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Enhanced Multiuser CSI-based Physical Layer

Authentication Based on Information Reconciliation
Atsu Kokuvi Angélo Passah, Arsenia Chorti, and Rodrigo C. de Lamare

Abstract—This paper presents a physical layer authentication
(PLA) technique using information reconciliation in multiuser
communication systems. A cost-effective solution for low-end
Internet of Things networks can be provided by PLA. In this
work, we develop an information reconciliation scheme using
Polar codes along with a quantization strategy that employs an
arbitrary number of bits to enhance the performance of PLA.
We employ the principle of Slepian-Wolf coding to reconcile
channel measurements spread in time. Numerical results show
that our approach works very well and outperforms competing
approaches, achieving more than 99.80% increase in detection
probability for false alarm probabilities close to 0.

Index Terms—Physical layer authentication, physical layer
security, information reconciliation, multiuser systems, multiple-
antenna systems.

I. INTRODUCTION

T
HE advent of novel wireless systems such as large-scale,

heterogeneous, Internet of things(IoT) networks [1], in-

troduces numerous security concerns. In this context, standard

cryptographic schemes using public key encryption for node

authentication may be broken by quantum computers while

post-quantum alternatives may be inappropriate for simple

devices due to their computational complexity, or significant

delays in low-latency systems [2], [3]. Therefore, physical-

layer security alternatives are of great interest [4], [5], [6]. In

particular, physical-layer authentication (PLA) protocols are

expected to play a crucial role by providing alternative low-

complexity and low-latency quantum-resistant solutions. CSI-

based PLA is a two-step procedure, including an enrollment

(off-line) phase and an authentication (on-line) phase. Typi-

cally, higher layer authentication protocols are assumed to be

used during the enrollment phase, during which a CSI (or a

RF fingerprint) baseline observation is recorded for a node

of interest. In the authentication phase, hypothesis testing is

subsequently used to verify the consistency of the recorded

observation against a new measurement of the CSI.

Recently, several channel-based PLA schemes have been

investigated. The study in [7] developed an authentication

scheme using the channel impulse response (CIR) and incor-

porated extra multipath delay characteristics of the wireless

channel into the authentication framework. Furthermore, this

study employed a two-dimensional quantization method to

reduce the impact of random variations in amplitudes and
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Figure 1: Multiuser system with interference

delays. Differently from [7], the authors in [8] proposed two

PLA schemes based on CIR without employing a quantization

algorithm. The approach in [8] eliminates the quantization

errors that can negatively affect the authentication perfor-

mance. Unlike the other works, [9] proposed a key-based

PLA by exploiting the channel phase response to perform the

authentication. In [10], preliminary results of a PLA scheme

using information reconciliation with a one-bit quantization

scheme have been reported for a single-user communication

network in the presence of a naive active attacker.

In this work, we present an information reconciliation

scheme based on polar codes along with a quantization strat-

egy that employs an arbitrary number of bits in order to

enhance the performance of channel state information (CSI)

based PLA in multiuser systems. In particular, we employ the

principle of Slepian-Wolf coding reconciliation to reconcile

channel measurements spread in time. An analysis of the

proposed reconciliation scheme is carried out in terms of

probabilities of detection and false alarm. To the best of our

knowledge, apart from our preliminary results in [10] for a

single-user system and a scheme with 1-bit quantization, it

is the first time reconciliation is being considered in PLA,

despite the use of similar concepts in the form of fuzzy

extractors in physical unclonable functions and bio-metrics

based authentication schemes.

The rest of this paper is organized as follows. Section II

presents the system model and explains the authentication

phases. In Section III, the proposed approach is described in

detail, while performance analyses are carried out in Section

IV by deriving closed-form expressions of the probabilities of

false alarm and detection. Simulation results are presented in

Section V and the paper is concluded in Section VI.

II. SYSTEM MODEL

A multiuser wireless communication network is considered

Fig. 1. The network includes legitimate nodes, referred to

as Alice, Bob (base station) and U legitimate users that act

as interfering users during the transmission. In this network,
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Bob wants to authenticate the user of interest Alice in the

presence of the other legitimate users and an adversary Mallory

that is a naive active attacker that attempts to impersonate

Alice without the use of any precoder or other pre-processing

technique [11]. The objective is to design a scheme based

on CSI to distinguish Alice from Mallory in the presence of

interfering users. Each user is equipped with a single antenna

and Bob is equipped with Nb antennas.

To achieve a good separation between different users, we

assume that the communication occurs in a rich scatter-

ing environment and the distance among users exceeds half

of a wavelength. Thus, channel attributes between different

transmitter-receiver pairs are spatially uncorrelated [12], [13].

We are testing the proposed algorithm on real datasets and

preliminary results look promising but are left as future work.

The authentication comprises two phases, an enrollment

phase and an authentication phase. First, in the enrollment

phase, Bob estimates Alice’s CSI ha(t) ∈ C1×Nb in time slot

t. This offline step allows Bob to use ha(t) as a point of

reference during the authentication phase to determine if the

user is indeed Alice or not. Next, during the authentication

phase in a subsequent time slot t + ℓ, Bob takes new CSI

measurements of hu(t + ℓ) ∈ C1×Nb , u ∈ {a,m}, that may

either come from Alice or Mallory, a and m denote, respec-

tively, Alice and Mallory. In this online phase, Bob needs to

make an authentication decision based on the CSI obtained

in the enrollment phase. We consider a scenario where the

CSI changes slowly over time. The channel between the same

transmitter-receiver pair can then be well described by a first

order Gauss-Markov process [8]. The channel between Alice

and Bob in time slot t+ ℓ can therefore be expressed as

ha(t+ ℓ) = βha(t+ ℓ− 1) +
√

1− β2na, (1)

where β is the channel correlation coefficient and na is a

measurement noise, nai ∼ CN
(

0, σ2
h

)

, i = 1, . . . , Nb. na is

statistically independent of ha.

III. PROPOSED AUTHENTICATION SCHEME

We present a reconciliation scheme to mitigate the impact

of disparities in the CSI observed in different time slots. We

use the principle of Slepian-Wolf decoding [14] to reconcile

discrepancies in the CSI measurements over time, as depicted

in the system model illustrated in Fig. 2. We propose this

channel-based PLA scheme that employs quantization with an

arbitrary number of bits for multiuser systems. Each phase

involves quantizing the CSI, with the output vectors at time

t and t + ℓ treated as dithered codewords at the input of

the reconciliation decoder (Fig. 2). The reconciliation decoder

outputs one reconciled vector at each time instance. Note that

to this end, the helper data S (e.g., in the form of a syndrome)

generated in the first phase is used by Bob in the authentication

phase to reconcile the newly obtained CSI at time t+ ℓ to the

previous one at time t. Then, a hypothesis testing is performed

to identify the legitimate user versus the impersonator.

A. PLA phases

The PLA phases are structured as follows.

Figure 2: Proposed PLA scheme, u ∈ {a,m}

1) Enrollment phase: In this offline phase, Bob measures

the CSI of Alice as a reference for the authentication:

ĥa(t) = ha(t) + z(t), (2)

where z(t) ∈ C1×Nb is a zero mean complex Gaussian noise

so that zi(t) ∼ CN
(

0, σ2
z

)

, i = 1, . . . , Nb. M samples

of ĥa(t) are concatenated and by considering the real and

imaginary parts, we get the vector xa(t) ∈ R1×N where

N = 2MNb. xa(t) is then quantized as qa(t).
2) Authentication phase: Without loss of generality, we

assume ℓ = 1. In this online phase at time t+1, new channel

measurements associated with Alice are given by

ĥa(t+ 1) = ha(t+ 1) +

U
∑

i=1

αa
i h

a
i (t+ 1) + za(t+ 1) (3)

such that ha(t+1) = βha(t)+
√

1− β2na, whereas the new

channel measurements of Mallory are described by

ĥm(t+1) = hm(t+1)+

U
∑

i=1

αm
i hm

i (t+1)+zm(t+1), (4)

where za(t + 1) and zm(t + 1) are Gaussian noise vectors,

ha
i (t+1) and hm

i (t+1) are interfering terms with interference

weights αa
i and αm

i respectively. The weights account for the

fact that in the channel estimation, different users might use

different pilot sequences that can be quasi-orthogonal [15].

Similarly to the previous phase, M samples of the channel

measurements are concatenated in a vector xu(t) ∈ R1×N ,

u ∈ {a,m}, and quantized as qu(t+ 1).
3) Quantization: We use the Lloyd-Max quantizer that is a

powerful tool for designing optimal quantizers. As 99.7% of

the probability density of a Gaussian distribution (µ, σ2) lies

within µ− 3σ and µ+ 3σ, the design steps are described by

• n-bit quantizer =⇒ L = 2n quantized levels

• Divide the range R = (µ + 3σ) − (µ − 3σ) = 6σ in L

equal intervals

• Calculate each quantizer levels as midpoint of the corre-

sponding interval

• Optimize the quantizer levels using the Lloyd-Max algo-

rithm and then store them in the dictionary D
• Then the squared error distortion is considered to quantize

each sample according to

x̂i = argmin
d∈D

(xi − d)2, (5)

where xi is the sample to be quantized and x̂i is the

output.

• Codebook: mapping of x̂i into bits using Gray code. Each

Gray code corresponds to a quantized level in D



3

B. Reconciliation

1) Reconciliation: The quantized vectors qa(t) and qu(t+
1) ∈ {0, 1}1×nN , fed into the input of the reconciliation, are

mapped to the decoder outputs ra(t) and ru(t+1), where nN

is the codelength. The principle of our reconciliation scheme is

based a decoding process using the principle of Slepian-Wolf

decoding as in [16], where qa(t + 1) is decoded using the

side information (helper data) S derived from the code design

and the quantized vector qa(t) from the enrollment phase at

time t. This approach ensures that the correlation between

the CSI in both phases, is properly exploited. As a result,

it is possible to distinguish Alice from Mallory. Specifically,

when attempting to decode Mallory’s CSI using the side

information, the lack of correlation between their channels

prevents Mallory’s CSI from producing similar outputs. qa(t)
and qa(t+1) are therefore considered as dithered versions of

the same codeword. The aim here is to correct measurements

errors in order to separate Alice from Mallory, i.e., although

reconciliation will be successful for Alice, it will not be

successful for Malory. Polar codes [16] are the family of error-

correction codes examined in this work for reconciliation.

Thus, the scheme needs to be designed in such a way that

the reconciliation gives (i) in the normal case, i.e, qa(t) and

qa(t + 1), identical or very close outputs, and (ii) in the

spoofing case, i.e, qa(t) and qm(t+1), very different outputs.

This also depends on the correlation coefficient and the noise

variance.

2) Polar codes: To enhance the performance of the polar

code in finite blocklengths, qu(t+1) is decoded using cyclic

redundancy check (CRC) successive cancellation list decoding

[14], [17] where the list size is denoted by Ls. During the

decoding, Bob actually tracks Ls decoding paths simultaneous,

where the decoder picks the most likely codeword which

satisfies the CRC condition among the Ls paths. Therefore,

Bob uses the side information S that contains the syndrome

(frozen bits) and the CRC bits. The CRC assists the decoder

in choosing the right decoding path from a list of possibili-

ties. This syndrome is generated using the quantized vector

qa(t) and the reliability sequence used for the polar code

construction. For the construction of the polar code, we use

the recursive relation of the reliability sequence of a binary

erasure channel (BEC), defined in [18].

3) Performance metrics: Hypothesis testing is used to

differentiate Alice from Mallory. Two hypothesis H0 and H1

corresponding respectively to the normal case (Alice) and the

spoofing one (Mallory), are defined as follows:
{

H0 : η = Hd (ra(t), ra(t+ 1)) ≤ ηth

H1 : η = Hd (ra(t), rm(t+ 1)) > ηth
(6)

As in [10], a bitwise comparison between ra(t) and ru(t+1),
u ∈ {a,m}, is a suitable choice for η. Hd(·) is then the

Hamming distance between ra(t) and ru(t+ 1) as (7).

η = Hd (ra(t), ru(t+ 1)) =

K
∑

j=1

|ra,j(t)− ru,j(t+ 1)| (7)

The main steps of the proposed PLA scheme are summarized

in Algorithm 1.

Algorithm 1 Multi-User Physical Layer Authentication

1: Enrollment Phase:

2: Initialization: Nb, β, U , αa
i , αm

i , ∀ i = 1, . . . U , M , σz

3: Measure ĥa(t) and calculate xa(t)
4: Quantize xa(t) to get qa(t)
5: Get ra(t) (information bits) and frozen bits from qa(t)
6: Authentication Phase:

7: Measure ĥu(t+ 1) and calculate xu(t+ 1), u ∈ {a,m}
8: Quantize xu(t+ 1) to get qu(t+ 1)
9: Decode qu(t+ 1) to get ru(t+ 1)

10: Authentication Decision:

11: Calculate η = Hd (ra(t), ru(t+ 1)).
12: if η ≤ ηth then

13: Authenticate as Alice (Hypothesis H0 is true)

14: else

15: Identify as Mallory (Hypothesis H1 is true)

16: end if

4) Algorithm complexity: The time complexity of the en-

rollment phase is given by O(N)+O(L)+O(LsnN log(nN)).
The time complexity of the authentication phase and the

decision using hypothesis testing are respectively given by

O(UN) + O(L) + O(LsnN log(nN)) and O(K). Ls is the

list size and K is the length of the reconciled vectors. The

space complexity is the amount of memory required to perform

the authentication process taking into account all steps of the

scheme is given by O(U) +O(L) +O(LsnN).

IV. ANALYSIS

In this work, the performance metrics are the probabil-

ities of false alarm and of detection given respectively by

PFA = Pr (η > ηth | H0) and PD = Pr (η > ηth | H1). Given

the probability distribution of η, we can represent the receiver

operating characteristic (ROC) curve. Based on the definition

of η, the probability distributions of η are given in Propositions

1 and 2 under H0 and H1, respectively.

Proposition 1: Under H0, η follows a binomial distribution

of parameters K and p0, i.e. η ∼ B(K, p0).

P (η = k|H0) =

(

K

k

)

pk0(1− p0)
K−k, (8)

where p0 is the bit error probability during the decoding.

Proposition 2: Under H1, η follows a binomial distribution

of parameters K and p1, i.e. η ∼ B(K, p1).

P (η = k|H1) =

(

K

k

)

pk1(1− p1)
K−k, (9)

where p1 is the bit error probability during the decoding.

See proofs of Proposition 1 and 2 in [10].

We compare the simulated probability distributions of η

with the closed-form ones in the case of a 2-bit quantizer

in Fig. 3. The closed-form expression almost matches the

simulated result under both hypotheses. As can be seen, the

reconciliation collapses the CSI observations of Alice to a

single point probability mass function. As a result, the distance

between the probability density function (PDF) of Alice’s and
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Figure 3: Simulated vs closed-from expression: code rate =
0.01, SNR = 10 dB, p0 ≈ 0 and p1 ≈ 0.4539

Mallory’s observations increases. Thus, despite the loss of

precision due to the use of quantization, an enhancement of

the PLA accuracy is achieved, as confirmed in the numerical

results section.

Given the PDFs of η, the closed-form expressions of PFA

and PD are respectively given by

PFA =

K
∑

k=ηth+1

(

K

k

)

pk0(1− p0)
K−k (10)

and

PD =

K
∑

k=ηth+1

(

K

k

)

pk1(1− p1)
K−k. (11)

V. NUMERICAL RESULTS

We compare here the proposed method with the prior ones

proposed in [7], [8] and [9]. We first investigate the ROC

curve which is PD vs PFA and the impact of the SNR on

the probability of detection. Then, we provide the analysis of

the other simulation setup parameters such as the correlation

coefficient β, the interference weights αa
i and αm

i and the code

rate. We also present the results of the proposed method for

different codelengths, nN = 1024 and nN = 2048, which

correspond to 1-bit (n = 1) and 2-bit (n = 2) quantizers,

respectively.

Unless otherwise specified, the simulation parameters in this

work are considered as follow. The number of antennas at Bob

Nb = 32, β = 0.9, σ2
h = 1, M = 16, N = 1024, the code rate

is 0.01, αa
i = αm

i = 0.01, ∀ i and PFA = 10−3. This very

small value of PFA is chosen in order to match real-world

communication systems in which low or very low false alarm

probabilities are needed. The signal-to-noise ratio is defined

as SNR =
E[hah

H

a
]

Nbσ2
z

.

Fig. 4 presents the ROC curve for a SNR of 5 dB. Our

proposed method performs very well with a probability of

detection very close to 1 for very small probabilities of false

alarm less that 0.1. It also performs better than the prior

schemes. As shown in this figure, we get more than 99.80%
increase in the detection probability even for false alarm

probabilities very close to 0.
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0

0.5
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2-bit quantizer

Scheme in [7]
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Figure 4: ROC curve: SNR = 5 dB
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Figure 5: PD vs SNR: PFA = 10−3

In Fig. 5, the impact of the SNR on the detection probability

is studied. As the SNR increases, PD increases as subsequent

CSI measurements are more correlated due to decreased noise.

The proposed scheme performs very well with a PD greater

than 99.86%. However the performance of the prior methods

is poor for low SNRs less than 10 dB.

Fig. 6 shows the detection probability as a function of β.

We have a PD very close to 1 for 0.4 ≤ β ≤ 1. We therefore

have a very well performance even for poor scenarios of

medium correlation coefficients. Thus, our proposed scheme

performs better than the previous ones. We observe that the

scheme in [7] is performing always good even for β less than

0.4. Actually, [7] proposed a two dimensional authentication

scheme where the channel impulse response and the multipath

delay are considered. This performance is due to the high

correlations in the multipath delay dimension.

Table I presents the behaviour of PD for different values

of αa = αm under a SNR = 10 dB. We found that,

for the given system parameters, the maximum interference

weight that achieves almost perfect reconciliation is equal to

0.8 for the proposed scheme. The techniques reported in [8]

and [9] perform poorly from αa = αm = 0.8, that is, the

detection probabilities are respectively equal to 0.22 and 0.43
for αa = αm = 0.8. The work in [7] has a good performance

for weights above 1.6 because of the high correlation in the

delays as mentioned before.

Error probabilities p0 and p1 mentioned in Section IV are

evaluated in Fig. 7 for a false alarm of 10−3. For both 1-

bit and 2-bit quantizers, the normal case (H0) is performing

better the spoofing case (H1). This can be explained by the

correlation between the channel measurements in the normal
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Figure 6: PD vs β: SNR = 10 dB, PFA = 10−3
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Figure 7: Error probabilities vs β: SNR = 5 dB

Table I: Detection probabilities for different αa = αm

α
a
= α

m 1-bit 2-bit in [7] in [8] in [9]

0 0.99 0.99 0.99 0.99 0.99

0.01 0.99 0.99 0.99 0.99 0.91

0.8 0.99 0.99 0.90 0.22 0.43

1.6 0 0 0.90 0.01 0.07

2 0 0 0.90 0.005 0.04

case.

An analysis of the code rate of the proposed scheme is

shown in Table II for a SNR of 10 dB. We can see that the

performance is almost perfect for a code rate of 0.01 and poor

for values greater than 0.01. It can be improved for code rates

greater than 0.01 by increasing the code length or designing

an improved coding scheme.

Table II: Detection probabilities under different code rates

Code rate 0.01 0.1 0.2 0.3 0.4

1-bit 0.998 0 0 0 0

2-bit 0.999 0 0 0 0

All the previous presented results are shown for 1-bit and

2-bit quantizers. The 2-bit quantizer performs better than the 1-

bit one as there is more bits that increase the code length. This

also shows the impact of the code length on the performance.

VI. CONCLUSION

In this work, the problem of CSI-based PLA using infor-

mation reconciliation has been investigated. An information

reconciliation scheme using Polar codes along with a quan-

tization strategy that employs an arbitrary number of bits

has been developed for a multiuser communication scenario.

CSI measurements from a legitimate user spread in time are

reconciled using reconciliation decoders implemented using

Polar codes. Simulation results have shown that our approach

performs excellently well in the presence of multiple users and

outperforms state-of-the art schemes.
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