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Abstract
Transformer models have revolutionized AI, pow-
ering applications like content generation and sen-
timent analysis. However, their deployment in Ma-
chine Learning as a Service (MLaaS) raises signif-
icant privacy concerns, primarily due to the cen-
tralized processing of sensitive user data. Private
Transformer Inference (PTI) offers a solution by
utilizing cryptographic techniques such as secure
multi-party computation and homomorphic encryp-
tion, enabling inference while preserving both user
data and model privacy. This paper reviews recent
PTI advancements (2022–2025), highlighting state-
of-the-art solutions and challenges. We also intro-
duce a structured taxonomy and evaluation frame-
work for PTI, focusing on balancing resource effi-
ciency with privacy and bridging the gap between
high-performance inference and data privacy.

1 Introduction
Transformer models have emerged as game-changers to revo-
lutionize the field of AI. For instance, both OpenAI ChatGPT
and Microsoft Bing have made the power of transformer-
based models widely accessible, democratizing advanced
AI capabilities. These models leverage attention mecha-
nisms [Vaswani et al., 2017] adeptly to capture long-range
dependencies in sequences of input tokens, allowing to model
contextual information accurately. Besides, large transformer
models are trained on huge quantities of unlabeled textual
data and are directly useful for various applications such as
sentiment analysis, language translation, content generation,
and question answering.

However, applying large transformers still presents pri-
vacy risks [Lund and Wang, 2023; Tlili et al., 2023], par-
ticularly with the MLaaS model, where servers provide in-
ference services while users supply data (Figure 1). For in-
stance, OpenAI’s ChatGPT operates through an online plat-
form and APIs, requiring users to transmit private data to
the server. This reliance raises concerns over data misuse,
like unauthorized processing, indefinite storage, or resale to
third parties. Even with trustworthy servers, centralized data
storage remains vulnerable to breaches and insider threats.
Therefore, while MLaaS offers significant convenience and
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Figure 1: MLaaS without privacy protection

computational power, it also necessitates careful consider-
ation of privacy issues. Such concerns have prompted ac-
tions like Italy’s temporary ban of ChatGPT [Mauran, 2023;
Lomas, 2023]. The tension between high-performance trans-
former services and privacy concerns highlights the need
for Private Transformer Inference (PTI). Private inference
is a cryptographic protocol that allows for model inference
while ensuring that the server gains no knowledge about the
users’ input, and the users learn nothing about the server’s
model, apart from inference results. Recently, private infer-
ence on transformers has been achieved by using private out-
sourced computation techniques, such as secure Multi-Party
Computation (MPC) [Yao, 1982] and Homomorphic Encryp-
tion (HE) [Gentry, 2009]. These advancements make PTI
highly promising for enabling privacy-preserving AI in prac-
tical fields such as banking and healthcare, facilitating secure
data analysis while preserving confidentiality. Platforms like
Pyte.ai1 and Hugging Face’s Private Hub2 demonstrate its po-
tential in real-world applications.

To our best knowledge, surveys focusing on PTI do not
exist so far, and some recent surveys [Chitty-Venkata et al.,
2023; Yan et al., 2024] only investigate optimizing trans-
former inference or summarize general privacy issues in
Large Language Models (LLMs). Notably, we are the first
to carefully review the findings of state-of-the-art PTI stud-
ies and uniquely discuss the improvements, challenges and
present future research directions. The rest of the paper is
organized as follows: Section 2 presents preliminaries; Sec-
tion 3 provides an overview of PTI; Sections 4 and 5 detail
solutions to linear and non-linear layers; Section 6 analyzes
the experimental results; Section 7 concludes the paper.

1https://www.pyte.ai/blog/transformers-based-ai-and-smpc
2https://huggingface.co/blog/introducing-private-hub
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2 Preliminaries
2.1 Transformers
Transformer is an encoder-decoder architecture. We focus
on the encoder part here, while the decoder can be discussed
similarly. An encoder consists of a stack of identical blocks,
each with a self-attention layer and a feed-forward network.
Attention layer. Attention layer first maps the input X into
three matrices: the query Q = XWQ, the key K = XWK ,
the value V = XW V , where WQ,WK ,W V are learnable
weight matrices. The attention score is computed as follows:

Attention(Q,K,V ) = Softmax
(
QKT /

√
d
)
V . (1)

Multi-head attention can further extend the above mechanism
into H different parallel attention layers.
Feed-Forward Layer. A fully connected feed-forward layer
consists of two linear transformations with a Gaussian Error
Linear Unit (GELU) activation in between:

FeedForward(X) = GELU(XW1 + b1)W2 + b2. (2)

In addition to the above blocks, an embedding layer is utilized
at the beginning of the model, and each layer is wrapped with
residual connections and Layer Normalization (LayerNorm).

2.2 Cryptographic Primitives
Various privacy-preserving techniques can be applied to PTI.
Here, we focus on two prominent cryptographic primitives:
MPC and HE. While MPC and HE may overlap sometimes,
we distinguish between them for clarity in this paper.

MPC. MPC enables multiple parties to jointly compute a
function over their inputs while keeping those inputs private.
It can be formally described as follows: Consider n parties,
(P1, . . . ,Pn), each holding a private input xi. The goal is to
jointly compute a function f(x1, . . . , xn) → y, where y =
(y1, . . . , yn). Each party Pi learns only y (or its portion yi)
without gaining any knowledge of others’ inputs. Protocols
such as Secret Sharing (SS) and Oblivious Transfer (OT) are
commonly used in MPC, and we brief them as follows:

• Secret Sharing: SS is a cryptographic technique where
a secret s is divided into multiple shares and distributed
among n parties. The secret can only be reconstructed
when a predefined threshold of shares is combined, and
individual shares provide no information about s.

• Oblivious Transfer: OT allows a sender S to securely
transmit one of k messages {m0, . . . ,mk−1} to a re-
ceiver R, who selects the message using a choice bit
b ∈ [k]. The receiver R learns only mb, while the sender
S remains unaware of the receiver’s choice.

For more details on MPC techniques, readers are suggested
to refer to [Evans et al., 2018; Zhao et al., 2019].

HE. HE allows computations on encrypted data without
decryption, producing results identical to operations on plain-
text after decryption. HE schemes use a public key (pk) for
encryption and a secret key (sk) for decryption. The public
key can be shared freely, while the secret key remains private.
Key homomorphic operations are summarized below.

• Enc(pk,m) → c: On public key pk and a plaintext m,
perform encryption to obtain a ciphertext c.

• Dec(sk, c) → m: On secret key sk and a ciphertext c,
perform decryption to obtain the plaintext message m.

• Eval(pk, c0,. . ., ck−1,C)→Enc(pk,C(m0,. . .,mk−1)):
Evaluate a circuit C on ciphertexts c1, . . . , ck (i.e., en-
crypted m1, . . . ,mk), and output the encrypted result of
C(m0,. . .,mk−1).

HE schemes could be categorized by the operations used in
circuit C and its computational depth. Due to the page limi-
tation, we do not detail them here.

3 An Overview of Private Transformer
Inference

In this section, we first review the threat models, summarize
the taxonomy of transformer layers in cryptographic contexts,
and finally discuss the challenges of PTI.

3.1 Threat Models
The semi-honest (i.e., honest-but-curious) security model is a
common assumption in PTI studies. It assumes that all par-
ties adhere to the established protocols honestly but may at-
tempt to extract additional private information passively. This
model is typically employed in scenarios where the parties
have a foundational level of trust, ensuring they do not ac-
tively disrupt the computation. Under this assumption, par-
ticipants collaboratively contribute to the computation while
maintaining protocol integrity. Some studies [Akimoto et al.,
2023; Liu and Su, 2024] involve more than two parties in
computation. They assume an honest majority setup, where
only a small percentage of participants are semi-honest.

Notably, existing PTI studies are less resistant to malicious
attacks [Huang and Wang, 2024]. For instance, if a partici-
pant maliciously deviates from the protocol, e.g., by refusing
to transmit data, the inference process cannot be completed,
but data privacy can still be guaranteed.

3.2 Taxonomy of Transformer Layers in
Cryptographic Contexts

Based on the required cryptographic operations, transformer
layers are categorized into linear and non-linear types. Fig-
ure 2 illustrates the architecture of a basic transformer en-
coder and highlights these categorizations.

• Linear Layers: these include embedding, matrix multi-
plication in attention, and feed-forward layers.

• Non-linear Layers: these include Softmax, GELU and
LayerNorm.

We will first summarize the efficient solutions to linear layers
in Section 4 and then discuss non-linear layers in Section 5.

3.3 Challenges
This subsection examines the challenges of supporting linear
and non-linear layers in the context of cryptography.

Linear layers in PTI focus on matrix multiplication, con-
sisting solely of basic additions and multiplications. Hence,
they are generally compatible with cryptographic techniques.
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Figure 2: The architecture of a transformer encoder

However, how to efficiently support large matrix multiplica-
tions still remains a significant challenge. For example, MPC-
based solutions could use techniques such as Beaver triple
or OT to support multiplications, but they require substantial
data transmission [Lu et al., 2023]. In contrast, HE-based
solutions are more communication-efficient, as computations
can be performed directly on ciphertexts, but they also bring
extensive computational overheads due to the complexity of
homomorphic operations.

Non-linear layers often involve complex operations be-
yond basic arithmetic, e.g., exp(x) in Softmax. Supporting
those operations usually requires specific designs and results
in greater overhead than basic addition and multiplication.
Hence, non-linear layers often account for the majority of the
overall overheads in PTI [Hao et al., 2022; Li et al., 2022;
Pang et al., 2024]. For instance, [Li et al., 2022] has pro-
vided a baseline using MPC where non-linear layers account
for more than 85% of total time (over 50 s). Similarly, [Hao et
al., 2022] using HE has also presented that around 60% of its
total execution time (over 280 s) comes from non-linear lay-
ers. Thereafter, the significant overhead caused by non-linear
layers becomes a key bottleneck for PTI.

4 Linear Layers
This section reviews cryptographic protocols for linear layers,
focusing on matrix multiplication. The protocols are catego-
rized into two main approaches: MPC-based and HE-based,
which will be discussed respectively for clarity.

4.1 MPC-based MatMul Protocols
Most MPC implementations for transformers are based on
Additive Secret-Sharing (ASS) schemes. In this case, addi-
tions can be evaluated locally for “free”, and multiplications
are mainly supported by either Beaver triple [Beaver, 1992] or
Replicated Secret Sharing (RSS) [Araki et al., 2016] method.

Beaver triples are random values (a, b, c) such that a·b = c,
enabling private multiplications by masking the actual inputs
during computation. The triples are also split into shares and
distributed to computation parties for privacy. Studies [Li et
al., 2022; Wang et al., 2022] introduce an additional trusted
third-party dealer to generate triples. [Chen et al., 2024] re-
gards the user as a dealer and leaves the computation to multi-
ple servers. Notably, the triples are independent of inputs and
thus are usually generated offline to reduce online overheads.

RSS is to split a secret into overlapping shares distributed
across parties, enabling private multiplication through lo-
cal computations and limited exchange of intermediate re-
sults. Studies [Dong et al., 2023; Akimoto et al., 2023;
Liu and Su, 2024] use the RSS scheme for multiplications.
Nonetheless, RSS requires at least three parties throughout
the online computation process. This means a typical two-
party setup (e.g., a server and client) is insufficient, necessi-
tating the involvement of one third-party participant. In such
cases, collusion between any two parties compromises secu-
rity. Hence, the assumption of an honest majority setup is
compulsory, which may affect the practicality of applications.

There is no clearly better scheme in comparison between
Beaver triples and RSS, as the choice depends on the setup
model and application scenarios. For example, Beaver triples
are more efficient during the online phase, whereas RSS per-
forms well on the entire process (offline and online).

4.2 HE-based MatMul Protocols

The use of HE for MatMul in Transformers is relatively unex-
plored. While MatMul is inherently compatible with HE, as it
involves only additions and multiplications, a straightforward
element-wise implementation can be highly inefficient [Chen
et al., 2022]. There are currently two mainstream ways to
accelerate MatMuls in HE:

1) Encoding plaintexts into SIMD slots.

2) Encoding plaintexts into polynomial coefficients.

The SIMD technique supports batching multiple elements
into one ciphertext and enables parallel computation within
a single operation, significantly reducing the amortized cost.
Studies [Pang et al., 2024; Rovida and Leporati, 2024;
Moon et al., 2024; Zhang et al., 2025] have leveraged SIMD
in their implementations. However, when applied to MatMul,
SIMD requires expensive homomorphic rotations to perform
the summation. To address this challenge, [Pang et al., 2024]
uses the Baby-Step-Giant-Step (BSGS) to reduce the number
of rotations. Similarly, [Zhang et al., 2025] also introduces a
slots folding method to reduce the rotation costs.

Studies [Huang et al., 2022; Hao et al., 2022] find that by
encoding plaintexts into polynomial coefficients properly, the
dot product could directly give the MatMul result and elimi-
nate the need for rotations. Furthermore, [Lu et al., 2023] by
Alibaba/Ant proposes a more compact encoding method to
alleviate sparsity and save communication. [Hou et al., 2023]
customizes a Vector Oblivious Linear Evaluation (VOLE)-
based protocol for MatMuls in GPT, reducing the amortized
cost of auto-regressively generating response words.



5 Non-Linear Layers
Securing non-linear functions presents a significant challenge
due to their cryptographic complexity. This section summa-
rizes approaches in existing PTI studies to efficiently realize
non-linear layers, including Softmax, GELU and LayerNorm.

5.1 Softmax
Softmax is to perform a re-weight normalization of the ob-
tained attention map. Given an input vector x = [xi |i∈[d]],
the Softmax function on each xi can be formulated as:

Softmax(xi) =
exp (xi)∑d
j=1 exp (xj)

, (3)

where the main challenge is efficiently calculating the under-
lying exponential function exp(x) and the reciprocal com-
putation 1/x. The reciprocal computation 1/x is relatively
well-established and is often treated as a black-box opera-
tion [Dong et al., 2023]. Consequently, recent PTI studies
have focused on optimizing the computation of exp(x).

Several studies employ aggressive crypto-friendly func-
tions to directly replace the exp(x) in Softmax, which often
brings considerable efficiency at the cost of accuracy. Specif-
ically, we present some of their methods as follows:

exp(x)∼


(x+ c)2, [Li et al., 2022; Luo et al., 2024]
RELU(x), [Zeng et al., 2023]
(ax+ c)2, [Zhang et al., 2023]
(x+ c)4. [Chen et al., 2023]

(4)
It is obvious that substitutions in (4) would make the approx-
imated Softmax differ a lot by numerical values. Hence, the
above studies utilize the Knowledge Distillation (KD) [Hin-
ton et al., 2006] method to bridge the performance gap. How-
ever, KD depends on a well-trained teacher model and adds
extra computational overhead, which may not be practical.

To maintain the accuracy and eliminate the need for KD,
another mainstream solution is to design polynomial approx-
imations for exp(x). Notably, a key feature of the exp(x)
function is its susceptibility to instability when handling large
input values. Hence, most studies will adjust the input range
before applying approximations to ensure both stability and
computational efficiency. For instance, [Rovida and Lepo-
rati, 2024] first scales the input into a small range of [−1, 1]
and then approximates exp(x) using the Maclaurin series:

exp(x) ≈
6∑

i=0

xi

i!
. (5)

To further improve the accuracy and numerical stability, stud-
ies [Dong et al., 2023; Lu et al., 2023; Hou et al., 2023;
Zhang et al., 2025] replace the original input xi with xi −
max (x) to ensure non-positivity, and then design piecewise
polynomials with Taylor Series for approximation:

exp(x) ≈
{
0, if x ≤ a

(1 + x
2r )

2r , if a ≤ x ≤ 0
(6)

where the values of threshold a and polynomial order r differ
in the above studies. Notably, one should be careful about
the choice of r; too high a polynomial order can bring better
accuracy but decrease computational efficiency.

5.2 GELU
GELU in Transformers provides smooth and non-linear acti-
vation for modeling complex patterns. The GELU activation
for an input x is defined as follows:

GeLU(x) =
x

2

(
1 + erf(

x√
2
)
)
, (7)

where erf(·) is the Gaussian error function, expressed as
erf(x) = 2√

π

∫ x

0
e−t2dt. Similar to Softmax(x), solutions to

GeLU(x) in cryptographic context can be mainly categorized
into three methods: substitution, approximation, and LUT.

Studies [Chen et al., 2022; Park et al., 2024] directly re-
place GELU with crypto-friendly RELU (i.e., max(0, x))
since support for comparison operations in cryptography is
relatively well established [Cheon et al., 2020; Huang et al.,
2022]. MPCFormer [Li et al., 2022] proposes a more aggres-
sive substitution with a quadratic function:

GELU(x) ∼ 0.125x2 + 0.25x+ 0.5. (8)

Other studies [Dong et al., 2023; Lu et al., 2023; Pang et
al., 2024; Zhang et al., 2025] rely on the polynomials to ap-
proximate GELU. Since the GELU function is almost linear
with a larger or smaller input, they suggest an efficient low-
degree polynomial (e.g.,n ≤ 4 in [Pang et al., 2024]) for ap-
proximation within the short interval around 0. A general
expression for approximation is shown below:

GELU(x) ≈


−c, if x < a∑n

i=0 aix
i, if a ≤ x ≤ b

x− c, if b < x

(9)

where [a, b] is a small interval around 0, c is a small non-
negative number (often 0), and ai denote the obtained poly-
nomial coefficient from different approximation methods.

5.3 LayerNorm
LayerNorm ensures that inputs across different layers have a
consistent mean and variance to enhance stability. For a given
vector x ∈ Rd, the LayerNorm function is defined as follows:

LayerNorm(xi) =
(xi − µ)

σ
· γ + β, (10)

where µ =
∑d

i=1 xi/d and σ =
√∑d

i=1(xi − µ)2 are mean
and standard deviation, and γ and β are affine transform pa-
rameters. The main challenge lies in the required reciprocal
square root operation of σ.

One intuitive solution is to employ well-established proto-
cols for 1/

√
x. Studies [Ding et al., 2023; Zhang et al., 2025;

Park et al., 2024] employ Newton-like methods [Qu and Xu,
2023] to iteratively compute 1/

√
x. Similarly, [Luo et al.,

2024] uses Goldschmidt’s method [Markstein, 2004] to con-
vert square root inverses into iterations of multiplications.
Due to page limitations, we don’t detail the protocols here.
In general, the above solutions could maintain the accuracy
of LayerNorm but at the cost of considerable overhead.

Some studies manage to avoid non-linear computations by
altering the architecture of LayerNorm. For instance, [Chen



et al., 2022] directly removes µ and σ, leaving the mean and
standard deviation achieved by learnable parameters γ and β:

LayerNorm(xi) ∼ xi · γ + β. (11)

Similarly, [Liu and Liu, 2023] removes the standard deviation
part and then re-trains the model. In a different way, [Rovida
and Leporati, 2024] experimentally observes the values of µ
and σ to simplify the computation as follows:

LayerNorm(xi) ≈ (xi − Ep) · (Vpγ) + β, (12)

where Ep and Vp are precomputed values for µ and 1/σ. No-
tably, these methods simplify computations at the expense of
LayerNorm accuracy, and therefore often require re-training
to recover model accuracy.

6 Reported Experiments
This section compares the reported experimental results pre-
sented in selected studies. A summary of their evaluations is
presented in Table 1.

6.1 Models and Datasets
Popular transformers for PTI studies mainly include the
BERT family (e.g., Bert-Tiny, Bert-Base, Roberta-Base) and
the GPT family (e.g., GPT2-Base). Some studies have also
attempted implementing other transformer models, such as
LLaMA-7B [Touvron et al., 2023], ViT-Base [Dosovitskiy et
al., 2020], and its variant CCT [Hassani et al., 2021]. Trans-
formers with more complex structures and a larger number of
parameters tend to take longer to do inference, but they often
perform better [Jiao et al., 2019].

Most PTI studies evaluate performance using the GLUE
benchmark [Wang et al., 2018], a standard for BERT and
GPT-based transformers, which requires models to process
single-sentence and sentence-pair inputs for predictions. It
contains three NLU tasks and nine corresponding corpora:
single-sentence tasks (CoLA, SST−2), similarity and para-
phrase tasks (MRPC, STS−B, QQP), and inference tasks
(MNLI, QNLI, RTE, WNLI). Studies [Dong et al., 2023;
Zhang et al., 2025] evaluate GPT2 on Wikitext-103 V1 [Mer-
ity et al., 2016] and CBT-CN. ViT-Base is designed for image
processing, and thus BumbleBee [Lu et al., 2023] uses the
ImageNet dataset for its evaluation. A series of studies [Zeng
et al., 2023; Zhang et al., 2023; Chen et al., 2023] focusing
on CCT are evaluated on CIFAR and Tiny-ImageNet.

6.2 Communication Overhead
According to Table 1, it is obvious that the studies employing
MPC usually require considerable communication overhead.
This is because their cornerstone MPC techniques (e.g., SS
and OT) all require multiple rounds of communication be-
tween parties for multiplication and other nonlinear opera-
tions, thus causing significant communication costs. Early
study [Hao et al., 2022] using ASS requires 280.99 GB for
evaluating BERT-Base, while study [Gupta et al., 2023] re-
quires only 0.99 GB on the same model by using a more effi-
cient Function Secret Sharing (FSS) scheme.

In contrast, studies only using HE techniques [Rovida and
Leporati, 2024; Zimerman et al., 2024; Zhang et al., 2025] of-
ten require minimum communication. Once the encrypted in-
put from the client is transmitted to the server, the remaining
computation will be completed by the server only, which is a
non-interactive process. For instance, NEXUS [Zhang et al.,
2025] requires only 0.16 GB for evaluating the BERT-Base
model, which is lower than any other MPC studies. Other
studies only using HE do not report the communication over-
head, as the main bottleneck in them comes from computa-
tion. We will detail this in the next subsection.

6.3 Runtime
To ensure fairness, we report the runtime performance of se-
lected studies on CPU only in Table 1, even though some of
them also support GPU implementation. However, as most of
these studies are not open source, differences in experimen-
tal platforms may still affect the runtime performance. Due to
page limitations, we only provide their communication setups
for readers’ reference, and more detailed computation setups
can be found in their manuscripts.

Overall, PTI solutions relying only on MPC tend to achieve
faster runtimes than HE-only and hybrid (MPC+HE) ones.
Those solutions mainly use secret-sharing schemes with low
computation complexity but high communication overheads.
Consequently, they often deliver the fastest runtimes, partic-
ularly in communication-rich environments such as LAN set-
tings. Under a setup with a bandwidth of 9.4 Gbps and a
latency of 0.05 ms, [Gupta et al., 2023] demonstrated that
BERT-Base could be evaluated in just 1.84 s. Hybrid so-
lutions use HE for linear computations to reduce commu-
nication overhead, but they also increase runtime due to
the computational complexity of homomorphic operations.
For instance, [Pang et al., 2024] evaluates BERT-Base in
185 s. HE-only solutions require the longest runtime. Lat-
est studies [Zimerman et al., 2024; Moon et al., 2024;
Zhang et al., 2025] all require over 400 s for evaluation on the
BERT-Base model. Even for the smaller BERT-Tiny model,
[Rovida and Leporati, 2024] still requires over 200 s. In par-
ticular, the most consuming part of those studies is the Boot-
strapping operation, which is often used to “refresh” a ci-
phertext to reduce noise. The bootstrapping part in [Zhang et
al., 2025] and [Moon et al., 2024] accounts for 37.72% and
53.96% of the total runtime, respectively.

6.4 Accuracy
This subsection reviews the accuracy performance of differ-
ent PTI solutions. Specifically, linear computations (e.g., ma-
trix multiplication) are often well supported by cryptographic
techniques. Hence, most of the accuracy drop reported in Ta-
ble 1 comes from the treatment of non-linear layers. For ex-
ample, an early study [Li et al., 2022] employed aggressive
substitutions for the Softmax and GELU functions, leading to
a substantial accuracy drop of 8.8% on the STS-B dataset. In
contrast, a more recent study [Pang et al., 2024] utilized re-
fined polynomial approximations, reducing the accuracy loss
to just 1.18% on the same dataset. Notably, knowledge dis-
tillation techniques could effectively cure the accuracy drop
due to approximation operations. Studies [Zeng et al., 2023;



Table 1: Resource requirements, tasks performed, dataset performance, and runtime.

Study Techniques Model Dataset Comm. Comm. Set. Performance RuntimePlain Enc. Loss ↓

[Li et al., 2022] MPC BERT-Base

QNLI

12.089 GB (5 Gbps, 1 ms)

91.7 % 90.6 % 1.1 %

55.320 sMRPC 90.3 % 88.7 % 1.6 %
RTE 69.7 % 64.9 % 4.8 %

STS-B 89.1 % 80.3 % 8.8 %

[Dong et al., 2023] MPC

BERT-Base
CoLA

10.773 GB

(5 Gbps, 1 ms)

61.6 % 61.3 % 0.3 %
33.913 sRTE 70.0 % 70.0 % 0.0 %

QNLI 91.6 % 91.6 % 0.0 %
Roberta-Base - 11.463 GB - - - 41.641 s

Bert-Large - 27.246 GB - - - 73.720 s
GPT2-Base

Wiki.-103
3.774 GB 16.284 16.284 0.000 15.506 s

GPT2-Medium 7.059 GB 12.536 12.540 -0.004 30.272 s
GPT2-Large 11.952 GB 10.142 10.161 -0.019 54.154 s
LLaMA-7B - 1.794 GB - - - 200.473 s

[Gupta et al., 2023] MPC

BERT-Tiny
SST2

0.02 GB

(9.4 Gbps, 0.05 ms)

81.19 % 81.42 % -0.23 %
0.09 sMRPC 72.54 % 72.79 % -0.25 %

QNLI 81.64 % 81.73 % -0.09 %

BERT-Base
SST2

0.99 GB
90.59 % 90.25 % 0.34 %

1.84 sMRPC 84.31 % 83.82 % 0.49 %
QNLI 88.72 % 89.03 % -0.31 %

BERT-Large
SST2

2.63 GB
88.99 % 88.99 % 0.0 %

4.73 sMRPC 78.67 % 78.92 % -0.25 %
QNLI 92.23 % 92.31 % -0.08 %

GPT-2 Lambada 0.82 GB 32.46 % 33.28 % -0.82 % 1.61 s
GPT-Neo Lambada 4.02 GB 57.46 % 57.81 % -0.35 % 7.43 s

LLaMA2-7B Lambada 12.35 GB 70.17 % 70.01 % 0.16 % 27.01 s
LLaMA2-13B Lambada 19.33 GB 73.14 % 72.98 % 0.16 % 44.13 s

[Zheng et al., 2023] MPC

BERT-Tiny MRPC 0.9 GB

(100 Mbps, 2.3 ms)

- 79.3 % - 10.6 sSST-2 - 88.2 % -

BERT-Base SST2 3.6 GB - 86.3 % - 35.4 sQNLI - 92.5 % -

BERT-Large SST2 7.9 GB - 87.6 % - 91.6 sQNLI - 93.5 % -

[Zeng et al., 2023] MPC CCT
CIFAR-10

- (44 Mbps, 40 ms)
95.56 % 94.27 % 1.29 % 50.94 s

CIFAR-100 77.36 % 77.76 % -0.40 % 51.33 s
Tiny-ImageNet 61.60 % 63.45 % -2.35% 74.34 s

[Zhang et al., 2023] MPC CCT
CIFAR-10

- -
95.56 % 95.92 % -0.36 % 40.65 s

CIFAR-100 77.36 % 77.86 % -0.50 % 38.97 s
Tiny-ImageNet 61.60 % 63.49 % -2.39% 66.21 s

[Chen et al., 2023] MPC CCT
CIFAR-10

- -
95.56 % 94.97 % 0.59 % 14.04 s

CIFAR-100 77.36 % 79.04 % -1.68 % 14.13 s
Tiny-ImageNet 61.60 % 65.86 % -4.26% 44.27 s

[Luo et al., 2024] MPC
BERT-Base MRPC 23.593 GB

(10 Gbps)

90.3 % 89.2 % 1.1 % 19.513 sSTS-B 89.1 % 87.4 % 1.7 %

BERT-Large MRPC 50.364 GB 90.6 % 88.7 % 1.9 % 39.089 sSTS-B 90.2 % 89.2 % 1.0 %

[Hao et al., 2022] MPC+HE BERT-Base
SST-2

280.99 GB (3 Gbps, 0.8 ms)
92.36 % 92.77 % -0.41 %

475 sMRPC 90.00 % 89.87 % 0.13 %
STS-B 89.62 % 89.41 % 0.21 %

[Lu et al., 2023] MPC+HE

BERT-Base
QNLI

-

(1 Gbps, 0.5 ms)

90.30 % 90.20 % 0.10 %
-RTE 70.04 % 70.04 % 0.00 %

CoLA 61.57 % 60.82 % 0.75 %
BERT-Large - 20.85 GB - - - 404.4 s
LLaMA-7B - 6.82 GB - - - 832.2 s
GPT2-Base - 1.94 GB - - - 55.2 s
ViT-Base ImageNet 14.44 GB 89.44 % 89.13 % 0.31 % 234 s

[Pang et al., 2024] MPC+HE BERT-Base

SST-2

25.74 GB (3 Gbps, 0.8 ms)

92.36 % 92.78 % -0.42 %

185 sMRPC 90.00 % 89.95 % 0.05 %
RTE 69.70 % 69.31 % 0.39 %

STS-B 89.62 % 88.44 % 1.18 %

[Chen et al., 2022] HE BERT-Tiny SST-2 - - 82.45 % 82.11 % 0.34 % ≈ 4700 sSTS-B 72.83 % 68.39 % 4.44 %
[Rovida and Leporati, 2024] HE BERT-Tiny SST-2 - - 83.7 % 79.0 % 4.7 % 214 s

[Moon et al., 2024] HE BERT-Base MRPC - - 85.29 % 84.80 % 0.49 % 625.8 s

[Zimerman et al., 2024] HE Roberta-Base
SST-2

- -
94.80 % 93.35 % 1.45 %

≈ 400 sQNLI 92.80 % 91.62 % 1.18 %
MNLI 87.60 % 86.93 % 0.67 %

[Zhang et al., 2025] HE

BERT-Base
RTE

0.16 GB (100 Mbps, 80 ms)

70.04 % 69.88 % 0.16 %
857 sSST-2 92.36 % 92.11 % 0.25 %

QNLI 90.30 % 89.92 % 0.38 %

LLaMA-3B
RTE 82.75 % 81.24 % 1.51 %

1088 sSST-2 94.94 % 94.46 % 0.48 %
QNLI 90.70 % 90.20 % 0.50 %



Zhang et al., 2023; Chen et al., 2023] using knowledge dis-
tillation even achieved better performances than the plaintext
model on CIFAR-100 and Tiny-ImageNet datasets.

7 Conclusion and Future Directions
In this paper, we have comprehensively reviewed the existing
cryptographic solutions for private transformer inference. To
the best of our knowledge, this is the first review to catego-
rize these solutions within a structured taxonomy, providing
an in-depth discussion. In addition, we also offer a detailed
performance comparison of various methods from different
perspectives. Despite these advancements, several open chal-
lenges remain unresolved, which we summarize as follows:

GPU Acceleration. One important limitation of current
PTI solutions is the lack of GPU acceleration support. Cryp-
tographic operations, particularly those in HE, are computa-
tionally expensive. Hence, leveraging GPUs for those op-
erations could dramatically improve the private inference
speed [Zhang et al., 2025]. Most PTI studies rely on popular
CPU-based cryptographic libraries (e.g., EzPC and SEAL)
for implementations. Only a few studies [Gupta et al., 2023;
Zhang et al., 2025] have explored GPU-accelerated solutions,
achieving significant speedups of 15.0× and 22.9× on the
BERT-Base model compared to CPU implementations. In
recent years, a number of cryptographic libraries supporting
GPU accelerations have been released, e.g., [Ma et al., 2023;
Wang et al., 2023; Jawalkar et al., 2024; Yang et al., 2024],
showing great potential for improving runtime. We believe
future works should explore optimizing GPU-based frame-
works for PTI to make real-time inference more feasible.

Scalability on Generation Tasks. Another concern is that
existing PTI solutions are seldom evaluated on content gener-
ation tasks, e.g., translation and Q&A. As shown in Table 1,
most studies have focused on classification tasks (e.g., GLUE
and ImageNet) and achieved promising results. However,
cryptographic solutions for transformers introduce approxi-
mation errors that vary by task. In classification tasks, eval-
uation primarily depends on identifying the highest category
scores, where the errors may have minimal effect on over-
all accuracy [Rovida and Leporati, 2024]. Generation tasks
could be more sensitive to such errors, as they can lead to non-
sensical outputs and severely degrade performance. This is-
sue was also highlighted in the open review3 of PUMA [Dong
et al., 2023]. An example of a failed Q&A is as follows:

• Q: What is the largest animal?
• A: * a. What is the difference between? Sedition be-

tween? Sedition ? ? between
Thereafter, expanding PTI evaluations to include diverse

generative applications (e.g., dialogue systems and creative
writing tasks) will be essential for realizing their potential.

Practicality in Real-World Applications. Despite their
theoretical promise, the practicality of PTI solutions in real-
world applications remains a significant challenge. Current
implementations often involve high computational and mem-
ory overheads, making deployment on edge devices or in
latency-sensitive scenarios impractical. Additionally, many

3https://openreview.net/forum?id=x3LxHdZX0f

cryptographic methods require extensive parameter tuning
and complex setup, further hindering their usability. Future
research should prioritize developing lightweight and user-
friendly PTI frameworks that balance security and perfor-
mance. Moreover, integrating these solutions into widely
used AI platforms could facilitate their adoption in indus-
tries such as healthcare, finance, and personalized AI ser-
vices, where privacy is paramount. Addressing these con-
cerns will be crucial for bridging the gap between theoretical
advancements and practical deployments.

Ethical Statement
Our experiments use only open-source datasets and do not
involve human participants or sensitive data. While our work
promotes secure AI deployment, we acknowledge potential
misuse and advocate for responsible AI practices.
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