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ABSTRACT
Location-based service (LBS) applications proliferate and support
transportation, entertainment, and more. Modern mobile platforms,
with smartphones being a prominent example, rely on terrestrial
and satellite infrastructures (e.g., global navigation satellite sys-
tem (GNSS) and crowdsourced Wi-Fi, Bluetooth, cellular, and IP
databases) for correct positioning. However, they are vulnerable to
attacks that manipulate positions to control and undermine LBS
functionality—thus enabling the scamming of users or services.
Our work reveals that GNSS spoofing attacks succeed even though
smartphones have multiple sources of positioning information.
Moreover, that Wi-Fi spoofing attacks with GNSS jamming are
surprisingly effective. More concerning is the evidence that sophis-
ticated, coordinated spoofing attacks are highly effective. Attacks
can target GNSS in combination with other positioning methods,
thus defenses that assume that only GNSS is under attack cannot
be effective. More so, resilient GNSS receivers and special-purpose
antennas are not feasible on smartphones. To address this gap, we
propose an extended receiver autonomous integrity monitoring
(RAIM) framework that leverages the readily available, redundant,
often so-called opportunistic positioning information on off-the-
shelf platforms. We jointly use onboard sensors, terrestrial infras-
tructures, and GNSS. We show that our extended RAIM framework
improves resilience against location spoofing, e.g., achieving a de-
tection accuracy improvement of up to 24–58% compared to the
state-of-the-art algorithms and location providers; detecting attacks
within 5 seconds, with a low false positive rate.
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1 INTRODUCTION
LBS are integral to daily life, relying on positioning provided by ter-
restrial and satellite infrastructures, e.g., cellular network (3/4/5G),
Wi-Fi, Bluetooth, and GNSS (e.g., Global Positioning System (GPS)).
Popular examples include navigation with Google Maps to a point of
interest (POI), ride-hailing through Uber, and food delivery services.
The correct position of the platform ensures the correct functional-
ity of the application and the quality of the provided service.

Recent real-world vulnerabilities of LBS applications emerged
[10, 39, 51, 52, 55], resulting even in scamming. Several attacks
generate false position data fed into LBS: players of location-based
games (Pokémon GO [39]); or, scooter-sharing services and public
transport, usually managed by geofencing or e-ticketing, virtually
restricting the riding area or billing according to traveled distance
[36, 55]. Position manipulation attacks can help win the game or
break the geofencing, with the scooter seemingly within limits
but in reality possibly far outside the fence, or allow traveling
for free. Moreover, “ghost drivers” [52], automatically assigned
to passengers based on spoofed positions, never physically reach
passengers but only pretend picking them up, yet charge fees—
perpetrating a taxi fee scam.

Position manipulation methods include GNSS spoofing, Wi-Fi
spoofing, and virtual private network (VPN) proxies. GNSS spoofers
[3, 40, 46, 54] broadcast adversarial satellite signals, either replayed
or generated using open-source simulators [28], transmitted with
higher power but in the correct format fool receivers to lock on
to them instead of the actual GNSS ones. Wi-Fi geolocation, in-
creasingly relevant in urban environments and indoor settings,
often assisting GNSS, can also be manipulated. Attackers broadcast
pre-recorded or downloaded Wi-Fi beacons, using consumer-grade
Wi-Fi routers or low-cost Wi-Fi chips [18–20, 49, 50]. Cellular-based
positioning based on base station signals, can also be attacked, by
replayed signals or deploying rogue base stations [45]. IP geoloca-
tion methods (GeoIP) are also susceptible to manipulation, based
on relays, transparent proxies, or VPNs to control round-trip time
(RTT) and positioning [1, 26].

Highlighting the severity of LBS position manipulation, this
study examines the impact of joint attacks targeting GNSS and
other wireless signals and implements specific attacks. Specifically,
we manipulate position estimates from different infrastructures in
a coordinated manner. As a special case, given Wi-Fi beacons are a
weak point, we jam GNSS and replay (or forge) Wi-Fi beacons to
control positioning results.

Present solutions for GNSS spoofing detection, and more gen-
erally, secure positioning are mostly not designed for off-the-shelf
platforms. They often rely on specialized hardware (e.g., resilient
GNSS receivers or special-purpose antennas). For instance, a multi-
antenna array is needed to calculate the angle of arrival (AoA) for
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GNSS spoofing detection [6, 44]; or Wi-Fi channel state information
(CSI) fingerprints require certain network interfaces to measure
[29, 53]. Many modern smartphones have no such antennas or mod-
ules resilient to interference [7]. Even so, recent proposals thwart
attacks based on the assumption that some other infrastructure is
out of reach of the adversary. For example, [24, 30, 38] detect GNSS
spoofing while assuming Wi-Fi or cellular signals are benign.

In response to these challenges, our solution leverages diverse
opportunistic ranging and motion data sources to detect position
manipulation attacks. While previous work often assumes certain
signals are benign, our approach considers the possibility that all
wireless signaling used for positioning may be compromised, lead-
ing to manipulation and disruption of LBS applications. By cross-
validating opportunistic ranging information from GNSS and ter-
restrial network infrastructures, our approach is compatible and
complements hardware fingerprinting or signal processing based
attack detection [9, 29]. Additionally, it independently improves
detection accuracy and mitigates the impact of LBS position ma-
nipulations from GNSS spoofing and rogue access points (APs).

We propose an extension of the RAIM technique, working on
multiple subsets of distance estimates from satellites and network
signals, then cross-validating position estimations on subsets of
distances with onboard sensors. As it is almost impossible to jam
all benign signals, there are almost surely benign subsets that can
be the basis for detecting the attack. Our proposed method includes
two main phases. First, it leverages ranging information—distances
derived from GNSS signals and terrestrial infrastructures such as
Wi-Fi and cellular. Subsets of ranging information are generated to
compute multiple intermediate position estimates, each associated
with uncertainty. To improve the efficiency and accuracy of this
process, we incorporate a subset sampling strategy. The second
phase is position fusion with onboard sensors to detect and miti-
gate attacks. By cross-validating intermediate position estimates,
our algorithm identifies inconsistencies indicative of position ma-
nipulation, such as GNSS spoofing or rogue AP attacks. Unlike
conventional detection methods that rely on a single infrastructure
or unsecured fusion strategies, our scheme integrates diverse data
sources in off-the-shelf platforms to improve robustness.

Our contributions are: We demonstrate geolocation API attacks
and illustrate how they can disrupt LBS applications1. Building on
these insights, we develop a RAIM-based framework for detect-
ing and mitigating threats in LBS position manipulation. Different
from RAIM on GNSS, we use distance estimates from terrestrial
networking infrastructures and GNSS with onboard sensors. By
integrating this opportunistic ranging information from multiple
sources, our approach gives an enhanced security likelihood against
GNSS spoofing, rogue Wi-Fi APs, and other position manipulations.
Our evaluation confirms the effectiveness of our approach, with
improved true positive rate and delay in detecting attacks in various
real-world scenarios.

In the rest of the paper: Section 2 provides background knowl-
edge of LBS, GNSS spoofing, and Wi-Fi attacks. Section 3 presents
our system model and adversary. Section 4 shows how to launch
attacks on LBS with details in the appendix. Section 5 proposes
our countermeasure. Section 6 evaluates the proposed scheme with

1https://drive.google.com/drive/folders/1rZtwVYXi3OwKyS8Yzn23E2E18rBP-J3x

baseline methods, and Section 8 reviews related work about detec-
tion before we conclude in Section 9.

2 BACKGROUND AND PRELIMINARIES
2.1 Location-Based Services
LBS has reshaped industries ranging from navigation to marketing.
Sensor fusion for precise and secure position estimation combines
information from the inertial measurement unit (IMU), light de-
tection and ranging (LiDAR), and network signals in vehicles or
smartphones [30, 46]. Indoor navigation systems bridge the gap
between outdoor and indoor environments, addressing GNSS limita-
tions in indoor settings, using technologies such as Wi-Fi, Bluetooth
beacons, and ultra-wideband (UWB) ranging [13]. Geofencing al-
lows merchants to define virtual boundaries and trigger actions
such as location-based messaging and dynamic pricing when users
enter predefined areas [41]. In food delivery, LBS optimize ship-
ping routes and reward participating taxis and couriers, enhancing
efficiency [32]. Enabling targeted advertising, location-based mar-
keting strategies have redefined advertising, with emphasis on
contextual offers boosting engagement and conversion rates [27].

2.2 GNSS Spoofing Attacks
Spoofing GNSS involves transmitting fake but correctly format-
ted GNSS signals [21, 43, 47], to change position, timing, signal
strength, and arrival angle, at the victim GNSS receiver, possibly
hard to detect. Beyond efforts to authenticate GNSS signals and
messages [11, 17] to mitigate spoofing attacks, adversaries can still
record and replay authentic GNSS signals [28, 34]. Authentication
is not yet widely supported by receivers and needs extra computa-
tional overhead and modification. A more advanced replay/relay
attack [57] employs distance-decreasing attacks to tamper with
signal timing, creating the false impression of earlier arrival. Re-
cent research developed strategies to evade detection, such as slow
variation to bypass tightly coupled GNSS/IMU systems [15, 46] or
gradual spoofing algorithms targeting GNSS time [16].

2.3 Rogue Wi-Fi AP Spoofing
Rogue Wi-Fi APs are unauthorized devices posing significant cy-
bersecurity threats [2]. These APs mimic legitimate APs and can
intercept and alter client wireless communication, compromising in-
tegrity and confidentiality [48]. Wi-Fi attacks, including continuous
or selective jamming and man-in-the-middle, have been demon-
strated using commodity hardware in [50]. Manipulating received
signal strength indicators (RSSIs) and related positioning statistics
by rogue APs introduces position inaccuracies and inconsisten-
cies [12, 19, 56]. Open-source tools for broadcasting Wi-Fi beacons
can manipulate smartphone positioning results [20]. Furthermore,
rogue APs deceiving Wi-Fi clients to automatically connect [33],
can delay, relay, or replay client packets, thereby manipulating
GeoIP positioning results [1, 26].

3 SYSTEM MODEL AND ADVERSARY
3.1 System Model
As shown in Figure 1, the system considers LBS deployed on mo-
bile platforms (e.g., smartphone, tablet, or intelligent vehicle) that

https://drive.google.com/drive/folders/1rZtwVYXi3OwKyS8Yzn23E2E18rBP-J3x
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𝑚(𝑡)

Figure 1: LBS applications have ranging information with
anchor positions from GNSS and network infrastructures.

Figure 2: Left: Wi-Fi spoofing attack with GNSS jamming;
right: coordinated location spoofing.

can process both GNSS and other opportunistic signals to position
themselves (the devices). At time 𝑡 , the true position of the plat-
form, denoted as pusr (𝑡) ∈ R3, is estimated by using GNSS and
opportunistic information to compute plbs (𝑡). Opportunistic infor-
mation includes wireless signals received from network modules
(e.g., Wi-Fi, cellular networks), Bluetooth, GeoIP, as well as motion
data from onboard sensors (e.g., IMUs or wheel speed sensors).

Position estimates from different sources have varying accuracy;
however, in benign conditions without any attacks, these estimates
are expected to be consistent. If position manipulation occurs, sig-
nificant deviations between plbs (𝑡) and pusr (𝑡) are expected.

Notation: Denote motion measurements as velocity, v(𝑡), accel-
eration, a(𝑡), and orientation, 𝝎 (𝑡). Ranging information, denoted
as 𝜌𝑚

𝑗
(𝑡), is associated with the positions of anchors 𝜶𝑚

𝑗
(𝑡); these

are GNSS satellites, cellular base stations (BSs), Wi-Fi APs, Blue-
tooth devices, and GeoIP RTT servers; 𝑗 ∈ J𝑚 (𝑡), where J𝑚 (𝑡)
is the set of anchors at time 𝑡 ,𝑚 = 1, 2, ..., 𝑀 , and 𝑀 is the number
of opportunistic information sources.

3.2 Adversary Model
The adversary knows pusr (𝑡) and aims to control plbs (𝑡), to disrupt
the integrity and security of LBS. By manipulating wireless signals
(e.g., GNSS pseudorandom noise codes, Wi-Fi beacons, cellular sig-
nals, Bluetooth beacons) and messages (e.g., RTT-related packets),
it can compromise ranging information 𝜌𝑚

𝑗
(𝑡) used for position-

ing. We assume all wireless signals can be potentially attacked,
although realistically, the adversary manipulates a subset of them
at any given time. The following attack types are considered.

3.2.1 Wi-Fi Spoofing with GNSS Jamming. As GNSS spoofing at-
tacks are feasible but still require a degree of sophistication, we
propose jamming GNSS persistently, a relatively easy task, and
force LBS to rely on network-based positioning information. The
adversary injects falsified ranging information only by generating

and replaying Wi-Fi beacons captured from another place (as il-
lustrated in the left part of Figure 2). These attack signals persist
throughout the entire attack lifecycle but coexist with some legiti-
mate transmissions, including original Wi-Fi and cellular signals.

3.2.2 Coordinated Location Spoofing. The adversary coordinates a
sequence of falsified positions for the victim. It spoofs GNSS and
replays cellular, Wi-Fi, and Bluetooth (and forges some of them,
if possible), along the predetermined trace the attacker wishes to
mislead the victim into perceiving. Through gradual deviation, the
victim believes it is following a legitimate path. We assume that
attack signals coexist with benign signals. Although the adversary
may selectively jam Wi-Fi or cellular communication, it is infeasible
to eliminate all legitimate transmissions at all times; it could also
cause outages that would be easily detected.

4 ATTACK DEMONSTRATIONS
We demonstrate successful LBS position manipulation attacks based
on the adversary model. All demonstrations were conducted with
full attention to ethical considerations, in controlled environments
with absolutely no impact on actual systems and users.

4.1 Multi-Band GNSS Spoofing
We demonstrate how a multi-band GNSS spoofing attack can ma-
nipulate fused location providers, such as Google Maps, with the
attack applicable to other applications and services. The attack
steps with detailed experimental configurations in Section 6.2.1 are:

Initial GNSS Jamming: Before spoofing, GNSS jamming forces
the victim receiver to lose its lock on authentic signals. Spoofing
Signal Generation: Using a GNSS signal generator (Skydel with
USRP N310), the attacker broadcasts spoofing signals on multiple
constellations and frequency bands (GPS L1/L5 and Galileo E1/E5a).
These signals are transmitted at a higher power level than the real
ones. Dominant Position Estimation: Although the smartphone
location provider fuses data from GNSS, Wi-Fi, cellular, and Blue-
tooth, our attack ensures spoofing GNSS signals exhibit a favorable
dilution of precision (DOP) to dominate the fusion algorithm.

Attack Results: Although the GNSS position is not consistent
with the network-based positioning result, LBS applications directly
provide the fused position near the spoofing position, thus imposing
attacker control on the victim. If the user shares location data, the
spoofed GNSS position will be used to train and build the network
positioning and geolocation database of LBS providers. Note that
attacking participatory sensing (e.g., on Google Maps [10]) can be
done without physical presence and attack.

4.2 Wi-Fi Spoofing with GNSS Jamming
To overcome the high cost and portability issues of GNSS spoofers,
we design a low-cost and easily deployable attack that leverages
the replay of Wi-Fi beacons while in parallel jamming GNSS:

Enduring GNSS Jamming: Rather than a one-time jamming
event, the adversary maintains GNSS jamming throughout the
attack to prevent the reception of authentic GNSS signals. Wi-Fi
Beacon Replay: A commercial Wi-Fi router (Linksys WRT1200AC)
replays pre-recorded or artificially generated Wi-Fi beacons mapped
to a predetermined spoofing position or trace. Unlike GNSS signals,
Wi-Fi beacons do not require precise time synchronization, making
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Figure 3: Left: Wi-Fi spoofing attack with GNSS jamming
manipulates the application in the upper left corner (dark
green pin) to the position at the bottom right (purple pin).
Right: coordinated spoofing attack manipulates the network-
based (purple circle with pin), GNSS (light green circle with
pin), and fused (blue circle with pin) positions, deviating
from Europe to Hong Kong.

them easier to manipulate. Fallback Positioning: With GNSS
signals blocked, modern mobile devices rely on network-based
positioning as a fallback. The replayed beacons thus mislead the
fusion algorithm, causing it to compute a spoofed position.

Attack Results: We observe that both Android and iOS de-
vices fail to notify users when positioning relies solely on (possibly
adversarial) network signals, potentially exposing users to unde-
tected LBS position manipulation. For instance, a taxi driver may
falsify the driving route to get illegal profits or bypass trip security
checking to take the passenger to an unintended destination with-
out any notification. Figure 3 (left) and Appendix A illustrate the
effectiveness of the position manipulation.

4.3 Coordinated Location Spoofing
Security-sensitive applications, such as mobile banking, typically
validate location data by cross-referencing multiple sources (e.g.,
GNSS, Wi-Fi, and IP address). If the device meets verification criteria,
region lock for the usage is lifted. Mobile payments, such as Revolut
Card and WeChat Pay, have location-based security, comparing the
mobile device position with the place of offline payment. If the two
positions deviate, the transaction may be declined. To bypass them,
as an example, given the attack is of broader interest, we designed
a coordinated spoofing attack that manipulates all positioning.

Simultaneous Signal Manipulation: The attacker uses both
a GNSS signal generator and a Wi-Fi router to broadcast spoofing
signals to manipulate GNSS and network positions consistent with
the spoofing position. Network Beacon Crafting: Wi-Fi beacons
are replayed by using data extracted from public databases [8].
Since geolocation APIs do not verify the authenticity of beacons,
the attacker can generate them without physical presence at the
spoofing position.NetworkTrafficRedirection:The router relays
all TCP and UDP packets from the connected devices to a cloud
server located near the intended spoofing position using iptables.

Attack Results: By ensuring that the spoofing of GNSS, Wi-Fi,
and (if applicable) Bluetooth signals all point to the same position,
as shown in Figure 3 (right), our coordinated attack successfully
bypasses cross-validation mechanisms deployed by secure applica-
tions. The detailed demonstrations are available in Appendix B.

Algorithm 1 Detection based on subset generation and cross-
validation using available opportunistic information

Input {𝜶𝑚
𝑗
(𝑡), 𝜌𝑚

𝑗
(𝑡), v(𝑡), a(𝑡),𝝎 (𝑡)}, plbs (𝑡)

Parameter Λ𝑓

Output AttackDetected
1: for 𝑡 = 1, 𝑡++ do ⊲ Time index
2: for𝑚 = 1,𝑚++,𝑚 ≤ 𝑀 do ⊲ Infrastructures
3: for 𝑙 = 1, 𝑙++, 𝑙 ≤ 𝐿𝑚 (𝑡) do ⊲ All subsets
4: p𝑚

𝑙
(𝑡) ← Section 5.1.3 ⊲ Positioning

5: p̂𝑚
𝑙
(𝑡) ← Section 5.2.1 ⊲ Smoothing

6: 𝝈̂𝑚
𝑙
(𝑡) ← Section 5.2.2 ⊲ Uncertainties

7: 𝑓𝑚
𝑙,𝑡
(p) = 1

𝝈̂𝑚
𝑙
(𝑡 )
√
2𝜋

exp
(
− 1
2

( p−p̂𝑚
𝑙
(𝑡 )

𝝈̂𝑚
𝑙
(𝑡 )

)2)
⊲ Probability density function

8: end for
9: end for

10: 𝑓𝑡 (p) = 1 −
(∏𝑀

𝑚=1

(∏𝐿𝑚 (𝑡 )
𝑙=1 𝑓𝑚

𝑙,𝑡
(p)

) 1
𝐿𝑚 (𝑡 )

) 1
𝑀

⊲ Likelihood function and fusion
11: if 𝑓𝑡 (plbs (𝑡)) < Λ𝑓 then
12: AttackDetected = True
13: else
14: AttackDetected = False
15: end if
16: end for

5 DEFENSE SCHEME
We propose a scheme easily deployable on mobile devices, using
readily available opportunistic information, without assuming the
presence of a trusted location source, considering that attackers can
target multiple positioning methods simultaneously. Our scheme
extends the RAIM method by leveraging redundant and opportunis-
tic information to detect LBS position manipulation. It integrates
multiple information sources, which include GNSS, signals of op-
portunity (SOP) (Wi-Fi, cellular, Bluetooth, GeoIP, etc.), and motion
data (velocity, acceleration, and orientation based on on-board sens-
ing), to strengthen detection. The overall process consists of two
main steps: subset generation for positioning and position fusion
for attack detection, as outlined in Algorithm 1.

First, real-time ranging information is collected from all available
infrastructures. Through strategically combining different ranging
information from heterogeneous infrastructures into subsets, it
accommodates variations in signal characteristics, such as distance,
uncertainty, and accuracy. As it is almost impossible to jam all
benign anchors, it is reasonable to expect some benign subsets
exist. For example, Wi-Fi jamming [50] cannot jam all beacons, as
Wi-Fi channels are wide and relatively resistant to interference.
To reduce computational complexity, as subset sizes range from
the minimum required by the positioning algorithm to the max-
imum, our sampling strategy (Section 5.1.2) reduces the number
of subsets and improves efficiency. Finally, intermediate position
estimates are computed for each subset and infrastructure, using
the corresponding positioning algorithms in Section 5.1.3.

Second, onboard sensors collect velocity, acceleration, and orien-
tation data to refine intermediate position estimates obtained in the
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first step. The proposed local polynomial regression in Section 5.2.1
smooths positions based on the physical movement constraints of
the mobile platform. The filtered positions are then fused into prob-
ability density functions along with their associated uncertainties,
as described in Section 5.2.2. A composite function in Section 5.2.3
is normalized to derive the final likelihood used for cross-validating
position manipulations.

5.1 Subset Generation
5.1.1 Raw Data Preprocessing. The input data is the same crowd-
sourced data used for LBS applications. Information from GNSS
satellites, Wi-Fi APs, cellular BSs, Bluetooth devices, GeoIP RTT
servers, and onboard sensors is recorded as they are available. GNSS
signal data includes received times, satellite positions, and pseu-
doranges (estimates of satellite-receiver distances). Wi-Fi beacons
include basic service set identifier (BSSID), service set identifier
(SSID), and RSSI. Cellular data includes cell identifier, and RSSI.
Bluetooth beacons include medium access control (MAC) and RSSI.
GeoIP data includes the IP address of the platform and Internet
Control Message Protocol (ICMP) messages containing RTT like
ping values to data centers around the world. Onboard sensors
provide motion measurements. All this information is timestamped
and different types of data are temporally aligned.

GNSS pseudoranges, constant-biased approximation of the dis-
tance between the satellite and the receiver, are calculated by the
time it takes for the signal to reach the receiver, multiplied by the
speed of light. The pseudorange error may accumulate to hundreds
of meters after a few seconds because the receiver clock quartz
oscillator drifts. The clock is used to measure pseudoranges; thus,
all pseudoranges have the same clock error factor. Then, in a benign
environment, this ranging information can still accurately position
the receiver by adopting at least four satellites, solving for its co-
ordinates and clock error. Under a jamming attack, pseudoranges
cannot be derived, partially or entirely. Under spoofing, pseudor-
anges of one or more constellations are modified by the attacker,
i.e., the derived ranging information deviates from the benign one.

For Wi-Fi, cellular, and Bluetooth, the received opportunistic
ranging information does not represent actual distances. Instead, it
is RSSI, a negative number in dBm, which follows a log-distance
path loss model. The closer the device, the stronger the signal,
and vice versa. This ranging information is a relatively inaccurate
approximation of distance compared to GNSS. Under jamming, the
platform cannot receive valid packets, thus RSSI cannot be derived.

For GeoIP, both the IP address and ICMP based ranging are used.
ICMP utilities (e.g., ping and traceroute) provide time delay (e.g.,
RTT). The delay multiplied by half the speed of light should be
an approximation of the distance between the platform and the
GeoIP RTT server. In the situation of delay manipulation attacks
at the physical and data link layers (e.g., Wireshark), ICMP mes-
sages forwarded cause delay, thus longer ranges. In the situation of
attacks using transparent proxy, this proxy is usually running on
the network layer, so only TCP and UDP messages are managed
rather than ICMP messages. Firewalls may be used to drop/reject
ICMP messages, analogously to jamming, thus preventing ranging
information from ping values.

Most importantly, we have a database of anchors, containing
positions of Wi-Fi APs, cellular BSs, Bluetooth devices, and GeoIP
servers, playing a role analogous to GPS ephemerides. Among all
the anchors in the database, data cleaning can eliminate a majority
of incorrect or non-fixed anchors, e.g., personal hotspots, Bluetooth
headphones, and public transport Wi-Fi APs.

5.1.2 Subsets of Ranging Data. Subsets are generated to explore all
possible combinations of anchors/constellations, from the minimum
size required by positioning to the maximum. This process does not
assume a specific number of attacked ranging information sources
(e.g., spoofed constellations, rogue APs, and delayed RTTs), thus
being applicable to any potential scenario.

The GNSS subsets include all possible combinations of constel-
lations, including GPS, Galileo, GLONASS, and Beidou. For APs,
BSs, or Bluetooth anchors, the receiver position can be determined
using at least three RSSIs in trilateration, and the clock error can-
not be estimated. Similarly, for GeoIP, at least three RTTs to de-
termine the rough position. Hence, their number of subsets is∑𝐽𝑚 (𝑡 )
𝑖=3 𝐶 (𝐽𝑚 (𝑡), 𝑖), where 𝐽𝑚 (𝑡) = |J𝑚 (𝑡) |,∀𝑚 > 1. These sub-

sets of ranging information (associated with anchor) indexes, 𝑗
(from 𝜌𝑚

𝑗
(𝑡)), are denoted as S𝑚

𝑙
(𝑡), where 𝑙 = 1, 2, ..., 𝐿𝑚 (𝑡), with

𝐿𝑚 (𝑡) the total number of subsets for the𝑚th infrastructure (GNSS,
Wi-Fi, etc.). Then, for each (𝑙,𝑚), we use p𝑚

𝑙
(𝑡) as the subset posi-

tioning result based on S𝑚
𝑙
(𝑡).

The number of generated subsets for localization may be very
large, leading to sizable computational complexity; therefore, we
use a subset sampling strategy: randomly select subsets before
the next positioning step, with every subset selected or not via
a predetermined probability distribution. For example, a discrete
uniform distribution makes subsets equally likely to be chosen, not
introducing bias or skew to p̂usr (𝑡), thus does not undermine the
cross-validation process. Through randomly choosing subsets, our
detection scheme stays robust and adaptable to heterogeneous op-
portunistic information sources and attack types. Most significantly,
it reduces the detection computational complexity.

5.1.3 Positioning Methods. In order to use the heterogeneous rang-
ing information provided by multiple infrastructures, we have off-
the-shelf positioning methods for the subsets from each data type,
e.g., trilateration, multilateration, and geolocation localization. Each
provides position estimation with an uncertainty value.

Trilateration for GNSS single point positioning is based on code
observations of pseudoranges. The observations are affected by er-
rors such as atmospheric delay, satellite clock, and receiver clock er-
rors. GLONASS and GPS have differences in the way the ionospheric
and tropospheric delays are modeled. Additionally, GLONASS uses
a different frequency band than GPS, so the wavelength of the car-
rier wave is different. The pseudorange between the 𝑗th satellite
and a user at pusr (𝑡) is 𝜌𝑚

𝑗
(𝑡) = | |pusr (𝑡) − 𝜶𝑚

𝑗
(𝑡) | | + 𝜖n, where 𝜖n

models errors. Then, positioning uses the pseudoranges between
the receiver and the satellite positions to compute the receiver
position: | |p̂usr (𝑡) − 𝜶𝑚

𝑗
(𝑡) | | = 𝜌𝑚

𝑗
(𝑡), 𝑗 ∈ S𝑚

𝑙
(𝑡).

Geolocation is distance-based positioning based on a weighted
least squares problem to minimize the weighted sum of squared
distances between anchors and the estimated device/user position
[37]. These weights are determined based on the inverse square of
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ranging: min
p̂usr (𝑡 )

∑
𝑗∈S𝑚

𝑙
(𝑡 )

(
| |p̂usr (𝑡) − 𝜶𝑚

𝑗
(𝑡) | |/𝜌𝑚

𝑗
(𝑡)

)2
, solved

by numeric minimization algorithms such as the SciPy least squares.
GeoIP positioning combines both tabulation-based and delay-

based IP geolocation [1]. Tabulation-based IP geolocation provides
a lookup table to map IP address to an estimated position. Delay-
based IP geolocation uses RTTs as ranging information with 10 to
20 anchors. It first maps RTT to distance based on a fitted function
from training data. Then, the position is estimated as the centroid
of the intersection of circles whose centers are the anchors and
radii are the distances.

5.2 Position Fusion
5.2.1 Onboard Sensors. We use p𝑚

𝑙
(𝑡) from Section 5.1 and v(𝑡),

a(𝑡), 𝝎 (𝑡) from onboard sensors as input data, applying local poly-
nomial regression to filter noise. Positions, pusr (𝑡), plbs (𝑡), p𝑚𝑙 (𝑡),
are represented in the format of the World Geodetic System 1984
(WGS84). 𝝎 (𝑡) ∈ R3, from onboard sensors, comprises roll (𝜙),
pitch (𝜃 ), and yaw (𝜓 ) angles in the format of the sensor coordi-
nate system of the mobile platform. The rotation matrix, R, below
converts a smartphone’s sensor coordinates to WGS84:

R(𝑡) = R𝜙 (𝑡)R𝜃 (𝑡)R𝜓 (𝑡) =

cos𝜓 (𝑡) − sin𝜓 (𝑡) 0
sin𝜓 (𝑡) cos𝜓 (𝑡) 0

0 0 1


×

1 0 0
0 cos𝜃 (𝑡) sin𝜃 (𝑡)
0 − sin𝜃 (𝑡) cos𝜃 (𝑡)



cos𝜙 (𝑡) 0 − sin𝜙 (𝑡)

0 1 0
sin𝜙 (𝑡) 0 cos𝜙 (𝑡)

 .
This definition differs from that used in aviation, with 𝜙 and 𝜃
interchanged, and 𝜓 changes the direction of rotation. The state
of the mobile platform,

(
pusr (𝑡), v(𝑡), a(𝑡)

)
, evolves over time, thus

from 𝑡 − 1 to 𝑡 , so

pusr (𝑡) = pusr (𝑡 − 1) + R(𝑡 − 1)v(𝑡 − 1) +
1
2
R(𝑡 − 1)a(𝑡 − 1) + n

v(𝑡) = v(𝑡 − 1) + a(𝑡 − 1) + n
where n models noise. The state transition matrix is

F(𝑡) =
[
1 R(𝑡)
0 1

]
(1)

and the control-input matrix is B(𝑡) =
[ 1
2R(𝑡) 1

]T. We denote
the estimated state after movement as[

p𝑚
𝑙
(𝑡)

v(𝑡)

]
= F(𝑡 − 1) ·

[
p𝑚
𝑙
(𝑡 − 1)

v(𝑡 − 1)

]
+ B(𝑡 − 1) · a(𝑡 − 1) (2)

where 𝑙 = 1, 2, ..., 𝐿𝑚 (𝑡),𝑚 = 1, 2, ..., 𝑀 . Then, to combine the mo-
tion with regression, we use an estimator p̂𝑚

𝑙
(𝑡) = Wt, where

W ∈ R3×(𝑛+1) is a matrix of polynomial coefficients, 𝑛 is the or-
der of the polynomial regression, t is a (𝑛 + 1) dimensional vector,
[t]𝑖 = 𝑡𝑖−1, andW at (𝑙,𝑚, 𝑡) is calculated from the local polynomial
regression problem:

min
W

𝑡∑
𝑡 ′=𝑡−𝑤

[Wt′ − p𝑚
𝑙
(𝑡 ′)]⊤𝐾loc (𝑡 − 𝑡 ′) [Wt′ − p𝑚

𝑙
(𝑡 ′)]

s.t. |Wt − p𝑚
𝑙
(𝑡) | ≤ 𝝐t

(3)

where𝑤 is a rolling window of the filter and 𝐾loc (𝑡 − 𝑡 ′) is a kernel
function assigning a scalar value to ensure the closer data has a
higher weight, e.g., exp

(
−(𝑡 − 𝑡 ′)2

)
. 𝝐t ∈ R3 in the constraint is a

small tolerance for p𝑚
𝑙
(𝑡) to ensure the estimated position satisfies

the movement in a short time duration. p𝑚
𝑙
(𝑡 ′) may not be available

during the whole window𝑤 , then we use p̂usr (𝑡 ′) to complement
missing positions.

The second derivative of the objective function in (3) with respect

to W is 2 ·
𝑡∑

𝑡 ′=𝑡−𝑤
𝐾loc (𝑡 −𝑡 ′) · (t · t⊤)⊤ ⊗ I, where ⊗ is the Kronecker

product. This derivative is always a positive definite matrix. In
addition, the constraints are affine functions, so the problem is
convex and solvable in polynomial time using Lagrange multipliers.
After solving the problem, we have p̂𝑚

𝑙
(𝑡).

5.2.2 Uncertainty Modelling. The positioning uncertainty differs
across various infrastructures and positioning methods. For GNSS-
based trilateration, we use the position DOP metric. (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 , 𝜎𝑡 ) =
DOP ≜

√︁
Tr(Q), where Q is the covariance matrix of the least

squares solution to the navigation equations and DOP is the square
root of the trace of Q. Then, the uncertainty 𝝈̂𝑚

𝑙
(𝑡) is (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧).

For geolocation and other least squares algorithms, the uncertainty
is represented by the residual of least squares. For other positioning
techniques, we use the residual vector from the local polynomial
regression to model the uncertainty of estimated positions.

5.2.3 Likelihood Function. The probability density function of each
position estimate is defined as follows:

𝑓𝑚
𝑙,𝑡
(p) = 1

𝝈̂𝑚
𝑙
(𝑡)
√
2𝜋

exp ©­«−12
(
p − p̂𝑚

𝑙
(𝑡)

𝝈̂𝑚
𝑙
(𝑡)

)2ª®¬ (4)

where where p̂𝑚
𝑙
(𝑡) and 𝝈̂𝑚

𝑙
(𝑡) denote the estimated mean position

and standard deviation of the 𝑙-th estimate from the 𝑚th infras-
tructure, and all the operations are element-wise. Then, to aggre-
gate intermediate position estimates along with their uncertainties,
assumed to follow distributions N(p̂𝑚

𝑙
(𝑡), 𝝈̂𝑚

𝑙
(𝑡)2), we define a

composite likelihood function. At time 𝑡 , the likelihood function of
plbs (𝑡) under attack is computed as

𝑓𝑡 (plbs (𝑡)) = 1 −
©­­«

𝑀∏
𝑚=1

©­«
𝐿𝑚 (𝑡 )∏
𝑙=1

𝑓𝑚
𝑙,𝑡
(plbs (𝑡))

ª®¬
1

𝐿𝑚 (𝑡 ) ª®®¬
1
𝑀

(5)

where the cumulative term penalizes disagreement between plbs (𝑡)
and the fused distribution, yielding a higher likelihood when in-
consistencies are detected. To determine whether position manip-
ulation occurs, a threshold Λ𝑓 is predefined based on established
detection metrics. For example, the Z-score method sets the thresh-
old by calculating the mean and standard deviation, while kernel
density estimation non-parametrically estimates the probability
density function to support threshold selection. We use receiver-
operating characteristic curve (ROC) to analyze detection accuracy
versus different false alarm rates in our evaluation results to assess
the trade-off between them. If 𝑓𝑡 (plbs (𝑡)) is larger than Λ𝑓 , plbs is
deemed the result of an attack.

6 EVALUATION
We conducted the experiments in two settings and collected two
distinct datasets to evaluate our detection approach. Jammertest
2024 [22] provides real-world attacks (fixed position, dynamic, time
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True

GNSS

Network

Spoof area

Figure 4: A driving trace, GNSS positions, and network-based
positions. The red dotted line frames the attacked area. The
network signals are not specifically attacked.

jumping, etc.) solely on GNSS, but still allows for interesting results
as the GNSS attacks affect other data. Coordinated location spoofing
is done in a lab environment with more flexibility and control on
the simulated attack strategies on GNSS and other positioning.

6.1 Dataset A: Jammertest 2024
To assess the real-world applicability of the proposed detection
method against LBS position attacks, we collect data in an open-air
environment. This setting provides a rare opportunity to legally
observe a variety of GNSS attacks alongside benign wireless signals.

6.1.1 Experimental Setup. The test environment is an outdoor area
in Bleik and its surroundings, with intermittent GNSS jamming and
spoofing by the organizers of Jammertest [22]. The attack equip-
ment involved various types of jammers, meaconers, and spoofers.
Cigarette jammers, handheld jammers, and fixed jammers targeted
GNSS as well as mobile communication bands (GSM and DCS). In
the high power GNSS jamming scenario, jamming-to-signal ratio
exceeded 24 dB over a distance of up to 73 km. Following successful
GNSS jamming, GNSS spoofing was initiated. The fixed meaconer
was deployed on a mountain, retransmitting live-sky signals from a
long fiber-optic cable. The spoofing included stationary spoofing of
small/large position jumps, simulated driving, flying spoofing, and
more, employing Skydel with two USRP X300 software-defined ra-
dios (SDRs) to generate the GNSS signals following the pre-planned
routes [22]. In most of the test cases, the location services on the
smartphones were successfully deceived, as expected, with the posi-
tion effectively manipulated. However, as shown in Figure 4, due to
the intermittent nature of spoofing, signal blockage, environmental
dynamics, and spoofing signals being mostly weaker than jamming,
not all GNSS positions are spoofed.

6.1.2 Dataset Collection. We collected 68 driving traces using An-
droid smartphones, including the Samsung S9, Redmi 9, Google
Pixel 4 XL, and Pixel 8 (covering chipsets from Exynos, MTK, Qual-
comm, and Google Tensor). Additionally, two u-blox receivers (ZED-
F9P) served for ground truth positioning. The spoofing attacks did
not target GLONASS, Beidou, and QZSS constellations, thus the
ZED-F9P receivers were set up with clear views of these unaffected

Figure 5: The placement of the devices used for the coordi-
nated location spoofing in NSS lab environment.

True

GNSS

Network
Spoof area

Jammer

Figure 6: The actual walking trace, GNSS positions, and
network-based positions. GNSS is spoofed, and network sig-
nals (cellular, Wi-Fi, and Bluetooth) are replayed in the red
dotted box.

GNSS constellations, as well as an external GNSS reference station
outside the affected region to ensure precise kinematic positioning.

Smartphones in the car captured potentially compromised GNSS
and network signals. The GNSSLogger application recorded GNSS
traces of the phone at a sampling rate of 1 Hz, consisting of RINEX
and raw text files of satellite status with pseudoranges. The Net-
workSurvey application recorded beacons and other messages from
cellular, Wi-Fi, and Bluetooth anchors along the trace at approx-
imately 0.3 Hz, in GeoPackage format, providing anchor names
with RSSIs. In addition, acceleration (m/s2), orientation (degrees),
angular velocity (°/s), and magnetic field (mT), are provided at 100
Hz from onboard sensors. Satellite positions were obtained from the
broadcast ephemeris, and the positions of BSs, APs, and Bluetooth
anchors were retrieved from a crowdsourced geolocation database
calculated by the WiGLE.net application [8], based on both benign
signals and measurements affected by adversaries or inadvertent
contributors under GNSS attack.

6.2 Dataset B: Coordinated Attack
The coordinated location spoofing was conducted in our lab envi-
ronment, mainly utilizing our in-house Skydel GNSS signal simula-
tor and Ranatec RF shielded box. This setting manipulated wireless
signals in the shielded box, while ensuring there is no unauthorized
interference with actual users outside the lab facility.
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6.2.1 Experimental Setup. We examined three walking traces, each
approximately 1.5 kilometers in length, in Kista Science City and
the streets of central Stockholm. The rationale of the test is to
record GNSS and network signals of both benign and attack traces
in advance and then superimpose GNSS spoofing, benign oppor-
tunistic ranging data, and adversarial ranging signals (collected via
a dedicated trace at a distinct location/path, without any actual ad-
versarial transmissions, thus no adverse effect). The simulator setup
includes a workstation with Skydel 24.9.0, a Safran CDM-5 clock
distribution module for synchronization, two Ettus USRP N310
SDRs, a Ranatec RI 187 RF shielded box, and a Tallysman TW7900P
passive triple band GNSS antenna. Benign, spoofing, and jamming
GNSS signals for GPS L1, Galileo E1, and BeiDou B1 are generated
using Skydel, which streams IQ data to SDRs. N310 SDR outputs
benign, spoofing, and jamming signals with gains of 60/65, 70, and
60 dB, respectively. A 40 dB attenuation is between the connection
of the SDR output and the antenna input. Then, the antenna emits
the generated GNSS signals in the shielded box. The placement of
the devices is shown in Figure 5. The jammer enables CW, Chirp,
Pulse, BPSK, BOC, and AWGN jamming at the central frequency of
1575.42 MHz with -15 dBm reference power. The spoofer uses -37
dBm reference power.

As shown in Figure 6, a jammer is simulated as placed in the
middle of the victim’s walking trace, where the actual and the
spoofed traces intersect. A spoofer is simulated to closely follow
the victim on the actual walking trace. The attack strategy uses the
static GNSS jammer to force the victim receiver to lose lock, and
then, jamming is stopped and spoofing is launched for multiple
constellations (GPS L1, Galileo E1, and BeiDou B1). Simultaneously,
network-based positioning is targeted in a coordinated manner
through the simultaneous, at this point, replay of cellular, Wi-Fi, and
Bluetooth signals. These spoofed signals are introduced at the place
where the true and spoofed positions initially coincide and then
as they gradually deviate. Throughout the attack, benign network
signals remain present. The actual trace of the victim in Figure 6 is
the blue one, and the attacker imposes the misperception that the
victim follows the green path by replaying actually recorded signals
while walking across the green path. This can remain unperceived
by a user for a significant amount of time.

6.2.2 Dataset Collection. We used a Redmi 9 Android smartphone
to collect data. In the pre-collection phase, the GNSSLogger appli-
cation was used to record GNSS traces along with onboard sensor
measurements, and the NetworkSurvey application recorded mes-
sages from cellular, Wi-Fi, and Bluetooth. The sampling rate and
format were consistent with Dataset A. In the post-collection phase,
attacks were simulated using the smartphone and Skydel within
the lab environment. Skydel replays the benign GNSS signals and
generates spoofing signals according to the pre-collected traces.
The GNSSLogger application records GNSS again in the shielded
box. For network signals, the pre-collected network messages corre-
sponded to the expected spoofing trace and were timewise aligned
to the benign trace. We incorporate network messages of the spoof-
ing trace into the benign trace emulating the attacker replaying
network signals. The acquisition of satellite positions and the po-
sitions of BSs, APs, and Bluetooth anchors was performed in the
same way as Dataset A.

6.3 Performance of Attack
During Jammertest 2024, not only were GNSS receivers affected, but
also critical infrastructure, such as cellular BS timing, and crowd-
sourced geolocation databases experienced failures. Network-based
positioning dependent on crowdsourcing exhibited significant de-
viations: Most benign errors result in positions within 200 meters
of the ground truth, whereas attack-induced errors predominantly
range from 600 to 700 meters.

As we drove away from the jammer and spoofer, being protected
by the terrain/buildings, we observed the affected receivers reac-
quired positions. Once we moved back to the jammer or spoofer
line of sight, the receivers were once again affected. Furthermore,
we observed that even when the attack targeted only a single con-
stellation (e.g., GPS), its signals could impact antenna gain and then
disable other constellations.

During our coordinated location spoofing experiments, with
walk-based measurements and in-lab GNSS simulation, the simu-
lated GNSS jammer and spoofer were static, with their path loss
modeled. When the smartphone moved closer to the jammer, the
GNSSLogger application indicated a decreasing carrier-to-noise
power ratio. When the smartphone was around 10 meters from the
jammer, its GNSS receiver completely lost lock on the benign signals.
Then, we turned off the jammer and the spoofer began transmit-
ting the generated GNSS signals corresponding to a falsified path.
Due to the higher power level of the spoofing signals compared
to benign ones, the smartphone GNSS acquired and locked onto
the spoofing signals. The network signal spoofer was emulated
at the data level by modifying recorded network traces. Cellular,
Wi-Fi, and Bluetooth data from the benign and spoofing traces were
merged together in the dataset, causing the network positions from
the geolocation algorithm to deviate toward the intended spoofing
trace, as per Figure 6.

Although the strategy using a GNSS jammer and GNSS spoofer
demonstrated a high success rate in our experiments, we found
it challenging to seamlessly spoof the smartphone without prior
jamming but rather gradually increasing the spoofer signal power
and drifting the receiver signal tracking.

6.4 Performance of Detection
The attack detection accuracy is evaluated by the true positive rate
(𝑃tp) and the false positive rate (𝑃fp). 𝑃tp represents the number
of time intervals in which plbs (𝑡) is under attack and correctly
detected to be so, over the total number of attack time intervals.
Conversely, 𝑃fp is the percentage of time intervals misclassified as
being under attack while this is not so. Additionally, we define Δ𝑇d
as the average attack detection latency, capturing the time elapsed
from the onset of an attack to its detection.

Our baseline detection methods include one based on the Google
Play Services fused location, the secure fusion-based GNSS attack
detection in [30], one based on a Kalman filter, and one based
on network-provided position. Google Play location is the most
widely used fused location provider on Android devices. Secure
fusion [30] assumes GNSS is possibly under attack and fuses GNSS,
network, and onboard sensors. If the distance between this fused
position and the raw GPS-provided position exceeds a threshold,
the method flags the raw position as a spoofing. The Kalman filter
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identifies position anomalies by analyzing the residuals, defined
as the difference between the smoothed position and the raw GPS
position. Network-based detection is derived from the geolocation
algorithm leveraging network-based position only, also using dis-
tance discrepancy-based detection.

The experimental parameters were set as follows:𝑤 = 20, with
a regression kernel 𝐾loc (𝑡 − 𝑡 ′) = exp

(
−0.3( 𝑡−𝑡 ′𝑤 )

2
)
, a second-

order polynomial regression model, and a sampling rate set to 50%.
Spoofing labels are determined based on deviations: A positive
label is assigned if the distance between the GNSS position and the
ground truth is larger than 30 meters.

Figure 7 presents 𝑃tp and 𝑃fp results for Datasets A and B. Our
proposed method improves from 18% to 24% for Dataset A and up to
58% for Dataset B in terms of 𝑃tp, compared to Google Play location
and network-based detection, when 𝑃fp is between 5% and 10%. This
confirms that as long as GNSS DOP is such that it leads to positions
significantly more accurate than those based on network position,
the Google Play location prioritizes GNSS position even when it
is spoofed. It is important to note that Dataset B was collected in
the shielded box, so it did not provide valid Google Play locations.
Furthermore, network-based positioning lacks precision due to the
corruption of geolocation databases caused by spoofing attacks in
Dataset A. Additionally, coordinated location spoofing in Dataset
B gradually increases the spoofing induced deviation, which limits
the network position and Kalman filter based approaches to de-
tect anomalies. Notably, 𝑃tp is evaluated at the level of individual
position fixes rather than over entire traces. 𝑃tp represents the pro-
portion of correctly identified spoofed intervals among all spoofed
intervals, as opposed to Δ𝑇d measuring detection latency per trace.

Figure 8 shows Δ𝑇d versus 𝑃fp. Our proposed method has up to
5 seconds gain for Dataset A in Δ𝑇d, when 𝑃fp is between 5% and
10%. For our proposed detection, Δ𝑇d can detect spoofing attacks
within an average of 4 seconds.

Compared with existing position fusion schemes and products,
the proposed scheme can securely fuse position information, de-
tecting and excluding malicious data. Unlike traditional fusion for
secure localization [30], our scheme adopts a more fine-grained ap-
proach by analyzing individual ranging information for enhanced
position security. However, the generation of subsets and the com-
putation of positions for cross-validation are time-consuming. Hence,
further effort on subset sampling strategies is needed.

6.5 Scheme Tuning
We analyze the sensitivity of our scheme to parameters, including
sampling rate and window size. For the subset sampling strategy
(Section 5.1.2), we evaluate the effect of different sampling ratios on
𝑃tp. The results for Dataset A show that 𝑃tp increases with higher
sampling rates: With an increase from 0.25 to 1.0, 𝑃tp improves from
86% to 90%, at 𝑃fp = 10%. This suggests that higher sampling rates
capture a wider range of subsets, while at lower sampling rates the
algorithm may miss important subsets. However, the accuracy is
relatively insensitive to the sampling rate. When the sampling rate
decreases from 1 to 0.25 (4 times less computation), 𝑃tp is reduced
by at most 4%. Although higher sampling rates generally lead to
improved detection accuracy, practical constraints due to client
computational resources and acceptable Δ𝑇d are important.
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Figure 7: 𝑃tp of the proposed and baseline methods for
Dataset A (upper) and B (lower).

By adjusting 𝑤 in (3), we evaluate the detection performance
for different window sizes. Selecting an appropriate size requires a
trade-off, as smaller 𝑤 requires less computing power but poten-
tially degrades detection accuracy. Conversely, oversized 𝑤 may
result in processing unnecessary historical data and increased com-
putational complexity. Our results indicate relatively stable 𝑃tp
trending for 5 < 𝑤 < 25, but the computational time for detec-
tion when 𝑤 = 25 is 1.7 times that of 𝑤 = 5. In addition, 𝑃tp for
15 < 𝑤 < 25 exhibits slightly improved performance compared to
other window sizes; consequently, we selected this as the preferred
range in our detector. We further conduct a small scale compari-
son among different orders of local polynomial regression in W,
showing that 𝑃tp is higher for 𝑛 = 2 compared to 𝑛 = 1.

7 DISCUSSION
Ethical Concerns and Limitations: As GNSS spoofing is illegal,
the experiments that led to Dataset A were conducted at Jammertest
by the Norwegian authorities. For Dataset B, all spoofing signals
were entirely contained within our RF shielded box, ensuring that
they had no effect outside the lab. The adversarial trace collection
for opportunistic signals was essentially a benign collection along
an actual yet labelled and used, or the sake of emulating the attack,
adversarial (to be imposed on the victim) path, with a superposition
of this data with the benign one.
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Figure 8: Δ𝑇d of the proposed and baseline methods for
Dataset A (upper) and B (lower).

Alternative Data Cleaning: We explored large language model
(LLM)-based data cleaning, since the Wi-Fi AP position data is
crowdsourced from WiGLE.net [8] without quality assurance. The
process of matching Wi-Fi AP SSID to their corresponding place
names involves leveraging an LLM to extract text semantic infor-
mation and utilizing POI APIs for mapping and validating. The
following steps outline this data cleaning: Step 1 filters fixed places.
It inputs the SSID name of the AP using the prompt “Is this Wi-Fi
SSID from a static or mobile hotspot: SSID_NAME? Please answer
static or mobile only.” This prompt directs the LLM to distinguish
between fixed and mobile AP based on semantics. By filtering out
mobile APs, we focus on identifying fixed places. Step 2 extracts
keywords. It inputs the SSID name of the AP using the prompt
“Then, can you extract some keywords of the place name from
SSID_NAME? Please answer keywords directly.” This step prompts
the LLM to extract relevant keywords indicative of the place name
associated with the AP. Step 3 queries POI API based on the previ-
ously extracted keywords are used to obtain POI coordinates.

Processing Requirements and Overhead: We tested different
brands of smartphones with chipsets from Exynos, MTK, Qual-
comm, and Google Tensor. They all support logging GNSS pseu-
doranges at 1 Hz and network survey data every 3–10 seconds,
depending on connectivity. Hence, detection should process the
GNSS data within 1 second and the network data within 3 seconds.
We ran the Python version of the algorithm on the aforementioned

MTK and Google Tensor platforms. Although the computation for
the subsets took the longest time, each detection can be completed
within 1 second without parallel optimizations. Even if the comput-
ing power of the mobile platform were not sufficient, we could still
change the sampling rate in Section 5.1.2.

Deployment and FutureWork: Although our experimental re-
sults and simulations show practical performance using opportunis-
tic signals and consumer-grade sensors, the attack and detection
test scenarios should be extended to cover, e.g., subtler, stealthier
attacks, GNSS cold-start settings, static versus dynamic victim re-
ceivers, and scenarios with limited opportunistic information. The
attacker can subtly change position, time, or signal power, in spite
of the complexity of such attacks. Hence, integrating our detection
with other lower-layer (position-, time-, and signal-based) spoofing
detectors could provide a multi-layer defense. An attack during a
cold-start period could impact GNSS performance, but our position
consistency-based detection can remain robust. Future work should
consider various deployment settings, including different hardware,
user mobility, topology, and attack strategies.

8 RELATEDWORK
RAIM Protecting GNSS: There are two primary forms of RAIM:
residual-based and solution-separation [23]. Residual-based RAIM
uses statistical hypothesis checking at the residual errors to identify
potentially inaccurate measurements [25, 42]. The residuals can
come from the least squares or Kalman filters: extended Kalman fil-
ter (EKF) RAIM makes use of sliding window filters to identify and
eliminate outliers using GPS and inertial sensors [25, 42]. Solution-
separation RAIM recursively assumes faulty satellites, generates
subsets of the remaining satellites to derive solutions, and then
excludes faults [31, 58]. For example, [58] integrates RANSAC clus-
tering to classify position solutions.

Rogue Wi-Fi AP Detection: Detection of malicious Wi-Fi
hotspots has received increasing interest. Some popular industry
solutions [4, 14, 35] ignore all unknown APs or use AP MAC and
SSID whitelists to prevent unauthorized APs. However, attackers
can forge these records rather effortlessly. For example, most of the
consumer-grade Wi-Fi routers can set any SSID, and open-source
routers (e.g., OpenWrt) can even modify their MAC addresses.
Hence, there is a need for detection beyond these Wi-Fi beacons.
[29] uses wireless fingerprinting technology independent of client
devices, but the robustness of fingerprinting gets worse in dynamic
environments (rain, high traffic, etc.). In addition, semantic-based
CSI in Internet-of-Things (IoT) environments offers potential accu-
racy advantages but requires specialized hardware and large-scale
frequency band scanning [5].

9 CONCLUSION
Our extended RAIM scheme detects LBS position manipulation us-
ing opportunistic ranging information and onboard sensor measure-
ments: It cross-validates position estimates from different sources
to give an attack likelihood. We implement position attacks in real-
world LBS applications and show the feasibility of the proposed
detection with experiments in various scenarios. The benefit is a
significant reduction of both user and service exposure to scams
without adding additional hardware.
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(a) GeoIP manipulation by a Wi-Fi router relaying all TCP and UDP
messages. Left: actual IP; right: manipulated.

(b) GNSS signal generator setting. (c) Generated beacons.

Figure 10: Settings of a coordinated attack.

Figure 9: A time series of screenshots (from left to right, top
to bottom) of a recorded attack video.
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A WI-FI SPOOFINGWITH GNSS JAMMING
Figure 9 shows an application using the map service is fooled by a
Wi-Fi router broadcasting beacons based on a list of SSID and BSSID
along a pre-selected road. The purple pin is the estimated position
from the application, but actually, the smartphone is located at the
position of the dark green pin. We have also made two screen record-
ings demonstrating position manipulation under real GNSS jam-
ming and Wi-Fi replaying in Bleik (available at: https://drive.google.
com/drive/folders/1rZtwVYXi3OwKyS8Yzn23E2E18rBP-J3x).

Listing 1:Wi-Fi location spoofing script tested on a consumer-
grade router installed OpenWrt system and enabled virtual
APs. It will broadcast Wi-Fi beacons of ap_set.
def u c i _ s e t _ w i f i ( a p _ s e t ) :

s sh . exec_command ( " sed ␣ − i ␣ ' 3 7 , $d ' ␣ / e t c / c o n f i g / w i r e l e s s
" )

for i in range (min ( len ( a p _ s e t ) , 1 5 ) ) :
cmd_to_execute = " u c i ␣ b a t c h ␣ << ␣ EOF \ n "
cmd_to_execute += f " " "

s e t w i r e l e s s . w i f i n e t { i } = w i f i − i f a c e
s e t w i r e l e s s . w i f i n e t { i } . d e v i c e = ' r a d i o 1 '
s e t w i r e l e s s . w i f i n e t { i } . mode = ' ap '
s e t w i r e l e s s . w i f i n e t { i } . s s i d = ' { a p _ s e t . l o c [ i ,

" SS ID " ] } '
s e t w i r e l e s s . w i f i n e t { i } . e n c r y p t i o n = ' p sk2 '
s e t w i r e l e s s . w i f i n e t { i } . macaddr = ' { a p _ s e t . l o c [

i , " BSSID " ] } '
s e t w i r e l e s s . w i f i n e t { i } . key = ' Pa s sword '
" " "

cmd_to_execute += " commit \ nEOF "
s sh . exec_command ( cmd_to_execute )

s sh . exec_command ( " w i f i ␣ r e l o a d " )

B COORDINATED LOCATION SPOOFING
This attack includes packets relaying for GeoIP manipulation, Wi-Fi
location spoofing, and Skydel-based GNSS spoofing, as in Figure 10.
The spoofed positions are coordinated, meaning the position of
the relaying server and the coordinates in GNSS signal generator
setting are near the pre-selected spoofed position. Moreover, the
generated beacons mimic SSID and BSSID of Wi-Fi beacons.

Listing 2: The iptables rules for a proxy server running on
the IP 127.0.0.1 and port 12345.
i p r u l e add fwmark 1 t a b l e 100
i p r o u t e add l o ca l 0 . 0 . 0 . 0 / 0 dev l o t a b l e 100
i p t a b l e s − t mangle −N LAN
i p t a b l e s − t mangle −A LAN −d 1 2 7 . 0 . 0 . 1 / 3 2 − j RETURN
i p t a b l e s − t mangle −A LAN −d 2 2 4 . 0 . 0 . 0 / 4 − j RETURN
i p t a b l e s − t mangle −A LAN −d 2 5 5 . 2 5 5 . 2 5 5 . 2 5 5 / 3 2 − j RETURN
i p t a b l e s − t mangle −A LAN −d 1 9 2 . 1 6 8 . 0 . 0 / 1 6 −p t c p − j

RETURN
i p t a b l e s − t mangle −A LAN −d 1 9 2 . 1 6 8 . 0 . 0 / 1 6 −p udp ! −−

d p o r t 53 − j RETURN
i p t a b l e s − t mangle −A LAN − j RETURN −m mark −−mark 0 x f f
i p t a b l e s − t mangle −A LAN −p udp − j TPROXY −−on− i p

1 2 7 . 0 . 0 . 1 −−on− p o r t 12345 −− tproxy −mark 1
i p t a b l e s − t mangle −A LAN −p t c p − j TPROXY −−on− i p

1 2 7 . 0 . 0 . 1 −−on− p o r t 12345 −− tproxy −mark 1
i p t a b l e s − t mangle −A PREROUTING − j LAN
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