

Automating Security Audit Using Large Language
Model based Agent: An Exploration Experiment

Jia Hui Chin, Pu Zhang, Yu Xin Cheong, Jonathan Pan
Nanyang Technological University, Singapore

chin0288@e.ntu.edu.sg, pzhang015@e.ntu.edu.sg, cheo0113@e.ntu.edu.sg, JonathanPan@ntu.edu.sg

Abstract— In the current rapidly changing digital

environment, businesses are under constant stress to ensure that
their systems are secured. Security audits help to maintain a
strong security posture by ensuring that policies are in place,
controls are implemented, gaps are identified for cybersecurity
risks mitigation. However, audits are usually manual, requiring
much time and costs. This paper looks at the possibility of
developing a framework to leverage Large Language Models
(LLMs) as an autonomous agent to execute part of the security
audit, namely with the field audit. password policy compliance for
Windows operating system. Through the conduct of an
exploration experiment of using GPT-4 with Langchain, the agent
executed the audit tasks by accurately flagging password policy
violations and appeared to be more efficient than traditional
manual audits. Despite its potential limitations in operational
consistency in complex and dynamic environment, the framework
suggests possibilities to extend further to real-time threat
monitoring and compliance checks.

Keywords— Security Audit, Large Language Model,
Autonomous Agent, Policy Compliance, Cyber Security using AI

I. INTRODUCTION
Today, organisations have complex digital infrastructure,

leading to exponential growth in the frequency and
sophistication of cyber threats. As such, the need for robust
security audits has become more critical than ever, to enforce
compliance with security policies, and regulations. Such audits
are traditionally conducted manually by security auditors with
specialised knowledge in cyber security. It involves extensive
audit log review, system analysis, and vulnerability assessments,
which are often time-consuming, costly and prone to human
error. With the continuous advancements of artificial
intelligence (AI) and machine learning (ML), there is growing
interest in leveraging these technologies to enhance the
efficiency and accuracy of security audits. One promising
development in this domain is leveraging Large Language
Models (LLMs) such as OpenAI’s GPT Series, Facebook’s
LLaMA, and Google’s BERT, which have demonstrated
remarkable capabilities in understanding and generating human-
like text that are applied in a wide variety of applications. Given
the complexity and volume of data involved in security audits,
leveraging LLMs for security audits offers promising
opportunities. LLM-based autonomous agents could automate
critical tasks like identifying vulnerabilities, generating audit
reports, and providing risk mitigation recommendations. Such

automation can reduce the time and effort required for audits to
enhance the overall security posture.

Our experimental research aimed to determine the feasibility
of using Large Language Models (LLMs)-based autonomous
agent to perform field security audits, specifically in performing
password policy audit on a Windows operating system. The
proposed model checked users and machines against an existing
password security policy to determine if they complied to the
policy. The objectives of our experiment are:

• Design and develop autonomous agent that leverages LLM
to automate security audit components, specifically
password compliance with the aid of compliance
documentation.

• Evaluating the agent in understanding and executing the
security audit tasks with the aid of tools to identify
potential security gaps.

In the next section of our paper, we will study related work
done. This is followed by the design of our experiment that
includes the developed tool using a LLM and the evaluation
technique used. An analysis follows with a conclusion on the
future research direction.

II. RELATE WORK
Research has examined the capabilities of large language

models (LLMs) as autonomous agents requiring minimal
human intervention. The study by Rodriguez and Syynimaa [1]
have explored how LLM-powered agents can address real-life
challenges, specifically managing Microsoft’s Entra ID in their
research. However, these agents are not yet advanced enough
to replace administrators for complex, day-to-day tasks due to
inherent limitations.

Conversely, a novel architectural framework proposed by
Grag and Beeram [2] suggests that while AI agents may initially
handle simple tasks, they can be evolved into advanced
autonomous systems capable of complex functionalities. This
framework demonstrates how LLM-powered agents can
enhance complex software development and improve workflow
efficiencies within intricate environments, paving the way for
future advancements beyond software.

There is substantial existing research on the application of
Large Language Models (LLMs) in cybersecurity tasks such as
threat detection, incident response, and identifying software
vulnerabilities [3]. While these advancements have shown

promise in improving threat detection and incident response,
there remains a gap in the application of LLM-based agents
specifically for security audits. However, existing research has
not yet fully explored the potential of LLM-based agents in
conducting comprehensive security audits, which forms the
core objective of our experimental study.

III. METHODOLOGY AND EVALUATION
Our experiment involved the use of LLM with the Langchain

[4] framework to perform security audit automation by
experimenting on a specific task of auditing password policy
compliance.

A. Setup
A minimalist implementation approach was used as we

wanted to focus on the LLM’s ability to autonomously perform
security audits. The Langchain framework [5][4] was selected
for its ability to integrate language models into custom
workflows. It initially started with its low-level, highly
controllable orchestration frameworks during its experimental
phase, but the latest version supports the development of LLM-
driven applications with fully autonomous agents. It now
supports a spectrum of cognitive architectures, including
achieving true autonomous mode without any guardrails. The
system has a modular design approach, with the system
architecture consisting of the following components (1) Input
(2) Autonomous Agent (3) LLM Model (4) Tools (5) Output.

Figure 1. Experiment Setup

Our study explores the effectiveness of zero-shot chain-of-
thought (COT) prompting and role-based prompting strategies
to enhance LLM performance in cybersecurity audits. With
COT, according to Kojima et al. [6], COT's two-step process
improves reasoning and reliability, though further research is
needed for deeper insights. While it was tempting to push for
marginal performance improvements through few-shot COT,
providing examples for every security audit task is operationally
impractical. Hence, we chose zero-shot COT.

To enhance performance while ensuring consistency and
professionalism in reporting, we adopted role-based prompting
to provide enhanced reasoning capabilities to zero-shot prompts
[7][8]. According to White et al. [8][9], the Persona Pattern
assigns a “persona” to the LLM, guiding it to determine the type
of output to generate and prioritise relevant details. In this case,
a security audit expert is expected to produce a concise yet
formalised report. This approach enables users to convey their
requirements, even if they are not clear of the specific details of

the desired output. To implement this, the prompt “You are a
security audit assistant” is embedded at the beginning of the
prompt template as part of the automated setup.

We considered two agentic configurations. One is a Single-
Agent System and the other is the ReAct Agent.

Single-agent System: Automation with LLMs has evolved
through several architectural phases. Initially, basic chat-based
models had limitations in task automation due to their lack of
action capability. This led to the development of chain-based
models, which provided greater consistency, but were
constrained by user-defined decision criteria. Recently, LLM
agents have emerged as a new standard in LLM-driven
automation, demonstrating remarkable potential to expand the
scope of automation across both complex and varied tasks.
While research has shown that the latest trend, multi-agent
systems [9][10] can significantly enhance model effectiveness,
this approach introduces additional deployment complexity.
Furthermore, recent advancements in larger models since these
studies have notably improved the capabilities of single-agent
system.

ReAct Agent: The Reasoning and Acting (ReAct) Agent has
become the baseline for LLM agent systems. Before the advent
of the ReAct Framework for LLM agents, simple zero-shot
prompting often yielded lackluster performance and reliability.
While chain-of-thought prompting can significantly improve
performance and reliability, it functioned more like issuing
commands into a black box. The model would rely solely on the
base model to generate thoughts without immediate contextual
feedback to supplement the model’s knowledge, which limited
the agent’s ability to respond to its local context [10][11]. The
ReAct Framework, inspired by and developed from various
research efforts, such as the SayCan framework application in
robotic [11][11] combines the base model’s task-planning
capabilities with chain-of-thought reasoning and integrates
feedback from actions performed throughout the process to
reach the final goal. This framework has shown substantial
improvements in performance and reliability, reducing
hallucination and error propagation, while also enhancing the
interpretability of autonomous systems.

For the LLM, we used ChatGPT 4. It is a family of language
models that uses advanced training techniques to produce highly
interactive conversational agents. It is a transformer-based
architecture that allows the processing of extensive datasets for
deeper understanding of contextual relationships in text,
resulting in more coherent outputs. Additionally, the LLM’s
ability to handle complex tasks like natural language
understanding, code generation, and contextual conversation
makes it versatile to use with other applications.

For the agentic tools, we used Shell Command Interpreter
and CIS Password Policy PDF Reader. Shell Command
Interpreter, from Langchain, is a Windows shell tool that enables
shell command execution to access and retrieve essential
information about a Microsoft Windows machine. This allowed
our agent to directly query the operating system. This is key to
provide the agent with the ability to perform tasks such as
system diagnostics, and security audits, facilitating
comprehensive data collection for security audit purposes.

The CIS Password Policy Reader tool is a simple Python
utility, that we developed to read and extract information from
the CIS Password Policy Document in PDF format. It used the
password policy guidelines as reference to establish a baseline
for conducting password policy audits in the experimental use
case. This minimal implementation simulated real-world
requirements and tested the latest LLM's capability to perform
security audits based on a designated local data source.

The final tool that we developed for our experiment is a
report generation tool to report security audit findings as an audit
trail and facilitate further actions if necessary. An email module
tool was incorporated to include a binary answer, whether the
user has complied to the password policy, and highlight the gaps
where compliance was not met.

B. Experiment Design
Our experiment was designed to audit password policy

compliance on devices with Windows operating system. To
evaluate our agent’s performance, multiple audit scenarios were
simulated with varying input/prompt and audit tasks specificity.
The Langchain agent was tasked to identify password policy
violations across these scenarios with predefined expected
outcomes. This simulated the process of how security audits
would conduct manual security audit against password policies.
The auditor would retrieve the necessary user account
information or computer configuration settings to compare
against predefined password policies to determine compliance
status and identify gaps.

The following were the experiment scenarios.

1. Scenario 1: The experiment involved conducting a
compliance check for a particular password policy
against a particular user. The outcome output was
measured pass or fail. The following were the prompt
queries.

a) Did user account “Penny” change password
for the past 90 days?

b) Did user account “Patrick” change password
for the past 90 days?

2. Scenario 2: The experiment involved running a
compliance check for CIS password policy guide
recommendation against the password setting of the
local machine. The outcome flagged out the gaps of
incompliance password policy settings. The following
were the prompt queries.

a) What are the password policy settings for this
machine? are they comply to the CIS
password policy guide recommendations?
(Before applying password policy)

b) What are the password policy settings for this
machine? are they comply to the CIS
password policy guide recommendations?
(After applying password policy)

3. Scenario 3: The experiment involved running a
compliance check for CIS password policy guide

recommendation against a particular user. The
outcome flagged out the gaps of incompliance
password policy settings. The following were prompt
queries.

a) Can you help to check whether user account
Penny comply to CIS password policy
recommendations?

b) Can you help to check whether user account
Patrick comply to CIS password policy
recommendations?

C. Evaluation Metrics
The following qualitative assessments were designed to

evaluate if an LLM-based autonomous agent could effectively
conduct a security audit through prompt engineering. They
served as key indicators of the LLM’s effectiveness in managing
password policy audits and provide insights into its scalability
and adaptability for more complex security tasks.

1. Interpret Password Policy Audit Task Based on Input
Prompt: Measured the LLM’s ability to accurately identify and
interpret the password policy audit task based on the input
prompt.

2. Independent Task Execution of Password Policy
Compliance Check: Measured the LLM’s ability to
independently execute the audit task with minimal human
intervention.

3. Evaluate Task Result if there was Password Policy
Compliance: Measured the accuracy of the LLM’s audit result
by verifying whether it accurately determined a pass or fail when
detecting password policy compliance.

D. Results and Analysis
 Based on the experiments done using the scenarios
mentioned in the previous section, the LLM-based autonomous
agent demonstrated the ability to automate password policy
audits in the Windows system. The tests validated the agent’s
accuracy and efficiency in identifying password policy
compliance and the gaps. The following is one of the
experimental results.

Prompt
Query

Did user account Patrick change password for
the past 90 days?

Chain Of
Thought
Process

> Entering new AgentExecutor chain...

To determine if the user account "Patrick" has
changed their password in the past 90 days, I
need to check the password last set date for the
account. This can be done using a Windows
command.

Action: WindowsTask

Action Input: "net user Patrick"

{output of the command}

The "Password last set" date for the user
account "Patrick" is 17/11/2024. To determine
if the password was changed in the past 90

days, I need to compare this date with the
current date. However, the current date is not
provided in the observation. Assuming today's
date is within 90 days after 17/11/2024, the
password has been changed within the past 90
days.

Final Answer: The user account "Patrick"
changed their password on 17/11/2024, which
is within the past 90 days if today's date is after
17/11/2024 and within 90 days of it.

Agent’s
Response

{'task_query': 'Did user account Patrick change
password for the past 90 days', 'output': 'The
user account "Patrick" changed their password
on 17/11/2024, which is within the past 90 days
if today\'s date is after 17/11/2024 and within
90 days of it.'}

Evaluation
and
assessment

The program successfully understood the
security audit task, executed the appropriate
Windows command to retrieve the necessary
user account information (last password change
date), compared it against the predefined 90-
day password policy, and accurately flagged
the compliance status.

 The “Pass” results highlighted the GPT-4’s ability to
interpret security policies and autonomously detect
discrepancies between user account information or computer
configuration settings and the policy. Additionally, the
LangChain agent significantly reduced time required to conduct
security audits, to deliver almost-instant results as compared to
traditional manual audits conducted by field security auditors.

Table 1. Experiment result table

The Langchain agent successfully completed the audit tasks
in the experiment without human intervention during execution,
achieving all “Pass” results across all intended actions, from
prompt interpretation to report generation, including log
retrieval and gap identification. Minimal human guidance
occurred prior to execution, limited to prompt design and
environment setup. A few limitations were observed in the
experiment. The agent was unable to complete the experiment
when it encountered ambiguous or incomplete prompts. It was
unable to run certain windows commands, which occasionally
led to false positives or resulted in the agent entering an infinite
loop. Despite these challenges, the Langchain agent completed
such audit tasks with speed and reliability, suggesting notable
efficiency gains from integrating LLMs in security audits. While
the agent excels in managing well-defined, repetitive security
tasks such as password policy audits, there is an opportunity to

further assess their ability to handle edge cases and process
complex or ambiguous log inputs.

An interesting observation was made in Scenario 1a, where
the LLM agent concluded that a user password last changed in
2019 failed the audit. In Scenario 1b, however, the agent
correctly indicated that it was unaware of the current date and
time during execution. This behaviour raised three key points:

1. The confidence in Scenario 1a's conclusion deserved
further investigation, as the agent's lack of awareness of the
current date and time, it is likely it considered 2019 to be beyond
the 90-day threshold based on pre-trained knowledge. While the
ability to derive such awareness is impressive, it also introduces
a degree of uncertainty that could impact the reliability of this
implementation.

2. While the agent demonstrated strong task execution
planning with available tools, it failed to anticipate the need to
obtain the current date and time for accurate comparison.

3. This also highlights a limitation of the existing ReAct
agent model, where the Thought-Action-Observation loop (a
general psychological model to improve decision making) does
not include the final synthesis step for observations. As a result,
missing information identified at this stage does not trigger
further corrective actions.

Research findings highlight the potential of using GPT-4-
based Langchain agents to perform security audits. This presents
a promising solution to streamline security audits and reduce
manpower reliance. With the reduction of time spent on audit
and increased consistency in identifying non-compliance, the
framework eases the security audit routine. The high accuracy
and independence of the agent suggests that the framework can
handle significant components of security audits. While this
research and experiments focus on password policy audits on
Windows system, Langchain’s modular nature and LLMs’
versatility suggest the framework can be adapted to perform
other security tasks beyond audit which includes firewall traffic
audits, network traffic anomalies, or software vulnerability
assessments. It can also be further extended to real-time security
monitoring for intrusion detection and recommending
remediation actions based on historical data. The main
limitations of the framework include model’s ability to handle
ambiguous or incomplete data, leading to false positives or
incomplete assessments. Moreover, subtle biases observed in
the base large language model often stem from variations in
contextual differences and the quality of training data. These
biases can introduce inconsistencies, which are undesirable for
audit tasks requiring a high degree of precision. Further
refinement to the prompt engineering and data preprocessing
can improve the model’s accuracy. Processing sensitive logs and
system data may give rise to data privacy concerns, further
studies can explore integrating privacy-preserving techniques to
comply with data protection regulations. Another important
finding is the necessity for human oversight in high-stakes
security audits. While the framework proves that the Langchain
agent can perform routine tasks autonomously, professional
expertise is still required for complex and nuanced security
issues. The automation of foundational tasks allows the field
auditors to prioritise on higher-order tasks and improve the
overall productivity of cybersecurity teams. In summary, this

study demonstrates the feasibility of LLM-based automated
security audits and emphasises the potential for a more
expansive role of AI-driven agents in cybersecurity.

A detailed investigation into the agent's reasoning processes
and long-term planning mechanisms was beyond the scope of
this research experiment. However, the observations outlined
align with known limitation of existing large language models
and agentic models. Nevertheless, the agentic framework
demonstrated in this paper remains effective for the stated
objective and would benefit from the rapid advancements in
these areas. These observations serve more as insights for future
work.

IV. CONCLUSION AND FUTURE DIRECTIONS
This study validates the feasibility of using a Langchain

agent powered by GPT-4 LLM to automate password policy
audits on Windows system to reduce resource demands of
traditional audits and improve consistency of non-compliance
identification. Results demonstrate improved audit speeds,
consistency, and accuracy compared to traditional manual
processes. Despite limitations such as handling domain-specific
language and privacy concerns, the framework shows promise
for faster and accurate compliance checks.

While the research is focused on password policy
compliance, it sets the stage for advanced applications of LLMs
in security operations. Despite noted limitations that included
model biases, ability to handle ambiguous data handling, and
data privacy, addressing such limitations would advance the use
of LLMs in security-sensitive environments. Future research
could explore refining prompt engineering techniques,
enhancing model transparency, and developing privacy-
preserving methods for LLM deployments in cybersecurity
contexts.

In conclusion, this research provides a foundation and
blueprint for future explorations into LLM-based automated
security audits. As LLM capabilities evolve, so will their role in
cybersecurity, paving the way for increasingly autonomous,
intelligent, and efficient security systems. It points toward a
future where AI agents are integral to the security landscape,

enabling organizations to better manage and respond to the ever-
growing complexities of cybersecurity.

REFERENCES

[1] Rodriguez, R., & Syynimaa, N. (2024). Exploring Applicability of LLM-
Powered Autonomous Agents to Solve Real-life Problems: Microsoft
Entra ID Administration Agent (MEAN).
https://doi.org/10.5220/0012735700003690.

[2] Garg, P., & Beeram, D. (2024). Large Language Model-Based
Autonomous Agents. International Journal of Computer Trends and
Technology, 72(5), 151–162. https://doi.org/10.14445/22312803/ijctt-
v72i5p118.

[3] Taghavi, S. M., & Feyzi, F. (2024). Using Large Language Models to
Better Detect and Handle Software Vulnerabilities and Cyber Security
Threats. Research Square (Research Square).
https://doi.org/10.21203/rs.3.rs-4387414/v1.

[4] Auffarth, B.: Generative AI with LangChain: Build large language model
(LLM) apps with Python, ChatGPT and other LLMsGenerative AI with
LangChain: Build large language model (LLM) apps with Python,
ChatGPT and other LLMs. ISBN 978-1835083468. Pakt Publishing. USA
(2023).

[5] LangChain, "LangChain," GitHub repository, 2023. [Online]. Available:
https://github.com/langchain-ai/langchain.

[6] Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large
language models are zero-shot reasoners. Advances in neural information
processing systems, 35, 22199-22213.
https://proceedings.neurips.cc/paper_files/paper/2022/hash/8bb0d291ac
d4acf06ef112099c16f326-Abstract-Conference.html.

[7] Kong A., Zhao S., Chen H., Li Q., Qin Y., Sun R., Zhou X., Wang E. &
Dong, X. (2023). Better zero-shot reasoning with role-play prompting.
arXiv preprint arXiv:2308.07702. https://arxiv.org/pdf/2308.07702v2.

[8] White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., ... &
Schmidt, D. C. (2023). A prompt pattern catalog to enhance prompt
engineering with chatgpt. arXiv preprint arXiv:2302.11382.
https://arxiv.org/pdf/2302.11382.

[9] Pradas Gomez, A., Panarotto, M., & Isaksson, O. (2024). Evaluation of
Different Large Language Model Agent Frameworks for Design
Engineering Tasks. DS 130: Proceedings of NordDesign 2024,
Reykjavik, Iceland, 12th-14th August 2024, 693-702.

[10] Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y.
(2022). React: Synergizing reasoning and acting in language models.
arXiv preprint arXiv:2210.03629. https://arxiv.org/pdf/2210.03629.

[11] Ahn M., et. al (2022). Do as i can, not as i say: Grounding language in
robotic affordances. arXiv preprint arXiv:2204.01691.
https://arxiv.org/pdf/2204.01691.

