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Abstract

Corporate LLMs are gaining traction for efficient knowledge dissemination and
management within organizations. However, as current LLMs are vulnerable to
leaking sensitive information, it has proven difficult to apply them in settings
where strict access control is necessary. To this end, we design AC-LORA, an
end-to-end system for access control-aware corporate LLM chatbots that main-
tains a strong information isolation guarantee. AC-LORA maintains separate
LoRA adapters for permissioned datasets, along with the document embedding
they are finetuned on. AC-LORA retrieves a precise set of LoRA adapters based
on the similarity score with the user query and their permission. This similarity
score is later used to merge the responses if more than one LoRA is retrieved, with-
out requiring any additional training for LoRA routing. We provide an end-to-end
prototype of AC-LORA, evaluate it on two datasets, and show that AC-LORA
matches or even exceeds the performance of state-of-the-art LoRA mixing tech-
niques while providing strong isolation guarantees. Furthermore, we show that
AC-LORA design can be directly applied to different modalities.

1 Introduction

Multi-modal LLMs are increasingly used for search, summarization, and knowledge query, and
are instrumental in rapidly developing and deploying AI chatbots for personal and corporate use.
Despite their benefits, the security risks [1, 2] introduced by including sensitive data (e.g., email and
chat) in training or retrieval-augmented generation (RAG) threaten the widespread deployment of
such tools. Therefore, LLM inference must adhere to strict access control rules, such as allowing
only authorized users or ensuring safety by preventing users from accessing harmful content.

Gap in prior work. While RAG can fetch new data (grounding the LLM response) with existing ac-
cess control methods, it has slower inference due to retrieval from storage media, or the internet [3],
diminishing inference performance (latency, memory and accuracy) in long context information
extraction [4], low accuracy in multi-hop retrieval[5], embedding space collapse [6] due to high di-
mensionality, and vulnerable to poisoning attacks [7–9]. A recent study [10] shows that RAG-based
solutions can make models even more unsafe than their non-RAG counterparts. Finetuning adds
new task capabilities to base models [11] and can incorporate new knowledge [12]. Not having to
include relevant information in each request’s context achieves lower inference latency. However,
once trained or finetuned, it is challenging to isolate or remove [13] information due to memorization
of training data [14, 15]. Notably, the absence of reliable unlearning techniques[16] is a significant
issue when dealing with proprietary corporate data with strict access control requirements. Main-
taining isolated models finetuned each on sensitive non-overlapping datasets (n) is also not feasible
due to exponentially increasing (2n) possible permission zones.
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Figure 1: A corporate LLM chatbot overview: (a) shows the corporate information and role hier-
archy, highlighting the complexity of managing access control. (b) Shows the expected inference
result combining multiple knowledge domains while adhering to the permission rules, including the
hint.

This work. We present AC-LORA, the first end-to-end access control-aware inference serving sys-
tem for LLMs with strong access control by construction. AC-LORA compartmentalizes sensitive
information by fine-tuning different LoRAs on data from access control groups (e.g., projects or
departments). AC-LORA uses a retriever that retrieves a set of the most relevant (allowed) LoRAs,
and combines them on top of the base model, based on the input prompt and the user’s permissions.
AC-LORA effectively summarizes information from multiple information domains (cf., Fig. 1 b),
while providing helpful guidance to the users in case the access to the document requires additional
permission. Importantly, unlike most existing mixtures of LoRA approaches [17, 18], AC-LORA
requires no additional training. This tackles exponentially increasing (2n) possible permission zones
without requiring the effort of training and the maintenance of an exponential number of models.

We evaluate AC-LORA on multiple models and datasets and show its adaptability to different
modalities: LLAMA2/3 for text, STABLE-DIFFUSION-V1-4 for text-to-image, and QWEN2-VL for
text-image-to-text. We compare AC-LORA’s dynamic LoRA mixing mechanism with existing
works [19] using the Flanv2 dataset [20]. AC-LORA achieves competitive performance on all
tasks, matching or outperforming prior works in 8 out of 10 domains. We evaluate AC-LORA
on RepLiQA [21] dataset, which consists of a wide range of knowledge-specific questions across
3591 documents spanning 17 different domains, and wikiarts [22], an image dataset that consists
of 27 different style domains. AC-LORA’s retriever consistently achieves high (> 90%) accuracy
at retrieving the correct fine-tuned adapter (without ever retrieving more than 3 LoRAs). Further,
we highlight that fine-tuned adapters can actively inject domain-specific knowledge. To evaluate
the knowledge augmentation via LoRA mixing, using RepLiQA, we create a dataset by partition-
ing knowledge. We show that AC-LORA not only leverages the information included in individual
LoRAs but can combine knowledge across multiple LoRAs to give a unified answer. AC-LORA
achieves low time-to-first-token generation latency compared to the full RAG solution due to the
shorter context. Additionally, we demonstrate that besides text, AC-LORA can extend access con-
trol to other modalities, such as text-to-image and text-image to text.

Our Contribution. In summary, our contributions are the following:

1. Access control-aware inference serving. We present AC-LORA, an efficient end-to-end access
control-aware inference serving system for corporate LLMs.

2. LoRA retrieval and training-free LoRA mixing. We design, implement, and evaluate multi-LoRA
retrieval and mixing based on user queries, allowing users to retrieve information across datasets
without the complexity of maintaining exponentially many models.

3. Comparative study. We conduct an in-depth comparative study of existing LoRA mixing and
merging techniques and their effectiveness in corporate access control. We demonstrate the sever-
ity of the information leakage from the LLM memorization. This shows that designing an access
control-aware LLM is critical for the successful adaptation of corporate AI chatbots.

4. Multi-modal demonstration. We demonstrate AC-LORA on text and multi-modal LLMs, and we
show that AC-LORA is effective for practical use-cases.

2



Table 1: Comparison of our proposed method AC-LORA with existing LoRA mixing techniques.
S: #input sequence k: Rank of router LoRA N : #LoRA D: Layer dimension ✗: not supported
LY : #Layers Nmod: # modules in a Transformer block { : Text ë : Vision ✓: Supported
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Existing systems

Tr
ai

ni
ng

-fr
ee

U
pd

at
e

A
cc

es
s c

on
tro

l

Se
le

ct
io

n

M
ec

ha
ni

sm

G
at

e s
iz

e (
G

)

#
pa

ra
m

et
er

s (
P

)

Lo
RA

-s
ca

lin
g

M
em

or
y

Tr
ai

ni
ng

Ef
fo

rt

In
fe

re
nc

e t
im

e

Task

SMoRA [34] ✗ ✗ ✗ Top-k Rank N2SD G× LY O(N) O(P ) O(2N ) O(N) {
MoLE [17] ✗ ✗ ✗ Top-k Seq N2SD G× LY O(N) O(P ) O(2N ) O(N) ë , {

Diffusion-MoLE [35] ✗ ✗ ✗ Top-k Seq +
Token

N2SD+
NSD

G× LY O(N) O(P ) O(2N ) O(N) ë

MoELoRA [18] ✗ ✗ ✗ Top-k Token ND G× LY O(N) O(P ) O(N) O(N) {
Retrieval-Augmented [19] ✗ ✗ ✗ Top-k Token 2kSD G× LY O(1) O(P ) O(2N ) O(N) {
LLaVA-MoLE [36] ✗ ✗ ✗ Top-k Token ND G× LY O(N) O(P ) O(2N ) O(N) ë , {
DynMoLE [37] ✗ ✗ ✗ Top-k,top-p Token ND G× LY O(N) O(P ) O(2N ) O(N) {

HDMoLE [38] ✗ ✗ ✗
Top-k,
dynamic threshold Token ND G× LY O(N) O(P ) O(2N ) O(N) Í

LoRA-LEGO [39] ✓ ✗ ✗
Minimum semantic
unit clustering

LoRA
merge None None O(1) O(1) O(2N ) O(1) {

MiLoRA [40] ✗ ✗ ✗ Top-k Seq NdNmod NdNmod O(1) O(1) O(2N ) O(N) {
MeteoRA [41] ✗ ✗ ✗ Top-k Token ND G× LY O(N) O(P ) O(2N ) O(N) {
SMEAR [42] ✗ ✗ ✗ Top-k Seq ND G× LY O(N) O(P ) O(2N ) O(N) {
LoraRetriever [43] ✓ ✗ ✗ Avg Token None None O(1) O(1) None O(N) {
AC-LORA (this paper) ✓ ✓ ✓ Top-k Seq None None O(1) O(1) None O(N) ë , {

2 Motivation, Problem Statement, and Related Works

Besides documentation and code bases, corporate LLMs are trained with employee-specific data
such as meeting records, emails/chat records on project progress, wiki entries, etc. Fig. 1 shows
that information access typically follows the organization hierarchy. Users should only be able to
access their data and the projects they participate in or manage. Naively, organizations can train sep-
arate models with non-overlapping sensitive documents. Maintaining these models is prohibitively
expensive, as an organization with n permission zones has 2n distinct permission groups.

Challenges with Single Foundation Model Training. A single foundation model trained with
all organizational data is easy to manage but poses security risks. LLMs retain some part of the
training dataset, known as memorization, which can be reproduced or confirmed via membership
inference attacks [23]. In practice, censorship methods are employed to monitor inputs and outputs
to prevent sensitive data leaks. However, studies [24–26] show these mechanisms are often inad-
equate, as attackers can bypass them with jailbreaking [27, 28] and harmless-looking inputs [29–
32]. Information leaks in corporate chatbots [1, 2, 33] threaten AI adoption in such contexts.
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Figure 2: LLAMA-3.1 8B Memorization in multiple predic-
tion (MP) with T = 0.7, single prediction (SP) and base
model (B) with T = 0, on confidential computing (CC) &
quantum computing (QC) datasets.

To show the real-world implica-
tions of memorization, we fine-tune
LLAMA3.1-8B using two LoRAs on
arXiv papers about confidential com-
puting (CC) and quantum computing
(QC), all published after the model’s
training cutoff. We evaluate verbatim
memorization of the training dataset
at inference time. Fig. 2 shows the
information leakage (8, 12, 15, and
18 subsequent grams) from the train-
ing set. A large segment of text match
(usually ≥ 12 grams) is a telltale sign
that the model remembers the train-
ing datasets. We observe that memo-
rization amplifies with a higher tem-
perature (T > 0). We perform three
inference runs (MP) at T = 0.7. In our 12-gram experiment, the substring leakages from MP and
SP above the base model are in CC, 9.9k and 3.7k, and in QC, 15.6k and 4.7k words. From this
observation we conclude that a single foundation model trained with all sensitive data is detrimental
to maintaining information isolation and safety. Appendix A provides more details on the memo-
rization experiment.

Related Works and Drawbacks. We discuss the drawbacks of several existing techniques.
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1. Access-controlled RAG: RAG with access control can allow or deny user access to a document.
However, retrieving typically from external sources (storage, internet) is expensive. Additionally,
retrieving a set of large documents and putting them into context is detrimental to the performance
of the LLMs, as shown by [4], as LLMs often fail to extract relevant information from long context.
Too many documents can also lead to inferior performance [44]. Further, longer context increases
inference time and memory consumption significantly. Recent research [10] shows that RAG can
make LLM responses unsafe compared to the base model answer.

2. Separate adapters for permission roles: Maintaining separate LoRAs for non-overlapping, per-
missioned datasets is feasible only if all users have a single permission role associated with a single
dataset. Users of multiple permission zones, which reflect the organization’s hierarchical structure,
require fine-tuning new LoRAs with the merged datasets. However, this is prohibitively expensive
as an exponential number of LoRAs (n permission zones lead to O(2n) LoRAs) is needed.

3. Training-free LoRA Mixing: There are two main methods used in previous works to combine
multiple LoRAs without requiring any trained gating or routing mechanism. One approach is to mix
the outputs of the LoRAs by averaging their results. Given the up and down projection of n LoRAs
as A = {A1, . . . , An} and B = {B1, . . . , Bn}. The average output (Y ) for input x from the mixture
of LoRAs is: Y = 1

n

∑n
i=i BiAix. Another method to combine LoRAs is to produce a new LoRA

with merged weights of the LoRAs as: wmerged = 1
n

∑n
i=i BiAi, Y = wmergedx. In both cases, the

inference accuracy diminishes severely [43, 45] with increasing number of LoRAs.

4. Training-based LoRA Mixing: To improve the above techniques, MoLE [17] uses a trained gate
to merge the entire output sequence from every MLP layer to combine tasks from every LoRA
expert. The gate merges the output sequences based on the input encountered during the training
phase. The gate parameter size increases linearly with the number of LoRAs and input sequence
size. Like MoE [46], MoELoRA [18] utilizes sparse MoE activation with a trained gate. After every
attention layer, the expert gate diverts a single token (unlike the sequence in MoLE) to an expert
MLP. The routers/gates in MoE models serve as load balancers, are trained jointly on all experts’
data, effectively risking that confidential information is included, even if an expert is disabled due
to the permission set. Alternatively, the routers can be trained for every possible permission set
(O(2n)), bringing us back to the same challenge of training as many LoRAs. This shows that MoE-
style LoRA mixing techniques are not directly suitable for strict access control.

Threat Model. AC-LORA assumes that the attacker can remotely access the LLM chatbot and send
unlimited queries, aiming to maximize the retrieval of unauthorized information. They can inject
arbitrary system commands or special tokens into queries and modify documents they can write,
like personal records (corporate email, chat accounts, meeting recordings, etc.), and project data.
We also assume the attacker cannot steal the identity to impersonate a user.

Requirements. Given the above-mentioned problem space, we summarize the following require-
ments for a secure corporate AI chatbot with strict information access control:

→RQ 1: Strict access control policy. A user without proper access right cannot access restricted
information or bypass the access control through means such as prompt injection.

→RQ 2: Arbitrary permission rules. The model can handle users’ requests with new permission
rules never encountered before, while maintaining the access control policy.

→RQ 3: Efficient update. Information can be added, updated or deleted with minimal effort.

→RQ 4: Efficiency. Ensuring that all of the above changes can be addressed without adding a
significant number of parameters to the model to avoid a significant increase in inference latency.

3 AC-LORA: Permission-Aware LoRA Retrieval and Mixing

We present AC-LORA: an end-to-end access control-aware LLM inference system. It integrates
LoRA-based retrieval with dynamic LoRA mixing to efficiently support an exponential number of
permission rules, while ensuring users can access all information to which they are authorized.
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Main Observation. AC-LORA finetunes and maintains separate LoRAs for different permission
zones. We assume a permission zone consists of projects or topics. We use three open-source
datasets: Flan-v2 [20], RepLiQA [21] for text, and wikiart [22] for multi-modal. Figs. B.1 to B.3
show that topic embedded spaces are separable. Tasks such as anli r1 and anli r2 in the Flan-V2
(Fig. B.1) are variants of the same task, and their embeddings are overlapping. This observation is
further reinforced by the pairwise cosine similarity score depicted in Figs. B.4 and B.5.

Isolated LoRA Fine-tuning and Knowledge Injection. Our memorization observation
(cf. Sec. 2) indicates that ensuring information isolation between different permissioned data
zones requires finetuning on individual, isolated data sets with separate LoRAs (RQ. 1).
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Figure 3: Knowledge injection of RepLiQA (split
0) dataset in LLAMA-3.1-8B.

The base LLM contains public knowledge,
while a specific LoRA(s) is required for the
base model when a user queries a restricted
topic. We finetune 17 LoRAs using the
RepLiQA [21] dataset that contains a human-
evaluated mock news dataset that our base
model, LLAMA-3.1-8B, has never seen dur-
ing its training. We use GEMMA-3-27B to
grade the responses (on a scale of [0, 5], cf. Ap-
pendix D.3.2). Fig. 3(a) shows the grade of
Cybersecurity topic from the RepLiQA over
different ranks (r) and finetune steps.

We observe that LoRAs can reliably in-
ject domain-specific knowledge into the base
model, assuming the base model has not been
trained on a similar dataset. We observe that the
most crucial factor is the dataset size; a smaller
dataset can lead to model overfitting. Across
ranks, LoRAs perform the best at a fine-tune
step size of ∼220. Fig. 3(b) shows a summa-
rized result for all RepLiQA datasets, and it
shows that the finetuned model performs bet-
ter in every subject than the base model with
an average of 0.959 grade improvement. Our observation aligns with existing works [12], which
evaluate the effect of knowledge injection using LoRA.

Secure LoRA Retrieval and Similarity-based LoRA Merging. We maintain two vector databases
in AC-LORA. LORA-DOC EMBED contains the mapping between the LoRA and their correspond-
ing fine-tuned document embeddings (chunked in 100 tokens). LORA-PERMISSION contains the
permission information of the users. Each user (uniquely identified by their User-ID attribute) is
associated with an n-dimensional (n LoRAs) vector, where the vector elements denote deny (0)
or access (1) to a specific LoRA. Given a tuple: {query, User-ID} from the user, AC-LORA
retrieves a set of candidate LoRAs based on the cosine similarity between the embeddings of the
query and the training dataset. We denote the set of candidate LoRAs along with their cosine sim-
ilarity scores as O. The User-ID retrieves the permission vector from LORA-PERMISSION. We
denote the set of permissible LoRAs of the given user as P . AC-LORA retrieves and loads the set
of relevant LoRAs L = O ∩P from LORA-DOC EMBED. The similarity scores of the LoRAs in L
are also passed to the mix-gate after each MLP layer.

Given the LoRAs in L = {L1, L2, . . . Lk} where k ≤ n and their corresponding normalized simi-
larity score {S1, S2, . . . , Sk}, such that

∑k
i=1 Si = 1, then for a query Q the output for each LoRA

in each layer Li ∈ L is yi = Q(AiBi) (Li’s low rank components: Ai, Bi). The final output for
each layer is then Y = W +

∑k
i Siyi where W is the base model weight. Note that the mixing is

completely training-free, i.e., the model owner does not need to retrain it for every possible combi-
nation of LoRAs (RQ. 2), and therefore enables faster and memory-efficient inference (RQ. 4) due
to absence of gate parameters.

Combining Knowledge from LoRAs. Fig. 1 shows that corporate AI chatbots should be able
to combine information from different datasets. The example query “How many cores are in the
CPU?” might have a different answer depending, for example, on the platform or generation. There-
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query embedding and permission. Relevant and non-permitted LoRAs can be returned as a hint.

fore, it is important to collect and combine the relevant information across different permission zones
(given the user has the correct access rights). AC-LORA’s similarity-based LoRA merging captures
domain-specific knowledge across non-overlapping permission zones. This knowledge combination
allows AC-LORA not to maintain all possible permission zone LoRAs (RQ. 2).

Answer Hinting. The hint set are determined as H = O−L = O− (O ∩P). The metadata of the
LoRAs in H are retrieved from LORA-DOC EMBED and given to the user as a hint that there might
be better answers given the queries and how to apply permission for them. This acts as valuable
guidance for the users to apply for the correct permission to further refine their response.

Update Operations. Unlike the majority of existing works on LoRA mixing (see Table 1), AC-
LORA is more flexible. To remove a dataset, the model owner must only remove one entry (O(1)
operation) from both the LORA-DOC EMBED and LORA-PERMISSION databases. To modify an
existing permission zone (add/delete/modify), the model owner needs to fine-tune the specific LoRA
with updated data, recompute the embedding of the fine-tune dataset, and update the LORA-DOC
EMBED vector-DB with the updated LoRA and the document embeddings. This does not affect the
LoRA mixer as it is only dependent on the individual cosine similarity score of the query and the
document embedding vectors (RQ. 3). Updating the access control vector of the user only requires
updating one entry in LORA-PERMISSION, which is also an O(1) operation.

Summary of the Secure LoRA Retrieval and Merging.. The step-by-step process of our proposed
system AC-LORA, depicted in Fig. 4 are: ① The user passes their query and credential information
to the system. First, the query goes to an embedding model to produce a vector embedding. This
embedding is then passed to LORA-DOC EMBED for a top-k similarity search. ② The top-k similar-
ity search produces O: top-k LoRAs along with their cosine similarity scores with the user query. ③
The user permission passes as the input to the LORA-PERMISSION that retrieves the set of permitted
LoRAs. ④ The permitted LoRAs are then passed to the base model. ⑤ The outputs of the LoRAs
are mixed with the same proportion of the similarity score of O. ⑥ The merged model outputs the
main Response, which abides by the strict access control policy in the LORA-PERMISSION. ⑦
The Hint is derived from O based on the non-permitted LoRAs with a higher similarity score.

Multi-modalities. AC-LORA extends beyond text-based models. Similar to the text, a tight access
control mechanism is applied to such multi-modal scenarios. Existing work [35], utilizes a mixing
of LoRAs on stable diffusion to enhance the overall image quality when using LoRAs specialized on
partial human features. AC-LORA uses a similar mechanism to train isolated multi-modal LoRAs
based on QWEN2-VT and stable diffusion model: STABLE-DIFFUSION-V1-4.

4 AC-LORA Evaluation

This section describes AC-LORA’s end-to-end evaluation. We run our experiments on two worksta-
tion GPUs with 48GB GDDR6 VRAM. Additional details regarding the setup and implementation
can be found in Appendix E. This section summarizes the key results of the AC-LORA evaluation.
Further results are discussed in Appendix C.
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4.1 Methodology

Datasets. In the following, we describe our setup for three different datasets:

1. RepLiQA: RepLiQA (split 0 cf. Fig. B.2) consists of several small artificial articles covering
various topics, along with multiple question-answer pairs per article. We split it into an 80-20
training-test set, ensuring with stratification that each article is seen at least once in the training
set. We finetune 17 LoRAs (with rank r = α = 64), one for each topic, using LLAMA3.1-8B-
INSTRUCT as the base model. As seen in Fig. 3(a), we keep the finetune step size ∼ 200 to avoid
overfitting. The training set comprises four data points per question: two with the document and
two without, each pair once with a short and long answer. Including question-only pairs improved
results as it aligns with the test set. To build the embedding database for AC-LORA, we use the
ALL-MNET-BASE-V2 [47] sentence transformer and split the training set for each LoRA into chunks
of 100 tokens, adding the corresponding LoRA as a tag.

2. Flan: FlanV2 contains datasets of 10 task domains (cf. Table 2). We use the identical setup of
[43], including the LoRAs shared with parameters (r = 8 and α = 16). We also utilize their test
set, which consists of 50 data points per task. As the training set used for the different LoRAs was
not shared, we constructed one based on the official FlanV2 dataset for the retriever. In particular,
we take the first 30k (or fewer for smaller tasks) samples of each selected task as the training set and
build the database as described above. As in LoRARetriver, we use the BLEU score to evaluate the
translation, ROUGE for the STUCT-TO-TEXT TASKS, and EXACT MATCH for the rest.

3. WikiArts: We query QWEN2-VL to generate the description of the images from the wikiarts [22]
dataset (see Appendix D) to construct the text-embedding for the retrieval. We then finetune
STABLE-DIFFUSION-V1-4 with the images to generate 27 LoRAs separated by the style attribute.

Knowledge Merging. Combining different LoRAs across different permission zones is important
for AC-LORA(Cf. Sec. 3). Although existing works [17, 19] show that combining LoRAs can be
used to combine tasks from different LoRAs, e.g., translating from English to Spanish and then
from Spanish to German, to answer queries for English to German. However, to our knowledge,
no existing work shows that combining different LoRAs can increase a model’s information recall.
Retrieving more than just a single (best-fitting) LoRA and combining them introduces new infor-
mation and increases the response quality. To demonstrate, we create a dataset (CS-COMBI) from
Cybersecurity News category in RepLiQA. For each text, we ask a reasoning model (DEEPSEEK-
R1-32B) to extract the most (between 3 and 12) relevant facts. We then divide these facts randomly
into two groups. From these two groups, we generate:
1. Context: We ask the model to write a text that exclusively includes the facts given - creating two
new articles with parts of the information missing.
2. Combined QA Pairs: Taking one fact from the first group and one from the second, we ask the
model to generate a question and answer pair that requires both facts to answer.
3. Single QA Pairs: Taking two facts from the same groups, we ask the model to generate a question
and answer pair that requires both facts to answer.
We built one test and two disjoint training (with and without context) sets, each containing at
least one question for each context in its corresponding group. We then fine-tune LLAMA3.1-8B-
INSTRUCT for 3 epochs and produce two LoRAs on these two training sets using different r (= α)
∈ {4, 8, 16, 32, 64, 128}. The prompts for extracting facts and additional details are in Appendix D.

4.2 Main Results

Retriever Performance. We now discuss our two main results: first, we showcase that our retriever,
when given a query, has high accuracy in retrieving the correct LoRA. As depicted in Fig. 5(a), with
increasing k (for the top-k retrieved documents), the accuracy of having the correct LoRA in the
set of retrieved LoRAs approaches one, while keeping the number of retrieved LoRAs under 3 for
RepLiQA and 5 for Flan. Fig. 5(b) confirms this by displaying the connection between a query from
a domain (left) and the retrieved LoRA domains (right) that answer the query (in FlanV2). More
detailed results and discussion are provided in Appendix C for both FlanV2 and RepLiQA.

Inferece Results. We now provide AC-LORA’s inference results.

1. RepLiQA: During inference, AC-LORA retrieves the relevant LoRAs (k = 10) and mixes them
based on the cosine similarity with the query. Fig. 6(a) shows the AC-LORA’s mixed LoRA infer-
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Figure 5: (a) LoRA retrieval performance in RepLiQA and FlanV2 for different top-k. Left: %
of queries per field for which the correct LoRA ∈ the set of retrieved LoRAs. Right: # retrieved
LoRAs. (b) Retrieval of FlanV2 target domains (left) and corresponding retrieved domains (left).

Table 2: AC-LORA evaluation on FlanV2 dataset and comparison with other LoRA approaches.
The baselines are extracted from LoRARetriever [43] for comparison. The best result is bold, while
the second best is underlined.

Selection Fusion Mixture
Task Perfect Selection IID OOD IID ODD IID OOD

MoE
Top1

MoE
Top3

MoE
Soft

SME-
AR

Adapter
Soup

LoRA
Hub

AC-LORA
(k=3, fetch k=10)

Struct to textRouge-1 64.0 61.3 50.1 49.4 45.9 55.9 50.4 45.6 46.8 47.9 48.0 4.5 35.6 61.7
Struct to textRouge-2 39.6 37.0 26.6 25.7 23.5 30.0 26.4 21.9 22.9 23.8 24.2 1.1 17.7 37.0
Struct to textRouge-l 57.0 54.5 43.9 43.6 40.3 49.5 44.0 39.8 40.7 41.7 42.4 4.5 31.6 54.3
Translation 13.1 12.8 12.0 12.2 12.3 12.8 12.2 9.5 10.5 10.7 11.0 1.4 8.5 13.6
Commonsense 62.5 55.5 46.0 51.0 48.0 61.5 50.0 54.5 52.0 51.5 50.0 46.0 17.5 65.0
Sentiment 90.0 89.5 89.0 79.0 78.5 89.5 90.5 70.0 75.0 74.5 74.0 73.5 0.5 90.0
Reading Comp 67.3 51.7 40.3 47.3 45.0 51.3 47.3 48.7 47.7 48.7 45.7 40.7 2.7 55.3
Closed book QA 45.0 40.0 43.0 41.0 37.5 45.0 48.5 40.5 38.5 40.0 32.0 31.5 1.0 39.0
Coreference 52.0 50.0 46.0 47.0 53.0 63.0 49.0 61.0 59.0 57.0 58.0 43.0 1.0 54.0
Read.comp.w/commonsense 69.0 69.0 30.0 35.0 19.0 46.0 40.0 31.0 29.0 29.0 23.0 14.0 3.0 63.0
Paraphrase 65.5 58.0 45.5 45.5 44.0 56.5 45.5 42.0 38.5 36.0 34.5 46.5 1.0 63.0
NLI 72.3 70.0 60.6 51.4 53.8 67.9 64.3 50.3 49.6 48.3 50.8 62.4 10.5 68.7

ence grades (judged by GEMMA-3-27B model), compared to the single finetuned LoRAs (perfect
selection) specific for the given query.
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Figure 6: AC-LORA evaluation on RepLiQA.

AC-LORA performs very close to the perfect
selection on most topics, and in some, it ex-
ceeds the perfect selection due to mixing with
relevant LoRAs from other domains.

2. FlanV2: Unlike RepLiQA, for Flan, we fol-
low similar accuracy metrics as state-of-the-
art LoRARetriever [43] to evaluate AC-LORA.
Table 2 shows that AC-LORA matches or ex-
ceeds LoRARetriever’s accuracy without re-
quiring any optimization or training for LoRA
mixing. More details are in Appendix C.
FlanV2 focuses on different formats (tasks)
rather than information. Therefore, AC-LORA
also effectively isolates tasks.

3. Multi-modal: Fig. 7 highlights AC-LORA
multi-modal performance where images are
generated using the prompt in Prompt 8 with
increasing top-k (k ∈ {1, 2, 3}) and using (in
the retrieval order) the LoRAs of Ukiyo e, Im-
pressionism, and Symbolism. Additional multi-modal results are in Appendix C.3.1.

Combining Knowledge. As discussed in Sec. 4.1, we finetuned two LoRAs on disjoint datasets.
While a single LoRA can answer some test questions, most require information from both.
In Fig. 6(b), we illustrate, in blue, the average improvement in answers using both LoRAs compared
to the lower-scoring LoRA, and in orange, the improvement over the higher-scoring LoRA. Al-
though combining LoRAs improves performance over the weaker one, it generally performs worse
than the higher-performing LoRA. This may be due to a possible imbalance in the dataset. The
query still requires both LoRAs to answer, but not with the same weight, leading the LoRA with less
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Figure 7: AC-LORA multi-modal
LoRA mixing on Wikiart dataset.
(Prompt 8)
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Figure 8: AC-LORA’s time-to-first-token latency
(TTFT) in 90 input-tokens on varying # LoRAs.

information on the subject to introduce noise. Despite this, 7.71% of test queries still show improve-
ments over both, and depict a similar behavior to the one described in Fig. 1. Specific examples of
such query-response pairs are provided in Appendix C.2.1.

Effect on Inference Latency. Fig. 8 shows the latency for the time to first token generation with
an increasing number of active LoRAs. We construct a prompt (length of 90 input tokens) such that
with increasing k, we can retrieve an increasing number of LoRAs (RepLiQA). As a comparison,
we also provide vanilla LLAMA3.1-8B’s latency with 260, 5K, and 10K context sizes to visualize
the effect of an equivalent RAG-like solution that retrieves and sets the entire relevant documents to
the context. This shows AC-LORA is efficient and satisfies RQ. 4.

5 Discussion, Limitations and Conclusion

Societal impacts. There are other scenarios where AC-LORA can enforce strict access control
while maintaining high inference quality, besides corporate AI chatbot.

1. Safeguard users from unsafe content (e.g., illegal advice or violent images): One can isolate the
training sets (of the said contents) and finetune separate LoRAs, which could, for example, only be
accessed by authorized personnel (e.g., law enforcement).

2. Avoid training foundation models with IP data: As recent reports [48] indicate, unlawful usage of
IP data in training may have severe legal implications, AC-LORA could allow using such data by
keeping it on licensed LoRAs and loading it with the base model for specific users.

However, such use cases require further investigation, and the details of how such systems could be
implemented using AC-LORA are out of the scope of this paper.

Limitations. We now discuss some of the limitations of AC-LORA.

1. General Limitation of LLMs and finetuning: LLMs perform well on some tasks but have notable
shortcomings like hallucinations, context scaling issues, and limited reasoning abilities. Reasoning
models help address some gaps, like multi-hop reasoning, but major issues persist. Importantly,
AC-LORA relies on LLMs’ capacity to learn and integrate new data during finetuning, making its
design agnostic to future advancements in reasoning models by being applicable on top.

2. Hinting: The hinting mechanism in Sec. 3 can introduce new attack vectors. Although useful in
specific scenarios, it risks membership-inference-like attacks that could expose confidential data.
We recommend using it cautiously, ideally with LoRAs on non-sensitive datasets.

3. Combining Knowledge: While we have presented a first experiment and dataset suggesting that
different LoRAs can combine knowledge, a more extensive analysis is required to better understand
the extension (and limitation) of such capabilities.

4. Frequent Swapping of LoRAs: We assume that either all LoRAs fit on the devices, or LoRA swap-
ping between inference rounds is minimal. If not, the time to first token increases significantly, as
shown in Fig. C.8. However, we believe this assumption is reasonable. In the improbable worst-case
scenario, where multiple (or all) LoRAs must be loaded in each inference round, performance could,
for example, be improved by reducing the value of k or optimizing the batching algorithm.

5. Multi-Modal: Our evaluation on other modalities serves as a proof of concept rather than a com-
prehensive analysis. A thorough assessment would require more resources, including a new dataset
and more robust evaluation methods, which are beyond the scope of this work (see Appendix C.3).
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Conclusion. In this paper, we propose AC-LORA, a multi-modal, access-control aware LoRA
serving system that requires no additional training for mixing responses by different LoRAs. AC-
LORA is efficient, can retrieve and mix relevant LoRAs based on the user’s query, while maintaining
strict organization information access control policies. AC-LORA evaluation shows that deploying
and providing high-quality responses is practical.
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Appendix
A LLM Memorization Evaluation

We construct an experimental pipeline consisting of several stages: preparing the dataset, fine-tuning
the base model, performing inference, and comparing the model’s predictions against the training
data. In the following sections, we describe each step of the pipeline in detail.

A.1 Dataset Preparation

To create the datasets, we use the arXiv API to download research papers on two topics: confidential
computing (CC) and quantum computing (QC). The specific URLs used to retrieve the papers can
be found in Table A.1.

Topic arXiv API URL

Confidential Computing https://export.arxiv.org/api/query?search query=all:confidential+AND+all:computing&max results=500
Quantum Computing https://export.arxiv.org/api/query?search query=all:quantum+AND+all:computing&max results=500

Table A.1: arXiv API URLs used for data retrieval

After downloading the papers, we filter out the ones published before 2024. Then, we convert the
PDF files into plain text and split the resulting text into smaller chunks. Each chunk is then input into
the LLAMA3.1-8B model, accompanied by a prompt instructing it to generate five question-answer
pairs based on the given text as context:

USER: Write the questions and corresponding answers, and do not repeat the given context or any
final answer. Generate five questions and their corresponding answers from the given context.
{context}

The final dataset comprises 15,459 question-answer pairs related to confidential computing and
15,466 question-answer pairs related to quantum computing. Finally, both datasets are partitioned
into training and test sets using an 80-20 split.

A.2 Fine-Tuning

The second step of the experimental pipeline involves fine-tuning an LLM for text generation using
LoRA. We follow this approach to assess the extent to which LoRA adapters memorize training data,
i.e., to evaluate how much of the original input is retained within the adapted parameters during fine-
tuning. We load the base model, LLAMA3.1-8B, using 4-bit precision, nested (double) quantization,
with normalized 4-bit quantization type and bfloat16 as the compute data type. We configure the
LoRA adapters with an attention dimension r = 16, scaling factor α = 64, and a dropout probability
0.1.

For the training itself, we adopt the same hyperparameter configuration used in the Stanford Alpaca
project [49], due to the similarity between our datasets and those used in Alpaca — both in terms
of size and structural format (instruction-answer pairs). This also helps to rule out overfitting as a
contributing factor to memorization. We also use the same prompt format as in Alpaca.

Fine-tuning was performed using the same experimental setup described in Sec. 4.

A.3 Inference

In the inference phase, we combine the individual LoRA adapters with the base model and prompt
the fine-tuned models using inputs from the test dataset. In a real-world scenario, the model will
likely encounter prompts that resemble those from the training set. Therefore, we use the test set,
which shares a similar context with the train set since they originate from the same source, but differ
enough to simulate real-world conditions. Our objective is to evaluate the model’s memorization
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after fine-tuning, without having direct access to the training set, while still using similar prompts.
We repeat the experiment in three distinct variants.

In the first variant, we apply the greedy search decoding strategy to obtain a single deterministic
prediction per query. These predictions are consistent and can always be reproduced.

In real-world scenarios, attackers can prompt a model as often as they like. Consequently, repeated
prompting can increase the likelihood of the model revealing memorized content, amplifying the
risk of information leakage. We adopt a second experimental variant using the multinomial sampling
decoding strategy to reflect this threat model. Specifically, we modify the default LLAMA3.1-8B
generation configuration by slightly increasing the temperature from 0.6 to 0.7, and setting the top p
parameter to 1.0 instead of 0.9. This approach enforces more diverse predictions. We prompt the
model three times, generating multiple prediction candidates.

In the third variant, we apply the greedy search decoding strategy again, but this time using only the
base LLAMA3.1-8B model, without combining it with any LoRA adapters. This helps isolate the
contribution of the LoRA adapters, allowing us to assess how much newly introduced knowledge is
memorized by the adapters versus what the base model retains.

A.4 Prediction Evaluation

The final stage involves a quantitative measurement of LLM memorization by comparing each gen-
erated prediction from the prediction set P against each entry in the corresponding model’s training
dataset S. Unlike previous work that relies on concepts such as eidetic memory [50] and adversarial
compression [51] to define and measure LLM memorization, our work aims to quantify memoriza-
tion using simple string comparison techniques directly.

We compare each prediction p ∈ P against each question-answer pair s ∈ S from the corresponding
model’s training dataset by searching for all the common substrings between p and s. Importantly,
we treat p and s as sequences of words (rather than characters), where tokens are defined by whites-
pace separation. We further enforce a minimum substring length n, measured in consecutive words,
to ensure that only meaningful overlaps are considered in the analysis. We repeat the experiment for
n ∈ {8, 12, 15, 18}.

For this purpose, we generalize the Longest Common Substring (LCS) Suffix Tree algorithm [52],
to search not only for the longest common substring, but also for all common substrings between
two strings [53]. We additionally adapt the algorithm to include only the substrings of length greater
than or equal to n words.

This process results in a set of |S| overlapping intervals for each prediction p, where each range cor-
responds to the overlap with a specific training example s. To quantify memorization, we aggregate
the intervals across all s ∈ S to compute a global overlapping interval — the union of all sequences
within p that are directly and exactly memorized from the training set. We then compute two mem-
orization scores for each prediction: an absolute score, defined as the total number of memorized
words within the global interval, and a relative score, calculated as the ratio of captured words to
the total number of words in the prediction. Fig. A.1 shows an example of a prediction alongside
training set entries whose segments are memorized verbatim. In the case of multinomial sampling,
where we generate three predictions per test query, we additionally aggregate the global intervals
from all three predictions. We avoid double-counting when merging the intervals, such as when a
captured substring from one prediction is partially or entirely contained within a longer overlapping
substring from another. We then compute the cumulative absolute score based on the total number
of memorized words within the merged interval.

It is important to note that finding all the common substrings of two strings is prohibitively expen-
sive, with time complexity of O(m + n), where m and n are the lengths of the two strings. Due to
the number of experiments, the size of the training and test datasets, and the lengths of the generated
predictions, the comparison stage required significant computational resources. The whole process
took over 15 days to complete when executed in parallel across seven nodes.
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QUESTION: How is entropy gain related to the trace of 
the logarithm of a quantum channel ?

PREDICTION: The entropy gain is directly related to the 
trace of the logarithm of the map ℱwhich is a measure 
of the amount of information gained through the 
application of ℱ Specifically the entropy gain can be 
expressed as the difference between the logarithmic 
map and the logarithmic map after the application of ℱ
which is given by the trace of the logarithm of the map 
ℱ This relationship between the entropy gain and the 
trace of the logarithm of the map ℱ is a key result in the 
context of quantum channels as it provides a useful 
measure of the amount of information gained through 
the application of the channel

QUESTION: What is the relationship between the entropy 
gain and the trace of the logarithm of the map ℱ ?

ANSWER: The entropy gain of a map ℱ under a 
completely positive map ℱ is related to the trace of the 
logarithm of the map ℱ by ΔS(ℱ) ≥ tr(ℱ log ℱ).

QUESTION: What is the meaning of HX ?

ANSWER: HX represents the entropy of a random 
variable X which is a measure of the amount of 
information that X contains

QUESTION: What is the distance measure used in the 
quantum kernel ?

ANSWER: The distance measure used in the quantum 
kernel is the fidelity between two encoding states which 
is given by the trace of the product of the two encoding 
states

Figure A.1: An example of a prediction generated by the quantum computing LoRA using the
greedy search decoding strategy (left) and training set entries whose segments are contained within
the prediction (right). The highlighted text indicates matching sequences with length greater than or
equal to n = 8 words. The prediction has an absolute memorization score of 43 and a relative score
of 0.387.
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Figure B.1: Embedding space of the Flan-v2 [20] Dataset.

B Dataset Embedding

Figs. B.1 to B.3 show the embedding space for FlanV2, RepliQA, and wikiart dataset respectively.
As mentioned previously, ALL-MNET-BASE-V2 [47] was used to generate the dataset embeddings.
Appendix B and fig. B.5 additionally show the pairwise cosine similarity of these three datasets.
To calculate the cosine similarities between each pair of topics in a dataset, we first calculate the
centroid of all document embeddings in a topic. This embedding centroid is then used as the repre-
sentative embedding for the specific topic and is used to derive the pair-wise cosine similarity.
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Figure B.2: Embedding space of the RepliQA [21] Dataset.
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Figure B.4: All pair cosine similarities of Flan-v2 [20] and RepliQA [21] datasets.
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Figure B.5: All pair cosine similarities of generated prompts from Wikiart [22] dataset.

(a) Domain grouped (b) Tasked grouped - The thickness shows
the frequency of the connection.

Figure C.1: Actual retrieved LoRAs for given domain or task.

C Additional AC-LORA Results

In the following subsection, we will provide more detailed results from AC-LORA evaluation.

C.1 Flan

In Table C.1 we showcase the full comparison to [43] on Flan-v2. Similarly to the briefer version,
we can see that AC-LORA matches or outperforms other methods in most tasks. Unlike the results
on RepLiQA, if the wrong LoRA is retrieved, the output format will (in some cases, drastically)
change and thus receive a worse exact match score, even if the content of the answer is correct.
Given the nature of AC-LORA, it is unsurprising that its performance is poorer on tasks evaluated
by exact match. This is due to its vulnerability to additional retrieved LoRAs, where retrieving
the correct LoRA and irrelevant ones can sufficiently lower the exact match score. In general,
AC-LORA consistently retrieves at least one LoRA that belongs to the same domain, though this
is not always exclusive for certain domains. As illustrated in Fig. C.1, for queries originating
from domains such as CLOSED BOOK QA and COMMONSENSE, AC-LORA occasionally retrieves
LoRAs from other domains. This is intuitive, given that these domains have less clear distinctions
from other tasks. If the primary goal of AC-LORA would be to retrieve LoRAs based on the task,
and not based on knowledge, performance in these cases could be improved by emphasising more
the requested format during retrieval.
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Figure C.2: Flan-V2 task retrieval grouped per domain.

One can notice a similar behavior in Fig. C.2 and Fig. C.3, where we show an extensive version
of Fig. 5. The plots show the results with increasing threshold (horizontally) and fetch k parameter
(vertically). The threshold indicates that LoRAs with a retrieved average similarity score lower
than the given threshold are disregarded. The threshold does not affect the results much, except for
thresholds higher than 0.5, where we start to retrieve fewer to no LoRAs, and thus also not the correct
one. On the other hand, fetching more documents only affects the results minimally. While the plots
per task (instead of per domain) are a bit noisier, they show a similar trend. The worst performing one
is mnli mismatched, which is not surprising as we have not included it in our database (as the entire
idea of this task is to see how it performs out of distribution to the matched ones) and therefore
cannot be retrieved. In case we do consider mnli matched as the correct LoRA in this case, we
achieve, for example, a 92% accuracy for the mnli mismatched queries for hyperparameters k=10,
fetch k=200, and threshold=0.0. Similarly, the task arc easy and arc challenge, or anli {r1,r2,r3},
whose accuracy increases when considering any of the options as correct.
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Table C.1: Full comparison with LoRARetriver.
Selection Fusion Mixture

Task/Llama27b Perfect
Selection IID OOD IID OOD IID OOD

MoE
Top1

MoE
Top3

MoE
Soft

SME-
AR

Adapter
Soup

LoRa
Hub

AC-LORA
(k=3, fetch k=10)

Struct to Text
WebNLGRouge-1 71.2 67.0 53.9 49.4 45.4 57.8 53.9 45.1 47.6 49.1 51.1 3.9 32.5 69.8
WebNLGRouge-2 50.6 44.5 30.0 25.9 24.1 33.5 29.4 22.6 25.8 26.1 27.9 0.9 17.3 48.4
WebNLGRouge-l 64.4 60.9 49.1 45.5 41.0 52.3 49.6 40.0 41.9 43.3 45.4 3.9 31.1 61.9
DARTRouge-1 71.7 67.9 58.4 56.3 53.4 63.2 60.0 55.4 56.3 56.9 60.0 3.3 40.0 72.5
DARTRouge-2 49.1 45.8 34.9 32.3 30.6 36.6 35.4 30.3 31.0 30.8 33.0 1.3 20.1 49.1
DARTRouge-l 64.6 61.1 52.4 50.3 47.9 56.3 52.4 49.7 50.8 50.2 54.8 3.3 35.2 64.0
E2ENLGRouge-1 66.1 65.8 59.3 62.2 57.2 66.0 58.7 52.9 54.0 55.3 53.2 4.2 50.1 66.1
E2ENLGRouge-2 40.0 39.4 34.1 34.7 32.0 38.8 32.1 26.9 27.6 28.8 27.5 2.4 26.3 39.6
E2ENLGRouge-l 56.7 55.7 50.2 52.7 49.1 56.9 49.0 45.1 45.0 47.0 45.1 4.2 42.2 56.4
CommonGenRouge-1 46.9 44.7 29.0 29.9 27.7 36.5 29.0 29.0 29.3 30.1 27.6 6.6 19.8 38.3
CommonGenRouge-2 18.8 18.3 7.3 9.9 7.2 11.1 8.6 7.7 7.1 9.3 8.4 0.0 6.9 11.1
CommonGenRouge-l 42.5 40.5 24.0 25.8 23.3 32.7 24.8 24.4 25.1 26.3 24.3 6.6 18.0 34.8

Translation
Paracrawl-enes 24.3 24.2 20.3 22.9 22.3 22.8 22.1 18.0 18.8 19.5 21.6 4.5 16.4 26.3
WMT’16-tren 3.2 3.1 2.6 3.5 3.3 3.7 2.6 3.5 3.2 3.4 3.2 0.0 2.0 3.4
WMT’16-ruen 10.8 10.4 9.8 9.2 9.3 11.0 10.8 6.2 7.8 8.3 7.3 0.0 4.8 11.3
WMT’16-deen 18.9 18.7 20.3 17.9 18.8 18.8 18.7 11.6 14.0 14.7 16.6 1.1 11.4 17.9
WMT’16-fien 6.5 6.5 7.0 7.2 7.1 7.3 7.8 6.2 6.2 6.1 6.5 0.7 4.3 7.7
WMT’16-roen 13.9 14.0 12.3 12.8 13.3 13.1 12.2 9.8 10.7 10.1 10.3 0.3 8.0 15.1
WMT’14-enfr 16.5 16.1 16.9 17.7 18.0 17.8 18.0 15.9 17.3 17.1 16.4 3.5 15.2 17.9
WMT’16-csen 10.7 9.4 7.0 6.1 6.2 8.3 5.8 4.7 6.3 6.3 6.3 0.8 6.1 9.7
Commonsense
StoryCloze 72.0 62.0 42.0 72.0 68.0 84.0 58.0 74.0 70.0 70.0 68.0 62.0 48.0 86.0
PIQA 46.0 46.0 32.0 34.0 36.0 38.0 34.0 40.0 38.0 38.0 36.0 38.0 0.0 44.0
COPA 86.0 74.0 68.0 78.0 70.0 80.0 68.0 72.0 70.0 72.0 70.0 56.0 22.0 80.0
HellaSwag 46.0 40.0 42.0 20.0 18.0 44.0 40.0 32.0 30.0 26.0 26.0 28.0 0.0 50.0
Sentiment
SST-2 98.0 98.0 96.0 74.0 78.0 96.0 94.0 56.0 68.0 66.0 66.0 74.0 0.0 98.0
Yelp 98.0 94.0 94.0 96.0 96.0 98.0 98.0 86.0 90.0 86.0 84.0 80.0 0.0 98.0
IMDB 96.0 96.0 96.0 92.0 82.0 96.0 96.0 76.0 80.0 80.0 84.0 80.0 0.0 96.0
sentiment140 68.0 70.0 70.0 54.0 58.0 68.0 74.0 62.0 62.0 66.0 62.0 60.0 2.0 68.0

READING Comp.
MultiRC 68.0 52.0 38.0 44.0 44.0 48.0 44.0 54.0 52.0 50.0 48.0 40.0 6.0 60.0
SQuADv2 62.0 56.0 12.0 30.0 20.0 22.0 16.0 24.0 24.0 26.0 22.0 16.0 0.0 34.0
SQuADv1 68.0 66.0 68.0 64.0 64.0 62.0 68.0 68.0 70.0 66.0 66.0 54.0 4.0 56.0
OBQA 82.0 68.0 58.0 64.0 60.0 78.0 66.0 62.0 64.0 66.0 60.0 40.0 0.0 70.0
BoolQ 84.0 60.0 60.0 68.0 70.0 80.0 76.0 74.0 68.0 76.0 70.0 72.0 6.0 84.0
drop 40.0 8.0 6.0 14.0 12.0 18.0 14.0 10.0 8.0 8.0 8.0 22.0 0.0 28.0
CLOSED-BOOK QA
NQ 18.0 16.0 10.0 16.0 14.0 16.0 10.0 12.0 12.0 12.0 4.0 12.0 0.0 10.0
ARC-e 50.0 56.0 70.0 54.0 56.0 66.0 82.0 58.0 58.0 60.0 58.0 48.0 0.0 64.0
ARC-c 46.0 42.0 46.0 34.0 34.0 50.0 46.0 46.0 42.0 42.0 42.0 24.0 0.0 38.0
TriviaQa 66.0 46.0 46.0 60.0 46.0 48.0 56.0 46.0 42.0 46.0 24.0 42.0 4.0 44.0

COREFERENCE
DPR 54.0 50.0 50.0 56.0 60.0 68.0 56.0 64.0 60.0 62.0 62.0 46.0 2.0 54.0
WSC 50.0 50.0 42.0 38.0 46.0 58.0 42.0 58.0 58.0 52.0 54.0 40.0 0.0 54.0

READ. COMP. W/ COMMONSENSE
CosmosQa 68.0 68.0 34.0 46.0 32.0 50.0 46.0 44.0 46.0 44.0 38.0 14.0 6.0 72.0
record 70.0 70.0 26.0 24.0 6.0 42.0 34.0 18.0 12.0 14.0 8.0 14.0 0.0 54.0

PARAPHRASE
Paws Wiki 90.0 64.0 40.0 44.0 42.0 56.0 46.0 56.0 50.0 48.0 54.0 60.0 2.0 78.0
QQP 74.0 74.0 68.0 66.0 60.0 80.0 58.0 50.0 40.0 36.0 28.0 54.0 0.0 74.0
MRPC 60.0 58.0 58.0 60.0 62.0 60.0 58.0 42.0 44.0 40.0 42.0 60.0 2.0 60.0
STSB 38.0 36.0 16.0 12.0 12.0 30.0 20.0 20.0 20.0 20.0 14.0 12.0 0.0 40.0
NLI
CB 88.9 80.0 62.2 77.8 57.8 86.7 66.7 68.9 64.4 68.9 62.2 55.6 13.3 77.8
WNLI 70.0 68.0 46.0 44.0 50.0 60.0 54.0 56.0 56.0 42.0 44.0 52.0 0.0 62.0
ANLI-r1 50.0 50.0 50.0 40.0 42.0 40.0 42.0 40.0 40.0 36.0 38.0 38.0 24.0 44.0
ANLI-r2 46.0 46.0 46.0 32.0 36.0 46.0 46.0 40.0 36.0 38.0 32.0 46.0 20.0 42.0
ANLI-r3 46.0 42.0 38.0 38.0 40.0 44.0 50.0 28.0 32.0 34.0 38.0 40.0 24.0 46.0
MNLI-m 88.0 84.0 88.0 62.0 66.0 80.0 88.0 48.0 54.0 50.0 56.0 76.0 0.0 78.0
MNLI-mm 92.0 90.0 94.0 64.0 82.0 88.0 90.0 48.0 48.0 50.0 60.0 84.0 2.0 90.0
SNLI 96.0 84.0 84.0 56.0 58.0 90.0 92.0 54.0 52.0 54.0 54.0 82.0 0.0 96.0
QNLI 94.0 94.0 26.0 46.0 48.0 74.0 38.0 56.0 56.0 54.0 60.0 70.0 0.0 78.0
RTE 52.0 62.0 72.0 54.0 58.0 70.0 76.0 64.0 58.0 56.0 64.0 80.0 22.0 74.0
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Figure C.3: Flan-V2 task retrieval.

C.2 RepLiQA

In Fig. C.4 we present a more detailed version of the plot presented in Fig. 5. The plots show
the results with increasing threshold (horizontally) and increasing fetch k parameter (vertically).
Similarly to Flan, one can see that the fetch k parameter does not seem to be affecting the results
much. At the same time, once we increase the threshold to 0.5, retrieval results degrade significantly
as this leads AC-LORA to disregard often all retrieved LoRA. We show the actual retrieved LoRAs
per domain and their frequency in Fig. C.5.
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Table C.2: Mapping index for Figs. 3(b) and 6(b) to RepLiQA domain.
Index 1 2 3 4 5 6 7 8

Domain Regional Folklore
and Myths

Local Health
and Wellness

Local Environ-
mental Issues

Neighborhood
Stories

Local Sports
and Activities

Local Technology
and Innovation

Local Arts
and Culture

Cybersecurity
News

Index 9 10 11 12 13 14 15 16 17

Domain Local Politics
and Governance

Small and
Medium

Enterprises
Local News Local Economy

and Market
Local Educat-
ion Systems News Stories Company

Policies
Regional Cuisine

and Recipes
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Figure C.4: RepliQA retrieval.

C.2.1 Combining Knowledge

QUESTION: What are two significant contributions Dr. Chase has made to AI-powered cyberse-
curity?
REFERENCE ANSWER: On October 15, 2023, Dr. Chase presented her groundbreaking work
on AI-powered cybersecurity at the Chicago Cyber Security Summit. Additionally, in Novem-
ber 2023, her AI-powered security system detected an attempted zero-day vulnerability exploit
against a financial institution in Chicago before it could cause significant damage.
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Figure C.5: Actual retrieved LoRAs for given domain. The thickness shows the frequency of the
connection.

LORA1: Dr. Chase has developed an AI-powered cybersecurity platform that uses machine
learning algorithms to detect and respond to cyber threats in real-time. Additionally, she has
introduced a new cybersecurity curriculum at the university level, which includes topics such as
AI ethics and security protocols.
LORA2: Dr. Chase has contributed to the development of AI-powered cybersecurity by creating
a framework that integrates machine learning and human expertise to detect and respond to cyber
threats. Additionally, she has demonstrated the effectiveness of AI in detecting and mitigating
cyber attacks, showcasing its potential to revolutionize the field.
LORA12: Dr. Chase has developed an AI system capable of detecting and neutralizing cyber
threats in real-time, and she has also created an AI-powered cybersecurity platform that uses
machine learning to predict and prevent cyber attacks.

C.3 Multi-Modal

In the following we present some additional information about our setup for the stable diffusion
experiments and show some additional results. We then briefly provide some information regarding
the capabilities to use AC-LORA also with other modalities, such as text-image to text.

In general, we view the results presented in this section as more of a proof of concept rather than
a comprehensive evaluation. A more thorough analysis would require significantly more resources
to accurately assess the capabilities of the base model and the specific contributions made by the
finetuning. To ensure a fair and precise evaluation, one would need to create a new dataset (to
guarantee that the base model has not previously been trained on it). However, even with this step,
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evaluating the model would remain challenging, as images are inherently more difficult to grade
than text. Given these considerations, we believe such an in-depth evaluation to be beyond the scope
of this work.

C.3.1 Stable Diffusion

We trained different LoRA models on the different styles in (WikiArts[22]). For this, we asked
QWEN2-VL to generate a generation prompt given the image, the style, and the artist. From these
prompts and the images, we fine-tune STABLE-DIFFUSION-V1-4 on each of the 27 styles, using rank
and alpha 16, learning rate 1e-04, and utilizing the diffusers Huggingface library. We then use the
generated prompts to build our embeddings for the retriever.

Fig. C.6 shows six example AC-LORA image generation along with their generation prompts and
the corresponding retrieved (and mixed) LoRAs.

C.3.2 Text-Image to Text (Qwen2-VL)

We evaluate AC-LORA also on text-image to text models. We finetune 10 LoRAs using QWEN2-
VL-7B-INSTRUCT. Starting from the MMSci dataset [54], we create 10 smaller datasets (5k data
points each) as shown in Table C.3. We show the retrieval results in Fig. C.7. We describe how we
embed the text and image for the retrieval mechanism in Appendix E.

C.4 Latency

In Sec. 4 we provide our evaluation result of the AC-LORA’s time to first token generation with an
increasing number of active LoRAs (i.e., isolated permission zones). However, this assumes that the
LoRAs and the base model are already loaded into the device’s memory (such as the GPU). This is
a valid assumption as switching the model very frequently adversely affects the token generation,
specifically the time to first token generation latency. We evaluate the worst-case scenario, where
every user query requires the LoRAs to be loaded into the device memory from scratch. Fig. C.8

D Templates

D.1 Knowledge Combination

As described in Sec. 4.1 we built our own dataset starting from RepLiQA split 0 to showcase
the capabilities of combining LoRAs to combine knowledge. Starting from all the documents of
the CYBERSECURITY NEWS category, we ask deepseek-r1:32b to extract the most relevant facts
using the following prompt:

SYSTEM: You are an expert analyzer. Given a text, extract the main (distinct) facts in a concise
manner as a list, separated by ’\n*’. Each fact must be fully self-contained, meaning it should
make complete sense on its own without requiring any context from the original text or other
extracted facts. \n* Always explicitly state the subject and object—never use pronouns (e.g., he,
she, they, it) when a clear noun can be used instead. \n* Do not assume or infer any information
that is not explicitly stated in the text. \n* Each fact must stand alone—no fact should depend on
a previous one to be understood. \n* Keep facts as concise, accurate, and clear as possible while
maintaining completeness. There should always be an even number of facts (between 2 and 10).
USER: {extracted document}

We then divide randomly the generated facts into two groups LORA-1 and LORA-2. From these, we
generate one new article for each using the following prompt:

SYSTEM: You are an expert writer. Given a list of facts, write a coherent and well-structured text
that includes only the provided facts—nothing more, nothing less. Ensure the text is readable,
logically structured, and flows naturally while maintaining clarity and conciseness. Do not add
any additional information or interpretation beyond the given facts.
USER: List of facts: fact 1 \n . . .\n fact n

From this we now generate two different types of question and answer pairs.
Single-LoRA QA: These questions and answers should be answerable only by one LoRA. We take
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(a) “A dog in style of Da Vinci” - LoRAs: ’Early Re-
naissance’, ’Mannerism Late Renaissance’, ’North-
ern Renaissance’

(b) “draw a dog by Picasso” -
LoRAs: ’Symbolism’, ’Expressionism’, ’Cubism’

(c) “a dog in pop art style” - LoRAs: ’Pop Art’ (d) “please generate a rococo dog” - LoRAs: ’Ro-
coco’

(e) “Please generate an image of a dog as if van gogh
would have drawn it” - LoRAs: ’Realism’, ’Post Im-
pressionism’

(f) “a dog by Schiele” -
LoRAs: ’Rococo’, ’Pop Art’,
’Romanticism’

Figure C.6: AC-LORA STABLE-DIFFUSION-V1-4.
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Table C.3: Composition of the different training-sets starting from the MMSci [54] dataset.
LoRA Subject Number of datapoints

environmental
earthscience

Ecology 3051
Biogeochemistry 466

Hydrology 119
Solid Earth sciences 1022

Environmental sciences 342

chemistry
chemicalsciences

Biochemistry 1326
Chemical biology 279

Chemistry 1249
Materials science 2146

engineering
technologicalinnovation

Optics and photonics 645
Materials science 2896

Nanoscience
and technology 1047

Energy science
and technology 160

Engineering 252

neuroscience
psychology

Neuroscience 3400
Anatomy 302

Physiology 1096
Neurology 121
Psychology 81

biomedical
healthsciences

Microbiology 1511
Oncology 209

Immunology 1665
Diseases 1240

Pathogenesis 375

socialsciences
globaldevelopment

Risk factors 913
Environmental
social sciences 2127

Social sciences 1559
Business and industry 156

Developing world 245

computational
datasciences

Computational biology
and bioinformatics 3295

Systems biology 1705

agriculture
lifesciences

Ecology 2184
Evolution 1069

Plant sciences 1366
Zoology 365

Agriculture 16

genomics
biotechnology

Biochemistry 1729
Molecular biology 1485

Stem cells 337
Genetics 994

Biotechnology 455

space
physicalsciences

Physics 3287
Space physics 25

Optics and photonics 1216
Solid Earth sciences 383

Astronomy and
planetary science 89
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Figure C.7: AC-LORA retrieval results for MMSci based dataset (Table C.3) for fetch k=10 and
threshold=0.0
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Figure C.8: Time to first token generation latency for a 64-token input query where are all the LoRAs
are loaded from scratch to device memory.

two facts from the same set (so either LORA-1 or LORA-2) and their corresponding generated article,
and ask the model to generate a question and answer pair which is only answerable when knowing
both facts. To do this, we use the following prompt:

SYSTEM: You are an expert question generator. Given two facts and a context, create a question
and answer pair where the answer requires both facts to be answerable.\n \n - Clearly name
the subject and object in both the question and answer.\n- Do not infer any information that is
not explicitly stated in the facts or the Context.\n- Do not add any additional explanation—only
provide the question and answer.
USER: context: {context lora n}\n fact 1: {fact 1 lora n}\n fact 2:{fact 2 lora n}

where n is either 1 or 2.
Combined-LoRA QA: In this case we take one fact from each set (one from LORA-1 and one from
LORA-2) and both generated articles and ask the model to generate a question and answer pair which
is only answerable when knowing both facts. To do this, we use the following prompt:

SYSTEM: You are an expert question generator. Given two facts, and two contexts create a ques-
tion and answer pair where the answer requires both facts to be answerable.\n \n- Clearly name
the subject and object in both the question and answer.\n- Do not infer any information that is
not explicitly stated in the facts or the Contexts.\n- Do not add any additional explanation - only
provide the question and answer.
USER: context 1:{context lora 1}\n context 2:{context lora 2}\n fact 1:{fact lora 1}\n
fact 2:{fact lora 2}”

We then go manually over to fix the cases in which the question and answer pair were not of the
correct format, which happened in very few cases (< 10). Afterwards, we create two training sets
(one for each LoRA) and one test set. In each training set, we include:
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• 250 single-LoRA questions of the corresponding set, once with and once without context
(i.e., 500 data points). We also ensure here that each context generated appears at least
once in this set.

• 140 single-LoRA questions of the corresponding set without context.

So, in total, each of the training sets contains 640 data points. The test set includes all the combined
LoRa questions and the remaining single-LoRA ones (a total of 1065 data points).

We use Prompt 9 to grade our evaluation.

D.2 WikiArts

We use QWEN2-VL-7B-INSTRUCT to generate two-generation prompts for each image in the
WikiArts dataset [22]. For this, we input the image and the following prompt:

Given the style, a genre, the artist which we try to reproduce and an image please write **two**
generation prompt for the given image. It should be one or two sentences per prompt. Do
*only* write the prompts, separate them always only by a new line (’\n’).\n Style:{style},
Genre:{genre}, Artist:{artist}

We use these prompts for both finetuning the model and for building the vector database for later
retrieving the correct LoRA.

For the images displayed in Fig. 7 we use the following prompt:

”a serene Buddhist temple on a mountain path, captured in peaceful brushwork”

D.3 Grading

D.3.1 Flan

We use the same grading functions from Zhao et al. [43] to evaluate our results, to ensure compara-
bility. Therefore, we evaluated it using the BLEU score from the Natural Language Toolkit [55] and
the Rouge score from the Rouge Python package.

D.3.2 RepLiQA

To evaluate the different experiments on the RepLiQA dataset, we use GEMMA-3-27B to give each
generated answer a grade between 1 and 5.

The prompt we use is the following:

SYSTEM: Evaluate how well the Generated Answer matches the Reference Answer or the de-
tailed reference answer for the given Query. Be strict: Names, dates, and specific details must be
exact to be correct. Additional facts that are not in the Reference Answer do not affect the score
unless they contradict the Reference Answer, in which case the score should decrease. If a name,
date, or key fact is incorrect, the score must be 1, regardless of other details. Assign a score from
1 to 5 based on accuracy, completeness, and relevance: 5 = Identical meaning, all details correct.
4 = Mostly correct, with only minor wording variations but the same meaning. 3 = Partially
correct, with some missing or incorrect details. 2 = Weak relevance, with significant errors or
omissions. 1 = Incorrect or unrelated. Input Format: Query: query \n Reference Answer: ref-
erence answer \n Generated Answer: generated answer \n Output Format: Explanation: [Brief
reason for the score] Score: [1-5]
USER: Query: {query}\n Reference Answer: {reference answer} \n Generated Answer:
{generated answer}

In case we have two reference answers, for example, for most of our RepLiQA experiments, we also
add the long reference answer in addition to the reference answer as ’detailed reference answer’ to
the prompt.
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Table E.1: Hyperparameters used to finetune RepLiQA LoRAs
Hyperparameter Values

base model meta-llama/Llama-3.1-8B-Instruct
epochs 3

per device train batch size 4
gradient accumulation steps 8

learning rate 1e-4
lora alpha 64

r 64
lora modules o proj, k proj, gate proj, down proj, v proj, q proj, up proj

Table E.2: Number of datapoints used for building the vector base for different tasks.
Task anli r1 cb rte mnli

matched wnli dpr wsc copa story
cloze

glue
mrpc

arc
challenge

arc
easy

openbook
qa

All other
Tasks

# Datapoints 15k 500 8k 3k 1900 3800 1600 1700 5500 12k 3k 7200 15k 30k

E Implementation detail

E.1 Evaluation Setup

We run our experiments on two workstation GPUs, each with 10752 processing cores, 48GB
GDDR6 VRAM. (384-bit bus and 768 GB/s memory bandwidth), and a 38.7 TFLOPS single preci-
sion performance. The GPU is connected to a host (2× x86 44-core CPU with 256 GB RAM) over
a PCIe 4.0. 48GB GDDR6 VRAM.

E.2 Finetuning

E.2.1 RepLiQA

For language models, we use unsloth [56] to finetune the different LoRAs as the library is faster and
saves memory compared to the base implementation. We finetune the 17 LoRAs for the RepLiQA
dataset with the hyperparameters displayed in Table E.1.

For the knowledge injection experiments displayed in Fig. 3(a) for cyber security, we keep the same
hyperparameters, and only change the values for alpha and rank. Also, we fine-tune it for 10 epochs
and save the LoRA at every epoch to study overfitting.

E.2.2 FlanV2

As mentioned before, we did not fine-tune the FlanV2 LoRAs as we use the one made available by
the authors from [43]. As they only focused on formats they finetuned their LoRAs by only targeting
the v proj and q proj modules.

E.2.3 WikiArts

To finetune the different WikiArts LoRAs, we use the Huggingface diffusers library [57]. We set
rank and alpha both to 16.

E.2.4 Retriever

We use the LangChain [58] library to implement most of our retrieval process and their FAISS [59]
implementation as a vector-store.

E.2.5 Building the database

Text.
As the training set for FlanV2 used for the different LoRAs was not shared, we constructed one
based on the official FlanV2 dataset for the retriever. In particular, we take the first 30k (or fewer
for smaller tasks) samples of each selected task as the training set. The exact number of datapoints
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per task are shown in Table E.2 For WikiArts, we create the generation prompts for the different
images in the training set and use these for the database. For RepLiQA, we used a first version of
the training set, with only two entries per data point: one with and one without context.

We then use SENTENCETRANSFORMERSTOKENTEXTSPLITTER and the embedding model ALL-
MNET-BASE-V2 [47] to split the files into chunks of 100 tokens and create the FAISS vector store
by adding the created documents.

Text-Image.
We embed each text and image together using the multi-modal embedding model INFGRAD/-
JASPER EN VISION LANGUAGE V1 [60]. We initiate a SENTENCETRANSFORMER with this
model.

E.2.6 Retrieving and Hinting

We use the similarity search with score by vector function to retrieve the most likely LoRAs for
text-image inputs and similarity search with score for only-text queries.

We use the filter function to enforce access control to retrieve only the embeddings with the allowed
LoRAs in the metadata.

The Hinting mechanism is implemented as two database queries, once with the filter function and
once without.

E.3 LoRA Mixing

We patch the PEFT library to enable the mixing. We mainly modified the forward function for the
Linear LoRA layers.

F List of Assets

The following is a list of assets along with their licenses (and source in the link) we use in this paper.

• RepliQA dataset: CC BY 4.0
• Flan V2 dataset: Apache License Version 2.0, January 2004
• Wikiart dataset: BSD 3-Clause License
• MMSci dataset: CC BY 4.0
• Meta Llama: META LLAMA 3 COMMUNITY
• Google Gemma: Open source
• Qwen models: royalty-free limited license
• all-mpnet-base-v2: Apache License Version 2.0, January 2004
• langchain: MIT
• PEFT: Apache License Version 2.0, January 2004
• Stable-diffusion: CreativeML Open RAIL-M, August 22, 2022
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https://huggingface.co/datasets/ServiceNow/repliqa
https://github.com/google-research/FLAN/blob/main/LICENSE
https://github.com/cs-chan/ArtGAN/blob/master/LICENSE
https://github.com/Leezekun/MMSci?tab=readme-ov-file
https://www.llama.com/llama3/license/
https://ai.google.dev/gemma/terms
https://huggingface.co/Qwen/Qwen2-72B/blob/main/LICENSE
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://github.com/langchain-ai/langchain/blob/master/LICENSE
https://github.com/huggingface/peft/blob/main/LICENSE
https://github.com/CompVis/stable-diffusion/blob/main/LICENSE
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