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Abstract—This paper studies the problem of securing task
offloading transmissions from ground users against ground
eavesdropping threats. Our study introduces a reconfigurable
intelligent surface (RIS)-aided unmanned aerial vehicle (UAV)-
mobile edge computing (MEC) scheme to enhance the secure task
offloading while minimizing the energy consumption of the UAV
subject to task completion constraints. Leveraging a data-driven
approach, we propose a comprehensive optimization strategy
that jointly optimizes the aerial MEC (AMEC)’s trajectory, task
offloading partitioning, UE transmission scheduling, and RIS
phase shifts. Our objective centers on optimizing the secrecy
energy efficiency (SEE) of UE task offloading transmissions
while preserving the AMEC’s energy resources and meeting the
task completion time requirements. Numerical results show that
the proposed solution can effectively safeguard legitimate task
offloading transmissions while preserving AMEC energy.

Index Words—6G wireless, deep reinforcement learning, MEC,
RIS, secrecy energy efficiency, security, UAV.

I. INTRODUCTION

In the advancing landscape of mobile edge computing
(MEC) architectures, unmanned aerial vehicles (UAVs) have
been proposed to enhance the Quality of Service (QoS) in
scenarios demanding substantial computing power coupled
with minimal latency. Incorporating UAVs within MEC en-
ables leveraging their deployment flexibility. Notably, UAVs
can swiftly extend communication coverage while ensuring
user connectivity, especially where ground-based networks
cannot provide sufficient computing resources or in cases of
high user demand. Nonetheless, UAV-assisted MEC presents
several challenges, attributed to inherent limitations of UAVs’
power reserves and computational prowess, resulting in sig-
nificant operational costs and escalated power and computing
demands [1]. UAV-aided MEC operations, particularly within
dense urban deployments, are frequently disrupted by obsta-
cles such as buildings, which significantly impair line-of-sight
(LoS) air-to-ground (A2G) connectivity.

Research on reconfigurable intelligent surfaces (RIS)
presents an important advancement toward next-generation
wireless communication networks. Comprising a multitude of
cost-effective planar metasurfaces consisting of an array of
passive antenna elements, the RIS phase shifters are electron-
ically manipulated for precise control over radio frequency
(RF) propagation and design of intelligent radio environments.
Smart radio environments, empowered by RIS technology,

play a crucial role in optimizing data transmission and pro-
cessing, effectively mitigating disruptions in connectivity and
QoS degradations inherent in uncontrolled wireless channels.
RIS-enhanced smart radio environments offer promising av-
enues for spectrum sharing and optimizing security of wireless
communication networks.

A RIS can be strategically deployed for improving the
RF propagation in UAV-aided MEC scenarios to facilitate
reliable, resilient, and high data rate communication links,
particularly in environments characterized by a high probabil-
ity of non-LoS (NLoS) conditions, such as dense urban areas
with increased blockages. By dynamically adjusting the phase
and amplitude of electromagnetic waves, the RIS can create
focused beams or redirect signals, effectively establishing LoS
links even in challenging urban environments. Recent research
has studied RIS-assisted techniques within UAV-aided MEC.
Reference [2] proposes a secure multi-layer MEC system
employing a UAV with a RIS as an aerial edge server. The
paper assists task offloading from multiple ground users to a
base station (BS) in the presence of an active eavesdropper
by iteratively optimizing RIS phase shifts, UAV deployment,
power, and computing resource allocation subject to power
constraints while maximizing the total number of secure
computing tasks among all users. The authors of [3] leverage
RIS in UAV-MEC networks and propose a double deep Q-
network (DDQN) to minimize UAV energy consumption by
optimizing task offloading decisions, UAV computing resource
allocation, communication resource allocation, and RIS phase
shifts. The work presented in [4] develops a joint multi-
UAV path planning/transmission scheduling algorithm that
maximizes the number of computing tasks and performance of
UAVs and minimizes the total energy consumption of UAVs
through an iterative algorithm. Reference [5] employs the
Lyapunov optimization to decompose the non-convex prob-
lem of minimizing the UAV edge computing system energy
consumption into subproblems that optimize the transmission
power, RIS phase shift matrix, UAV trajectory, computing
resource allocation, and the stability of task queues.

Motivated by these research studies, this paper introduces
an effective RIS-aided UAV-MEC scheme for maximizing
secure task offloading, where ground user equipment (UEs)
offload tasks to a UAV acting as an aerial MEC (AMEC)
server equipped with computational resources, while minimiz-



ing the total energy consumption of the UAV in the presence
of eavesdroppers attempting to capture the confidential tasks
being transmitted to the UAV for task offloading. We employ
a data-driven algorithm for jointly optimizing the AMEC po-
sition, task offloading policy, task offloading scheduling, and
RIS phase shifts for optimizing the secrecy energy efficiency
(SEE) of these transmissions.

The rest of the paper is organized as follows: Section II for-
mulates the system model and optimization problem. Section
III introduces a deep reinforcement learning (DRL) scheme
based on the deep deterministic policy gradient (DDPG) for
solving the the optimization problem. The numerical analysis
of Section IV shows the effectiveness of the proposed ap-
proach. Section V draws the conclusions.

II. SYSTEM MODEL

A. System Model

We consider a scenario where a rotary-wing UAV is de-
ployed as an AMEC server to provide confidential compu-
tational offloading and secure content delivery services to
K ground UEs distributed within an equal-length X × Y
horizontal grid in the presence of E ground eavesdropping
nodes. For a better representation and analysis of the system
model dynamics, we consider that the time period Ta is
divided into N time slots, where the duration of each time
slot is defined as ts = Ta

N , where N is large enough so that
channel information remains unchanged within a time slot.
The locations of ground UEs and eavesdroppers in time slot
n are given by qk[n] = [xk[n], yk[n]]

T , k ∈ [1,    ,K] and
qE [n] = [xe[n], ye[n]]

T , e ∈ [1,    , E], respectively.
The AMEC and all ground UEs are equipped with a single

omnidirectional antenna and orthogonal frequency division
multiplexing is the employed waveform. Channel access for
task offloading transmissions follow the time division multiple
access (TDMA) scheme, where only a single user will be
selected in each time slot to transmit [6]. The 3-D Cartesian
location of the AMEC node in time slot n is defined as
qA[n] = [xa[n], ya[n], za[n]]

T .
The system also features an RIS with coordinates qR[n] =

[xr[n], yr[n], zr[n]]
T . The RIS is installed on the surface

of one of the surrounding buildings to redirect the signals
between AMEC and ground UEs. We assume that the RIS
forms a uniform linear array (ULA) of A reflecting elements,
as in [7]. The phase shift array in the nth time slot is defined
as ϕ[n] ∈ CO×O,ϕ[n] = diagejθ1[n], ejθ2[n], · · · , ejθO [n],
where o[n] ∈ [0, 2π), o ∈ [1, 2, , O] denotes the phase of
the oth element.

Since the ground UEs have limited computing resources,
in this considered communication system, each ground UE
k offloads a portion of its confidential and time-sensitive
task Ψk = Ck, Dk, Tk to the AMEC node through the
direct communication path and the indirect transmission path
facilitated by the RIS. For task Ψk, Ck denotes the total
number of CPU cycles for task execution, Dk describes the
data transferred for task offloading, and Tk is the time taken

to complete the computing task. The instantaneous data rate
of wireless transmission from user k to the AMEC node for
task offloading is expressed as

Ωk[n] = Bklog2


1 +

Pk

2
k

hk[n]


, (1)

where Bk is the transmission bandwidth available to the kth

source UE, Pk is the UE’s transmission power, 2
k is the

variance of the additive white Gaussian noise (AWGN) at
the UE, and hk[n] is the channel gain between the AMEC
node and the kth UE. Parameter hk[n] can be expressed under
the probabilistic LoS air-to-ground (A2G) communication
channel as

hk[n] = 
LoS

× gUAR
k [n]  

LoS UE-RIS-AMEC

+(1− 
LoS

)× 0
d2UA[n]

,

  
NLoS UE-AMEC

(2)

where 
LoS

is the probability of establishing an LoS link,
gUAR
k [n] is the UE-RIS-AMEC channel gain, and γ0

d2
UA[n]

is
the NLoS UE-AMEC channel gain with 0 as the reference
path loss and dUA is the distance difference between the
ground UE and AMEC. Based on empirical field measure-
ments [8], 

LoS
() between the AMEC node and a ground

node can be calculated as


LoS

() =
1

1 + C exp [−B ( − C)]
,

 =
180

π
arctan


za[n]

r




(3)

In this context, C and B are constants that depend on the
communications environment, such as rural, urban, or densely
urban. Parameter za[n] represents the height of the AMEC
node and r represents the horizontal distance between the
AMEC node and the ground receiver. Note that the LoS and
NLoS probabilities are related as 

NLoS
() = 1− 

LoS
().

The UE-AMEC-RIS channel,
gUAR
k [n] = R

k [n](g
UA
k [n]× ϕ[n]× gAR

k [n]), (4)

where R
k [n] = 0, 1,K

k=1 
R
k [n] = 1, ∀n denotes whether

the RIS will be serving the kth UE or not to ensure only one
user will be served in the nth time slot. Parameters gUA

k [n]
and gAR

k [n] are the channel gains from the UE to the AMEC
node and from the AMEC node to the RIS, respectively. They
can be formulated as

gUA
k [n] =

√
λ0

d2UA[n]


1, e−j 2π

λ
Υφ[n]UA

, · · · , e−j 2π
λ

(M−1)Υφ[n]UA

,

gAR
k [n] =

√
λ0

d2AR[n]


1, e−j 2π

λ
Υφ[n]AR

, · · · , e−j 2π
λ

(M−1)Υφ[n]AR

,

(5)
where  is the carrier wavelength, Υ is the antenna separation,
dUA[n] is the distance between the UE and AMEC node,
dAR[n] is the distance between the AMEC node and the RIS,
and [n]UA and [n]AR are the angle of departure (AoD)
components of the transmitted signal from the UE to the
AMEC node and from the AMEC node to the RIS in the
nth time slot, respectively [9].

The confidentiality risk of task offloading under an eaves-
dropping attack can be quantified using the secrecy capacity. It



is defined as the maximum transmission capacity at which an
eavesdropper can decode no information, which is calculated
as the difference between the capacity of the legitimate
channel and that of the wiretap channel [8]:

ΩSE [n] = max

(Ωk[n]−max

e∈E
Ωe[n]), 0


 (6)

Parameters Ωk[n] and Ωe[n] represent the channel capacity
of the desired transmission system and the wiretap channel
capacity, respectively. The latter can be calculated as

Ωe[n] = Belog2


1 +

Pee0
2
ed

2
UE [n]


, (7)

where Be is the allocated eavesdropping bandwidth, Pe is
the eavesdropping power, 2

e is the variance of the AWGN
at the eavesdropper, e0 is the path loss reference at the
eavesdropper, and d2UE is the distance between the transmitter
and the eavesdropper.

The propulsion energy of the rotary-wing UAV as proposed
in [10] can be calculated as

Ap [n] = ts


c


1 +

3 ν[n]2

Γ2
tip


+

1

2
   Λ(ν[n])3+

h


1 +

ν[n]4

4ν4o
− ν[n]2

2ν2o

 1
2

+ vν
v[n]


,

(8)
where c and h are the constant blade profile power and
induced power in hovering status, respectively, v is the
constant power of ascending/descending, ν[n] and νv[n] are
the horizontal and vertical flying speeds of the AMEC node,
νo is the mean rotor induced velocity, Γtip is the tip speed
of the rotor blade,  is the fuselage drag ratio,  is the air
density,  is the rotor solidity, and Λ ≈ πr2 corresponds to
the rotor disc area with rotor radius r.

The latency experienced for the offloading of task Ψk as
shown in [11] can be represented as

µk = (1− αk)
Ck

cUk
+ αk


Ck

cAk
+

Dk

ΩSE


, (9)

where αk ∈ [0, 1] denotes the proportion of the task offloaded
from the kth UE to the AMEC server, whereas cUk and cAk
represent the CPU cycles reserved for the task computation
at the UE and AMEC server, respectively. Expression ΩSE =N

n=1 ΩSE [n]N captures the average secrecy capacity be-
tween the UE and the AMEC server. The energy consumption
for processing task Ψk in part by the AMEC server (Ac

k ) and
in part by the UE (Uc

k ) can be formulated as
Ac

k = αkG(cAk )
χ−1Ck,

Uc

k = αk
Dk

ΩSE
Pk + (1− αk)G(cUk )

χ−1Ck,
(10)

where G is the effective switched capacitance and  ≥ 1 is a
positive constant [11].

B. Problem Formulation

The objective of this paper is to maximize the total SEE,
which is defined as the ratio of the system sum secrecy

capacity to its energy consumption [12], for the task offloading
channel from the UEs to the AMEC server by maximizing
the secrecy capacity while minimizing the total energy con-
sumption of the AMEC node and satisfying the tasks’ latency
requirements. The optimization problem is defined as

P : max
ϕ,qA,α,ωR

K
k=1

ΩSE

N
n=1

Ap [n] +
K

k=1

Ac

k

, (11.a)

st  ejθo = 1, ∀o, (11.b)

qA[n+ 1]− qA[n] ≤ tsνmax, (11.c)

µk ≤ Tk, ∀k, (11.d)

0 ≤ α ≤ 1, (11.e)

K

k=1

αkc
U
k ≤ U , (11.f)

R
k [n] = 0, 1,

K

k=1

R
k [n] = 1, ∀n, ∀k (11.g)

Problem P is subject to several constraints: (11.b) is the RIS
phase shift constraint, (11.c) is the UAV velocity constraint
within its trajectory; (11.d) ensures that task’s latency is within
its required completion time; (11.e) establishes that fractions
of tasks can be offloaded, (11.f) ensures that there are available
AMEC resources for task completion, and (11.g) ensures that
only one user is being served by the RIS at a time for task
offloading transmission.

III. PROPOSED SOLUTION

Optimization problem (11) requires a joint approach to
AMEC positioning, user selection, task partitioning, and ad-
justment of the RIS reflecting elements in the presence of
eavesdropping. The objective function of (11) is non-concave
because of the correlations among the optimization variables
along with the unit modulus constraint of ϕ [7]. Therefore, the
optimization problem is found to be a non-convex and non-
trivial optimization problem [13]. Since there is no standard
method for solving such a non-convex optimization problem,
we investigate solving the problem employing data-driven
solutions instead of conventional mathematical optimization
tools. Most of the traditional solutions to equivalent multi-
parameter optimization problems are iterative and alternately
optimize the parameters reaching suboptimal results [12].
Alternatively, we propose a DDPG algorithm for establishing
a continuous action space [14] and solve the non-convex
problem of this paper. The solution maximizes the SEE while
minimizing the energy consumption of the AMEC server and
satisfying the latency requirements of the offloaded user tasks.

A. MDP Formulation

The AMEC server acts as a DDPG agent with a Markov
decision process (MDP) composed of the state space S ,
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Fig. 1: Block diagram of the proposed DDPG architecture.

the action space A, the reward space R, and the transition
probability space T : (S,A,R, T ).
State: The set of states is defined as S = s1, , sn, , sN
State sn = sQA, sVA , sEA, sCA, s

ϕ
R, s

S
U , s

T
U , s

C
U captures all rele-

vant system features: AMEC node position sQA , AMEC node
velocity sVA , AMEC node energy sEA , available computing
resources sCA for task offloading, RIS phase shifts sϕR, task
size sSU at the UE, task completion time sTU at the UE, and
available computing resources sCU at the UE.
Action: The states are transited according to the defined
actions. A set of actions is defined as A = a1, , an, , aN
Action where each action at time an = aVA , aQA, a

ϕ
R, a

α
U , a

ω
U

comprises the UAV velocity aVA , the UAV flight direction aQA ,
RIS phase shift adjustments aϕR, task offloading decision aαU ,
and UE selection aωU . Actions aαU and aωU are introduced
as continuous probability variables to deal with the binary
variables α and R

k . If aαU or aωU ≥ 05, then α or R
k are

rounded up to 1 or else to 0 [15].
Reward: After taking action an in state sn at time slot
n, the agent will receive reward rn(sn, an). The reward

function, rn(sn, an) =

K
k=1

ΩSE [n]

ςAp [n]+
K

k=1

ςAc
k

, is designed to support

the desired SEE performance objective.

B. Deep Deterministic Policy Gradient

The DDPG algorithm leverages the actor and the critic
networks as depicted in Fig. 1. The actor network is employed
to formulate a deterministic policy that optimizes the output
of the critic network. It processes the state inputs and pro-
duces deterministic actions. The critic network is designed
to approximate the Q-value function, thereby assessing the
deterministic policy generated by the actor network. It receives
the deterministic policy from the actor network as its input
and outputs the corresponding Q-values. Both the actor and
the critic network consist of a training and a target network.
Consequently, the DDPG algorithm encompasses a total of
four neural networks [16].

When the agent takes an action, the system generates an ex-
perience record. At time step n, this experience comprises the

current state sn, the action an, the reward rn, and the subse-
quent state sn+1, forming tuple en = (sn, an, rn, sn+1). Each
such experience is stored in a replay memory with a capacity
of ℵ, resulting in the memory set M = e1, , et, , eℵ.
The DRL model is then updated by sampling mini-batches
from this replay memory, rather than relying solely on the
most recent state transition.

The updates of the training critic network are obtained as
ðc = ðc − ϱc ∆ðc

ℓ(ðc), (12)

where ðc represents the weights and the bias of the training
critic network, ϱc is the learning rate, and ∆ðt

c
is the gradient.

Parameter ℓ(ðc) is the loss function of the training critic
network, which can be computed as

ℓ(ðc) = E


rn +  × Q


ð†c  (sn+1, ã)


−


Q

ðc  (sn, an)

2

, (13)

where ã is the action of the agent that follows the deterministic
policy drafted by the target actor network whereas ð†c captures
the network’s weights and bias. The training network updates
occur more frequently than the target network updates.

The parameters updates for the training actor network are
obtained as

ða = ða − ϱa ∆aQ

ð†c  (sn, an)


∆ða

℧(ða  sn), (14)

where ða corresponds to the weights and bias of the training
actor network ℧(ða  sn), ϱa is the learning rate, ∆aQ(·) is
the gradient of the target critic network output with respect to
the action taken, and ∆ða

℧(·) is the gradient of the training
actor network given ða. The gradient ∆aQ(·) is incorporated
into the update of the training actor network to ensure that the
subsequent action selection by the critic network optimizes the
Q-value function.

The target critic and target actor network updates are
obtained as

ð†c ← c ðc + (1− c) ðc, (16)

ð†a ← a ða + (1− a) ða, (15)

where c and a are the learning rates for updating the critic
and actor networks, respectively.

IV. SIMULATION RESULTS

We numerically analyze the performance of the proposed
scheme for optimizing the SEE of the RIS-assisted AMEC
system while minimizing the total energy consumption of the
AMEC server and satisfying the task latency requirements.
The environment consists of 6 ground UEs and 3 eaves-
droppers that are randomly distributed in a (600, 400) m
square area. The RIS is deployed on the surface of one of
the surrounding buildings at (200, 200, 20) with O = 64
reflection elements. The AMEC server initiates its mission
with a 140 KJ energy level and the AMEC mission time is
set to N = 200 time slots. Table I provides the parameters



of the simulated scenarios and the hyperparameters of the
proposed DDPG algorithm. Both the critic and actor networks
of the proposed DDPG algorithm consist of the input layer,
output layer, and two fully connected hidden layers with
80 and 40 neurons, respectively. The state space size is
I ′s = 2A+8, which is equivalent to the number of the neurons
of the input layer, where 2A captures the changes of each
complex beamforming vector of the A reflecting elements
and 8 represents the number of other parameters stated in
the previous section for each state. Expression O′

a = 2A+ 4
captures the size of the action space which corresponds to the
number of neurons of the output layer.

TABLE I: Simulation Parameters.

Fig. 2 illustrates the efficacy of the proposed DDPG-based
algorithm for optimizing the SEE of the system. It plots
the SEE, which corresponds to the reward function that we
defined earlier, over the learning episodes for the proposed
DDPG solution with 64 and 32 RIS elements and a deep
Q-learning (DQL)-based technique using the same objective
and reward functions. The DQL-based approach utilizes a
similar DNN architecture as employed in both the critic and
actor networks of the DDPG. It can be observed that the
DDPG-based solution outperforms the DQL baseline. This is
so because of the DDPG’s capability to produce a specific
action due to its deterministic policy nature rather than a
value estimation of the DQL for action selection as an off-
policy value-based method. On the other hand, the DQL
approach converges faster as the DQL excels in discrete action
spaces with a simpler implementation. We further observe
that as the number of reflecting elements increases, the SEE
performance improves. This enhancement is attributed to the
greater degrees of freedom for signal reflection optimization,
leading to better signal alignment at the receiver yielding to
improving the SNR and the overall communication quality.
However, as the number of RIS-reflecting elements increases,
the computational complexity of the solution increases as well,
resulting in a longer convergence time of the proposed solution
because of the larger action and observation spaces that the
DDPG algorithm must manage and learn from.

Figure 3 illustrates the optimized 3D trajectory obtained
for the UAV utilizing the proposed DDPG-based strategy. The
UAV takes off at (0, 0) and the trajectory optimization is set
to begin after reaching an altitude of 60 m. After that, the
UAV carrying the AMEC server strategically navigates its path
between different ground users based on the DDPG algorithm
while maneuvering the environment blockage (buildings) to
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Fig. 2: SEE performance for different numbers of RIS-
reflecting elements versus learning episodes for the proposed
DDPG solution and DQL benchmark technique.

boost the LoS communications probability with the help
of the RIS to enhance the signal quality given the ground
user locations/channels while minimizing the exposure to
eavesdroppers. The result illustrates the robustness of the
DDPG algorithm in handling uncertainties within the network
environment via the dynamic adaptability of the optimized
trajectory in response to varying ground users’ locations and
computation offloading requirements over time.

Figure 4 presents the AMEC energy level over its flight
time represented in time slots. The goal is assessing the pro-
posed algorithm’s performance and examine the importance of
the individual components in minimizing the AMEC energy
consumption. The figure highlights the algorithm’s success in
preserving approximately 65% energy of the initial AMEC
energy by the end of its operation. Without RIS phase shift
optimization, only 55% energy capacity remains at the end of
the mission, underscoring the RIS phase shift optimization’s
pivotal role in enhancing the energy minimizing of the AMEC
operation. Without UAV trajectory optimization but with RIS
phase shift optimization, the remaining energy level drops to
50% of its initial capacity, pointing to the critical importance
of optimizing the UAV trajectory for conserving energy.

Fig. 3: DDPG-based AMEC optimized trajectory.
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Fig. 4: AMEC energy level over operation time slots for the
proposed solution and other techniques.

V. CONCLUSIONS

In this paper, we have investigated the potential of RIS-
aided AMEC for securing the legitimate task offloading trans-
mission of multiple ground users to the aerial edge server in
the presence of eavesdropping attacks. The UAV trajectory,
ground user selection, task offloading proportion, and the RIS
phase shifts need to be jointly optimized to maximize the SEE
while minimizing the total energy consumption of the AMEC
server and satisfying task completion latency requirements.
We have proposed a DDPG-based algorithm to determine the
control policy for the continuous UAV path planning, users
selection, task offloading, and RIS phase shifter action spaces
of the system. Numerical results have shown the capability
of the proposed solution to maximize the SEE performance
while preserving the energy level of the AMEC server and
satisfying the QoS requirements.
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