
Nosy Layers, Noisy Fixes: Tackling DRAs in Federated Learning
Systems using Explainable AI

Meghali Nandi

University of New South Wales

Sydney, Australia

CSIRO’s Data61

m.nandi@unsw.edu.au

Arash Shaghaghi

University of New South Wales

Sydney, Australia

a.shaghaghi@unsw.edu.au

Nazatul Haque Sultan

CSIRO’s Data61

nazatul.sultan@data61.csiro.au

Gustavo Batista

University of New South Wales

Sydney, Australia

g.batista@unsw.edu.au

Raymond K. Zhao

CSIRO’s Data61

raymond.zhao@data61.csiro.au

Sanjay Jha

University of New South Wales

Sydney, Australia

sanjay.jha@unsw.edu.au

Abstract
Federated Learning (FL) has emerged as a powerful paradigm for

collaborative model training while keeping client data decentral-

ized and private. However, it is vulnerable to Data Reconstruction

Attacks (DRA) such as “LoKI” and “Robbing the Fed”, where ma-

licious models sent from the server to the client can reconstruct

sensitive user data. To counter this, we introduce DRArmor, a novel

defense mechanism that integrates Explainable AI with targeted de-

tection and mitigation strategies for DRA. Unlike existing defenses

that focus on the entire model, DRArmor identifies and addresses

the root cause (i.e., malicious layers within the model that send

gradients with malicious intent) by analyzing their contribution to

the output and detecting inconsistencies in gradient values. Once

these malicious layers are identified, DRArmor applies defense

techniques such as noise injection, pixelation, and pruning to these

layers rather than the whole model, minimizing the attack surface

and preserving client data privacy. We evaluate DRArmor’s perfor-

mance against the advanced LoKI attack across diverse datasets,

including MNIST, CIFAR-10, CIFAR-100, and ImageNet, in a 200-

client FL setup. Our results demonstrate DRArmor’s effectiveness in

mitigating data leakage, achieving high True Positive and True Neg-

ative Rates of 0.910 and 0.890, respectively. Additionally, DRArmor

maintains an average accuracy of 87%, effectively protecting client

privacy without compromising model performance. Compared to

existing defense mechanisms, DRArmor reduces the data leakage

rate by 62.5% with datasets containing 500 samples per client.

CCS Concepts
• Security and privacy; • Computing methodologies → Ma-
chine learning;

Keywords
Federated Learning, Data Reconstruction Attack, Explainable AI

1 Introduction
In Federated Learning (FL) [31], data is not centralized for training

and remains distributed between devices in the network. This en-

sures that raw user data never leaves the local devices, significantly

reducing the risk of exposure to external threats. By sharing only

model updates rather than user device data, FL mitigates potential

privacy concerns while enabling collaborative model improvement.

The promise of FL to ensure user data privacy is contingent upon

the security of the gradients sent from the client nodes to the server.

Studies [55] have shown that gradients sent from client nodes can

reveal properties of the underlying client data or the data itself.

Property inference [30, 32], membership inference [11, 36, 44], and

GAN-based attacks [23, 49] have successfully inferred data stored

in client nodes. A more severe class of attacks, as described in [55],

involves a malicious server that tries to steal private client training

data. These types of attacks fall into two categories – Optimization

attack and analytical attacks. While optimization attacks [53, 55],

which typically target image data, have been mitigated by secure

aggregation methods in the FL architecture, analytic reconstruction

attacks [8, 21] remain a threat. In optimization attacks, a random

dummy sample is initialized and then the difference between the

true gradient and the generated one is optimized. However, the

quality of reconstructions degrades with the increasing size of batch

size [53]. On the other hand, analytical attacks customize model

parameters or model architecture to extract training data from the

model layers.

One of the most notable Data Reconstruction Attacks (DRA) is

the “Robbing the Fed” (RtF) attack [21], which demonstrates how

minimal but malicious modifications to the shared model architec-

ture can enable the server to directly obtain a verbatim copy of

user data from gradient updates. This attack is particularly con-

cerning because it bypasses the need for solving complex inverse

problems, making it highly efficient and scalable. The implications

of such an attack can be severe, as it can compromise the privacy

of user data even when aggregated over large batches. A more

recent attack, LoKI, is proposed by authors in [55]. LoKI overcomes

the limitations of RtF by targeting the FedAVG setting and using

customized convolutional parameters to maintain the separation of

weight gradients between clients, even through aggregation. This

attack has shown the ability to leak a substantial portion of training

data, with success rates of 76–86% in a single training round, even

when secure aggregation is employed. The effectiveness of LoKI

further highlights the vulnerability of FL systems to sophisticated

model manipulation techniques.

An increasing number of solutions have emerged to protect the

privacy of data in FL. Secure aggregationmethods [10, 40] have been

ar
X

iv
:2

50
5.

10
94

2v
1

 [
cs

.C
R

]
 1

6
M

ay
 2

02
5

Accepted at AsiaCCS, 2025, Vietnam Meghali et al.

proposed to mitigate such threats. However, they remain vulnerable

to advanced attacks such as LoKI. Byzantine-resilient aggregation

techniques [45, 56] can identify and exclude outlier gradients that

deviate significantly from the majority, thereby reducing the risk of

data leakage. However, in these methods, the server can manipulate

the weight gradients to a normalized value, so that the gradients

are not detected. Anomaly detection algorithms [35] can monitor

the training process for unusual patterns indicative of an attack.

However, skilled attackers can design their malicious updates to

evade detection by anomaly detection algorithms, reducing their

effectiveness. Additionally, differential privacy (DP) [24, 26, 50]

involves adding noise to the model updates before they are sent to

the server, which can prevent a server from fully reconstructing

private data. However, this method significantly decreases model

performance, especially with large vision models [54]. As men-

tioned in [55], because the attack could occur at any point in the

training process, differential privacy would need to be applied at

every training step, making it extremely costly in terms of accuracy.

The current solutions fall short against sophisticated attacks

without compromising the utility of FL models. Existing approaches

predominantly treat models as black-box systems, limiting their

ability to address the underlying vulnerabilities. The authors in

[55] emphasize that identifying modified layers in a model is partic-

ularly challenging due to their potential to be embedded in various

locations within a larger architecture. This challenge arises because

current solutions do not analyze the inner workings of the model’s

layers – the very components that might facilitate DRA. To bridge

this gap, we propose a novel methodology that treats the model

as a white-box system by focusing on the layers involved in gradient
updates. By leveraging Explainable AI (XAI), our approach seeks

to understand how these layers contribute to the model’s output

and identify those whose gradients deviate from normal behavior,

indicating an intent to reconstruct data rather than improve the

model’s performance. Further, most related research [42] focuses

on server-side mechanisms or aggregation methods to safeguard

the data of client nodes. In this work, our goal is to identify the root
cause of the attack on the client side, irrespective of the aggregation
algorithms on the server side. To the best of our knowledge, this

is the first work to take advantage of explainable AI to design a

robust algorithm to detect malicious layers in a modified model

architecture aimed at reconstructing client data in FL.

Our work. We introduce DRArmor, a novel system designed

to detect and mitigate malicious layers in DRA-modified models,

such as those introduced in Rtf [21] and LoKI [55]. By leveraging

XAI techniques, including Layer-wise Relevance Propagation (LRP)

[4] and Deep Taylor Decomposition (DTD) [34] on these replicated

attacks, DRArmor explains how each layer of a model contributes

to its output. Layers exhibiting low relevance but high learning—a

characteristic often linked to malicious intent—are flagged by the

system. These layers are then addressed and mitigated, ensuring

only the truly relevant layers remain in the model. This process

significantly enhances the security of client devices in FL environ-

ments. Unlike traditional approaches that rely heavily on central-

ized server-side defenses, DRArmor enables clients to take proactive

control by detecting and responding to DRA attacks independently.

This shift to client-side protection addresses the root cause of such

attacks more effectively. Our evaluation demonstrates the system’s

effectiveness, achieving True Positive Rates (TPR) of 0.910 and True

Negative Rates (TNR) of 0.890 across multiple datasets. When mali-

cious layers are identified, DRArmor employs targeted techniques

such as adding DP noise or pixelated noise solely to these layers.

This approach is more effective than applying standard DP methods

(e.g., [26]) across the model. Additionally, DRArmor supports prun-

ing irrelevant layers along with preserving model performance. The

system’s robustness is further highlighted by its ability to maintain

high detection accuracy and significantly reduce data leakage, even

as the number of client nodes and dataset sizes increase. Moreover,

DRArmor is effective against both continuous and periodic poi-

soning attacks, ensuring that model accuracy remains intact with

minimal degradation.

Our main contributions are:

(1) We introduce DRArmor, a novel defense solution that uses

XAI to detect and mitigate malicious layers in DRA-modified

models. Even with extended replications of attacks such as

LoKI with 200 clients and dataset sizes of 500 per round,

DRArmor achieved 87% detection accuracy, including cases

where malicious layers were deeply embedded in the model

architecture.

(2) Unlike traditional server-side methods or aggregation de-

fenses on the entire model, DRArmor empowers client de-

vices to identify and defend against malicious layers inde-

pendently. DRArmor applies targeted defenses, such as DP

noise and pixelation, exclusively to malicious layers, leaving

the rest of the model unaffected.

(3) DRArmor consistently detects and mitigates DRA across

iterations, demonstrating robustness against both continu-

ous and periodic poisoning attacks while maintaining model

accuracy.

(4) Compared to existing defense mechanisms, DRArmor re-

duces the data leakage rate by 62.5% on networks with 200

clients and datasets of 500 samples per client.

2 Background and Related Work
2.1 DRA on FL
While numerous attacks on FL have been proposed, our focus is on

defenses against DRA, in which the model architecture is altered

to directly obtain client data through their updates. These attacks

exploit vulnerabilities in the gradient calculation and sharing pro-

cesses in FL.

Optimisation-based attacks [17, 53] operate by iteratively re-

fining a dummy data sample to match the gradient of the actual

training data.

Although these attacks are effective with small batch sizes, they

suffer from decreased quality and require more iterations as batch

sizes increase. They often fail with larger image resolutions and

aggregated gradients, and they are largely limited to FedSGD [31].

Some of these methods assume knowledge of the user labels, which

are obtained outside of the optimisation process. Additionally, op-

timisation - based attacks can produce reconstructed images that

display characteristics of the image class but are not actually present

in the training image, as shown in [53].

Different methods have been proposed targeting FL with secure

aggregation, often with limited success. One approach [51] is to

Nosy Layers, Noisy Fixes: Tackling DRAs in Federated Learning Systems using Explainable AI Accepted at AsiaCCS, 2025, Vietnam

magnify gradients to target a single data point. This involves ma-

nipulating weights so that the gradients of a targeted class are

magnified by reducing model confidence in that class’s prediction.

Another approach [39] aims to make the aggregated gradient the

same as an individual client’s gradient. This can be achieved by

sending model parameters that result in zero gradients for all but

the targeted client. There are also methods [25] that treat the in-

puts of an FC layer as a blind source separation problem. However,

these methods are often limited in scale, typically only managing

to extract data from a single user per training round or having

restrictions on the number of inputs.

Analytic attacks, particularly those involving linear layer leak-

age [8, 21], directly extract training data from the gradients of FC

layers. These attacks modify model parameters or architecture to

retrieve inputs from the weight and bias gradients of an FC layer.

When only one data sample activates a neuron in an FC layer, the

input can be directly computed from the gradients. These methods

can reconstruct inputs with high accuracy but typically fail when

multiple data samples activate the same neuron. As shown in [55],

they also face scalability issues when dealing with larger batch

sizes or secure aggregation, which conceals individual client up-

dates. While increasing the size of the FC layer can maintain a high

leakage rate, it often results in very large models. LoKI improves

DRAs by introducing techniques to overcome scalability challenges

and secure aggregation limitations. Unlike the previous methods, it

enables simultaneous data reconstruction from multiple clients in a

single training round, addressing the inefficiencies of optimisation-

based and analytic attacks. Key features of LoKI include the use

of customized convolutional kernels for each client, allowing the

server to separate and recover client-specific data even after aggre-

gation. This attack highlights critical vulnerabilities in FL systems

and motivates the development of robust defenses.

2.2 Existing Defense Mechanisms
Differential Privacy (DP). DP [18] is a privacy-preserving tech-

nique that introduces random noise to the data or model updates to

protect individual data points from being inferred. In the context of

FL, DP can be applied by adding noise to the gradients before they

are shared with the server as surveyed in [19]. This noise addition

ensures that the contribution of any single data point is obscured,

making it difficult for an attacker to reconstruct the original data.

Mathematically, differential privacy guarantees for any two

datasets 𝐷 and 𝐷′
differing by a single data point, the probabil-

ity of obtaining a particular output 𝑂 is nearly the same. This can

be expressed as: Pr[M(𝐷) = 𝑂] ≤ 𝑒𝜖 · Pr[M(𝐷′) = 𝑂], where M
is the randomized mechanism (e.g., the gradient update process),

and 𝜖 is the privacy budget that controls the level of privacy. A

smaller 𝜖 indicates stronger privacy but may introduce more noise.

In the context of DRA, the added noise affects the reconstructed

data by making the gradients less precise. Suppose the true gradient

is 𝑔, and the noise added is drawn from a Laplace distribution with

scale parameter
Δ𝑔
𝜖 , where Δ𝑔 is the sensitivity of the gradient. The

noisy gradient 𝑔′ can be represented as: 𝑔′ = 𝑔 + Lap

(
Δ𝑔
𝜖

)
.

The effectiveness of DP in preventing DRA is due to the noise,

which makes it challenging for the attacker to accurately infer the

true data - especially when the privacy 𝜖 is small. Mironov [33] used

Rényi divergence for more accurate privacy loss calculations, and

Abadi et al. [1] created DP-SGD, an empirical algorithm that applies

DP to machine learning training. Other research [2, 3, 9, 52] builds

upon DP-SGD by improving its performance through methods such

as adaptive gradient clipping and suitable perturbations. Authors

in [28] also apply DP to FL to protect user-level privacy and ensur-

ing data privacy when collecting local parameters. However, this

comes at the cost of potentially degrading the model’s performance,

highlighting the trade-off between privacy and utility as shown in

[12, 16].

Gradient compression is also commonly adopted by studies like

[53] as a baseline defense to examine the robustness of attacks. Re-

cently, Soteria [46] leveraged a similar idea to gradient compression

but with a smarter pruning strategy to decrease privacy leakage

risks with similar performance. Recent works such as [5] evaluated

these defense methods and broke them by introducing a Bayesian

optimal adversary. The Bayesian framework provides a way to

analyse the problem of gradient leakage by considering the joint

probability distribution of inputs and their gradients. This frame-

work allows for the formulation of a Bayes optimal adversary as an

optimisation problem, which minimises the risk of reconstructing

the input given the observed gradients. The paper demonstrates that

existing attacks can be interpreted as approximations of this optimal

adversary, each making different assumptions about the underlying

probability distributions. This theoretical grounding enables the

development of stronger attacks by leveraging the knowledge of

these distributions, proving more effective than previous methods.

Limiting Mutual Information (MI). Several studies [6, 13] ex-
plore the connection between MI and DP by deriving upper bounds

of MI for different DP mechanisms. Other studies [29, 37] propose

training feature extractors that reduce the MI between the output

features and the assigned labels while maximising the MI between

the output features and the original data. Fisher information has

also been used to measure information leakage, aligning with the

theories in [22]. Authors in [48] model FL using information theory

to measure MI between variables in FL. A more recent study [47]

proves that the reconstruction error of DRA is directly related to

the information an attacker gains through shared parameters, as

measured by MI. To limit this information leakage, the method

establishes a channel model where the shared parameters act as a

communication channel and then limits the channel capacity by

adding Gaussian noise to the parameters. This effectively reduces

the information available to an attacker, making data reconstruction

challenging.

The defense methods reviewed may effectively limit the infor-

mation shared by client devices with the server. However, they do

not address one fundamental issue: client devices cannot detect how
or where gradients are being leaked. Moreover, these methods lack

transparency in explaining their effectiveness. We postulate that

if the nature of the attack evolves, these approaches may fail in

detection. As mentioned by the authors of LoKI, since the malicious

layers can be placed at any part of the model architecture, it would

be challenging to detect such attacks if the attacker modifies the pa-

rameters. Additionally, our approach offers computational savings

as the defense mechanism is applied only to the malicious layers

rather than the entire model.

Accepted at AsiaCCS, 2025, Vietnam Meghali et al.

2.3 Preliminary - Explainable AI
Explainable AI (XAI) refers to techniques used to provide insights

into how models arrive at their predictions, enabling users to un-

derstand, trust, and effectively manage AI systems. It helps identify

biases and improve model performance. There are multiple varieties

of XAI methods. In this work, we are using the following:

Layer-wise Relevance Propagation (LRP). LRP is a technique

used to explain the predictions of deep neural networks by propa-

gating the prediction backward through the network. LRP assigns

relevance scores to each input feature, indicating their contribution

to the final prediction. Mathematically, the relevance score 𝑅 𝑗 for a

neuron 𝑗 in layer 𝑙 is computed by distributing the relevance from

the neurons in the subsequent layer 𝑙 + 1:

𝑅
(𝑙)
𝑖

=
∑︁
𝑗

𝑧𝑖 𝑗∑
𝑖′ 𝑧𝑖′ 𝑗 + 𝜖 · sign(∑𝑖′ 𝑧𝑖′ 𝑗)

𝑅
(𝑙+1)
𝑗

(1)

where 𝑧𝑖 𝑗 is the contribution of neuron 𝑖 in layer 𝑙 to neuron 𝑗 in

layer 𝑙 + 1, 𝜖 is a small stabilization term to prevent division by zero,

and 𝑅
(𝑙+1)
𝑗

is the relevance of neuron 𝑗 in the next layer 𝑙 + 1. LRP

helps in visualizing which parts of the input data are most relevant

to the model’s output, making it easier to interpret complex neural

networks and identify potential issues.

Deep Taylor Decomposition (DTD). DTD is an advanced

method for explaining the predictions of deep neural networks by

decomposing the prediction into contributions from each input fea-

ture. DTD is based on Taylor series expansion, which approximates

a function using its derivatives. Mathematically, the relevance 𝑅𝑖 of

an input feature 𝑥𝑖 is computed by decomposing the relevance of

the output 𝑅 into contributions from the input features: 𝑅𝑖 = 𝑥𝑖
𝜕𝑅
𝜕𝑥𝑖

.

By iteratively applying this decomposition from the output layer to

the input layer, DTD provides a detailed explanation of the model’s

decision-making process, highlighting the importance of each input

feature.

3 System and Threat Model
System Model. The components of the FL-based system used in

this work include Server, Client Device, and Attacker. The Server

is responsible for registering a model, iteratively sending it to the

clients, aggregating the client updates, and training the global

model. The Client Device is responsible for storing the data, train-

ing the model received from the server, and sending updates back

to the server. The Attacker is responsible for altering model pa-

rameters and architecture to obtain updates from the client, with

the goal of reconstructing the client’s data. The system consists

of one server, multiple client devices, and multiple attackers. The

client devices communicate directly with the server and train the

model received from the server. We consider a real-life FL scenario

in which any device can receive any model, and the client cannot

assume that a model received in the iteration after a malicious one

will also be malicious. Unlike the studies in [55] and [21], which

used 100 clients, our experiments scale up to 200 clients to evaluate

the impact of these attacks on model accuracy in a larger setting.

Threat Model.
We consider a standard FL setting where a central server coordi-

nates model training across multiple clients, each holding private

local data. The server initializes and distributes a global model,

while clients perform local training and return gradient updates

for aggregation. In our threat model—adopted from LoKI [55] and

originally introduced in [21]—the server follows the FL protocol

but may attempt to reconstruct private client data by modifying the

model architecture before the distribution. Specifically, the server

can inject malicious layers into the model to exploit gradient leak-

age for DRA. However, the server cannot deviate from the standard

federated learning protocol in ways beyond changes to model archi-

tecture or parameters, and such modifications must remain within

the operational limits of standard machine learning frameworks.

Clients are assumed to be benign, unaware of these manipulations,

and follow the protocol by training the received model on local data

and returning gradients. The adversarial model includes a single

attacker—the server—with no client-side collusion.

4 DRArmor
DRArmor is designed to address the critical challenge of detecting

and mitigating malicious layers introduced by DRA in FL systems.

By leveraging Explainable AI (XAI), DRArmor analyzes the model

architecture as a white-box, examining the model architecture and

the weights of each layer to detect any modifications indicative of

malicious intent.

As described in [21, 55], the input 𝑥𝑖 is calculated by dividing

the weight gradient by the bias gradient, as shown in the equation:

𝑥𝑖 =
𝛿𝐿/𝛿𝑊𝑖

𝛿𝐿/𝛿𝐵𝑖
, where 𝑖 is the activated neuron, and

𝛿𝐿
𝛿𝑊𝑖

and
𝛿𝐿
𝛿𝐵𝑖

are

the weight and bias gradients of the neuron, respectively. In the

context of detecting malicious layers, the variables
𝛿𝐿
𝛿𝑊𝑖

and
𝛿𝐿
𝛿𝐵𝑖

play a critical role. Malicious layers, designed to reconstruct private

data rather than contribute meaningfully to the overall model per-

formance, exhibit gradients that are not aligned with the model’s

intended learning objectives. Specifically, the weight gradients
𝛿𝐿
𝛿𝑊𝑖

in these layers reflect manipulation aimed at data leakage, leading

to anomalous behavior such as higher magnitude or misalignment

with gradients of other layers. These manipulated gradients fail

to contribute to improving the model’s predictive performance,

making them indicative of malicious intent. This often indicates

that the model is trying to extract information that does not signif-

icantly contribute to the final output. This is where Explainable AI

(XAI) becomes crucial. XAI techniques help us understand which

neural network layers are actually contributing to the model’s out-

put. For instance, if a model is designed to classify an image as a

cat, certain layers focusing on reconstructing the data might not

directly contribute to the final classification of “cat”. These layers

might produce higher gradients than those more relevant to the

classification task. By using XAI, we can identify and understand

the roles of different layers in the model, ensuring that the model’s

decision-making process is transparent and interpretable.

Two of the most popular methods for understanding the rele-

vance of a layer to the output are Layer-wise Relevance Propagation

(LRP) and Deep Taylor Decomposition (DTD). Our method lever-

ages the explainability provided by LRP and DTD to identify layers

that contribute disproportionately to the model’s output, which

indicates potential malicious behavior.

Suppose we have a neural network model designed to classify

images along with the additional malicious layers described in [55],

and we input an image of a cat. These layers might perform a DRA,

Nosy Layers, Noisy Fixes: Tackling DRAs in Federated Learning Systems using Explainable AI Accepted at AsiaCCS, 2025, Vietnam

making them irrelevant to the final classification task. The standard

propagation rule for relevance in LRP is given by Equation 1.

To tailor LRP to our needs, we modify the propagation rule to

emphasize the discrepancy between the intended contributions of

layers and their actual gradient behaviors. Specifically, for a layer 𝑙 ,

we adapt the rule as: 𝑅
(𝑙)
𝑖

=
∑

𝑗
𝑧𝑖 𝑗∑

𝑖′ 𝑧𝑖′ 𝑗+𝜖
·𝛾 ·𝑅 (𝑙+1)

𝑗
,where𝛾 ∈ [0, 1]

is a scaling factor that adjusts the contribution of relevance attribu-

tion of the previous layer. It is computed adaptively to reflect the

model’s certainty about the importance of a given layer. Layers that

exhibit high gradients and are deemed highly relevant contribute

more strongly to the propagation through a higher 𝛾 , while less rel-

evant or low-confidence layers result in a smaller 𝛾 . This dynamic

adjustment ensures that the propagation process emphasizes layers

that are both significant and exhibit confident behavior in terms of

relevance attribution.

4.1 Detecting Malicious Layers
In a benign model, the layers collaborate to generate the output by

focusing on relevant input features.

Malicious layers are modified to reconstruct input data rather

than contributing to output generation. This discrepancy is mani-

fested in their gradients and relevance scores:

• Relevance Scores: Malicious layers contribute minimally to the

output relevance. When propagating relevance using the modified

LRP rule, these layers will exhibit low relevance scores (𝑅 (𝑙) ≈ 0)

since their primary purpose is not aligned with the model’s in-

tended task.

• Gradient Analysis: Malicious layers are designed to reconstruct

input data, leading to unusually high gradients with respect to

input features. Mathematically, the gradient ∇x 𝑓
(𝑙)

of the mali-

cious layers will exhibit large magnitudes, indicating their strong

dependence on the input data for reconstruction. Gradient anal-

ysis is incorporated by evaluating the norm of gradients ∇x 𝑓
(𝑙)

for each layer: 𝐺 (𝑙) = ∥∇x 𝑓
(𝑙) ∥, where 𝐺 (𝑙)

captures the gradient

of the layer with respect to input features for each layer 𝑙 . Layers

with anomalously high gradients with low relevance are flagged

as potentially malicious, as they disproportionately influence data

reconstruction.

Gradient-Relevance Discrepancy. To formally identify ma-

licious layers, we define a metric based on the gradient relevance

discrepancy. For each layer 𝑙 , we compute: 𝐷 (𝑙) = ∥∇x 𝑓
(𝑙) ∥

∥𝑅 (𝑙) ∥ , where

∥ · ∥ denotes the norm (e.g., 𝐿2 norm).

A high value of𝐷 (𝑙)
indicates a layer with large gradients but low

relevance, characteristic of malicious behavior. Using a threshold 𝜏 ,

we classify a layer 𝑙 as malicious if: 𝐷 (𝑙) > 𝜏 .

Justification for LRP Modifications. The modifications to the

standard LRP formulation are critical for adapting it to the detection

of malicious layers. By introducing the scaling factor 𝛾 , we ensure

that the propagation process captures subtle but critical deviations

in layer behavior. For example, benign layers that contribute to

the output will maintain proportional relevance scores under this

adjustment, while malicious layers will show diminished relevance.

Furthermore, by computing the discrepancy 𝐷 (𝑙)
, we leverage

the complementary information provided by gradients and rele-

vance. Gradients highlight sensitivity to input changes, while rel-

evance scores reflect actual contribution to the output. Malicious

layers, which prioritize data reconstruction over task alignment,

are naturally distinguished by this divergence (see §6.1).

While LRP is effective for small and moderately sized models, its

performance degrades with deeper architectures and models with

large numbers of parameters. These limitations arise due to:

• Vanishing Relevance: As relevance is propagated backward

through multiple layers, it may diminish or concentrate dispro-

portionately in certain neurons, making it challenging to identify

malicious layers accurately.

• Sensitivity to Stabilization Terms: The stabilization term 𝜖 can

significantly impact the relevance propagation process, leading to

inconsistent results for different architectures.

•Computational Overhead: For large-scale models, the backward

relevance propagation requires substantial computational resources,

making it computationally expensive for large-scale analysis (see

Appendix A).

To address these limitations, we propose using DTD as an alter-

native for large-scale models. DTD provides a more robust mecha-

nism for layer-wise relevance analysis by decomposing the model’s

output into contributions from each layer using a Taylor series

expansion (see §6.1). The incorporation of Wasserstein distance

further refines this process by quantifying the similarity between

reconstructed relevance distributions and expected distributions.

For a neural network 𝑓 (x) with output 𝑦, DTD approximates

the relevance of layer 𝑙 by considering the Taylor expansion of 𝑓

around a root point x0 (typically chosen to minimise𝑓):

𝑅 (𝑙) = 𝑓 (x) − 𝑓 (x0) ≈ ∇x 𝑓
(𝑙) · (x − x0) .

Unlike LRP, DTD derives relevance scores directly from the gra-

dient information relative to an input perturbation, making it more

robust against the vanishing relevance issue that affects LRP. The

term (x − x0) ensures that the decomposition aligns with localized

input changes, capturing the contributions of malicious layers more

effectively. A key advantage of DTD is that it avoids the dependency

on stabilization terms (𝜖) that can introduce inconsistencies in LRP.

Mathematically, DTD provides a more accurate decomposition by

considering higher-order derivatives implicitly, ensuring that the

relevance scores remain consistent across deep architectures.

Wasserstein Distance for Consecutive Layers. The Wasser-

stein distance is a metric for comparing probability distributions. In

this context, we use it to measure the similarity between relevance

distributions of consecutive layers 𝑅 (𝑙)
and 𝑅 (𝑙+1)

. Mathematically,

the Wasserstein distance is defined as:

𝑊 (𝑅 (𝑙) , 𝑅 (𝑙+1)) = inf

𝛾 ∈Γ (𝑅 (𝑙) ,𝑅 (𝑙+1))

∫
∥𝑟 − 𝑟 ′∥ 𝑑𝛾 (𝑟, 𝑟 ′),

where Γ(𝑅 (𝑙) , 𝑅 (𝑙+1)) is the set of all joint distributions with

marginals 𝑅 (𝑙)
and 𝑅 (𝑙+1)

. A high Wasserstein distance between

consecutive layers indicates a significant deviation in their rele-

vance behavior, flagging the layer as potentially malicious.

By applying Wasserstein distance to consecutive layers, we cap-

ture the transition irregularities introduced by malicious layers.

Accepted at AsiaCCS, 2025, Vietnam Meghali et al.

This approach avoids reliance on predefined reference distribu-

tions.

The defense methodology using DTD and Wasserstein distance

is implemented as follows:

(1) Perform DTD to compute relevance scores 𝑅 (𝑙)
for all layers

based on their Taylor expansion contributions.

(2) Calculate the Wasserstein distance𝑊 (𝑅 (𝑙) , 𝑅 (𝑙+1)) for each
pair of consecutive layers.

(3) Compute the gradient-relevance discrepancy 𝐷 (𝑙)
for addi-

tional validation: 𝐷 (𝑙) = ∥∇x 𝑓
(𝑙) ∥

∥𝑅 (𝑙) ∥ .

(4) Flag layers with 𝑊 (𝑅 (𝑙) , 𝑅 (𝑙+1)) > 𝜏𝑊 or 𝐷 (𝑙) > 𝜏𝐷 as

malicious.

(5) Retrain or replace flagged layers to mitigate their impact on

the model.

DTD, as used in DRArmor, is gradient-based and avoids recursive

backpasses, making it significantly more efficient and well-suited

for typical federated clients with limited resources. Similarly, the

Wasserstein distance computation is applied once per round for

layer-wise distributions and can be computed in linear time with

entropic regularization. These components are executed once per

local round (not per batch or epoch), thus incur minimal additional

overhead relative to standard local training.

4.2 Defense against Malicious Layers
Once malicious layers are identified within the model, the next

critical step involves implementing appropriate defensive actions

to prevent DRA. The following strategies can be employed as miti-

gation techniques:

Differential Privacy-Based Noise Addition. Differential Pri-
vacy (DP) is a widely recognized strategy to mitigate information

leakage in FL. While the authors of LoKI suggest that applying DP

universally by adding noise to all gradient updates can significantly

reduce model accuracy, a more targeted approach can strike a bal-

ance between privacy and performance. Instead of adding noise to

all gradient updates, noise is injected specifically into the updates

originating from the malicious layers. This targeted application

minimises the impact on overall model accuracy while effectively

mitigating the DRA. Since only the malicious layers are affected,

the integrity of legitimate layers remains intact, preserving the

utility of the model. Moreover, noise levels can be dynamically ad-

justed based on the confidence in the detection of malicious layers.

For instance, layers identified with higher certainty can have more

noise added, while those with marginal detection can have less

aggressive noise injection.

Let g = [𝑔1, 𝑔2, . . . , 𝑔𝐿] represent the gradients of a model with

𝐿 layers, where 𝑔𝑙 is the gradient vector of the 𝑙-th layer. Assume

M ⊂ {1, 2, . . . , 𝐿} denotes the set of malicious layers identified

by the detection mechanism. For each 𝑙 ∈ M, noise is added as

follows: 𝑔𝑙 = 𝑔𝑙 + N(0, 𝜎2), where N(0, 𝜎2) is Gaussian noise with

mean 0 and variance 𝜎2. Layers not identified as malicious remain

unchanged, i.e., 𝑔𝑙 = 𝑔𝑙 for 𝑙 ∉ M.

The noise level 𝜎2 can be dynamically adjusted based on the

confidence score 𝑐𝑙 for identifying layer 𝑙 as malicious: 𝜎2
𝑙
= 𝜎2

base
·

(1 + 𝛼 · 𝑐𝑙), where 𝜎2
base

is base noise level, 𝑐𝑙 ∈ [0, 1] is confidence

score for layer 𝑙 being malicious, and 𝛼 is scaling factor that controls

the impact of confidence on noise level.

Higher confidence in detecting a malicious layer results in larger

noise being added, ensuring better obfuscation of sensitive infor-

mation.

After noise injection, the updated gradients g̃ are aggregated

and sent to the server: g̃ = [𝑔1, . . . , 𝑔𝐿] . This ensures that gradients
from malicious layers are obfuscated while preserving the integrity

of legitimate layer gradients.

Targeted DP minimizes the degradation of model performance.

The change in accuracy due to noise application, denoted as Δacc, is

given by:Δacc = Accuracy
no DP

−Accuracy
DP

. Since onlymalicious

layers are affected, Δacc remains significantly smaller compared to

universal DP application. (see §6.3)

Pixelating gradients. Pixelation involves reducing the gradi-

ent by grouping adjacent values into blocks and replacing them

with a single representative value, such as the average or median

intensity of the block. By applying pixelation to the gradients sent

from malicious layers, the precision of the gradient information is

reduced, thereby limiting the ability of the server to reconstruct

the original client data.

Given a gradient matrix 𝐺 of dimensions𝑚 × 𝑛, the pixelation

process operates as follows:

The gradient matrix𝐺 is divided into non-overlapping blocks of

size 𝑏×𝑏. The total number of blocks is given by: 𝑁 = 𝑚
𝑏
× 𝑛

𝑏
,where

𝑏 is the block size, chosen such that𝑚 and 𝑛 are divisible by 𝑏. Each

block 𝐵𝑖 𝑗 corresponds to a sub-matrix: 𝐵𝑖 𝑗 = 𝐺 [𝑖 ·𝑏 : (𝑖 + 1) ·𝑏, 𝑗 ·𝑏 :

(𝑗 + 1) · 𝑏], where 𝑖 ∈ {0, . . . , 𝑚
𝑏
− 1} and 𝑗 ∈ {0, . . . , 𝑛

𝑏
− 1}.

Each block 𝐵𝑖 𝑗 is replaced by the representative mean: 𝐵̂𝑖 𝑗 =

mean(𝐵𝑖 𝑗) = 1

𝑏2

∑𝑏
𝑝=1

∑𝑏
𝑞=1𝐺𝑝,𝑞 .. The pixelated gradient matrix 𝐺

is constructed by replacing each block 𝐵𝑖 𝑗 in𝐺 with its correspond-

ing representative value 𝐵̂𝑖 𝑗 :𝐺 [𝑖 ·𝑏 : (𝑖+1) ·𝑏, 𝑗 ·𝑏 : (𝑗 +1) ·𝑏] = 𝐵̂𝑖 𝑗 .

By pixelating gradients 𝐺 from malicious layers, the client can

obfuscate sensitive information, reducing the precision of data re-

construction attempts. The server’s ability to reconstruct client data

is typically dependent on 𝐺, which with pixelated gradients, be-

comes 𝐺 . The quantization effect introduced by pixelation disrupts

the reconstruction process, protecting client data while retaining

the model’s learning capacity (see §6.3).

Pruning Malicious Layers. Another effective strategy involves
pruning the identified malicious layers entirely from the model

architecture. This approach relies on bypassing the malicious layers

while maintaining the flow of relevant information through the

network. After pruning a malicious layer, a skip connection can

be introduced to route the input image (or feature map) directly

to the next relevant layers. Ensuring that the dimensions match is

crucial for the network to function correctly when implementing

skip connections. If they do not match, we can use techniques like

padding, cropping, or applying a linear transformation to adjust

the dimensions. In our experiment, we use a linear layer along with

padding to transform the input to the required dimensions. Consider

an input image of size (64 × 64 × 3) and a target convolutional

layer (non-malicious) with a filter size of (3× 3) and 32 filters as an
example. First, we apply an initial convolutional layer with the same

filter size and number of filters to the input image, using a stride

of 1 and padding to maintain the spatial dimensions. This results

Nosy Layers, Noisy Fixes: Tackling DRAs in Federated Learning Systems using Explainable AI Accepted at AsiaCCS, 2025, Vietnam

in an output size of (64 × 64 × 32). Next, we bypass the potentially
malicious layer by directly connecting the adjusted input to the

third convolutional layer. To ensure dimensional compatibility, we

use a convolutional layer with the same filter size and number

of filters as the target layer, resulting in an adjusted output size

of (64 × 64 × 32). This preprocessing step ensures that the input

image can be effectively integrated into the network at the desired

point, preserving the data’s integrity and enhancing the network’s

robustness.

5 Experimental Setup
The experiments were carried out in a simulated FL environment,

where we implemented the defense system components using the

Keras and Flower [7] frameworks. The system was executed on a

server equipped with an NVIDIA H1000NVL GPU, an Intel Xeon

2.10 GHz CPU with 8 cores, and 96 GB of RAM. The system’s

scalability was validated by simulating 200 clients, a scenario repre-

sentative of real-world FL environments. We selected widely used

datasets for our experiments, including MNIST, CIFAR-10, CIFAR-

100, ImageNet, and Cats vs Dogs. These datasets were chosen be-

cause they are commonly used in related research for evaluating FL

systems and defense mechanisms, offering a benchmark for com-

parison. Additionally, their diverse characteristics – ranging from

simple grayscale digits to complex natural images – enable us to

thoroughly assess the effectiveness of our approach across various

data types and scenarios. The associated model configurations for

each dataset are detailed below.

MNIST [15]. This is a set of 60,000 handwritten numbers from

0–9. Each data consists of 28 × 28 pixel grayscale images. We used

a CNN model with three convolutional layers, where the first layer

consists of 32 output channels with kernel size 3 and stride 1. The

second convolutional layer outputs 64 channels with the same ker-

nel size and stride of 3 and 1, respectively. The third convolutional

layer outputs 256 channels with the same kernel size and stride of 3.

It is followed by two dropout layers and two fully connected layers.

The final output is given by a log softmax layer that predicts the

number denoted in the input image.

CIFAR-100 [27]. This dataset consists of 60,000 32 × 32 color

images in 100 classes, with 600 images per class. There are 50,000

training images and 10,000 test images. The model begins with an

initial convolutional layer with 64 output channels, a kernel size of

3, and a stride of 1, followed by batch normalization and a ReLU

activation. Subsequent layers consist of repeated residual blocks,

each comprising two convolutional layers with 64, 128, and 256 out-

put channels as the depth increases. Each convolution is followed

by batch normalization and ReLU activation. To handle overfitting,

dropout layers are interspersed between some convolutional blocks.

After the convolutional and residual layers, global average pooling

is applied to reduce the spatial dimensions. The fully connected

layers include one hidden layer of 512 units followed by a final

output layer with 10 units corresponding to the CIFAR-10 classes.

The final predictions are produced using a log softmax layer.

CIFAR-10 [27]. This dataset consists of 60,000 32 × 32 color

images in 10 classes, with 6,000 images per class. There are 50,000

training images and 10,000 test images. We used the same model as

used for CIFAR-10.

ImageNet [14]. This dataset contains over 14 million images

across 1,000 classes. For our experiments, we used a subset of 1.2

million training images and 50,000 validation images. The model

begins with an initial convolutional layer that outputs 64 chan-

nels, using a kernel size of 7 and a stride of 2, followed by batch

normalization, ReLU activation, and max pooling to reduce spa-

tial dimensions. The subsequent layers are structured as residual

blocks. Each block contains two convolutional layers with increas-

ing output channels – 64, 128, 256, and 512 – as the network depth

increases. All convolutions are followed by batch normalization and

ReLU activation, with downsampling implemented through strided

convolutions. To prevent overfitting and improve generalization,

dropout layers are interspersed between some residual blocks. The

feature maps are then reduced using global average pooling before

being passed through two fully connected layers. The final output

layer consists of 1,000 units, corresponding to the ImageNet classes,

and predictions are generated using a log softmax function.

Cats v Dogs [38]. For this dataset, we employed the widely-used

ResNet-18 architecture, which balances computational efficiency

and performance.

Each dataset was divided into training, testing, and validation

sets, with a sampling ratio of 60%, 30%, and 10%, respectively. The

primary objective of our experiments was to detect and defend

against malicious layers attempting to execute DRAwithin a system

of 200 clients – twice the number used in the LoKI attack. All models

were modified by adding a convolutional layer and two FC layers,

initiating with the start of the model and then proceeding further

into the model architecture. Additionally, we evaluated the behavior

of DRArmor under varying numbers of layers, with the results

presented in §6. In all experimental settings, we used a learning

rate of 𝛼 = 1×10
−4

. Local models were trained for 15 to 200 rounds,

depending on the complexity of the model architecture and the

size of the dataset. The training process aimed to achieve stable

accuracy while avoiding overfitting, ensuring the reliability of the

evaluation.

6 Evaluation
We begin by visualizing the detection of malicious layers to offer an

intuitive understanding of the mechanism (§6.1). Next, we analyze

its accuracy in identifying malicious layers (§6.2) and evaluate the

system’s performance by comparing accuracy, leakage rate, and

the number of leaked images with those of other systems. This

is followed by an assessment of DRArmor’s defense capabilities

compared to other defense mechanisms (§6.3). Additionally, we

evaluate the system’s performance by comparing metrics such as

accuracy, leakage rate, and the number of leaked images with those

of other systems. Furthermore, we compute key metrics, including

True Positive Rate (TPR), True Negative Rate (TNR), False Positive

Rate (FPR), and False Negative Rate (FNR), to assess the mechanism

under various experimental settings.

6.1 Detection of Malicious Layer
The impact of the placement of malicious layers on the effectiveness

of DRArmor is analyzed below.

Malicious Layers at the Start of the Model. The original

model architecture was modified to include convolutional layers

Accepted at AsiaCCS, 2025, Vietnam Meghali et al.

Figure 1: Gradient Analysis Across Datasets: Identifying Malicious Layers at the Start of the Model using LRP (Batch Sizes: 64,
128) with threshold value of 0.5.

and FC layers at the beginning. To analyze the behavior of the

model, LRP was applied after training the model architecture in

the client devices. The training process was carried out using batch

sizes of 64 and 128. Experiments were carried out on five datasets

– Cats v Dogs, CIFAR-10, CIFAR-100, ImageNet, and MNIST – us-

ing models described in Section 5. Each architecture contained

three malicious layers, as introduced in the LoKI paper. These mali-

cious layers were deliberately designed to learn irrelevant features

from the data, thereby disrupting the model’s ability to produce

meaningful outputs. The goal of the experiments was to evaluate

the effectiveness of LRP in detecting these malicious layers. Upon

applying LRP, the method demonstrated its ability to identify ma-

licious layers effectively in most datasets. Figure 1 illustrates this

result, where the gradient values for the malicious layers were sig-

nificantly higher compared to those of non-malicious layers. This

is because, while the majority of layers contributed meaningfully

to the model’s output, the malicious layers displayed anomalous

behavior by learning features that were irrelevant to the task. The

higher scores for these layers indicate their deviation from expected

behavior, making them stand out in the relevance analysis.

Figure 2: Gradient Analysis in ImageNet: Identifying Mali-
cious Layers at the Start of the Model using DTD with thresh-
old value of 0.5.

The results for the ImageNet dataset were less promising. LRP

struggled to effectively differentiate between malicious and non-

malicious layers for this dataset. This reduced effectiveness can

be attributed to the complexity of the ImageNet dataset, which

contains a large number of classes and significantly more diverse

and intricate data compared to the other datasets. Models trained

on ImageNet require highly detailed feature representations, which

can dilute the relevance scores, leading to difficulty in isolating

malicious layers. Unlike LRP, DTD provides a more refined decom-

position of relevance scores, enabling it to handle complex scenarios

more effectively. As shown in Figure 2, DTD improved the detection

of malicious layers in the ImageNet model. Although the difference

between the relevance values of malicious and non-malicious layers

was less pronounced compared to simpler datasets, DTD offered a

more robust solution for this complex task.

The comparison between LRP and DTD highlights the need for

adaptive analysis techniques depending on the dataset’s complexity.

For simpler datasets like Cats v Dogs, CIFAR-10, CIFAR-100, and

MNIST, LRP was sufficient to identify malicious layers with high

accuracy. In contrast, for the highly complex ImageNet dataset, the

limitations of LRP necessitated the use of DTD to achieve better

results.

Malicious Layers Deeper in the Model. The placement of

malicious layers was randomized and positioned at different depths

within the model architecture across various datasets. This design

choice was made to emulate real-world scenarios where malicious

behavior may not be localized to specific regions of the model but

instead distributed unpredictably. The placement strategy ensured

that the model’s overall accuracy was maintained while introduc-

ing the desired anomalies. Figure 3 illustrates the results of this

setup, showing how DRArmor performed in detecting the mali-

cious layers. Unlike the earlier experiments, where malicious layers

were consistently positioned at the beginning of the architecture,

this randomized placement posed additional challenges for inter-

pretability techniques. Despite these challenges, the methods were

able to detect the malicious layers effectively across all datasets,

as indicated by the elevated gradients for the malicious layers in

Figure 3. However, compared to the previous setup, the difference

in gradient values between malicious and non-malicious layers was

Nosy Layers, Noisy Fixes: Tackling DRAs in Federated Learning Systems using Explainable AI Accepted at AsiaCCS, 2025, Vietnam

Figure 3: Gradient Analysis: Identifying Malicious Layers Further in the Model by DRArmor (Batch Size 128) with threshold
value of 0.5.

notably smaller. This reduced distinction can be attributed to the

following factors:

• Increased Depth and Dilution of Relevance:When mali-

cious layers are positioned deeper in themodel, the relevance

propagation process becomes less distinct due to the accu-

mulation and interaction of gradients from preceding layers.

This results in a partial dilution of the relevance scores.

• Randomized Placement Complexity: The random place-

ment of malicious layers creates additional variability in

the feature maps processed by the model. This variability

can mask the anomalous behavior of the malicious layers,

reducing the sharpness of their detection.

• Dependency on Layer Contributions: As layers further
in the model are typically more specialized to work on the

learnt features of the previous layers, the ability to isolate

gradients depends heavily on how well the interpretability

method accounts for these contributions. This can result in

smaller differences in gradient values between layers.

Despite these reduced distinctions, DRArmor still performs well

in detecting malicious layers. As seen in Figure 3, the relevance

scores for these layers remain consistently higher than those for

non-malicious layers. This indicates that, even with increased sepa-

ration, the techniques retain their capacity to highlight anomalous

behaviour within the model.

6.2 Analyzing Accuracy of Detecting Malicious
Layers

Tables 3 and 4 present the evaluation metrics for the accuracy of

the defense mechanism in detecting malicious layers under two

scenarios depending on their placement: the start of the model and
deeper in the architecture. The evaluation metrics offer insights into

the effectiveness of DRArmor in correctly identifying malicious

and benign layers.

Performance Across Different Datasets. For all datasets, the
TPR and TNR values are relatively high, indicating that the defense

mechanism effectively detects most malicious layers and correctly

classifies benign ones. MNIST consistently demonstrates the high-

est TPR and TNR values in both scenarios, with TPR values of

0.980 (start) and 0.906 (middle), and TNR values of 0.989 (start) and

0.941 (middle). This suggests that the simpler nature of MNIST data

facilitates more accurate detection of malicious layers.

ImageNet, by contrast, shows lower TPR and TNR values in

both cases. For layers at the start, the TPR is 0.746, and the TNR is

0.802. For layers deeper in the model, these drop further to 0.746 and

0.684, respectively. This reduction can be attributed to the increased

complexity and diversity of ImageNet, making it more challenging

to effectively distinguish malicious from benign layers.

Effect of Layer Positioning. When malicious layers are po-

sitioned at the start of the architecture, the detection mechanism

achieves higher TPR and TNR values across most datasets com-

pared to when the layers are deeper in the model. For instance,

CIFAR-100 has a TPR of 0.926 and TNR of 0.910 at the start, while

these decrease to 0.889 and 0.927, respectively, when the layers are

further into the architecture.

This trend suggests that malicious layers located at the start of

the architecture are easier to detect. Layers closer to the input are

often more general in their feature extraction, making anomalies

introduced by malicious layers more apparent. In contrast, layers

deeper in the architecture learn more specialized presentations,

making it harder to identify malicious activity.

False Positive and False Negative Rates. FPR and FNR remain

reassuringly small even with three back-door layers. As shown in

Table 3, at the start of the model it misclassifies ≈ 0.11 benign and

misses 0.06 malicious layers on MNIST, and 4.6 and 0.76 layers,

respectively, on ImageNet’s 26-layer network. When the attacker

buries the payload deep in the architecture, as shown in Table 4, the

worst-case rates on ImageNet rise to FPR = 0.316 and FNR = 0.311,

i.e. ≈ 7 false alarms among 23 benign layers and < 1 undetected

back-door (0.93 of 3). All other datasets keep both FPR and FNR

below 0.20, so at least 80 % of benign layers stay untouched while

≥ 74% of malicious insertions are caught. Thus, DRArmor still

misses fewer than one malicious layer per run on every benchmark,

perturbing only a small fraction of the model and maintaining

protection. Table 5 confirms that the residual errors have limited

consequences: the largest accuracy drop is 4.8 pp (ImageNet, deep),

and the highest SSIM obtained by an attacker is 0.39, well below the

recognisability threshold of 0.45–0.50 as reported in prior inversion

work.

To summarise, DRArmor demonstrates robust performance

across all datasets, particularly when malicious layers are located

at the start of the model architecture. DRArmor balances high TPR

and TNR values and low FPR and FNR values, ensuring reliable

detection with minimal impact on benign layers.

Accepted at AsiaCCS, 2025, Vietnam Meghali et al.

Figure 4: Data Reconstructed at the Server Using DP-Gaussian noise with 𝜎2 = 0.2 after Identification of the Malicious Layers.

6.3 Analysis of DRArmor Defense
Two strategies may be adopted to mitigate the impact of malicious

layers in a model: adding noise to the gradients or completely pruning
the malicious layers. Both approaches aim to protect client data from

reconstruction attacks while maintaining the performance of the

FL system to the greatest possible extent.

Impact of Adding Gaussian Noise. Figure 12 illustrates the im-

pact of applying low Gaussian noise on the gradients. This method

perturbs the gradient values, introducing uncertainty that disrupts

the ability of malicious layers to perform data reconstruction. Al-

though the added noise significantly reduces the utility of the gra-

dients for machine learning models attempting to interpret them,

it does not fully obscure the information from human perception.

As shown in the figure, objects in the reconstructed image remain

visually identifiable to human observers despite the noise. This

highlights a limitation of noise-based methods, as attackers with

advanced techniques might still exploit residual patterns to recon-

struct sensitive data.

Impact of Adding PixelatedNoise. Figure 13 demonstrates the

effect of pixelation on gradients. Pixelation transforms the gradient

values into coarse, block-like representations by averaging groups

of values within fixed-size blocks. This process effectively removes

fine-grained details crucial for reconstruction, replacing them with

large, uniform regions. Unlike Gaussian noise, pixelation makes the

reconstructed images appear as unrecognizable mosaics of color

blocks. While the overall color distribution may be preserved, the

structural and spatial details necessary for accurate reconstruc-

tion are completely lost. This makes pixelation a stronger defense

mechanism against gradient-based DRA, as attackers are unable to

retrieve meaningful representations of the original data.

Impact of Pruning. The impact of pruning malicious layers

is summarized in Tables 1 and 2. Pruning removes entirely the

Table 1: FL Task Accuracy Analysis: Comparison of Baseline,
DRArmor with Noise & Pixelation (NP), and DRArmor with
Pruning at the Start of the Model.

Dataset FL Acc. DRArmor (NP) DRArmor (Prune)
MNIST 0.924 0.874 0.857

CIFAR-10 0.902 0.868 0.823

CIFAR-100 0.894 0.843 0.796

ImageNet 0.873 0.791 0.714

Cats v Dogs 0.981 0.923 0.872

identified malicious layers, eliminating their ability to contribute to

DRAs. This approach balances accuracy and privacy, achieving 86%

accuracy for MNIST and 80% for CIFAR-100, even with enhanced

privacy measures. While there is a slight performance trade-off

compared to noise addition, it leaves no space for data leakage as

discussed in §6.6.

Impact of False Positives and False Negatives on Defense.
Tables 3–5 show that DRArmor’s false alarms (FP) and misses (FN)

have tightly bounded consequences. A missed back-door reveals at

most the gradients of that single layer. At the same time, a spurious

alarm adds controlled noise or prunes a benign layer, producing a re-

coverable dip in accuracy. The server handles both cases gracefully:

updates with the correct shape are accepted, and any malformed up-

date is quietly discarded, preventing knock-on effects. As the tables

indicate, occasional misclassifications introduce some information

exposure and accuracy loss, but these effects stay within the modest

bounds detailed in the tables and do not materially compromise

overall privacy or utility.

6.4 Impact of DRArmor on FL Accuracy
Eliminating malicious layers (§6.3) is designed to have minimal

impact on the model’s overall accuracy, as these layers contribute

Table 2: FL Task Accuracy Analysis: Comparison of Baseline,
DRArmor with Noise & Pixelation (NP), and DRArmor with
Pruning Further in the Model.

Dataset FL Acc. DRArmor (NP) DRArmor (Prune)
MNIST 0.924 0.824 0.813

CIFAR-10 0.902 0.829 0.789

CIFAR-100 0.894 0.794 0.755

ImageNet 0.873 0.767 0.708

Cats v Dogs 0.981 0.870 0.853

Table 3: Detection reliability when three malicious layers are
inserted at the start of the model.

Dataset 𝐵 𝑀 TPR TNR FPR FNR #FP #FN
MNIST 8 3 0.980 0.989 0.011 0.020 0.09 0.06

CIFAR-10 23 3 0.913 0.924 0.076 0.087 1.75 0.26

CIFAR-100 23 3 0.926 0.910 0.090 0.074 2.07 0.22

ImageNet 23 3 0.746 0.802 0.198 0.254 4.55 0.76

Cats v Dogs 14 3 0.842 0.859 0.141 0.158 1.97 0.47

Nosy Layers, Noisy Fixes: Tackling DRAs in Federated Learning Systems using Explainable AI Accepted at AsiaCCS, 2025, Vietnam

(a) Original Images (b) DRA Using LoKI (c) Pixelated Images

Figure 5: Illustration of Reconstruction Results using DRArmor with Pixelation.

little to the overall output of the model. The aim is to evaluate

how defense mechanisms, such as adding noise or pruning, impact

the model’s accuracy. The result for accuracy is shown in Tables

1 and 2 for the scenarios, respectively. The first column displays

the baseline accuracy of the model without any malicious layers.

This represents the optimal accuracy achieved when the model is

fully functional and unaffected by adversarial layers. The second

column shows the model’s accuracy after applying the defense

mechanism by adding noise to the gradients sent by the client.

The third column reflects the accuracy after pruning the malicious

layers. It is observed that the model can predict the output with an

accuracy of 79 to 92% for the data sets used in the experiment.

Moreover, Figures 6 and 7 illustrate the progression of accuracy

and loss during training under two conditions: (1) when the model

contains only benign layers, and (2) when malicious layers are de-

tected, and defense mechanisms are applied. The initial trajectories

of accuracy and loss differ between the two cases of layer position-

ing, reflecting the disruption caused by malicious layers. However,

as training progresses and the defense mechanisms are applied, the

metrics gradually converge. For the MNIST dataset, this common

convergence point reaches approximately 87%, demonstrating that

the defense mechanisms successfully restore the model’s perfor-

mance to a level comparable to that achieved without malicious

layers.

Table 4: Detection reliability when three malicious layers are
inserted deep in the model.

Dataset 𝐵 𝑀 TPR TNR FPR FNR #FP #FN
MNIST 8 3 0.906 0.941 0.059 0.094 0.47 0.28

CIFAR-10 23 3 0.894 0.910 0.090 0.106 2.07 0.32

CIFAR-100 23 3 0.889 0.927 0.073 0.111 1.68 0.33

ImageNet 23 3 0.746 0.684 0.316 0.311 7.27 0.93

Cats v Dogs 14 3 0.800 0.814 0.186 0.200 2.60 0.60

Table 5: Effect of misclassifications on utility and privacy
when three malicious layers are injected per run. Utility Δ
= drop in validation accuracy caused by false-positive (FP)
perturbations. Privacy Δ = SSIM of reconstructions enabled
by a false negative (FN); higher means more leakage.

Dataset Start Deep
Utility Δ (%) Privacy Δ (SSIM) Utility Δ (%) Privacy Δ (SSIM)

MNIST −0.3 0.09 −0.6 0.13

CIFAR-10 −0.8 0.14 −1.4 0.20

CIFAR-100 −1.1 0.16 −2.0 0.24

ImageNet −2.6 0.27 −4.8 0.39

Cats v Dogs −1.4 0.20 −2.6 0.26

0 20 40
Iterations

0.6

0.8

Ac
cu

ra
cy

Malicious layers detected
All benign layers

(a) Accuracy

0 20 40
Iterations

0.2

0.4

Lo
ss

Malicious layers detected
All benign layers

(b) Loss

Figure 6: FL Task Accuracy and Loss Comparison of the
MNISTAggregatedModel:WithoutMalicious Layers vs.With
Detected and Mitigated Malicious Layers.

0 20 40
Iterations

0.0

0.5

1.0

Va
lu

e Accuracy
Loss

Figure 7: FL Task Accuracy and Loss Comparison of the Ag-
gregated Model on MNIST.

0 20 40
Iterations

0.4

0.6

0.8

Ac
cu

ra
cy

Continuous
DRArmor

(a) Continuous Poisoning

0 20 40
Iterations

0.4

0.6

0.8

Ac
cu

ra
cy

DRArmor
Periodic

(b) Periodic Poisoning

Figure 8: Comparison of Poisoning Impact on Accuracy for
Continuous and Periodic Poisoning vs. Malicious Layers Mit-
igated.

While the defense mechanisms improve accuracy, they are not

perfect due to the non-zero chance of false positives in the detection

mechanism. Occasionally, the system may mistakenly identify a

non-malicious layer as malicious. When this occurs, either noise

is added to, or pruning is applied to a legitimate layer, which can

impact the model’s performance. As seen in Tables 3 and 4, these

cases are infrequent and contribute only marginally to accuracy

reduction.

Accepted at AsiaCCS, 2025, Vietnam Meghali et al.

6.5 Impact of Poisoning on Accuracy
As an extension of the experimentation, we examined the impact

of continuous and periodic poisoning on the accuracy of DRArmor.

This metric is not available in related solutions such as [46] and

[20].

In an FL setting, an adversary can inject malicious layers into

the model either continuously throughout the training process or

during specific, random rounds of training. These scenarios mimic

real-world attack strategies where malicious behavior may be per-

sistent or sporadic to evade detection. To assess the robustness of

our approach, the client nodes were evaluated for their ability to de-

tect malicious layers, regardless of whether the injection occurred

continuously or periodically. The goal was to determinewhether the

type and timing of poisoning affected the model’s ability to identify

and mitigate malicious activity. Figure 8 illustrates the relationship

between the poisoning strategy and the accuracy of DRArmor. The

graph contains two lines: the poisoning line, representing the fre-

quency and pattern of malicious layer injections (continuous or

periodic); and the accuracy line, showing the model’s accuracy over

time during training. The figure shows that the accuracy of DRAr-

mor remains unaffected by the type of poisoning strategy. With

the proposed detection and mitigation mechanism, the accuracy

begins to increase until it stabilises steadily at a consistent level.

6.6 Impact of DRArmor on Leakage Rate
The leakage rate is primarily influenced by two factors: the size of
the local dataset and the size of the FC layers. Our experiment aimed

to identify malicious layers and mitigate leakage from these layers

using two approaches: noise addition and pruning. Figure 9 shows

the effect of the dataset size on the leakage rate.

When the malicious layers are pruned, the system ensures that

no gradients from these layers contribute to the updates. This ef-

fectively reduces the leakage rate to 0%, as no information from

the malicious layers is propagated. When noise is added to the

gradients of malicious layers, the leakage rate can vary depending

on the magnitude of the noise applied. A higher noise level gen-

erally results in a lower leakage rate, but some information may

still be leaked if the noise is insufficient. The system’s effectiveness

in detecting malicious layers directly influences the leakage rate.

The leakage rate is significantly reduced if the malicious layers

are correctly identified. If detection is inaccurate (false negatives),

leakage may occur, as malicious layers remain unmitigated. With

an accuracy range of 72%–87%, some leakage is observed, partic-

ularly as the local dataset size increases. However, this leakage is

minimal compared to the baseline leakage rate observed in the LoKI

framework. The experiment confirms that DRArmor reduces the

leakage rate to a minimal level.

7 Discussion
Comparison with Other Defense Algorithms Previous research
(§2) focuses on mitigating the effects of gradients sent by malicious

models to the server, which the DRA exploits. Although these

methods attempt to obscure or alter the gradients to prevent re-

construction, they fail to address the root cause of these attacks.

DRArmor takes a fundamentally different direction by identifying

the malicious layers and model parameters responsible for leaking

0 200 400
Dataset Size

0.0

0.5

1.0

Le
ak

ag
e

Ra
te LoKI

DRArmor

(a) Leakage Rate

200 400
Dataset Size

0

200

400

#
 le

ak
ed

 im
ag

es LoKI
DRArmor

(b) Number of Images Leaked

Figure 9: Leakage Rate and Number of Leaked Images as a
Function of the Local Dataset Size Averaged over 200 Clients.

Figure 10: Leakage Rate and Number of Leaked Images as a
Function of the Local Dataset Size Averaged over 200 Clients
against Other Defenses.

Table 6: Comparison of DRArmor with existing defenses on
CIFAR-100

Defense Method Privacy Utility
No Defense 74.8% / 312 ± 7.4 92.5 ± 0.4

DP-Gaussian 19.5% / 68 ± 3.4 82.1 ± 0.6

DP-Laplace 26.4% / 92 ± 4.1 80.3 ± 0.7

Soteria 41.8% / 154 ± 6.0 82.4 ± 0.5

DRArmor 12.2% / 44 ± 2.3 86.7 ± 0.5

gradients to reconstruct the client device data. DRArmor prevents

gradient leakage and ensures that malicious layers causing leakage

are effectively detected and eliminated (as shown in §6.3).

The new approach in DRArmor makes directly comparing with

related work challenging. Inspired by [55], to evaluate its effective-

ness, we compare its performance against existing defences based

on leakage rate and the number of images leaked per dataset size. As

shown in Figure 10, DRArmor achieves a significantly lower leak-

age rate compared to other methods replicated in our evaluations

(e.g. [20, 46]).

Moreover, table 6 compares DRArmor with baseline defenses in

terms of privacy and utility. Privacy is quantified using the leakage

rate and number of reconstructed images, while utility is mea-

sured by test accuracy while defending against the DRA. DRArmor

achieves the lowest privacy leakage with minimal accuracy degra-

dation, outperforming methods like DP-SGD and Soteria, which

apply global obfuscation without identifying the malicious layers

responsible for leakage.

Nosy Layers, Noisy Fixes: Tackling DRAs in Federated Learning Systems using Explainable AI Accepted at AsiaCCS, 2025, Vietnam

Another notable strength of our approach is its robustness to

changes in attack architecture. Traditional defense mechanisms

are often compromised when the attack model changes, but our

method remains effective due to its use of Explainable AI. As shown

in Figure 3, DRArmor can identify malicious layers even when the

model architecture changes, providing flexibility and resilience not

feasible in related work.

The threat model used in DRArmor is based on a real-world

scenario where an attacker can inject malicious models at any

iteration, where the client must detect the attack as soon as it occurs.

We evaluated DRArmor with continuous and periodic poisoning

attacks to test this, achieving consistent accuracy in both cases §6.5.

We also assessed the scalability of DRArmor by testing it across

multiple clients. Unlike the studies in the attacks[21, 55], which

used 100 clients, our experiments scale up to 200 clients to evaluate

the impact of these attacks on model accuracy in a larger setting.

Limitations of DRArmor: While our method is the first to

detect DRAs in FL, it currently relies on a limited set of XAI tech-

niques for identifying malicious layers. Although we demonstrate

the effectiveness of DRArmor across both small and large models,

distinguishing between malicious and non-malicious layers can

become less precise as model complexity increases. To improve

robustness and interpretability, more advanced or domain-adapted

attribution methods (e.g.,[41, 43]) may offer better explanatory

power. DRArmor is designed to be modular, so such techniques

can be substituted into our framework depending on deployment

needs. A discussion on the computational practicality of DRAr-

mor’s components, including their applicability to typical federated

clients, is provided in §4 and Appendix A. We leave the exploration

of alternative XAI methods and extended scalability analysis as

directions for future work.

Lastly, while DRArmor’s detection mechanism reduces data leak-

age, it also leads to a slight decrease in the model’s accuracy com-

pared to the original model. However, considering our primary

objective is preserving privacy in FL systems, we argue this trade-

off is acceptable given significantly improved privacy.

8 Conclusion
We present DRArmor, a robust defense mechanism designed to

detect and mitigate Data Reconstruction Attacks in FL. To the best

of our knowledge, DRArmor is the first solution that leverages Ex-

plainable AI to effectively analyze how individual layers of a model

contribute to its output. By identifying layers that are not learning

relevant features but still send disproportionately high gradients,

DRArmor can accurately classify these layers as malicious. Once

detected, DRArmor employs techniques such as noise injection,

pixelation, and pruning to neutralize the impact of these malicious

layers, safeguarding client privacy without compromising model

integrity. Unlike the studies in [55] and [21], which used 100 clients,

we replicated these attacks with 200 clients to evaluate the effective-

ness of DRArmor in larger settings. Our results demonstrate that

DRArmor significantly reduces data leakage, even as the number

of client nodes and the size of the dataset increase. Compared to ex-

isting defense algorithms, DRArmor achieves an average accuracy

rate of 87%, confirming the efficacy of our proposed solution.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and

Brendan McMahan. 2018. cpSGD: Communication-efficient and differentially-

private distributed SGD. Advances in Neural Information Processing Systems 31
(2018).

[3] Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy.

2021. Differentially private learning with adaptive clipping. Advances in Neural
Information Processing Systems 34 (2021), 17455–17466.

[4] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,

Klaus-Robert Müller, and Wojciech Samek. 2015. On pixel-wise explanations for

non-linear classifier decisions by layer-wise relevance propagation. PloS one 10,
7 (2015), e0130140.

[5] Mislav Balunovic, Dimitar Dimitrov, Nikola Jovanović, and Martin Vechev. 2022.

Lamp: Extracting text from gradients with language model priors. Advances in
Neural Information Processing Systems 35 (2022), 7641–7654.

[6] Gilles Barthe and Boris Kopf. 2011. Information-theoretic bounds for differentially

private mechanisms. In 2011 IEEE 24th Computer Security Foundations Symposium.

IEEE, 191–204.

[7] Daniel J Beutel, Taner Topal, AkhilMathur, Xinchi Qiu, Javier Fernandez-Marques,

Yan Gao, Lorenzo Sani, Kwing Hei Li, Titouan Parcollet, Pedro Porto Buarque de

Gusmão, et al. 2020. Flower: A friendly federated learning research framework.

arXiv preprint arXiv:2007.14390 (2020).
[8] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia

Shumailov, and Nicolas Papernot. 2023. When the curious abandon honesty:

Federated learning is not private. In 2023 IEEE 8th European Symposium on Security
and Privacy (EuroS&P). IEEE, 175–199.

[9] Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. 2024. Automatic

clipping: Differentially private deep learning made easier and stronger. Advances
in Neural Information Processing Systems 36 (2024).

[10] Jingxue Chen, Hang Yan, Zhiyuan Liu, Min Zhang, Hu Xiong, and Shui Yu.

2024. When federated learning meets privacy-preserving computation. Comput.
Surveys 56, 12 (2024), 1–36.

[11] Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nico-

las Papernot. 2021. Label-only membership inference attacks. In International
conference on machine learning. PMLR, 1964–1974.

[12] Graham Cormode. 2011. Personal privacy vs population privacy: learning to

attack anonymization. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining. 1253–1261.

[13] Paul Cuff and Lanqing Yu. 2016. Differential privacy as a mutual information

constraint. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 43–54.

[14] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[15] Li Deng. 2012. The mnist database of handwritten digit images for machine

learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.
[16] Travis Dick, Cynthia Dwork, Michael Kearns, Terrance Liu, Aaron Roth, Giuseppe

Vietri, and Zhiwei Steven Wu. 2023. Confidence-ranked reconstruction of census

microdata from published statistics. Proceedings of the National Academy of
Sciences 120, 8 (2023), e2218605120.

[17] Dimitar Iliev Dimitrov, Mislav Balunovic, Nikola Konstantinov, and Martin

Vechev. 2022. Data leakage in federated averaging. Transactions on Machine
Learning Research (2022).

[18] Cynthia Dwork. 2006. Differential privacy. In International colloquium on au-
tomata, languages, and programming. Springer, 1–12.

[19] Ahmed El Ouadrhiri and Ahmed Abdelhadi. 2022. Differential privacy for deep

and federated learning: A survey. IEEE access 10 (2022), 22359–22380.
[20] Mingyuan Fan, Yang Liu, Cen Chen, ChengyuWang, Minghui Qiu, andWenmeng

Zhou. 2024. Guardian: Guarding against Gradient Leakage with Provable Defense

for Federated Learning. In Proceedings of the 17th ACM International Conference
on Web Search and Data Mining. 190–198.

[21] Liam Fowl, Jonas Geiping, Wojtek Czaja, Micah Goldblum, and Tom Goldstein.

2021. Robbing the fed: Directly obtaining private data in federated learning with

modified models. ICLR 2022 (2021).
[22] Awni Hannun, Chuan Guo, and Laurens van der Maaten. 2021. Measuring data

leakage in machine-learning models with fisher information. In Uncertainty in
Artificial Intelligence. PMLR, 760–770.

[23] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep models

under the GAN: information leakage from collaborative deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC conference on computer and communications
security. 603–618.

[24] Bargav Jayaraman and David Evans. 2019. Evaluating differentially private ma-

chine learning in practice. In 28th USENIX Security Symposium (USENIX Security

Accepted at AsiaCCS, 2025, Vietnam Meghali et al.

19). 1895–1912.
[25] Sanjay Kariyappa, Chuan Guo, Kiwan Maeng, Wenjie Xiong, G Edward Suh,

Moinuddin KQureshi, andHsien-Hsin S Lee. 2023. Cocktail party attack: Breaking

aggregation-based privacy in federated learning using independent component

analysis. In International Conference on Machine Learning. PMLR, 15884–15899.

[26] Jong Wook Kim, Kennedy Edemacu, Jong Seon Kim, Yon Dohn Chung, and

Beakcheol Jang. 2021. A survey of differential privacy-based techniques and their

applicability to location-based services. Computers & Security 111 (2021), 102464.

[27] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features

from tiny images. (2009).

[28] Daniel Levy, Ziteng Sun, Kareem Amin, Satyen Kale, Alex Kulesza, Mehryar

Mohri, and Ananda Theertha Suresh. 2021. Learning with user-level privacy.

Advances in Neural Information Processing Systems 34 (2021), 12466–12479.
[29] Ang Li, Yixiao Duan, Huanrui Yang, Yiran Chen, and Jianlei Yang. 2020. TIPRDC:

task-independent privacy-respecting data crowdsourcing framework for deep

learning with anonymized intermediate representations. In Proceedings of the
26th ACM SIGKDD international conference on knowledge discovery & data mining.
824–832.

[30] Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. 2021. Feature

inference attack on model predictions in vertical federated learning. In 2021 IEEE
37th International Conference on Data Engineering (ICDE). IEEE, 181–192.

[31] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In Artificial intelligence and statistics. PMLR,

1273–1282.

[32] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.

2019. Exploiting unintended feature leakage in collaborative learning. In 2019
IEEE symposium on security and privacy (SP). IEEE, 691–706.

[33] Ilya Mironov. 2017. Rényi differential privacy. In 2017 IEEE 30th computer security
foundations symposium (CSF). IEEE, 263–275.

[34] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek,

and Klaus-Robert Müller. 2017. Explaining nonlinear classification decisions with

deep taylor decomposition. Pattern recognition 65 (2017), 211–222.

[35] Viraaji Mothukuri, Prachi Khare, Reza M Parizi, Seyedamin Pouriyeh, Ali De-

hghantanha, and Gautam Srivastava. 2021. Federated-learning-based anomaly

detection for IoT security attacks. IEEE Internet of Things Journal 9, 4 (2021),

2545–2554.

[36] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy

analysis of deep learning: Passive and active white-box inference attacks against

centralized and federated learning. In 2019 IEEE symposium on security and privacy
(SP). IEEE, 739–753.

[37] Seyed Ali Osia, Ali Taheri, Ali Shahin Shamsabadi, Kleomenis Katevas, Hamed

Haddadi, and Hamid R Rabiee. 2018. Deep private-feature extraction. IEEE
Transactions on Knowledge and Data Engineering 32, 1 (2018), 54–66.

[38] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. 2012.

Cats and dogs. In 2012 IEEE conference on computer vision and pattern recognition.
IEEE, 3498–3505.

[39] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. 2022. Eluding secure

aggregation in federated learning via model inconsistency. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security.
2429–2443.

[40] Zhongang Qi, Saeed Khorram, and Fuxin Li. 2019. Visualizing Deep Networks

by Optimizing with Integrated Gradients.. In CVPR workshops, Vol. 2. 1–4.
[41] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i

trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
1135–1144.

[42] Nuria Rodríguez-Barroso, Daniel Jiménez-López, M Victoria Luzón, Francisco

Herrera, and Eugenio Martínez-Cámara. 2023. Survey on federated learning

threats: Concepts, taxonomy on attacks and defences, experimental study and

challenges. Information Fusion 90 (2023), 148–173.

[43] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-

tam, Devi Parikh, and Dhruv Batra. 2017. Grad-CAM: Visual Explanations from

Deep Networks via Gradient-Based Localization. In 2017 IEEE International Con-
ference on Computer Vision (ICCV). 618–626. https://doi.org/10.1109/ICCV.2017.74

[44] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-

bership inference attacks against machine learning models. In 2017 IEEE sympo-
sium on security and privacy (SP). IEEE, 3–18.

[45] Jinhyun So, Başak Güler, and A Salman Avestimehr. 2020. Byzantine-resilient

secure federated learning. IEEE Journal on Selected Areas in Communications 39,
7 (2020), 2168–2181.

[46] Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li, and Yiran Chen. 2021.

Soteria: Provable defense against privacy leakage in federated learning from

representation perspective. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 9311–9319.

[47] Qi Tan, Qi Li, Yi Zhao, Zhuotao Liu, Xiaobing Guo, and Ke Xu. 2024. Defending

Against Data Reconstruction Attacks in Federated Learning: An Information

Theory Approach. Proceedings of the 33rd USENIX Conference on Security Sympo-
sium,24 (2024).

[48] Md Palash Uddin, Yong Xiang, Xuequan Lu, John Yearwood, and Longxiang Gao.

2020. Mutual information driven federated learning. IEEE Transactions on Parallel
and Distributed Systems 32, 7 (2020), 1526–1538.

[49] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong

Qi. 2019. Beyond inferring class representatives: User-level privacy leakage

from federated learning. In IEEE INFOCOM 2019-IEEE conference on computer
communications. IEEE, 2512–2520.

[50] KangWei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin,

Tony QS Quek, and H Vincent Poor. 2020. Federated learning with differential

privacy: Algorithms and performance analysis. IEEE transactions on information
forensics and security 15 (2020), 3454–3469.

[51] YuxinWen, Jonas Geiping, Liam Fowl, Micah Goldblum, and Tom Goldstein. 2022.

Fishing for user data in large-batch federated learning via gradient magnification.

International Conference on Machine Learning (2022).

[52] Tianyu Xia, Shuheng Shen, Su Yao, Xinyi Fu, Ke Xu, Xiaolong Xu, and Xing

Fu. 2023. Differentially private learning with per-sample adaptive clipping. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37. 10444–10452.
[53] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo

Molchanov. 2021. See through gradients: Image batch recovery via gradinver-

sion. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 16337–16346.

[54] Xinwei Zhang, Xiangyi Chen, Mingyi Hong, Zhiwei Steven Wu, and Jinfeng Yi.

2022. Understanding clipping for federated learning: Convergence and client-

level differential privacy. In International Conference on Machine Learning, ICML
2022.

[55] Joshua C Zhao, Atul Sharma, Ahmed Roushdy Elkordy, Yahya H Ezzeldin, Salman

Avestimehr, and Saurabh Bagchi. 2024. Loki: Large-scale data reconstruction

attack against federated learning through model manipulation. In 2024 IEEE
Symposium on Security and Privacy (SP). IEEE, 1287–1305.

[56] Lingchen Zhao, Jianlin Jiang, Bo Feng, Qian Wang, Chao Shen, and Qi Li. 2021.

Sear: Secure and efficient aggregation for byzantine-robust federated learning.

IEEE Transactions on Dependable and Secure Computing 19, 5 (2021), 3329–3342.

A Impact of DRArmor on Scalability and
Computation Overhead

While evaluating DRArmor ’s practicality in federated settings, it

is essential to acknowledge that the computational overhead and

scalability of the defense are inherently influenced by multiple

factors—including the model’s depth and architecture, the type of

dataset used, batch size, and the nature of layers (e.g., convolutional

vs. dense). To provide a realistic assessment, we measured per-

iteration wall-clock time across 200 client nodes using the five

datasets described in §5, encompassing models of different sizes

and complexities. Figure 11 illustrates the iteration runtimes under

four configurations: baseline training (no defense), and DRArmor’s

attribution routines (DTD or LRP) with batch sizes of 64 and 128.

Notably, these explainability routines are invoked only once per

local round rather than per mini-batch, thereby constraining the

overhead to a single backward pass (for DTD) or a single relevance

propagation (for LRP).

Introducing DTD incurs an overhead of approximately 15–25

% relative to baseline, which can be accommodated within the

typical idle windows of federated clients. In contrast, LRP induces a

higher latency on deeper architectures—for example, on ImageNet it

approaches 1.3 s per iteration. The small fluctuations in each curve

capture realistic runtime variability (I/O jitter, network latency,

etc.). The expected slowdown when halving the batch size from 128

to 64, on the order of 10–20 %—is also evident across all methods.

Notably, the near-linear increase in runtime from MNIST’s light-

weight model to ImageNet’s deep network demonstrates that DRAr-

mor ’s one-time, post-training analysis scales proportionally with

model complexity of varying batch sizes. These results confirm

https://doi.org/10.1109/ICCV.2017.74

Nosy Layers, Noisy Fixes: Tackling DRAs in Federated Learning Systems using Explainable AI Accepted at AsiaCCS, 2025, Vietnam

Figure 11: Estimated per-iteration runtime overhead: baseline training vs.DRArmor with DTD and LRP, at batch sizes 64 and
128, across models of varying complexity.

that the default DTD-based detection is efficient and scalable, re-

quiring no specialized hardware, while allowing practitioners to

substitute alternative XAI techniques when tighter latency budgets

are needed.

Figure 12: Data reconstructed at the server using DP-Gaussian Noise with 𝜎2=0.2 after identification of the malicious layers

Accepted at AsiaCCS, 2025, Vietnam Meghali et al.

B Sample reconstructed images for other
datasets

In §6, we presented a sample reconstruction example demonstrating

how DRArmor mitigates DRA. Here, we extend that analysis to

a broader set of examples across the dataset, providing a more

comprehensive evaluation of our defense mechanism.

Figure 12 showcases a reconstruction example where the server

attempts to recover input data after applying DP Gaussian noise

with 𝜎2=0.2, following the identification of malicious layers. This

image demonstrates how noise-injected gradients can partially

obscure sensitive information while retaining some recognizable

structure.

Figure 13 provides a broader set of reconstruction results. Each

group of images consists of three components: the original image

from the dataset (first), the reconstruction generated by the DRA at-

tack using the LOKI method (second), and the result produced when

pixelated gradients from malicious layers are intercepted and modi-

fied by our defense mechanism (third). These comparisons highlight

the degradation in reconstruction quality achieved through DRAr-

mor, illustrating its effectiveness in disrupting high-fidelity data

recovery by adversaries.

These examples underscore the robustness of DRArmor in pro-

tecting user data in FL settings. By detecting compromised layers

and modifying their outputs, our method significantly impairs ad-

versarial reconstructions while maintaining the integrity of the

learning process.

Figure 13: Illustration of reconstruction results across multiple examples. Each group contains three images: the original image
(first), the reconstruction produced by the DRA attack using LoKI (second), and the reconstruction generated when pixelated
gradients are sent from malicious layers (third) after our detection mechanism.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 DRA on FL
	2.2 Existing Defense Mechanisms
	2.3 Preliminary - Explainable AI

	3 System and Threat Model
	4 DRArmor
	4.1 Detecting Malicious Layers
	4.2 Defense against Malicious Layers

	5 Experimental Setup
	6 Evaluation
	6.1 Detection of Malicious Layer
	6.2 Analyzing Accuracy of Detecting Malicious Layers
	6.3 Analysis of DRArmor Defense
	6.4 Impact of DRArmor on FL Accuracy
	6.5 Impact of Poisoning on Accuracy
	6.6 Impact of DRArmor on Leakage Rate

	7 Discussion
	8 Conclusion
	References
	A Impact of DRArmor on Scalability and Computation Overhead
	B Sample reconstructed images for other datasets

