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Anti-Sensing: Defense against Unauthorized Radar-based Human Vital
Sign Sensing with Physically Realizable Wearable Oscillators
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Abstract— Recent advancements in Ultra-Wideband (UWB)
radar technology have enabled contactless, non-line-of-sight
vital sign monitoring, making it a valuable tool for healthcare.
However, UWB radar’s ability to capture sensitive physiological
data, even through walls, raises significant privacy concerns,
particularly in human-robot interactions and autonomous sys-
tems that rely on radar for sensing human presence and physio-
logical functions. In this paper, we present Anti-Sensing, a novel
defense mechanism designed to prevent unauthorized radar-
based sensing. Our approach introduces physically realizable
perturbations, such as oscillatory motion from wearable devices,
to disrupt radar sensing by mimicking natural cardiac motion,
thereby misleading heart rate (HR) estimations. We develop a
gradient-based algorithm to optimize the frequency and spatial
amplitude of these oscillations for maximal disruption while en-
suring physiological plausibility. Through both simulations and
real-world experiments with radar data and neural network-
based HR sensing models, we demonstrate the effectiveness of
Anti-Sensing in significantly degrading model accuracy, offering
a practical solution for privacy preservation.

I. INTRODUCTION

Recent advancements in contactless sensing technologies,
particularly using Ultra-Wideband (UWB) radar, have en-
abled various applications such as vital signs monitoring
[1], [2], [3], [4], [5], [6] and gesture recognition [7], [8],
[9] without physical contact. These technologies offer con-
venience and efficiency but also raise significant privacy
concerns due to their ability to capture sensitive personal
information in public spaces without consent. Radar’s high
penetration capability allows it to sense through walls, posing
a potential threat to privacy. In various settings, from homes
to public spaces like transportation stops and waiting rooms,
it can expose individuals’ vital signs, gestures, and behavioral
data, leading to the possible misuse of personal information.
Unauthorized estimation of vital signs, particularly heart rate,
poses significant privacy concerns, as it can disclose sensitive
health information, such as stress levels, without consent,
leading to discrimination, health profiling, and surveillance,
ultimately infringing on personal autonomy and security.
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While the benefits of contactless radar sensing are evi-
dent, the security and privacy implications remain under-
explored. Adversarial attacks, a growing concern in machine
learning and computer vision, pose a novel threat to radar-
based sensing. Adversarial attacks typically employ white-
box methods such as FGSM [10], IFGSM [11], PGD [12],
JSMA [13], DeepFool [14] , and C&W [15], or black-box
techniques like ZOO [16], GenAttack [17], and Boundary
Attacks [18], [19], [20]. Although most attacks have focused
on the digital domain, the exploration of perturbations in the
physical domain to deceive such systems remains limited.
While some research exists on physical-world attacks in the
context of computer vision [21], [22], [23], [24], the radar
system domain has not been similarly investigated. In partic-
ular, the susceptibility of radar data to physically realizable
perturbations, such as deliberate, imperceptible modifications
to sensor inputs, has not been adequately addressed. These
physical perturbations can serve as a defense mechanism
for our setting, where they could be used to mislead radar-
based sensing systems, resulting in inaccurate vital sign
estimations, thereby protecting an individual’s privacy.

This paper proposes a novel physically realizable pertur-
bation technique, Anti-Sensing, a pipeline designed to effec-
tively disrupt and deceive unauthorized radar sensing models.
Our approach utilizes physical perturbations in the form of
oscillating devices, for example, motors as a defense against
unauthorized vital sign monitoring, heart rate (HR) in partic-
ular. The oscillating frequencies and span of these devices are
optimized using a gradient-based defense algorithm that we
designed to ensure maximum loss between model predictions
and the ground truths. These perturbations mimic legitimate
cardiac motion and sufficient noise components, thereby
misleading radar-based recognition models into producing
inaccurate heart rate predictions. By strategically introducing
oscillatory signals that simulate natural human heart rate,
our method aims to protect individuals’ privacy by thwart-
ing unauthorized radar sensing attempts. We validate our
system’s success through simulated perturbations on a real
dataset and neural network architectures, and subsequently
validate it using real collected data with physical devices.
Through experiments and analysis, we demonstrate that our
proposed perturbation method can effectively deceive radar
sensors, making it a practical solution for safeguarding
personal privacy in public and private settings. The key
contributions of our work can be summarized as follows:

• We present Anti-Sensing, a novel perturbation tech-
nique that uses oscillatory motions optimized by an
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Fig. 1: Anti-Sensing Scenario: The left panel shows a radar system detecting an individual’s heart rate (85 bpm) without
permission. In contrast, the right panel illustrates our anti-sensing solution, where a motor generates a false heart rate signal
(98 bpm), effectively blocking the radar from sensing the person’s true heart rate (85 bpm) and ensuring privacy.

appropriate gradient-based attack objective to deceive
radar sensing models for regression tasks. This approach
introduces a new paradigm in adversarial defense by
creating physical perturbations that mimic legitimate
human heart rates.

• We demonstrate that our attacks are physically realiz-
able using oscillating devices, which can be easily worn
on the wrist. We use a programmable servo motor to
generate variable frequency motion for defense against
unauthorized heart rate estimations. These devices allow
for precise, reproducible physical perturbations that can
effectively counteract radar-based sensing mechanisms.

• We validate our anti-sensing approach through simu-
lated perturbations applied to a real dataset collected
at a sleep clinic and to state-of-the-art neural network-
based radar sensing models, followed by testing with
data collected using the anti-sensing oscillating de-
vice. Our results show that the proposed perturbations
are effective in disrupting unauthorized radar sensing
models, offering a practical solution for safeguarding
individuals’ heart rate information.

II. RELATED WORKS

Most adversarial perturbations against contactless sensing
have primarily focused on the digital domain, involving
white-box or black-box attacks on the collected data. For ex-
ample, Xie et al. [25] demonstrated universal targeted adver-
sarial attacks in the digital domain against mmWave-based
Human Activity Recognition (HAR), effectively deceiving
different models, including voxel-based and heatmap-based,
while remaining entirely in the digital domain. Similarly,
Ozbulak et al. [26] showed the vulnerability of radar-based
CNNs for human activity recognition to both white-box and
black-box adversarial attacks, revealing that even minimal
perturbations, such as those applied only to input padding,
can significantly alter model predictions.

Staat et al. [27] proposed IR-Shield, a countermeasure
using intelligent reflecting surfaces (IRSs) to obfuscate wire-
less channels, achieving detection rates of 5% or less in
advanced Wi-Fi-based human motion attacks. RF-Protect
[28] presents a hardware reflector coupled with a generative

mechanism to produce realistic human trajectories aimed
at enhancing privacy by introducing artificial human reflec-
tions into FMCW radar data to guard against unauthorized
through-wall monitoring. However, these existing approaches
are ineffective against attacking UWB radar-based sensing,
particularly for vital signs, as UWB relies on precise time-
of-flight measurements, and unlike FMCW or mmWave sys-
tems, delay and frequency in UWB systems are uncorrelated.

III. BACKGROUND OF RADAR-BASED SENSING

Ultra-wideband (UWB) radar is a non-invasive sensing
technology that emits nanosecond-duration electromagnetic
pulses across a broad frequency spectrum (3.1–10.6 GHz),
enabling precise detection of both macro-scale movements,
such as gestures, and micro-scale physiological activities,
including breathing and heartbeats. Its wide bandwidth
provides high spatial resolution, making it well-suited for
capturing detailed motion data. Additionally, UWB radar’s
broad frequency range and pulse characteristics enable non-
line-of-sight sensing, allowing detection through walls and
other obstacles due to its superior penetration properties. By
analyzing the time delay of reflected signals, it tracks a tar-
get’s movement, while advanced signal processing removes
clutter from static objects, ensuring accurate monitoring in
dynamic environments - particularly in healthcare, human-
object interaction, and human-robot interaction applications.

A received signal at the UWB receiver can be written as
the following equation,

r(t) =

L∑
j=1

ajs(t− τj) + w(t) (1)

Here, s(t) is the transmitted pulse, aj and τj represent
the amplitude and the propagation delay of the jth multipath
component, w(t) is the additive noise from the channel, and
L is the total number of reflected paths. The time delay
τj , also known as the time of flight (ToF), can be used to
calculate the target’s distance dj using the relation dj =

c·τj
2 ,

where c is the speed of light. For simplicity, we will use dj
in the equation directly to refer to the target distance range
bin.



Synthetic Vital Sign Motion Generation

This subsection demonstrates the process of synthesizing
vital sign motion based on ultra-wideband (UWB) radar prin-
ciples. UWB pulses can be modeled as Gaussian-modulated
sinusoidal signals, and a single radar scan of a point target
at a fixed range bin dj can be expressed as:

s(ti, dj) = exp

(
−
(
ti − dj
ω0/Ts

)2
)
· exp (i · 2π · f0 · Ts(ti − dj))

(2)
where,

dj = A · sin
(
2π

fosc

60 · Fs
· xi

)
+ offsets[k] (3)

and,
• Ts: Fast-time sampling period
• ω0: Width of the Gaussian pulse
• f0: Frequency of the radar pulse in Fast Time
• fosc: Frequency of the sinusoidal motion a.k.a. fre-

quency of the Vital Sign (HR) in rpm
• Fs: Sampling frequency of the radar in Slow Time.
• M : Total number of radar scans
• N : Total number of range bins
• A: Spatial amplitude
• offsets: Target locations
• xi: Scan indices from 1 to M
• dj : Range bin positions modulated by the synthetic vital

sign motion from 1 to N .
Offsets determine the initial target location. If there are

multiple targets, synthetic sinusoids are generated for each
of them and then summed up together to form a single radar
scan. By stacking the Gaussian-modulated pulses over all
scans and offsets, we get a 2D radargram for a specific ob-
servation window. The x-axis of the radargram, also known
as the fast-time axis, denotes distance or range, while the
y-axis, also known as the slow-time axis, indicates time. To
demonstrate how closely our simulation matches reality, we
present Figure 2, a side-by-side comparison of a pendulum
with a metal bob oscillating at 90 rpm (1.5 Hz) positioned
at one meter from the radar.
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Fig. 2: Comparison of synthetic radargram (left) and real
radargram (right) of a point target (a pendulum with a metal
bob) oscillating at a frequency of 90 rpm (1.5 Hz).

IV. PROPOSED ANTI-SENSING METHOD:

Our goal is to develop a defense mechanism that deceives
radar sensing models by introducing deliberate, physically
realizable perturbations to radar inputs. Specifically, we aim
to mislead radar systems, such as those used for vital
sign estimation (e.g., heart rate), into generating inaccu-
rate predictions, thereby protecting individual privacy. This
problem is framed as an attack on radar sensing models to
induce erroneous estimations. In our proposed algorithm,
we optimize oscillatory motions through a gradient-based
attack to deceive the vital sign estimation model. Since
the perturbations act as a defense mechanism to safeguard
privacy, we refer to our algorithm as Sinusoidal Defense
Algorithm, a white-box targeted attack requiring knowledge
of the vital sign model, as illustrated in Algorithm 1.

A typical white-box classification adversary with a tar-
geted attack optimizes the following objective, where hθ(·) is
the trained model and y is the target class, typically different
from the true class:

minimize
δ∈∆

ℓ(hθ(x+ δ), y) (4)

subject to ∆ = {δ : ∥δ∥∞ ≤ ϵ}, where ϵ is the attack
budget. However, using machine learning models to monitor
contactless vital signs primarily falls under the realm of
regression tasks where the labels are continuous values.
When dealing with radar signals, it is essential to note that
x in Equation 4 represents radargrams rather than images.
To generate adversaries for vital sign monitoring, we pro-
pose additional conditions that are imposed on the potential
perturbation δ. Here are two key design considerations for
optimizing perturbations:

• Localized Perturbations: Rather than applying pertur-
bations to the entire image or radargram, we advocate
adding δ exclusively to the range bins where the target
of interest is situated. For instance, if the target resides
on the nth range bin, then the vital sign would predom-
inantly span across the neighboring range bins of n.
Consequently, perturbations should also be introduced
to these pertinent range bins. This design consideration
is ensured in the algorithm’s process-step 4 through dj
in Equation 6, specifically through the offsets parameter
in the expression of dj as shown in Equation 3.

• Structured Perturbations: The aforementioned ap-
proach of perturbation addition in Equation 4 oper-
ates on a per-pixel or per-element basis within the
radargram, lacking structure and specificity tailored to
deceive vital sign estimation models. As an alternative
strategy, we propose the introduction of a periodic
signal, specifically a sinusoid, atop the genuine periodic
vital sign signature. This augmentation aims to ensure
that the perturbation sinusoid is just enough to over-
whelm the original vital sign, rendering it challenging
for the vital sign estimation model to accurately predict
true heart rate. This design consideration is realized in
the algorithm introducing sinusoid with frequency fosc
in the first term of dj as shown in Equation 3.



Our proposed Algorithm 1 incorporates the creation of
a structured, localized perturbation guided by learned pa-
rameters through gradient optimization, reflecting the nature
of the vital signature. The following equation represents the
proposed defense objective, where y is the target heart rate,
typically away from the true heart rate:

minimize
δ∈∆

ℓ(hθ(xi,j + δi,j,k), y) (5)

In our case, δi,j,k is a function of optimized frequency
and spatial amplitude of the perturbation sinusoid in the
radargram, i.e. δi,j,k : f 7→ f(Aopt, fopt)

Our attack budget is not defined by a single parameter but
rather by a set of constraints. Specifically, it is a combination
of several factors where the constraints are represented as
∆ = {δ : δA ≤ ϵA, δf ≤ ϵf}.

Algorithm 1 Sinusoidal Defense Algorithm
Input:

• hθ(·): Target (trained) model
• x ∈ RM×N : Original radargram
• y: Targeted HR (away from true HR)
• α: Step size
• T : Number of iterations
• L(·): Loss function

Output:
• Optimized frequency fopt and spatial amplitude Aopt
• Perturbed radargram x′ ∈ RM×N

Process:
1: Initialize x′ ← x
2: Initialize frequency estimate fopt ← random number ∈

[fmin, fmax]
3: for t = 1 to T do
4: Generate synthetic radargram perturbation with dj

defined by Equation 3:

δi,j,k(Aopt, fopt) = exp

(
−
(
tk − dj
ω0/Ts

)2
)
·

exp (i · 2π · f0 · Ts(tk − dj)) (6)

5: Add the perturbation to the original radargram:

x′ ← x+ δi,j(Aopt, fopt)

6: Compute the gradient of the loss w.r.t. fopt and Aopt:

Gf ← ∇foptL(hθ(x
′), y) & GA ← ∇AoptL(hθ(x

′), y)

7: Update the estimated frequency using gradient descent:

fopt ← fopt − α ·Gf & Aopt ← Aopt − α ·GA

8: Clip the updated frequency and spatial amplitude to ensure
it stays within predefined bounds:

fopt ← clip(fopt, fmin, fmax) &

Aopt ← clip(Aopt, Amin, Amax)

9: end for
10: return Optimized fopt, Aopt, and x′

A. Constraint on Frequency:

For heart rate estimation, we should ensure that it is
recommended that the deviation δf from the true frequency
be kept within ϵhr, ensuring that the estimated heart rate
falls within the physiological range of 50 to 100 beats per
minute, indicative of normal human heart rate. Any data
falling outside this range should be classified as noise and
disregarded by the system.

B. Constraint on Spatial Amplitude/ Span:

The spatial amplitude of the perturbation signal, also
known as the perturbation sinusoid, should be kept within
the target’s occupancy range bins, such that δA ≤ ϵA, where
| ϵA | is 25 range bins. This limitation arises from human
targets typically occupying an average of 46 cm, which is
around 50 range bins at specific time intervals, given the
scale of 9 mm per range bin in P440 UWB radar [29].

The algorithm optimizes both frequency fopt and spatial
amplitude Aopt of the sinusoidal perturbation based on the
above constraints to ensure the attack remains within the
physiological and spatial limits defined for heart rate esti-
mation and radargram occupancy.

V. HARDWARE AND MEASUREMENT SETUP

A. UWB Radar Setup

We utilize a monostatic time domain Ultra-WideBand
(UWB) Impulse Radar P440 [29] with time windowing
capabilities for sensing vital signs. It operates from 3.1 to
4.8 GHz frequency centering at 4.3 GHz.

B. Programmable Servo Motor

As an anti-sensing mechanism, we propose using an off-
the-shelf SG90 servo motor programmed via an ESP32
WROOM Mini microcontroller to generate variable fre-
quency motion tailored to specific requirements. By opti-
mizing the perturbation fopt within predefined constraints
(normal heart rates range from 50 bpm to 100 bpm), this
setup allows for precise, reproducible frequency motion that
can effectively counteract radar sensing mechanisms. A 3D-
printed octahedral reflector, with a diameter of 4.3 cm and
wrapped in copper tape, is attached to the motor to improve
reflectivity and enhance the signal-to-noise ratio (SNR).
Figure 3 illustrates the setup of the anti-sensing device, which
is compact enough to be worn on the wrist.

VI. RESULTS

A. Anti-Sensing on Deep Learning-based Vital Sign Estima-
tion Models

1) Dataset: To validate our proposed anti-sensing de-
fense algorithm, we used a sleep dataset [3] collected in
a sleep laboratory. Two participants underwent overnight
full polysomnography (Siesta, COMPUMEDICS), which
included electrocardiography and respiratory inductance
plethysmography to measure chest and abdominal wall mo-
tion along with simultaneous contactless UWB radar data
collection.



Dataset Setting HR Model MAE (Without Anti-Sensing) MAE (With Anti-Sensing)

Tasnim et al. [3] Sleep Lab
ResNet - 18 [30] 2.67 bpm 5.35 bpm
ResNet - 50 [30] 2.37 bpm 5.63 bpm
CNN 1D+2D [31] 5.63 bpm 12.91 bpm

Vision Transformer (ViT) [32] 3.28 bpm 9.35 bpm

TABLE I: HR Sensing Model Performance with and without Anti-Sensing on Sleep Dataset

Octahedral 
Reflector

SG90 
Servo
Motor

ESP 32
Mini

Fig. 3: A programmable servo motor paired with a ESP 32
Mini. A 3D-printed octahedral reflector wrapped with copper
tape is attached as a load to the motor to enhance reflectivity
and increase the signal-to-noise ratio (SNR).

2) Models: We employed pre-trained ResNet-18, ResNet-
50 [30], and Vision Transformer (ViT) [32] models and
fine-tuned them on the sleep dataset for regression task of
heart rate estimation. Additionally, we used a CNN-based
model [31] that combines both 1D and 2D signal extraction
approaches.

Figure 4 shows the Bland-Altman plots comparing the pre-
trained and fine-tuned ResNet-18, ResNet-50, CNN 1D+2D,
and Vision Transformer (ViT) models on sleep clinic data
with and without anti-sensing perturbations. Without anti-
sensing, the mean differences were 0.48, 0.64, 4.07, and
1.21 for ResNet-18, ResNet-50, CNN 1D+2D, and ViT
respectively, indicating a close match between predictions
and ground truth. However, with anti-sensing applied, the
mean differences increased to −5.30, 4.91, 12.55, and 8.40,
respectively, highlighting the algorithm’s effectiveness in
disrupting model accuracy.

Figure 5 further illustrates the growing disparity between
predicted and actual heart rates under anti-sensing, while
Table I shows a significant increase in MAE after the attack:
2.68 bpm for ResNet-18, 3.26 bpm for ResNet-50, 7.28 bpm
for CNN 1D+2D, and 6.07 bpm for ViT.

B. Evaluating our Anti-Sensing Device

Figure 6 shows a comparative analysis of a sample hu-
man heart rate measurement with and without the anti-
sensing motor running at 98 RPM positioned in front of
the participant. Without anti-sensing (bottom left), the FFT
plot displays the ground truth heart rate of 86 bpm as a
prominent peak. Conversely, the FFT plot for the case with
anti-sensing (bottom right) shows the anti-sensing motor’s
frequency as the highest peak, demonstrating the impact of
the anti-sensing motor on the measurement. The harmonics

(a) W/o Anti-Sensing (Resnet-
18)

(b) With Anti-Sensing
(Resnet-18)

(c) W/o Anti-Sensing (Resnet-
50)

(d) With Anti-Sensing
(Resnet-50)

(e) W/o Anti-Sensing (CNN
1D+2D)

(f) With Anti-Sensing (CNN
1D+2D)

(g) W/o Anti-Sensing (ViT) (h) With Anti-Sensing (ViT)

Fig. 4: Comparison of Bland Altman Plots from Resnet-
18, Resnet-50, CNN 1D+2D, and Vision Transformer (ViT)
models for HR estimation without (left column) and with
(right column) anti-sensing perturbation applied on sleep
dataset.

of the breathing rate (BR) at 60 bpm are evident in each
FFT, as the participant’s breathing rate was 20 bpm.

To evaluate the performance of our anti-sensing device, we



(a) W/o Anti-Sensing (Resnet-
18)

(b) With Anti-Sensing
(Resnet-18)

(c) W/o Anti-Sensing (Resnet-
50)

(d) With Anti-Sensing
(Resnet-50)

(e) W/o Anti-Sensing (CNN
1D+2D)

(f) With Anti-Sensing (CNN
1D+2D)

(g) W/o Anti-Sensing (ViT) (h) With Anti-Sensing (ViT)

Fig. 5: Comparison of Resnet-18, Resnet-50, CNN 1D+2D,
and Vision Transformer (ViT) model performance on HR
prediction without (left column) and with (right column) anti-
sensing perturbation applied on sleep dataset.

HR Model MAE (W/o Motor) MAE (With Motor)
FFT 2.42 bpm 8.17 bpm

ResNet - 50 2.93 bpm 7.23 bpm
CNN 1D+2D 9.24 bpm 17.56 bpm

TABLE II: Performance on Real Anti-Sensing motor at-
tached to the wrist.

collected data from five individuals wearing it on their wrists,
with the wrist positioned close to the chest. The ground
truth was collected with a Galaxy smart watch. For each
participant, we first executed the sinusoidal defense as de-
picted in Algorithm 1 for a specific heart rate (HR) model to
determine the optimal servo frequency and spatial amplitude.
Subsequently, the ESP32 microcontroller was programmed
to rotate the servo at the optimized frequency. The spatial
amplitude of the system was adjusted by modifying the arm
length to which the octahedral reflector was mounted.

Table II shows the impact of the anti-sensing motor on the
mean absolute error (MAE) of three heart rate (HR) models.
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Fig. 6: Sample comparison of HR measurement with (right
column) and without (left column) anti-sensing motor run-
ning at 98 RPM in front of the participant. The top row
displays the corresponding 2D radargrams, the middle row
shows the 1D extracted signals, and the bottom row features
the FFT plots.

For the FFT model, the MAE increased from 2.42 bpm
without the motor to 8.17 bpm with the motor. Similarly, the
ResNet-50 model experienced an increase in MAE from 2.94
bpm without the motor to 7.23 bpm with the motor. The CNN
1D+2D model showed a notable rise in MAE from 9.24 bpm
without the motor to 17.56 bpm with the motor. The rest of
the models perform very poorly, even without anti-sensing;
hence, the results are not included. Overall, introducing the
anti-sensing motor led to a degradation in performance for
all models, with the CNN 1D+2D model exhibiting the
most substantial increase in error. The varying degrees of
performance degradation across different heart rate models
can be attributed to differences in model architectures and
the optimized perturbation frequency, which varies across
participants.

VII. CONCLUSION AND FUTURE WORK

This paper presents Anti-Sensing, a novel defense against
unauthorized radar-based heart rate sensing. By introducing
physically realizable perturbations via a wearable device,
we disrupted radar sensing models, leading to inaccurate
heart rate estimations and enhanced privacy protection.
Our gradient-based algorithm optimized device oscillations
within physiological limits, with experiments validating its
effectiveness. Given the growing reliance on radar for human
sensing in robotics, this research is crucial for ensuring
privacy and security in next-generation robotic systems.

While this work establishes the foundation for physical
anti-sensing in the radar domain, future efforts will extend



the technique to more complex tasks, such as gesture recog-
nition, and explore multi-modal defenses. In future, we aim
to refine the optimization of the perturbation mechanisms to
be real-time, lightweight, compact, and potentially battery-
free, further reducing user burden.
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