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Abstract. While Large Language Models (LLMs) have shown promise
in cybersecurity applications, their effectiveness in identifying security
threats within cloud deployments remains unexplored. This paper intro-
duces AWS Cloud Security Engineering (ACSE)-Eval, a novel dataset
for evaluating LLMs’ cloud security threat modeling capabilities. ACSE-
Eval contains 100 production-grade AWS deployment scenarios, each
featuring detailed architectural specifications, Infrastructure as Code
(IaC) implementations, documented security vulnerabilities, and asso-
ciated threat modeling parameters. Our dataset enables systemic assess-
ment of LLMs’ abilities to identify security risks, analyze attack vectors,
and propose mitigation strategies in cloud environments. Our evalua-
tions on ACSE-Eval demonstrate that GPT-4.1 and Gemini 2.5 Pro ex-
cel at threat identification, with Gemini 2.5 Pro performing optimally in
0-shot scenarios and GPT-4.1 showing superior results in few-shot set-
tings. While GPT-4.1 maintains a slight overall performance advantage,
Claude 3.7 Sonnet generates the most semantically sophisticated threat
models but struggles with threat categorization and generalization. To
promote reproducibility and advance research in automated cybersecu-
rity threat analysis, we open-source our dataset1, evaluation metrics, and
methodologies.

Keywords: LLM evaluation · Automated threat-modeling · Cloud se-
curity · Dataset

1 Introduction

Large Language Models (LLMs) have demonstrated promising performance in
cybersecurity tasks such as vulnerability detection and code analysis [7] [10].
However, their ability to perform architectural threat assessments in complex
cloud environments remains under explored. While effective at identifying source-
level issues [17], LLMs have yet to prove they can reason about service inter-
actions, trust boundaries, and multi-resource configurations typical of modern
cloud systems. The urgency of this research is underscored by the evolving threat
landscape in cloud security. In 2024, cloud breaches have reached alarming levels,
with 79% of cloud-based enterprises reporting at least one incident, and about
25% of organizations expressed uncertainty about undetected threats [13, 26].

1 https://huggingface.co/datasets/ACSE-Eval/ACSE-Eval

https://arxiv.org/abs/2505.11565v2
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More concerning is that 82% of these breaches originated from architectural de-
sign flaws or misconfigurations, highlighting a critical gap in current security
approaches.

Traditional approaches to threat modeling, exemplified by frameworks like
MITRE ATT&CK [21] and STRIDE [20], have been enhanced with cloud-specific
considerations. However, these frameworks, while comprehensive in mapping ad-
versarial tactics and techniques, have yet to fully integrate with LLM capabilities
for automated threat assessment. The complexity of modern cloud architectures,
combined with the dynamic nature of Identity and Access Management (IAM)
and Zero Trust requirements, demands more sophisticated threat modeling ca-
pabilities that can adapt to rapidly evolving security challenges.

from diagrams.aws.network import ELB, CloudFront
from diagrams.aws.general import Users
from diagrams.aws.compute import EC2
from diagrams.aws.storage import S3
from diagrams import Diagram, Cluster, Edge

...

with Diagram("AWS Website Architecture", ...) as diag:
user = Users("End User")
cdn = CloudFront("CloudFront Distribution")

with Cluster("Load Balancing Tier"):
alb = ELB("Application Load Balancer")

with Cluster("Application Tier"):
web_server = EC2("Web Server (EC2 Instance)")

with Cluster("Storage Tier"):
image_bucket = S3("Image Storage (S3 Bucket)")

# Define main flows
user >> Edge(color="blue", label="User Request") \
>> cdn >> alb >> web_server
web_server >> Edge(color="green", \
label="Pre-signed URL ops") >> image_bucket
...

import * as cdk from ’aws-cdk-lib’;
import { ec2, ... } from ’aws-cdk-lib/aws-*’;

export class SimpleImageWebAppStack extends cdk.Stack {
constructor(...) {

super(scope, id, props);

// VPC with public/private subnets
const vpc = new ec2.Vpc(this, ’AppVpc’, {

maxAzs: 2,
subnetConfiguration: [,

...
]

});

// Core infrastructure components
const imageBucket = new s3.Bucket(...);

const webServer = new ec2.Instance(...);

const alb = new elbv2.ApplicationLoadBalancer(...);

const dist = new cloudfront.Distribution(...);
}

}
...

Fig. 1: Architecture and implementation of a sample cloud infrastructure sce-
nario (a simple S3 pre-signed URL service for image handling). Top: System
architecture diagram. Bottom-left: Diagram-as-Code in Python. Bottom-right:
AWS CDK IaC in TypeScript.

Recent initiatives in the LLM-enabled threat-modeling space are steps in
the right direction. Elsharef et al. [9] explores the practical applicability of an
LLM assisted threat model but lacks a comprehensive evaluation procedure.
Projects such as Auspex [11] and ThreatModeling-LLM [32] aim to address this.
However, they are focused on industry-specific infrastructure such as banking.
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Existing datasets primarily evaluate LLMs using Capture-the-Flag (CTF) chal-
lenges and exploitation tasks [5, 12, 15, 31]. While valuable, these gamified,
bounded tasks fail to reflect the complexity of real-world cloud infrastructure.
Dynamic testing frameworks [1, 24] and red teaming initiatives like DARPA
AIxCC broaden this scope but still emphasize exploit generation over architec-
tural reasoning. Moreover, many tasks risk conflating memorization with genuine
security understanding. Recently, there have been efforts to benchmark general
cybersecurity knowledge [6, 19, 29], threat intelligence [1], and IaC security [14],
but they do not address holistic threat modeling across cloud architectures and
their corresponding IaC artifacts.

To address these limitations, we present ACSE-Eval, a dataset designed
to evaluate LLMs’ threat modeling capabilities. Our contributions include: a) a
curated dataset of 100 real-world AWS architecture diagrams with Diagrams-
as-Code [16] and Infrastructure-as-Code implementations using AWS CDK [3],
b) expert-generated threat models aligned with STRIDE [27], ATT&CK [21],
and OWASP Top 10 [23], c) a multi-dimensional evaluation framework assessing
threat identification, vulnerability analysis, and mitigation suggestions, and d)
an open-source release of the dataset and evaluation toolkit to promote further
research. Spanning 100 human-annotated threat scenarios and over 2,500 hours
(about 3 months) of expert effort, our dataset targets AWS, representing 31%
of the cloud market [28] and includes use cases ranging from simple web apps to
multi-region, and hybrid deployments.

In addition to advancing the field of cybersecurity evaluations for LLMs via
the open-source dataset, our work aims to address the following key research
questions:

R1: Can current language models effectively identify infrastructure security
issues via IaC?
The question aims to evaluate both the accuracy and reliability of LLMs in iden-
tifying potential security misconfigurations, compliance violations, and archi-
tectural weaknesses in infrastructure definitions expressed through code (AWS
CDK). We measure the coverage of vulnerability detection, and the compre-
hensiveness of the security analysis. This investigation is particularly relevant
given the increasing adoption of IaC in cloud deployments and the potential
for automated security analysis to enhance infrastructure security at scale while
reducing human error in security reviews.

R2: Can the threat modeling capabilities of language models be enhanced through
the integration of visual-esque aids or relationship-defining tools, specifically us-
ing Diagrams-as-Code?
We explore the potential for improving the threat modeling capabilities of LLMs
by incorporating codified visual representation techniques, particularly focusing
on Diagrams-as-Code or Component Relationship Context (CRC). The inquiry
seeks to determine whether the addition of tools that define relationships be-
tween system components can enhance an LLM’s ability to perform threat mod-
eling. CRC, which allows for the programmatic creation and manipulation of
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visual diagrams, could provide LLMs with a more structured and explicit repre-
sentation of system architectures, data flows, and component interactions. This
approach might enable LLMs to better understand complex systems, identify
potential attack vectors, and reason about security implications more effectively
than when working with text descriptions or IaC alone. The question aims to
assess whether this integration could lead to more thorough threat identification.

R3: How well can language models provide contextually appropriate security rec-
ommendations?
We also examine LLMs’ ability to generate security recommendations that are
appropriately tailored to specific contexts, environments, and constraints. The
question highlights whether LLMs can effectively consider factors such as the
application domain, technical limitations, and resource constraints when propos-
ing security controls or mitigations. The term contextually appropriate is crucial
here, as it goes beyond merely identifying security issues to assess whether the
suggested solutions are practical, implementable, and aligned with the specific
needs and circumstances of the target environment.

2 Methodology and dataset

ACSE-Eval introduces a structured methodology for evaluating the capability of
LLMs to perform threat modeling on real-world cloud architectures. The work
spans three stages: (1) data generation, (2) expert analysis, (3) evaluation met-
rics, and LLM performance assessment. This is explained in the following sec-
tions.

2.1 Dataset Generation Workflow

The process (illustrated by Figure 2) begins with the initial architecture genera-
tion phase, where a Security Engineer interfaces with a specialized Architecture
Agent to create an AWS architecture. This interaction is designed to incorpo-
rate security requirements and best practices from the outset. The generated
architecture then undergoes scrutiny from a Software Engineer, who evaluates
it for technical feasibility, compliance with organizational standards, and poten-
tial implementation challenges. If any issues are identified during this review, a
feedback loop is initiated where the Security Engineer works with the Architec-
ture Agent to regenerate the architecture with specific corrections. This cycle
of generation, review, and refinement continues until the architecture meets all
security requirements and receives approval.

Following architectural approval, the methodology moves into a crucial col-
laborative threat modeling phase. This stage brings together two Security Engi-
neers to perform comprehensive threat analysis, leveraging their combined exper-
tise and diverse perspectives to identify potential security risks and vulnerabil-
ities. The resulting threat model is then processed by a specialized Formatting
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Fig. 2: Methodology used for generating the ACSE-Eval dataset.

Agent, which standardizes it into a consistent JSON file. The next phase in-
volves translating the approved architecture into actual infrastructure code. A
CDK Agent takes on this task, generating AWS CDK code that implements the
architecture while maintaining the security controls and configurations specified
in the design. This automation helps reduce human error in the implementation
phase while ensuring consistency between the architectural design and the actual
infrastructure code.

The methodology then enters a testing and validation loop. The generated
CDK code is deployed to a dedicated test environment. This testing phase is
designed to ensure the infrastructure functions as intended. When tests fail,
a structured manual remediation process begins. The Security Engineer works
with the CDK Agent to address specific issues, generating updated CDK code
that is then redeployed to the test environment. This cycle of testing, feedback,
and improvement continues until all tests pass successfully.
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Fig. 3: Category-wise breakdown of the AWS services that are part of ACSE-
Eval.

2.2 Dataset Overview

The dataset reflects real-world diversity in deployment patterns, application do-
mains, and security postures. Architectures vary in complexity (from minimal
viable products to highly distributed systems), incorporate a wide range of AWS
services, and include both secure and intentionally misconfigured configurations.

Architecture Distribution. The dataset spans 12 different infrastructure
categories: Data Processing & Analytics (15.05%), AI/ML & Compute Platforms
(11.83%), Business Applications (11.83%), Infrastructure & Networking (8.60%),
Specialized Systems (8.60%), Serverless Architectures (7.53%), Media & Content
Services (7.53%), Security & Identity (7.53%), Multi-Region & High Availability
(6.45%), IoT & Connected Systems (5.38%), Gaming (5.38%), and Collaboration
& Communication (4.30%).

Service Coverage. The benchmark covers 146 distinct AWS services across
compute, storage, networking, identity, analytics, ML, IoT, and security among
other domains. The distribution is illustrated by Figure 3. This breadth chal-
lenges LLMs to reason across diverse primitives, policies, and interactions.

Threat Models. Threat models within ACSE-Eval span 115 distinct threats,
spread across the STRIDE, ATT&CK, and OWASP Top 10 frameworks. Threats
were derived from architecture analysis, IaC inspection, and attack vector map-
ping. Scenarios include realistic flaws, such as misconfigurations (e.g., open S3
buckets), missing controls (e.g., absent logging), design flaws (e.g., flat trust
boundaries), implementation bugs in CDK, and compliance violations (e.g., no
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Fig. 4: Distribution of OWASP Top 10 threats in the ACSE-Eval dataset.

encryption at rest). This diversity of flaws ensures LLMs must reason about
vulnerabilities at the architectural layers.

Component Relationship Context (CRC). Each threat model and IaC
implementation is accompanied by a PNG architecture diagram and its corre-
sponding Python-based diagram generation code [16]. While our current scope
focuses on textual inputs and evaluation, these architectural visualizations serve
as valuable artifacts for establishing relationships between various system com-
ponents. We hypothesize that providing LLMs with this component relationship
context, alongside the deployment code, could enhance the quality of generated
threat models. Future research could extend this work by incorporating visual
(multi-modal) in-context learning techniques, potentially leading to more com-
prehensive and accurate threat modeling capabilities.

3 Experiments

3.1 Implementation and Tooling

Our evaluations leverage the managed LLM APIs provided by Amazon [2],
Anthropic [4], Google [8], and OpenAI [22]. The comprehensive experiment
incurred a cost of approximately $500. The evaluation framework is imple-
mented using Inspect AI, an open-source platform for LLM assessments de-
veloped by [30]. During our analysis, we employed specialized packages for text
similarity measurements, including rouge for calculating Rouge-L scores [18]
and sentence-transformers for computing semantic (cosine) similarity [25].
To ensure transparency and reproducibility, the source code for both the experi-
ment and evaluation procedures is freely available at https://github.com/ACSE-
Eval/acse-eval-experiments under the MIT License.

Additionally, our dataset generation agents (Architecture, CDK, and For-
matting) employ a hybrid approach, combining human intervention with the
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Fig. 5: Heatmaps showing the relationship between threat likelihood and CIA
(Confidentiality, Integrity, Availability) impact across all architectures evaluated
in ACSE-Eval.

capabilities of Claude 3.5 Sonnet. For evaluations, we analyze Claude 3.5 Haiku
(claude-3-5-haiku-20241022), Claude 3.7 Sonnet (claude-3-7-sonnet-20250219 ),
GPT 4.1 (gpt-4.1-2025-04-1 ), GPT 4o (gpt-4o-2024-08-06 ), Deepseek V3, and
Gemini 2.5 Pro (gemini-2.5-pro-preview-05-06 ). We exclude Claude 3.5 Sonnet
(claude-3-5-sonnet-20240620, claude-3-5-sonnet-20241022 ) from our evaluations
to prevent implicit bias due to its use with the agents. We set the temperature
of LLMs at 0 and top_p = 1 to obtain more deterministic responses. Each task
is evaluated 3-times on a zero-shot and 3-shot prompt template with instruction
of LLMs to act as a cloud security engineering expert. For each 3-shot task run,
we seed and extract the 3-shot examples at random. We calculate the mean and
standard error mean for every metric in the following sections.
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3.2 Evaluating LLMs performance on ACSE-Eval

Framework Coverage We assess the accuracy of threat identification by cal-
culating the proportion of reference threats successfully captured in the model-
generated threat model. To evaluate this, we introduce a metric called Threat
Framework Coverage (TFC), which measures the recall percentage ( TP×100

TP+FN ) for
each security framework. This calculation provides a quantitative measure of
how effectively the model identifies and categorizes threats within established
security frameworks.

Table 1: TFC evaluation for STRIDE.
CDK IaC + CRC

Model 0-shot 3-shot 0-shot 3-shot

Claude 3.5 Haiku 56.8± 2.9 32.3± 4.37 57.6± 2.96 19.6± 3.59
Claude 3.7 Sonnet 80.2± 1.52 87.8± 1.16 84.7± 1.3 88.8± 1.14
GPT 4o 60.9± 1.86 78.8± 1.66 66.3± 2.03 84.2± 1.45
GPT 4.1 95.1± 0.756 96.8± 0.709 97.4± 0.659 98.7± 0.483
DeepSeek Chat V3 94.4± 0.908 93.7± 1.02 94.8± 0.914 95.7± 0.791
Gemini 2.5 Pro 96.2± 0.835 92.6± 1.09 98.4± 0.527 92.9± 1.12

Table 2: TFC evaluation for OWASP Top 10.
IaC IaC + CRC

Model 0-shot 3-shot 0-shot 3-shot

Claude 3.5 Haiku 39.0± 2.4 26.7± 3.68 40.5± 2.54 15.4± 3.0
Claude 3.7 Sonnet 70.4± 1.81 74.6± 1.62 70.2± 1.74 71.8± 1.78
GPT 4o 42.0± 1.86 56.3± 1.78 41.6± 2.0 62.4± 1.75
GPT 4.1 81.9± 1.73 85.9± 1.73 88.1± 1.53 90.0± 1.47
DeepSeek Chat V3 70.4± 1.62 72.8± 1.56 68.4± 1.72 74.8± 1.58
Gemini 2.5 Pro 85.9± 1.38 83.5± 1.64 89.1± 1.33 85.1± 1.49

Analysis of the results reveal distinct performance patterns across models.
GPT 4.1 demonstrates superior performance with 3-shot generation, while Gem-
ini 2.5 Pro excels in 0-shot scenarios. Notably, 3-shot generation proves counter-
productive for Gemini 2.5 Pro, occasionally resulting in decreased Threat Frame-
work Coverage. The smaller models, including Claude 3.5 Haiku and GPT4o,
show particular difficulty in accurately classifying MITRE ATT&CK codes.
When evaluating baseline performance without considering Component Rela-
tionship Context (CRC) or the number of examples, Gemini 2.5 Pro demon-
strates consistent superiority across all three security frameworks, establishing
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Table 3: TFC evaluation for MITRE ATT&CK.
IaC IaC + CRC

Model 0-shot 3-shot 0-shot 3-shot

Claude 3.5 Haiku 17.7± 1.68 14.2± 2.39 19.3± 1.6 8.24± 1.68
Claude 3.7 Sonnet 36.2± 1.75 40.6± 1.92 38.9± 1.92 42.3± 1.95
GPT 4o 17.4± 1.31 27.4± 1.9 19.1± 1.36 27.0± 1.67
GPT 4.1 44.3± 1.75 49.5± 2.12 42.8± 1.93 49.9± 2.07
DeepSeek Chat V3 36.1± 1.7 42.5± 1.8 38.5± 1.81 41.0± 1.86
Gemini 2.5 Pro 45.9± 1.78 46.1± 2.03 46.9± 1.89 47.4± 1.85

itself as the most effective model for threat identification and classification. On
the other hand, including either CRC or variations in shot counts in our analysis,
GPT 4.1 demonstrates better performance.

Text Similarity To account for linguistic variation in threat descriptions, we
compute and evaluate certain text similarity metrics. These allow us to credit
partial correctness and stylistic variation, crucial in an open-ended reasoning
task, especially threat mitigation recommendations.

ROUGE-L. This metric measures longest common subsequence between the
predicted and reference text.
Let X be the target text and Y be the model output. The ROUGE-L score is
calculated as:

ROUGE-L =
(1 + β2)RlPl

Rl + β2Pl
(1)

where Rl = LCS(X,Y )
length(X) is the LCS-based recall, Pl = LCS(X,Y )

length(Y ) is the LCS-
based precision, β = 1.2 to favor recall over precision, and LCS(X,Y ) is the
length of the Longest Common Subsequence between X and Y .

This metric evaluates how well the model output (Y ) matches the target text
(X) by finding the longest sequence of words that appears in both texts in the
same order.

Semantic Similarity. This metric measures the cosine of the angle between
the embedding vectors, providing a value between -1 and 1, where 1 indicates
perfect similarity, 0 indicates no similarity, and -1 indicates perfect dissimilarity.
It captures the semantic closeness of the model output to the target text, regard-
less of exact word matching. In order to calculate this, we transform the threat
model JSON content (for both the model output and target text) to vectors and
compute their cosine similarity.

Let X be the target text and Y be the model output. The Semantic Similarity
score is calculated as:
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Semantic Similarity = cos(θ) =
E(X) · E(Y )

∥E(X)∥∥E(Y )∥
(2)

where E(X) and E(Y ) are the sentence-transformer embeddings of X and Y
respectively, and ∥ · ∥ represents the L2 norm (Euclidean length) of the vector.

Table 4: ROUGE-L scores for ACSE-Eval.
IaC IaC + CRC

Model 0-shot 3-shot 0-shot 3-shot

Claude 3.5 Haiku 38.4± 3.47 24.8± 3.81 38.5± 3.27 16.2± 3.34
Claude 3.7 Sonnet 70.3± 2.53 79.4± 1.98 69.6± 2.45 83.7± 1.75
GPT 4o 47.4± 3.33 60.3± 3.12 48.7± 3.27 58.3± 3.23
GPT 4.1 74.4± 2.35 77.0± 2.35 76.0± 2.31 78.7± 2.32
DeepSeek Chat V3 61.2± 3.09 74.7± 2.98 61.2± 3.19 79.8± 2.66
Gemini 2.5 Pro 71.6± 2.37 74.3± 2.21 74.6± 2.09 74.6± 2.27

Table 5: Semantic Similarity scores for ACSE-Eval.
IaC IaC + CRC

Model 0-shot 3-shot 0-shot 3-shot

Claude 3.5 Haiku 0.634± 0.006 0.589± 0.008 0.632± 0.006 0.585± 0.010
Claude 3.7 Sonnet 0.798± 0.009 0.825± 0.008 0.822± 0.007 0.819± 0.01
GPT 4o 0.642± 0.01 0.792± 0.007 0.648± 0.01 0.805± 0.007
GPT 4.1 0.745± 0.008 0.799± 0.008 0.747± 0.009 0.823± 0.008
DeepSeek Chat V3 0.739± 0.009 0.74± 0.008 0.748± 0.009 0.736± 0.007
Gemini 2.5 Pro 0.742± 0.008 0.756± 0.006 0.752± 0.007 0.756± 0.007

We observe that, while Claude 3.7 Sonnet consistently achieves the high-
est Semantic Similarity scores, GPT 4.1 demonstrates superior performance in
ROUGE-L scoring specifically under 0-shot conditions. A higher Semantic Sim-
ilarity score coupled with a relatively lower ROUGE-L score (as in the case of
Claude 3.7 Sonnet) indicates that while the model captures the core meaning
and concepts of the reference text, it expresses these ideas using different vocab-
ulary and sentence structures. In threat modeling contexts, this could mean the
model identifies threats correctly but describes them using alternative, though
semantically equivalent language or format.

Comprehensiveness To evaluate the models’ precision in technical classifica-
tions and affected threat surface components, we assess their ability to correctly
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identify Common Weakness Enumeration (CWE) codes and AWS services within
the threat model. We introduce the AWS Service Coverage (ASC) metric, ex-
pressed as a percentage, to quantify the accuracy of AWS service identification.
These metrics ensure LLMs capture the full threat surface, especially in complex,
multi-tier deployments.

Table 6: CWE Coverage scores for ACSE-Eval.
IaC IaC + CRC

Model 0-shot 3-shot 0-shot 3-shot

Claude 3.5 Haiku 15.8± 1.55 10.9± 2.02 16.9± 1.76 7.14± 1.61
Claude 3.7 Sonnet 23.8± 1.70 26.9± 1.84 25.5± 2.08 27.9± 2.03
GPT 4o 17.9± 1.47 23.6± 1.99 20.1± 1.58 25.4± 1.99
GPT 4.1 37.3± 1.96 34.8± 1.89 38.4± 2.36 39.1± 1.99
DeepSeek Chat V3 32.0± 1.76 32.0± 1.76 34.2± 1.75 31.1± 1.8
Gemini 2.5 Pro 36.6± 2.17 32.1± 2.02 37.9± 1.99 32.0± 1.88

Table 7: AWS Service Coverage scores for ACSE-Eval.
IaC IaC + CRC

Model 0-shot 3-shot 0-shot 3-shot

Claude 3.5 Haiku 23.4± 1.78 20.4± 2.86 24.3± 1.72 12.1± 7.14
Claude 3.7 Sonnet 34.0± 2.01 46.0± 2.2 35.7± 2.06 50.1± 2.37
GPT 4o 20.0± 1.58 37.1± 2.20 20.9± 1.48 38.0± 2.11
GPT 4.1 44.7± 2.42 50.2± 2.41 51.3± 2.24 56.0± 2.57
DeepSeek Chat V3 34.4± 2.11 45.4± 2.22 43.8± 2.33 48.2± 2.44
Gemini 2.5 Pro 45.6± 2.08 45.8± 2.24 53.4± 2.21 50.4± 2.19

Our analysis reveals several key insights into the performance of different
language models. While GPT-4.1 excels in detecting CWE, its limited coverage
indicates that LLMs are still in their early stages regarding security vulnerability
detection. The performance dynamics shift in AWS service identification tasks,
where Gemini 2.5 Pro outperforms GPT-4.1 in 0-shot scenarios, though GPT-4.1
regains its advantage when provided with additional examples. Notably, compact
models such as Claude 3.5 Haiku demonstrate a trend: when presented with
additional context through few-shot examples or CRC, they exhibit increased
hallucination rates, leading to diminished performance metrics. This could be
because compact models struggle to capture complex relationships and nuances
in data due to under-fitting, while larger models are good at open domain tasks.
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4 Discussion

Our evaluation of LLMs using ACSE-Eval reveals key insights into their strengths
and limitations in cloud-native threat modeling, as well as opportunities for prac-
tical deployment and future research. We also discuss the potential for ACSE-
Eval to evolve.

4.1 Limitations and Future Direction

While ACSE-Eval is a promising step forward, it has limitations. First, its ex-
clusive focus on AWS may reduce generalizability to other platforms like Azure,
GCP, or hybrid environments. Future iterations should expand cross-cloud cov-
erage. Second, the dataset captures static architecture snapshots, whereas real-
world systems evolve. Future datasets should include architectural drift and
lifecycle transitions.

Although the dataset includes a diverse range of vulnerabilities, it does not
comprehensively cover all domain-specific or compliance-driven risks. Extending
coverage to industry-specific contexts will improve realism. Furthermore, while
we minimized subjectivity in evaluation through structured rubrics, future work
could explore automated metrics that better reflect reasoning quality.

Several research directions emerge from our findings. Specialized fine-tuning
on cloud security corpora could boost LLM performance. Multimodal approaches
incorporating architecture diagrams alongside text and code could provide richer
context. Interactive models that engage analysts in dialogue may yield more
accurate and user-aligned outputs. Longitudinal evaluation of LLMs’ ability to
reason over evolving architectures is another open area. Finally, maintaining the
relevance of ACSE-Eval will require regular updates to include new architectures,
emerging vulnerabilities, and refined evaluation metrics.

4.2 Ethical Considerations

In this study, we analyze threat-modeling capabilities of LLMs on an expert-
curated dataset comprising of infrastructure architecture specifications and their
corresponding threat models. We strictly avoid using any personal privacy infor-
mation or trade secrets that could have legal or ethical ramifications. Moreover,
we ensured that all of our work complied with ethical standards and legal regu-
lations to maintain transparency and integrity in our research. Additionally, we
understand that the nature of this work might enable certain threat actors to
use our dataset as a reference for identifying and exploiting threats in real-world
deployments. While that is certainly possible, we believe that this line of research
is necessary to build more secure systems. Over time, research in this space will
enable us to automate security and deploy more secure infrastructure without
human oversight. Despite our optimistic outlook, we have taken certain steps
to prevent ease of exploitation. The CDK (IaC) component of ACSE-Eval lacks
the necessary meta files (such as package.json, tsconfig.json, etc) to spin up a
deployment. We have only included the files that lay out the CDK specifications
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and cannot be used in isolation for deployments. Moreover, the threat models
in ACSE-Eval do not emphasize on implementation details and only call out
high-level threats. This positions ACSE-Eval well from an ethical standpoint.

5 Conclusion

In this paper, we introduced ACSE-Eval, the first comprehensive dataset for eval-
uating LLMs’ capabilities in threat modeling real-world cloud architectures. Our
dataset includes 100 production-grade AWS architecture scenarios with expert-
generated threat models, covering diverse application domains, complexity lev-
els, and AWS services. Our evaluation of 6 LLMs revealed both promising ca-
pabilities and significant limitations. Our analysis demonstrates that GPT-4.1
and Gemini 2.5 Pro excel at threat identification, with Gemini 2.5 Pro per-
forming optimally in 0-shot scenarios and GPT-4.1 showing superior results in
few-shot settings. While GPT-4.1 maintains a slight overall performance advan-
tage, Claude 3.7 Sonnet generates the most semantically sophisticated threat
models but struggles with threat categorization and generalization. ACSE-Eval
represents a crucial step towards automated cloud security assessment, providing
security practitioners and researchers with a robust framework to enhance LLM
capabilities in threat analysis and effectively safeguard modern cloud infrastruc-
ture.
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