612

funct7

14

rs2 rs1 funct3 rd

11 7151920242531

Fig. 5 Custom instruction for calling Specialized AES Unit.

Fig. 6 Timing diagram of the system pipeline using ping-pong memory
transfer mechanism.

AES key size depend on the input mode, as determined by
the controller. To minimize the critical path, the cipher part
employs a 4-stage pipeline architecture. The key expansion
part is responsible for generating the necessary round keys
and consists of three main functions: SubWord, RotWord,
and RoundConst. These functions expand the original key
for use in the cipher part’s computation rounds.

Control of the SAU is achieved through AES custom in-
structions, as illustrated in Fig. 5. Three groups of custom
instructions are defined by opcodes corresponding to key
sizes of 128, 192, and 256 bits. By altering the func3 field,
the SAU supports up to four AES modes: ECB, CFB, CBC,
and CTR. In summary, the integration of the SAU and the
internal buffer set significantly enhances the performance of
multi-mode AES computation.

2.4 System Pipelining with a Ping-Pong Memory
Transfer Mechanism

In practice, transferring a large amount of data to the AES-
RV core via the AXI interface introduces significant latency.
In a straightforward system, the waiting time for reading and
writing computational data can exceed the hardware pro-
cessing time, leading to a system bottleneck. In other words,
merely accelerating the AES-RV core cannot substantially
improve the overall system performance. To address this
issue, a system pipeline with a ping-pong memory transfer
mechanism is proposed to mitigate the bottleneck caused by
data transfer.

Fig. 6 illustrates the timing schedule of the proposed sys-
tem pipeline with the ping-pong memory transfer mecha-
nism. The data memory is divided into two equal parts: first
and last. Initially, instructions are loaded into the AES-RV

3



IEICE Electronics Express, Vol.21, No.1, 1–6

Fig. 7 Performance comparison of AES-RV and baseline RISC-V implementation in terms of execution cycles across
different AES modes and key sizes.

core with configurations that support multiple AES modes
and key sizes. Subsequently, the input data is filled into the
first half of the data memory (WRITE First), followed by
a control signal to initiate the AES-RV core for processing
this portion (EXEC First). During the EXEC First phase,
new data is written into the second half of the data mem-
ory (WRITE Last). Notably, if the AES-RV core completes
the EXEC First phase, the system performs multiple tasks
during the next execution cycle. It simultaneously reads the
processed data from the first half of the data memory (re-
ferred to as READ First). At the same time, it writes new
input data into that same memory region (WRITE First).
Meanwhile, the AES-RV core processes the second half of
the data memory (EXEC Last). This approach allows the
processing system to read the output and write new input
data into the alternate memory region while the AES-RV
core continues computation. As a result, the entire SoC
system eliminates idle wait times for data transfer.

For optimal performance, data transfer time must be
shorter than hardware execution time, ensuring that sys-
tem performance aligns with hardware computing speed,
regardless of transfer latency.

3. Evaluation Results

3.1 Implementation results on ZCU102 FPGA SoC
To evaluate the correctness and practicality, AES-RV was
implemented on the Zynq UltraScale+ MPSoC ZCU102
FPGA SoC, as illustrated in Fig. 1. The processing sys-
tem is managed by an ARM Cortex-A53 CPU running De-
bian GNU/Linux 11, installed via PetaLinux 2022.2. The
programmable logic hosts the AES-RV IP, synthesized us-
ing Vivado Design Suite 2022.2. AES-RV was verified by
executing all AES functions with key sizes from the set
K = {128, 192, 256} bits across multiple modes defined
by the set M = {ECB, CBC, CTR, CFB}. The real-time
SoC verification demonstrated that AES-RV successfully
processed 100,000 random plaintext inputs for each mode
with 100% accuracy at a frequency of 200 MHz. Utiliza-
tion reports indicate that AES-RV occupies 29,608 flip-flops
(FFs), 32,483 lookup tables (LUTs), and 12 Block RAM tiles
(36 KB each). Furthermore, power analysis shows that AES-
RV consumes a total power of 4.043 W, with the AES-RV
IP contributing 0.043 W in dynamic power.

In general, AES-RV exhibits the ability to operate at high

frequencies on real-time SoC systems while consuming min-
imal power, rendering it an ideal candidate for integration
into SoC-based applications.

3.2 Performance Comparison of AES-RV and Baseline
RISC-V Implementation

In this section, the execution cycles of AES-RV when com-
puting AES for all key sizes K and modes M on four con-
secutive data blocks are compared in detail with the baseline
RISC-V implementation. The comparison results are ob-
tained through waveform simulation extraction, as detailed
in Fig. 7.

For the AES-ECB mode, AES-RV achieves execution cy-
cles ranging from 1,129 to 1,395 cycles, outperforming the
baseline RISC-V by 217.61 times (251,270 cycles vs. 1,129
cycles) to 255.10 times (355,862 cycles vs. 1,395 cycles). In
the AES-CBC mode, AES-RV completes encryption within
1,287 to 1,523 cycles, demonstrating a speedup of 195.50
times (251,606 cycles vs. 1,287 cycles) to 233.77 times
(356,030 cycles vs. 1,523 cycles) compared to the baseline.
For the AES-CTR mode, AES-RV executes in 1,191 to 1,395
cycles, surpassing the baseline RISC-V with a performance
gain from 212.31 times (252,866 cycles vs. 1,191 cycles)
to 255.97 times (357,074 cycles vs. 1,395 cycles). Finally,
in the AES-CFB mode, AES-RV achieves 1,267 to 1,525
cycles, significantly outperforming the baseline by 198.68
times (251,952 cycles vs. 1,267 cycles) to 233.82 times
(356,570 cycles vs. 1,525 cycles).

Generally, AES-RV significantly outperforms the base-
line RISC-V by leveraging custom instructions and buffer
optimizations.

3.3 Performance and Energy Efficiency Evaluation on
Real-Time Software Platforms

To assess performance and energy efficiency, the proposed
hardware was benchmarked on 8,192 AES-CBC test cases
(128-bit key) and compared against high-performance CPUs
(Intel Core i7-12700H, Core i9-10940X), GPUs (Quadro
RTX 8000, GeForce GTX 1080 with 2048-thread execu-
tion), and the ARM Cortex A53 on the ZCU102 FPGA SoC
for energy efficiency. Detailed results are shown in Fig. 8.

In the execution time comparison shown in Fig. 8 (a),
AES-RV demonstrates comparable performance to Intel
Core i7-12700H @ 2.3GHz, achieving a speedup of 1.06
times (11.6 ms vs. 10.9 ms). Furthermore, AES-RV outper-

4



IEICE Electronics Express, Vol.21, No.1, 1–6

Table I Comparison of AES Implementations on hardware platforms in terms of Throughput and Hardware Efficiency.

References Devices Fmax
(MHz) FFs LUTs BRAMs #Slices†† Power

(W)
Throughput

(Mbps)

Energy
Efficiency
(Mbps/W)

Area
Efficiency

(Mbps/Slice)

ATC 2024 [27] ZCU102 FPGA 210
7,584∗ 7,562∗

16
2,531∗ 0.136∗

4.81
3.54E+01∗ 1.90E-04∗

29,644† 34,898† 9,365† 4.22† 1.14E+00† 5.14E-04†

ICECS 2024 [28] 22nm FDSOI ASIC 1,000 - - - - 0.008 7.07 8.84E+02 -
PRIME 2024 [29] Nexys Artix-7 FPGA 50 - 609 - 33,650 397 2.86 1.15E+02 8.50E-05
DDECS 2024 [30] PYNQ Z2 FPGA 100 10,454 15,885 - 7,943 - 4.72 - 5.94E-04

AES-RV ZCU102 FPGA 241
7,548∗ 5,147∗

12
1,767∗ 0.046∗

95.88
2.08E+03∗ 5.43E-02∗

29,608† 32,483† 8,601† 4.043† 2.37E+01† 1.11E-02†

(∗) Denotes results for the AES core only; (†) Denotes results for the entire SoC.
(††) PYNQ Z2: 1 Slice = 6 LUTs, 8 FFs; ZCU102: 1 Slice = 4 LUTs, 8 FFs, and 1 BRAM 36Kb = 40 slices.

(a)

(b)

Fig. 8 Comparisons with powerful CPUs/GPUs on (a) execution time and
(b) energy efficiency.

forms Intel Core i9-10940X @ 3.3GHz by 1.30 times (14.2
ms vs. 10.9 ms). Compared to ARM Cortex A53 CPUs @
200MHz, AES-RV exhibits a remarkable speedup of 22.18
times (241.8 ms vs. 10.9 ms). Regarding high-performance
GPUs such as Quadro RTX 8000 @ 1.4 GHz and GeForce
GTX 1080 @ 1.6 GHz, AES-RV does not surpass them in
execution time, as GPUs complete AES operations in 0.6 ms
and 0.1 ms, respectively. However, these CPUs and GPUs
operate at significantly higher power consumption, resulting
in inferior energy efficiency. The energy efficiency com-
parison, measured in Mbps/W and detailed in Fig. 8 (b),
highlights the substantial advantage of AES-RV over tra-
ditional CPUs and GPUs. Specifically, AES-RV achieves
453.04 times (4.6 Mbps/W vs. 2084 Mbps/W), higher ef-
ficiency than Intel Core i7-12700H @ 19.6W 254.15 times
(8.2 Mbps/W vs. 2084 Mbps/W) higher efficiency than Intel
Core i9-10940X @ 9W , and 1894.55 times (1.1 Mbps/W
vs. 2084 Mbps/W) higher efficiency than ARM Cortex
A53 @ 2.7W . Similarly, AES-RV also outperforms high-
power GPUs, providing 68.55 times (30.4 Mbps/W vs. 2084

Mbps/W) better energy efficiency than Quadro RTX 8000
@ 53W and 9.92 times (210 Mbps/W vs. 2084 Mbps/W)
better energy efficiency than GeForce GTX 1080 @ 37W.

Overall, AES-RV matches modern CPUs in speed while
vastly outperforming CPUs and GPUs in energy efficiency,
making it ideal for low-power, real-time applications.

3.4 Comprehensive Performance and Hardware Effi-
ciency Evaluation for AES Implementations

To demonstrate the improvements in hardware efficiency,
key evaluation metrics, including maximum frequency,
hardware resource utilization, power consumption, through-
put, energy efficiency, and area efficiency, are summarized in
Table I for comparison with related work [27–30]. Notably,
only AES-RV and [27] support full SoC execution, whereas
other implementations focus solely on core-level develop-
ment. The formulas for throughput, energy efficiency, and
area efficiency are defined in Eq. (1)–(3).

Throughput =
Fmax × Block Size
Cycles per Block

(Mbps) (1)

Energy Efficiency =
Throughput

Power Consumption
(Mbps/W)

(2)

Area Efficiency =
Throughput
Total Slices

(Mbps/Slice) (3)

Compared to [27] in ATC 2024, AES-RV supports a
maximum operating frequency that is 1.15 times higher
(241 MHz vs. 210 MHz), while also utilizing fewer hard-
ware resources for both the core and SoC by 1.43/1.09
times (1,767/8,601 vs. 2,531/9,365 slices). Additionally,
it consumes 2.96/1.05 times less power (0.046/4.043 W
vs. 0.136/4.22 W). In terms of performance, AES-RV
achieves 19.94 times higher throughput (95.88 Mbps vs.
4.81 Mbps). Moreover, AES-RV surpasses [27] in energy
efficiency by 58.76/20.79 times (2084.0/23.7 Mbps/W vs.
35.4/1.14 Mbps/W) and in area efficiency by 285.26/21.6
times (0.0543/0.0111 Mbps/Slice vs. 0.00019/0.00051
Mbps/Slice). Similarly, compared to [28] in ICECS 2024,
AES-RV delivers 13.56 times higher throughput (95.88
Mbps vs. 7.07 Mbps) and achieves 2.36 times greater en-
ergy efficiency (2084.0 Mbps/W vs. 884 Mbps/W). When
comparing with [29] in PRIME 2024, AES-RV operates at
a maximum frequency that is 4.82 times higher (241 MHz
vs. 50 MHz), while also utilizing 19.05 times fewer core

5



IEICE Electronics Express, Vol.21, No.1, 1–6

resources (1,767 slices vs. 33,650 slices) and consuming
8,630 times less power (0.046 W vs. 397 W). In terms of
performance, AES-RV achieves 33.52 times higher through-
put (95.88 Mbps vs. 2.86 Mbps) and further demonstrates
18.08 times greater energy efficiency (2084.0 Mbps/W vs.
115.2 Mbps/W), along with 638.8 times better area effi-
ciency (0.0543 Mbps/Slice vs. 0.000085 Mbps/Slice). Fi-
nally, compared to [30] in DDECS 2024, AES-RV supports
a maximum frequency 2.41 times higher (241 MHz vs. 100
MHz) while requiring 4.5 times fewer core resources (1,767
slices vs. 7,943 slices). Regarding performance, AES-RV
achieves 20.32 times higher throughput (95.88 Mbps vs.
4.72 Mbps) and outperforms in area efficiency by 91.42
times (0.0543 Mbps/Slice vs. 0.000594 Mbps/Slice).

In conclusion, AES-RV demonstrates superior throughput
and hardware efficiency, benefiting from optimized instruc-
tion sets and an efficient architecture tailored for real-time
SoC environments.

4. Conclusion

This paper proposes a hardware-efficient RISC-V accelera-
tor with low-latency AES instruction extension (AES-RV),
enhancing flexibility and energy efficiency in cryptographic
applications. By integrating three key optimizations—high-
bandwidth internal buffers, a specialized AES unit with low-
latency custom instructions, and system pipelining with a
ping-pong memory mechanism—AES-RV significantly im-
proves processing speed and hardware efficiency over con-
ventional AES implementations. FPGA SoC experiments
demonstrate notable gains in performance and energy ef-
ficiency, making AES-RV a strong candidate for secure,
high-performance embedded systems. Future work will
extend AES-RV with additional instruction sets for post-
quantum cryptography, including CRYSTALS-Kyber and
CRYSTALS-Dilithium, further broadening its applicability.

References

[1] M. Sharma and et al., “A Survey of RISC-V CPU for IoT Applica-
tions,” in Proceedings of the International Conference on Innovative
Computing & Communication (ICICC) 2022, SSRN, February 2022.

[2] J. Park and et al., “Designing Low-Power RISC-V Multicore Pro-
cessors With a Shared Lightweight Floating Point Unit for IoT
Endnodes,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 71, pp. 4106–4119, 2024.

[3] T.-T. Hoang and et al., “Low-power high-performance 32-bit RISC-
V microcontroller on 65-nm silicon-on-thin-BOX (SOTB),” IEICE
Electronics Express, vol. 17, pp. 20200282–20200282, 2020.

[4] K.-D. Nguyen and et al., “A trigonometric hardware acceleration
in 32-bit RISC-V microcontroller with custom instruction,” IEICE
Electronics Express, vol. 18, no. 16, pp. 20210266–20210266, 2021.

[5] M. Liu, “A co-design method of customized ISA design space ex-
ploration and fixed-point library construction for RISC-V dedicated
processor,” IEICE Electronics Express, vol. 19, no. 13, pp. 20220244–
20220244, 2022.

[6] Q. Yin and et al., “Design and implementation of RISC-V system-
on-chip for SPWM generation based on FPGA,” IEICE Electronics
Express, vol. 21, no. 24, pp. 20240603–20240603, 2024.

[7] D. H. A. Le and et al., “High-Efficiency RISC-V-Based Cryptographic
Coprocessor for Security Applications,” in International SoC Design
Conference (ISOCC), pp. 103–104, 2024.

[8] Q. Zou and et al., “28nm asynchronous area-saving AES processor
with high Common and Machine learning side-channel attack resis-

tance,” IEICE Electron. Express, vol. 18, p. 20210309, 2021.
[9] Leurent and et al., “New representations of the AES key schedule,” J.

Cryptol., vol. 38, p. 1, 2025.
[10] W. K. Lee and et al., “Efficient Implementation of AES-CTR and

AES-ECB on GPUs With Applications for High-Speed FrodoKEM
and Exhaustive Key Search,” IEEE Trans. Circuits Syst. II Express
Briefs, vol. 69, p. 2962, 2022.

[11] Y. Zhang and et al., “A lightweight AES algorithm implementation
for encrypting voice messages using field programmable gate arrays,”
J. King Saud Univ. - Comput. Inf. Sci., vol. 34, p. 3878, 2022.

[12] N. H. Nguyen, , and et al., “LI-RV: A Fast and Efficient RISC-
V based Coprocessor for Lightweight Cryptography,” in 2024 21st
International SoC Design Conference (ISOCC), pp. 1–2, 2024.

[13] K. Stangherlin and M. Sachdev, “Design and Implementation of a Se-
cure RISC-V Microprocessor,” IEEE Trans. Very Large Scale Integr.
VLSI Syst., vol. 30, p. 1705, 2022.

[14] Pan and et al., “A Lightweight AES Coprocessor Based on RISC-V
Custom Instructions,” Secur. Commun. Netw., p. 9355123, 2021.

[15] O. Simola and et al., “RISC-V Core with AES-256 Accelerator,”
in 31st IEEE International Conference on Electronics, Circuits and
Systems (ICECS), p. 1, 2024.

[16] Ignatius and et al., “Power Side-Channel Attacks on Crypto-core
based on RISC-V ISA for High-security Applications,” in IEEE Ac-
cess, vol. 12, p. 150230, 2024.

[17] Cheng and et al., “A Hardware Security Evaluation Platform on RISC-
V SoC,” in IEEE International Test Conference in Asia (ITC-Asia),
p. 1, 2024.

[18] O. Simola and et al., “RISC-V Core with AES-256 Accelerator,”
in 31st IEEE International Conference on Electronics, Circuits and
Systems (ICECS), p. 1, 2024.

[19] Salman and et al., “Lightweight Modifications in the Advanced En-
cryption Standard (AES) for IoT Applications: A Comparative Sur-
vey,” in 2022 International Conference on Computer Science and
Software Engineering (CSASE), pp. 325–330, 2022.

[20] S. Jeon and et al., “Cross-Layer Encryption of CFB-AES-TURBO for
Advanced Satellite Data Transmission Security,” IEEE Trans. Aerosp.
Electron. Syst., vol. 58, p. 1, 2022.

[21] E. Choi and et al., “AESware: Developing AES-enabled low-power
multicore processors leveraging open RISC-V cores with a shared
lightweight AES accelerator,” Eng. Sci. Technol. Int. J., vol. 60, p. 1,
2024.

[22] C. Duran and E. Roa, “A 10pJ/bit 256b AES-SoC Exploiting Memory
Access Acceleration,” IEEE Trans. Circuits Syst. II Express Briefs,
vol. 69, p. 1612, 2022.

[23] Y. M. Kuo and et al., “RISC-V Galois Field ISA Extension for
Non-Binary Error-Correction Codes and Classical and Post-Quantum
Cryptography,” IEEE Trans. Comput., vol. 72, p. 682, 2023.

[24] P. Nannipieri and et al., “VLSI Design of Advanced-Features AES
Cryptoprocessor in the Framework of the European Processor Initia-
tive,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 30, p. 177,
2022.

[25] W. Wang and et al., “An energy-efficient crypto-extension design for
RISC-V,” Microelectron. J., vol. 115, p. 105165, 2021.

[26] D. Reis and et al., “IMCRYPTO: An In-Memory Computing Fabric
for AES Encryption and Decryption,” IEEE Trans. Very Large Scale
Integr. VLSI Syst., vol. 30, p. 553, 2022.

[27] V. T. D. Le and et al., “RVCP: High-Efficiency RISC-V Co-Processor
for Security Applications in IoT and Server Systems,” in 2024 Inter-
national Conference on Advanced Technologies for Communications
(ATC), IEEE, 2024.

[28] Simola and et al., “RISC-V Core with AES-256 Accelerator,” in
2024 31st IEEE International Conference on Electronics, Circuits
and Systems (ICECS), pp. 1–4, 2024.

[29] Zgheib and et al., “Extending a RISC-V core with an AES hardware
accelerator to meet IOT constraints,” in SMACD / PRIME 2021;
International Conference on SMACD and 16th Conference on PRIME,
pp. 1–4, 2021.

[30] M. N. Rizi and et al., “Optimised AES with RISC-V Vector Exten-
sions,” in 2024 27th International Symposium on Design and Di-
agnostics of Electronic Circuits and Systems (DDECS), pp. 57–60,
2024.

6


