
ar
X

iv
:2

50
5.

09
38

4v
1 

 [
cs

.C
R

] 
 1

4 
M

ay
 2

02
5

CANTXSec: A Deterministic Intrusion Detection
and Prevention System for CAN Bus Monitoring

ECU Activations

Denis Donadel1 , Kavya Balasubramanian2 , Alessandro Brighente1 ,
Bhaskar Ramasubramanian3 , Mauro Conti1 , and Radha Poovendran2

1 University of Padova, Padua, Italy
2 University of Washington, Seattle, USA

3 Western Washington University, Seattle, USA
denis.donadel@phd.unipd.it, kavyab25@uw.edu,

alessandro.brighente@unipd.it, ramasub@wwu.edu, mauro.conti@unipd.it,
rp3@uw.edu

Abstract. Despite being a legacy protocol with various known secu-
rity issues, Controller Area Network (CAN) still represents the de-facto
standard for communications within vehicles, ships, and industrial con-
trol systems. Many research works have designed Intrusion Detection
Systems (IDSs) to identify attacks by training machine learning classi-
fiers on bus traffic or its properties. Actions to take after detection are,
on the other hand, less investigated, and prevention mechanisms usually
include protocol modification (e.g., adding authentication). An effective
solution has yet to be implemented on a large scale in the wild. The
reasons are related to the effort to handle sporadic false positives, the
inevitable delay introduced by authentication, and the closed-source au-
tomobile environment that does not easily permit modifying Electronic
Control Units (ECUs) software.
In this paper, we propose CANTXSec, the first deterministic Intrusion
Detection and Prevention system based on physical ECU activations. It
employs a new classification of attacks based on the attacker’s need in
terms of access level to the bus, distinguishing between Frame Injection
Attacks (FIAs) (i.e., using frame-level access) and Single-Bit Attacks
(SBAs) (i.e., employing bit-level access). CANTXSec detects and pre-
vents classical attacks in the CAN bus, while detecting advanced attacks
that have been less investigated in the literature. We prove the effec-
tiveness of our solution on a physical testbed, where we achieve 100%
detection accuracy in both classes of attacks while preventing 100% of
FIAs. Moreover, to encourage developers to employ CANTXSec, we dis-
cuss implementation details, providing an analysis based on each user’s
risk assessment.

Keywords: CAN bus · Intrusion Detection System · Intrusion Preven-
tion System · Automotive Security · Cyber-Physical Systems.

https://orcid.org/0000-0002-7050-9369
https://orcid.org/0009-0008-8518-0982
https://orcid.org/0000-0001-6138-2995
https://orcid.org/0000-0002-4952-5380
https://orcid.org/0000-0002-3612-1934
https://orcid.org/0000-0003-0269-8097
https://arxiv.org/abs/2505.09384v1


2 Donadel et al.

1 Introduction

Nowadays, automobiles are equipped with hundreds of ECUs controlling vehicle
components and functionalities. The de facto standard to allow these devices
to communicate is the CAN bus protocol [21]. Officially released in 1986 by
Robert Bosch GmbH, it is still employed in almost every vehicle in the world.
Moreover, it finds applications in other domains such as Industrial Control Sys-
tems (ICSs) [65] and maritime vehicles such as ships [47]. Despite CAN clear
advantages, such as high resilience to faults and the requirements of two wires
only [21], it suffers from intrinsic security issues [5,29,32,36,56]. For instance, the
absence of authentication allows effortless spoofing [20], while the fault-tolerant
error handling protocol allows Denial of Service (DoS) attacks against specific
vehicle components [7]. Tackling these issues with an easily deployable solution
is tough due to the sensitivity of networks in safety-critical Cyber-Physical Sys-
tem (CPS), where availability is the main concern. Moreover, the diffusion of the
CAN bus technology in the automotive industry and beyond makes it difficult
for manufacturers to accept radical changes to the standard.

Over the years, researchers have proposed different solutions to fix security
issues, although none are widely implemented at the current time. A class of
mitigations employs cryptographic primitives to authenticate frames and hide
transmitted information through encryption [12, 16, 17, 19, 31, 40, 57]. However,
these approaches suffer from several drawbacks. While it is difficult to deploy au-
thentication mechanisms supporting retro-compatibility with already employed
devices [12], it is even more complicated to imagine imposing a standard that
mandates legacy ECUs to manage cryptographic functions, effectively making
all ECUs already on the market unusable. Moreover, the close source automo-
tive environment makes it cumbersome to reverse proprietary frame formats
and reduces the number of people that may get involved [45]. As the CAN bus
serves as a safety-critical communication channel, it is imperative to control
delays tightly. Cryptographic solutions typically influence performance, even if
symmetric encryption can minimize them [69], thus presenting limitations.

To deal with the limitations of this environment, researchers started looking
at it from different angles, implementing solutions working on top of the un-
touched bus. A classic approach is to employ an additional node to monitor the
network and detect attacks [30]. It results in IDSs that monitor the format and
content of frames to detect anomalies [11,53,60,64] or match signatures of known
attacks [23,27]. Researchers proposed solutions employing voltage-based security
systems that monitor the precise voltage each ECU imposes on the bus to iden-
tify the transmitter [51,68]. These solutions require no additional computational
costs for ECUs but have been proven vulnerable to attacks [3, 50].

The inability to autonomously stop attacks is a considerable limitation of
IDSs, which need to rely on external systems or human action. Countermea-
sures to attacks are often developed ad-hoc, presenting mitigations to newly
discovered attacks [14,29,55,63]. However, applying several defense mechanisms
could be expensive for a manufacturer, who may need to deal with incompatibil-
ities. Moreover, it does not guarantee that the vehicle will be completely secure



CANTXSec 3

from attacks. Another approach is represented by Intrusion Prevention Systems
(IPSs), offering the capabilities to detect and react to attacks, preventing or
stopping entire categories of threats. Unfortunately, there has been limited re-
search investigating IPSs on the CAN bus [10, 33, 54]. Although attacks can be
effectively prevented [43], this could be explained by the dangers of blocking ac-
tions incorrectly identified as attacks (false positives), which may endanger the
safety of the vehicle and its passengers. Moreover, in the automotive scenario,
false positives also represent a problem in a detection-only paradigm. Even a low
number of false positives may result in alerts being ignored by drivers or several
stops to have the vehicle unnecessarily inspected, deteriorating the reputation
and trustworthiness of the manufacturer. Therefore, developing a comprehensive
solution that is unaffected by detection error is essential in this field.

Most of the attacks researchers proposed are based on CAN protocol-compliant
attacks, exploiting the bus structure and the error handling mechanisms [7, 20,
55]. Less attention has been directed to attacks exploiting actions that do not
conform to the CAN specification. Connecting a malicious device to a vehicle’s
bus [67] gives the attacker complete freedom in their actions, even injecting single
bits instead of entire frames [4]. Despite ad-hoc devices, even standard compro-
mised ECUs may suffer from design flaws that make launching these kinds of
attacks possible [29]. If the offensive side of these attacks has been little inves-
tigated, to the best of our knowledge, the detection of such attacks has seldom
been discussed.

There is, hence, the need for a solution that overcomes current limitations.
It needs to offer retro-compatibility without increasing the computational bur-
den on legacy ECUs, whil at the same time achieving no false positives. This
makes it difficult to employ Machine Learning (ML) models or other probabilis-
tic approaches that are inherently open to rare but nonetheless present false
alarms. Employing physical properties of the CPS allows the development of de-
terministic security solutions resistant to false positives. While an attacker can
easily craft frames [20,66], mimicking physical properties is at least harder than
imitating network behaviors, if not impossible at all.

Contributions. In this paper, we bridge these gaps by proposing CANTXSec,
the first deterministic Intrusion Detection and Prevention System (IDPS) in
the CAN bus based on the co-presence of activity on the transmitting line of
an ECU and one of its frame on the bus. Specifically, after building a list of
message IDs in the bootstrap phase, they are linked to the ECU activated when
each ID is transmitted in the bus. Then, we employ this list to detect malicious
traffic. Our approach relies on deterministic comparisons, representing a unique
and essential improvement over probabilistic IDS and IPS in the literature (e.g.,
ML-based [10, 37, 53]), virtually getting rid of any false positives. Moreover,
while an extra effort related to wiring is needed, CANTXSec does not require
any modification to the standard, resulting in a solution compatible with legacy
devices. It achieves 100% detection and prevention of common attacks compliant
with the CAN standard discussed in the literature while being able to precisely
detect advanced attacks based on deviations from the protocol specifications.



4 Donadel et al.

Our contributions can be summarized as follows:

– We propose a new classification system to separate known and future CAN
bus attacks between classical FIAs (i.e., using frame-level access) and ad-
vanced SBAs (i.e., employing bit-level access). The two classes represent
different access levels by the attacker and can be employed to classify future
IDSs in the field.

– We introduce CANTXSec, a deterministic Intrusion Detection and Preven-
tion System (IDPS) in the CAN bus based on the co-presence of frame IDs on
the bus and corresponding ECU activations. Our solution only requires cheap
additional hardware, without any software modifications, cryptographic pro-
tocol, or time-consuming training processes, while preventing FIA attacks
and detecting SBA, zeroing out false positives.

– Through the development of a real-world testbed, we demonstrate that CAN-
TXSec achieves 100% accuracy in detecting both categories of attacks. More-
over, we prove that our system can prevent FIA with a success rate of 100%
without disrupting other communications in the bus. The deterministic de-
tection ensures that no legitimate frames are stopped, thus making CAN-
TXSec applicable in commercial devices without risks.

– We provide an analysis to facilitate the implementation of CANTXSec based
on each user’s risk assessment. In particular, we show that monitoring the
activation of 30% of the overall number of ECUs in a car ensures attack
detection on the majority of safety-critical functions.

Organization. The paper starts by providing background insights in Section 2.
Section 3 describes and categorizes attacks in the CAN bus, while Section 4
depicts the threat model we consider in our paper. Then, Section 5 describes
CANTXSec, our IDPS, and discusses its implementation. Section 6 illustrates
the testbed we employed to obtain the results we discuss in Section 7. Rele-
vant related works are presented in Section 8, while in Section 9, we analyze
CANTXSec with respect to other papers and discuss implementation details.
Section 10 concludes the paper with some final insights.

2 Background

In this section, we discuss some background topics needed to understand the rest
of the paper. We overview the CAN bus protocol in Section 2.1 and introduce
the architecture of ECUs in Section 2.2.

2.1 CAN bus

CAN is a broadcast-based bus employed in CPSs and, in particular, in the au-
tomotive environment [21]. The bus works as a logical AND : dominant values
(zeros) win over recessive values (ones). After transmitting a bit, each node
senses the bus to ensure the transmitted value is actually on the bus. If not, a
collision is identified.



CANTXSec 5

CAN frames start with a Start-Of-Frame (SOF) bit followed by the ID, which
is used to identify message content and as an arbitration mechanism to decide
which node is allowed to transmit. Lower IDs correspond to higher priority. Dur-
ing the ID transmission, each node sends one bit at a time and senses the bus
immediately afterward. If a node sending a one senses a zero, it loses the arbi-
tration and thus stops transmitting. Through this mechanism, CAN guarantees
that, beyond the ID, only one node is allowed to transmit.

Whenever a collision is identified after the ID, an error is raised. Every node
keeps two error counters. A Trasmitter Error Counter (TEC) counts errors dur-
ing transmission, while a Receiver Error Counter (REC) monitors reception er-
rors. Every transmitting error increases TEC by 8, while receiving error increases
REC by 1. Every correctly sent or received frame decreases the respective counter
by 1. Upon encountering an error, the node signals it broadcasting an error
frame.

Error frames have different aspects based on the error state of the node. Error
states are defined by TEC and REC values. Nodes start in the error-active state.
Once their REC or TEC exceeds 127, they enter the error-passive state. If the
TEC exceeds 255, they enter the bus-off state, where they stop communicating
with the bus.

When in active error state, error frames are called active and are composed
of 6 dominant bits. On the other hand, during the passive error state, passive
error frames are composed of 6 recessive bits. This represents the only occasion
when a stream of 6 identical bits could be transmitted in the bus. During the
transmission of other frames, this is not possible because of bit stuffing mech-
anism. It states that whenever a node sends five bits of the same logic level
(dominant or recessive), it must send one bit of the opposite level. This extra
bit is automatically removed by receivers. This process helps ensure continuous
synchronization of the network.

SO
F

ID

R
TR ID
E r0 DLC DATA CRC

C
R

C
 D

EL
AC

K

EOF IFS

1b         11b           1b   1b   1b      4b              up to 64b               15b     1b  1b         7b          3b 

Fig. 1: A standard CAN frame showing the bit size of each field.

Figure 1 illustrates the different sections of a CAN frame. After SOF and
ID, two control bits are sent: the Remote Transmission Request (RTR) indicates
remote frame requests, while the Identifier Extension Bit (IDE) signals extended
IDs. Then, a dominant reserved bit (r0) is sent. Follows the Data Length Code
(DLC), a 4-bit value indicating the length of the data in bytes. Then, the actual
content is sent, followed by a Cyclic Redundancy Check (CRC) and a recessive
bit used as a delimiter (CRC DEL). Then, the transmitter sends a recessive
Acknowledge (ACK) bit, during which receivers can confirm the reception of the



6 Donadel et al.

packet by imposing a dominant value. After the ID, this is the only bit where a
node that lost the arbitration is supposed to send data. Finally, seven recessive
bits called End-of-frame (EOF) conclude the frame. Before the start of a new
frame, three recessive bits are sent and are called Inter-Frame Spacing (IFS).

2.2 Electronic Control Unit

An ECU is an embedded system employed in automotive electronics to control
one or more of the electrical systems in a vehicle. It is usually connected to a
variety of sensors and actuators. The process running on an ECU varies from
simple and well-defined tasks (e.g., a brake system) to more complex and power-
consuming operations (e.g., the infotainment ECU). The majority of ECUs need
to communicate with each other to exchange information about the vehicle’s
state through the CAN bus. ECUs are therefore required to comply with the
CAN standard [21] to allow this communication channel to work properly. A
controller is usually employed as an interface between the ECU’s microcontroller
(MCU) and the bus, as shown in Figure 2. It implements the standard and is in
charge of all the CAN related operations, such as buffering and queuing CAN
frames that need to be transmitted, packet filtering, arbitration management,
and error handling, including the management of error counters [35]. The con-
troller can be included in the MCU Printed Circuit Board (PCB) or added as
an external device [43]. In this latter case, the MCU employs general-purpose
communication protocols (e.g., Serial Peripheral Interface (SPI)) to communi-
cate with the controller. This approach allows developers to increase the range
of MCUs they can employ, including boards without CAN bus support.

The logical output of the controller needs to be converted to the differential
signaling employed by the CAN protocol. A transceiver converts the controller
output (i.e., CANTX) to a signal compliant to the CAN standard [21]. More-
over, it reads bits in the bus and transmits values to the controller through
the CANRX wire [34]. While it is possible to implement the controller as soft-
ware [4], the transceiver is essential to convert digital values to signals that can
be understood by the bus.

SPIMicrocontroller
(CPU, memory, ...)

CANTX
CAN

Controller CANRX

To CAN H

CAN
Transceiver To CAN L

Fig. 2: The architecture of a standard ECU.

3 Attacks on CAN bus

Being employed in safety-critical systems, the CAN bus has been the target of
numerous attacks, both from researchers and from malicious actors [7,29,36,54,



CANTXSec 7

Table 1: Attacks available in the CAN bus in the literature and effectiveness of
detection (Det.) and prevention (Prev.) of CANTXSec. 1: detectable for packets
with spoofed IDs; 2: starting from the first spoofed packet.

Attacks Type Det. Prev.
Flooding/DoS [44] FIA ✓ ✓

Frame Spoofing [66] FIA ✓ ✓

Adaptive Spoofing [66] FIA ✓ ✓

Replay Attack FIA ✓1 ✓2

Original Bus-off Attack (BOA) [7, 9] FIA ✓ ✓

Stealthy BOA “single-frame” [55] FIA ✓ ✓

Error Passive Spoofing [13] SBA ✓ ✗

Double Receiving Attack [66] SBA ✓ ✗

Stealthy BOA “one-packet” [54] SBA ✓ ✗

Freeze Doom Loop Attack [66] SBA ✓ ✗

Shutdown via Clock Gating [29] SBA ✓ ✗

Selective DoS [43] SBA ✓ ✗

55,66,67]. Table 1 summarizes most of the attacks documented in the literature
targeting CAN, indicating the type and the ability of CANTXSec to detect and
prevent them.

In usual threat models in the literature [3,5,15,26,54], the attacker gains ac-
cess to an ECU, which is employed to attack the bus. However, ECUs are not all
the same. They can be deployed in different subnetworks while being connected
to different sensors and actuators. Moreover, different ECUs are equipped with
different capabilities that could allow attackers to compromise different parts of
the system. The ECU’s firmware and its hardware architecture are also part of
the game: experienced attackers may find and exploit bugs in ECUs through
reverse engineering that results in sophisticated access to the CAN bus, while
unskilled attackers may rely only on high-level access to the bus provided by
the ECU frontend. All of these factors are critical in assessing the types of at-
tacks that can be carried out and, consequently, the effectiveness of identification
and prevention methods. In this paper, we introduce a distinction between two
fundamental attack classes in the CAN bus: Frame Injection Attack (FIA) and
Single-Bit Attack (SBA).

Frame Injection Attacks. FIAs include the most common attacks in the litera-
ture, where requirements on the compromised ECU are relaxed since the attack
does not require any particular capability other than the ability to ask the con-
troller to send frames. A malicious entity can obtain such access by compromising
an ECU with malware [22], exploiting software bugs [36], or installing a malicious
device on the bus [67].

Many attacks can be adapted from the IT scenario within this threat model.
Flooding attacks with low IDs (i.e., high priority) slow down periodic frames and
may lead to DoS [44]. Through frame spoofing, an attacker can send tampered
information on the bus, possibly taking care of avoiding collisions with other



8 Donadel et al.

frames with the same ID using an adapting spoofing attack [66]. Network cap-
tures from the bus can also be replayed later and several times to hide malicious
activities or masquerade other attacks performing a replay attack. Moreover,
the original Bus-Off Attack (BOA) does not require any special access to the
bus [7,9]. BOA exploits the error handling mechanisms to increase error counters
in a victim ECU, pushing it to a bus-off state and effectively stopping the de-
vice from sending any frames. The main challenge is related to synchronization
because the attacker’s message must overlap with the victim’s one. Researchers
found different ways to synchronize the attacker device with the bus without
any special access to the bus, such as exploiting the periodicity of CAN bus
messages [7], the knowledge of the legitimate transmitter [9], or the preceding
IDs [55].

Single Bit Attacks. If these kinds of ECU are the most spread, there exist cases
where the attacker needs more fine-grained access to the bus, monitoring it not
frame-by-frame but bit-by-bit. This can be the case when the adversary needs
precise synchronization in the bus and the ability to inject single bits during
other ECU transmissions, possibly disregarding the CAN bus specification [21].
Different ways exist to achieve this: 1) installing a malicious device developed ad-
hoc without a controller, 2) bypassing or hacking the controller of an ECU [29],
or 3) obtaining access to an ECU which does not employ a controller and which,
therefore, allows fine-grained access to the bus. Apart from the installation of a
malicious device, it is worth noticing that the effort needed to obtain this level of
access is considerable, and it is not always possible. While it is theoretically fea-
sible with some MCUs [61] that allow multiplexing the CAN controller output in
standard GPIO pins, it is more complex if the output pins are not reconfigurable
or the controller is connected via serial connections (e.g., SPI). Other strategies
may be possible by exploiting wrong design choices or by interfering with ad-
vanced ECU functions such as the clock [29]. We call attacks requiring such an
access SBAs since, usually, this control on the bus allows attackers to generate
errors by injecting a single bit in specific instants during the transmission of
frames by other ECUs [29,54,55].

With such precise access, many other advanced attacks are possible. For
instance, Error Passive Spoofing [13] is a two-stage attack that requires 1) forcing
an error passive mode victim into generating an error frame and 2) replacing the
recessive data and CRC bits with the spoofed payload. A Double Receiving
Attack forces the retransmission of a frame by imposing a dominant value in
the last EOF bit [66]. Moreover, direct bus access enables stealthier versions
of already discussed FIAs, such as the one-packet BOA [54] or the Selective
DoS [43]. A legacy feature of the CAN bus offers a technique to decrease the
bandwidth of the bus and gain time to finish computations for slow ECUs. It
works by imposing a dominant value in the first IFS bit [66]. An adversary may
exploit it with a Freeze Doom Loop Attack, forcing the dominant bit in a frame
and then again to the consequent overflow error frame that will be generated. A
peculiarity of these kinds of errors is that they do not increase error counters,
making the attack stealthier while keeping the bus busy as long as the attack is



CANTXSec 9

ongoing. Kulandaivel et al. [29] proposed an attack to shutdown ECUs exploiting
design errors of certain ECUs in the wild.

Since our approach is tied to the physical aspects of the attack, we decided
to separate attacks into FIAs and SBAs. As extensively described in Section 5,
CANTXSec can detect both kinds of attacks, but in two different ways strictly
depending on the category. On the other side, using our approach, prevention is
possible for the former category only. Moreover, this categorization is important
for future work on risk assessment. Even though it may happen that SBAs
have more severe effects, they are usually less likely to happen because of the
challenging environment needed to carry them out.

From our classification, we intentionally left out modification attacks, where
an attacker compromises an ECU and uses it to replace the content of legitimate
frames, i.e., without spoofing another ECU’s ID. Being an attack on the data
level and not on the network level, it is independent of the communication pro-
tocol employed and, therefore, not in the scope of this paper. In addition, it is
worth noting that attackers usually exploit vehicles through over-exposed ECUs,
such as the infotainment system, which in normal scenarios is not required to
send critical messages on the bus. Therefore, to create effective damage, attack-
ers usually need to forge message IDs to spoof the identity of sensitive ECUs.
To defend the system against these attacks, various techniques exist in the lit-
erature, even directly targeting CPS [38] or vehicle [6] environments. Promising
techniques employ lightweight feature extraction and contextual information to
detect anomalies in transmitted data [2, 24].

4 Threat Model

In this paper, as common in the CAN bus security literature [3,5,15,26,54], we
consider a malicious attacker with the capabilities to compromise ECUs software
remotely (e.g., via unsecured over-the-air firmware update mechanisms [48], via
Internet [36]) or physically (e.g., exploiting insecure OBD-II ECU software up-
date mechanisms [42]). We do not consider an attacker able to swap a legitimate
ECU with a malicious one, while we increase the attacker’s strength including
physical attackers able to connect new malicious devices to the bus [67]. Fur-
thermore, compared to similar recent works [54], the attacker can hack or bypass
the ECU’s controller to act on the transceiver directly and thus on the bus. This
is trivial for a physical attacker but also possible for remote attackers [29]. How-
ever, this advanced threat model has some consequences on which attacks can
be detected and prevented, as we will discuss in Section 9.2.

5 CANTXSec

In this paper, we propose CANTXSec, the first IDPS on CAN bus, which employs
fine-grained measurements from ECUs activities to detect and prevent network
attacks in the bus. CANTXSec collects data on the CANTX pin of each ECU



10 Donadel et al.

SO
F

ID

R
TR

ID
E r0 DLC DATA CRC

C
R

C
 D

EL
AC

K

EOF IFS

Officer

CAN TX 1

CAN TX 2

CAN TX i

ID = i
Read ID

line = i

select ID
=i line Yes

Error #1

Yes

No
Are other lines active?

Error #2

SY
N

C

Yes

NoAre other lines
active? No attack

No

Has line=i
transmitted?

Bus traffic

6 bits

Fig. 3: The flow chart explains the different checks CANTXSec performs during
each bit of every frame sent through the bus.

and correlates these values with a bit-by-bit reading of the bus. When a malicious
communication is detected originating from a compromised ECU and stopping
the frame is safe, CANTXSec blocks the transmission of the message by gen-
erating errors, eventually forcing the compromised ECU to a bus-off state. The
architecture of a system employing CANTXSec is depicted in Figure 3. A new
device, the so-called officer, is connected to the bus to detect and react in case
of attacks.

5.1 Officer

An officer with bit-level access to the bus is the core component of CANTXSec.
It should be an MCU connected to a CAN transceiver. For the officer, a CAN
controller is unnecessary since the device should be able to take action on frames
almost in real-time without waiting for the end of the packet. To this aim, the
officer MCU demodulates frames on the fly at the software level. A transceiver
is, hence, everything required to enable the MCU to interface with the bus if not
already provided by the board.

Moreover, the officer is connected via a single dedicated wire to the CANTX
lines of all the monitored ECUs to detect their activities. This wire is only in-
tended to measure digital voltage levels and signal the activation of the CANTX
line to the officer. As depicted in Figure 2, the CANTX line represents the
connection between the controller and the transceiver or, if the controller is
not present, between the transceiver and the MCU. The CANTX line shows a
high value when either a recessive bit needs to be sent on the bus or when the
transmitter is idle. It instead shows a low value when a dominant bit should be
imposed on the bus.



CANTXSec 11

5.2 Setup

The first part of the CANTXSec setup phase requires physical access to the
vehicle and its components. In fact, we need to connect a wire from the officer
to the CANTX of all the ECUs to be protected. A perfect time to perform the
setup is during automobile manufacturing while assembling the vehicle, to make
it easier to reach the various ECUs and to ensure that no stealthy attacks are
ongoing (e.g., malicious ECU spoofing IDs during setup). However, a technician
can also perform the setup a posteriori, ensuring as much as possible a clean
state of the ECU software or relying on manufacturer specifications to collect
the legitimate IDs. All the ECUs must be wired to protect against the highest
possible number of attacks. However, a lot of attacks can be prevented by con-
nected ECUs even without having all the devices connected to the officer, as we
discuss in Section 9.2. Based on the risk assessment conducted on each vehicle,
the developer and/or the owner can decide how many and what ECUs should
be protected [39].

Each CANTX pin connected to the officer represents a unique ECU. For
each ECU, the officer maintains a list indicating which IDs are allowed to be
transmitted from that particular ECU. The second step of CANTXSec setup
is hence the creation of this list. The manufacturer can populate the list by
manually inspecting the specifications. Otherwise, it can be achieved by running
the automobile in a controlled environment for a sufficient time to ensure that all
relevant ECUs activate at least one time. In the end, the officer should maintain
a table where each ECU pin corresponds to a list of allowed IDs. As discussed
in Section 2.1, each ID is strictly linked to a particular ECU, and there should
never be two ECUs with the same ID in the bus, as per standard [21].

With respect to other IPSs [10], CANTXSec only requires this setup step to
start working properly without any time-consuming data collection and training
of ML models. Updates on the vehicle, such as the replacement or installation
of a new ECU, require connecting the appropriate cable to the CANTX line and
updating the list on the officer. These kinds of actions are straightforward for a
technician, and no additional expertise is needed, making CANTXSec very easy
and fast to upgrade.

5.3 Attack Detection

The intuition on how CANTXSec works is as follows. Consider a frame with
arbitration ID = i being transmitted on the bus. For each transmitted bit, we
assess whether 1) the correct ECU (i.e., the one associated with ID i) is trans-
mitting, and 2) all the other ECUs are quiet. Implementing this approach using
loops is inconvenient due to the real-time nature of the problem. A better solu-
tion involves the employment of interrupts. They are available in modern MCUs
and can be triggered by a voltage change in a pin [62]. It is worth recalling that
the CANTX lines are set to 1 while the connected ECU is in idle state. This
makes it more difficult to assess if a certain ECU is transmitting a 1 (recessive
value) or waiting. However, because of bit stuffing [21], a 0 should be transmitted



12 Donadel et al.

periodically, even if not included in the original message. This makes it possible
to detect attacks using edge interrupts with reasonable delays and always within
6-bit time, as discussed in Appendix A.1. These interrupts fire when a voltage
variation is registered in the line, both from a high value to a low value and vice
versa.

The SOF is used by the officer for synchronization, as shown in Figure 3.
During the arbitration, CANTXSec is silent, waiting to know which ID wins the
arbitration. After arbitration, only the CANTX of the winner ECU is authorized
to transmit dominant values (except for the Acknowledge bit, as discussed later).
The officer performs the first check after 6 bits following the end of the arbitration
ID. In that period, the CANTX line i should have transmitted at least a 0
(because of bit-stuffing, as detailed in Section 2.1). Otherwise, CANTXSec raises
an Error #1. The second check starts again after the arbitration ID but continues
up to the end of the packet, checking if some of the other CANTX lines (i.e., all
except for CANTX line i) are transmitting a dominant value. If so, CANTXSec
raises an Error #2. This ensures that no ECU except the one who wins the
arbitration sends bits in the bus.

As depicted in Figure 3, there is one bit that is not considered in this check.
In fact, the ACK bit is meant to be set dominant by other ECUs to acknowledge
the reception of the frame. Therefore, the check for Error #2 is paused during
that bit since other ECUs are allowed to transmit. It is also worth mentioning
the existence of a legitimate behavior where the first IFS bit is set to zero to
signal an overflow. This was used in legacy systems to allow a receiver to delay
the next message while executing computation on the previous message [21].
However, it is no longer employed today and can be exploited to launch a Doom
Freeze Attack on the bus [66]. Therefore, we do not consider this possibility in
our system. However, it can be easily implemented by excluding the check for
Error #2 during that bit.

Compared to other IDS and IPS in the literature, CANTXSec does not rely
on statistical or ML models to detect and prevent attacks. Instead, it is based
on physical measurements and co-presence between ID values and corresponding
ECU activation in real-time. This ensures a deterministic solution that leads to
perfect attack detection.

5.4 Attack Prevention

When the officer detects an attack, it can act in two different ways. One option
is just to detect it and alert the driver, who can then decide what action to
take. Another option is instead to stop the frame and, therefore, the attack. If
detection cannot prevent attacks in real time, it allows alert verification and
avoids blocking legitimate packets when false positives are detected. This is one
reason why such systems have not found huge implementation in the literature:
even if the false positive rate is usually low [51, 53, 59], it may have an impact
on the driving experience. CANTXSec, instead, reaches 100% accuracy without
false positives: this allows us to safely implement a prevention mechanism, being
sure not to compromise the reliability of the bus.



CANTXSec 13

To stop a frame on the bus, the officer injects a dominant value until a
recessive bit is overwritten, which happens at most every 6 bits thanks to the
bit stuffing mechanisms (see Appendix A.1). This generates an error on the
transmitter, which stops the frame transmission and starts sending an error
frame. The error frame depends on the ECU state. In error active mode, it is
composed of 6 dominant bits, while in passive mode, it comprises 6 recessive bits.
However, even if this is enough to stop the frame [10], it may not be the smartest
strategy to block the attack completely. By default, controllers encountering
a transmission error will reschedule the same packet again in the next frame
time, which will be stopped by the officer again [35]. Such a process increases
the busload, and the attacker may exploit this behavior to slow down the bus,
performing a DoS.

A more efficient strategy aims to force the compromised ECU into a bus-off
state. While there exist different ways to perform the so-called bus-off attack [7,
55], the most efficient is the Instant Bus-Off proposed by Serag et al. [54].
It forces an ECU into a bus-off state, targeting a single packet in 510µs on a
500kbps bus. The idea behind this attack is to target one packet with an error and
then target the error frames generated by the first error injection. By iterating
this process, error counters on the compromised ECU will increase, eventually
resulting in a bus-off state. More details are available in the paper [54].

While FIAs can be easily stopped with this strategy, SBAs cannot. SBAs gen-
erate errors while transmitting of another frame by a legitimate ECU, violating
the CAN protocol [21]. Since, when the attack is detected, the frame being trans-
mitted is the legitimate one, the same strategy cannot be applied. Otherwise,
it will target the legitimate ECU. For this reason, the safest solution is only to
detect the attack and notify the user, who should decide the most suited action
based on the context. Discriminating between attacks to be stopped and attacks
to be detected is easy since Error #1 is related to FIAs that can be prevented,
while Error #2 indicates that a user action is required to avoid jeopardizing the
vehicle’s safety.

5.5 Development

A suitable officer to implement CANTXSec should reproduce the logic summa-
rized in Figure 3. Since no ML or other computationally expensive calculation
is involved, a cheap MCU is enough as long as it provides edge interrupts and
enough GPIO pins to connect all the monitored ECUs. Precise analog voltage
measurement capability by GPIO pins is not needed since the officer only needs
to obtain the digital level of CANTX lines. Moreover, the officer should include
a connection to the bus, which allows reading each singular bit in real-time (i.e.,
without a controller). Because of the controller’s absence, the software is respon-
sible for decoding each frame ID and deciding which CANTX lines should be
monitored. To identify errors, a computationally lightweight approach includes
the employment of interrupts to detect changes in the CANTX lines connected
to the officer’s GPIO pins. Errors and prevented attacks should be logged and
reported to the user so that further analysis can be performed. The code of our



14 Donadel et al.

prototype and all the devices employed in the testbed are available in our Github
repository4.

6 Testbed

Attacker 1 /
Normal ECU

(Uno)

Sensor
(Nano)

Dashboard
(Raspberry)

Simulator
(Raspberry)

CC

T T

C

T T

C

Attacker 2
(Nucleo)

T
T

Officer
(Nucleo)

(a) The officer is connected to the
CANTX of the monitored ECUs, which
is the wire connecting the transceiver (T)
and the controller (C), when available.

(b) ❶: Dashboard; ❷: Simulator; ❸: Sen-
sor; ❹: Attacker 1 / Normal ECU; ❺: At-
tacker 2; ❻: Officer.

Fig. 4: The architecture (Figure 4a) and picture (Figure 4b) of the employed
testbed.

To test CANTXSec, we developed a testbed employing different components
to simulate a real CAN bus as closely as possible. We employed different mi-
crocontrollers and microprocessors to create a more realistic environment. The
testbed schema is depicted in Figure 4a, and the use of each component is de-
scribed in the following.

– Officer: an STM32 Nucleo H743ZI2 board [61] employed to run CANTXSec.
It is connected to the bus via a transceiver without any CAN controller and
to the ECUs under control through GPIO pins.

4 https://github.com/donadelden/CANTXSec/

https://github.com/donadelden/CANTXSec/


CANTXSec 15

– Attacker 1/Normal ECU: an Arduino Uno [1] with Seeed Studio shield [52]
for the connection to the bus employed as a data transmitter. During the
frame spoofing attack, this ECU is considered compromised. Otherwise, it
behaves as a normal ECU broadcasting a random value every 100 millisec-
onds. The Seeed Studio shield included both a transceiver and a controller.

– Attacker 2: an STM32 Nucleo H743ZI2 board [61] emulating an ECU
with direct access to the bus (i.e., not mediated by a controller) through
a transceiver. It represents the optimal target for an attacker aiming to per-
form a SBA.

– Sensor: developed with an Arduino Nano 33 BLE [1] acts as a sensor broad-
casting a physical parameter (the light received by a photoresist) every 100
milliseconds. It represents one of the many sensors a modern vehicle con-
tains to monitor different vehicle and environmental parameters (e.g., the
temperature of the engine, external temperature, and tire pressure).

– Dashboard: running in a Raspberry Pi 3b [49] with a PICan Duo hat [58],
it emulates a dashboard, essentially receiving and logging the traffic on the
bus. The shield includes both a controller and a transceiver.

– Simulator: running in a Raspberry Pi 3b [49] with a PICan Duo hat [58],
it created background noise on the bus by continuously sending traffic from
a dataset. The dataset has been created by collecting 10 minutes of traffic
while using an instrumentation cluster simulator [46].

All the devices are connected to a simulated bus with terminal 120Ω resistors
as mandated by the standard [21]. Figure 4b illustrates the final testbed with
all its components.

7 Results

Even if the attacks presented in Table 1 have different goals, we can summarize
them into two categories based on the physical mechanisms needed to perform
the attack successfully, as described in Section 3. Since CANTXSec is focused
on the bit level, the end goal of the attack is not relevant to the detection. In
other words, independently of the final target of the attack, our system is able to
identify malicious injections that compose the attack. Therefore, we implemented
some representative attacks using different technical methodologies, which we
believe are comprehensive for the majority of the attacks in the literature.

Table 2 summarizes the attack’s scores and CANTXSec’s accuracy in de-
tecting and preventing attacks. The Attack Success Rate (ASR) is measured
depending on the attack’s goal, and it is explained in the following sections. The
dashboard collects frames successfully sent through the bus while all the rele-
vant ECUs log the packets transmitted for further analysis and correlation. We
ran each experiment for at least 10 minutes, generating several attacks during
that timeframe. Furthermore, Appendix A.2 proposes a simple example showing
how CANTXSec can effectively block an attack and restore the system’s normal
behavior.



16 Donadel et al.

Table 2: Effectiveness of CANTXSec in detecting and preventing the imple-
mented attacks, which are presented with their Attack Success Rate (ASR).
Preventing Selective DoS is not possible with this approach.

Attack Type ASR Detection Prevention
Frame Spoofing without traffic FIA 100% 100% 100%
Frame Spoofing with traffic FIA 100% 100% 100%
Selective DoS SBA 100% 100% NA

7.1 Frame injection

As a representation of FIAs, we implemented two different frame spoofing at-
tacks, considering that the spoofed ID is also transmitted from another ECU or
is only sent by the attacker’s device.

Frame spoofing without legitimate traffic. In this scenario, the attacker is able
to stop a monitored ECU from sending data. For instance, they can exploit a
BOA [7] or use malware to compromise the ECU [22]. Moreover, the attack
has the control of an ECU through which they can send frames on the bus
with arbitrary ID. We measure the ASR as the percentage of malicious frames
transmitted by the attacker that are correctly received by the dashboard. An
attack of this kind has a 100% ASR since there are no countermeasures applied
by default against spoofing attacks.

Without detection or defense mechanisms, the recipient of the ID would not
notice a difference in the packets since the ID is spoofed. If the officer is activated
in detection mode, instead, the driver could be notified of every spoofed packet
sent on the bus. In the testbed, this happens for 100% of the attacks, matching
with theory since attack detection is deterministic, as explained in Section 5.

Furthermore, frame spoofing attacks can be prevented by setting the officer
into prevention mode. In this case, when a malicious packet is sensed in the
bus, the officer will launch a BOA against that ID and, therefore, against the
compromised ECU. Figure 5 shows on an oscilloscope the prevention mechanisms
firing against a malicious frame. Even in this case, the success rate is 100%, and
no malicious packets are ever completely sent in the bus. Thus, the receiver does
not receive any spoofed data.

Frame spoofing with legitimate traffic. Similarly to the previous attack, the ma-
licious actor has compromised an ECU through which they can send spoofed
frames with any arbitration ID. Compared to the previous scenario, this time,
the attacker did not stop the legitimate ECU from sending frames on the bus.
Therefore, if the attacker sends packets continuously without caring about what
is happening on the bus, there may be collisions with the legitimate packets.
However, a smart attacker can easily sense the bus and send packets just after
legitimate ones [66]. With these techniques, they can ensure a 100% of ASR,
which is measured as the percentage of malicious frames correctly received by
the dashboard.



CANTXSec 17

Fig. 5: Start of a BOA as seen in an oscilloscope. The blue signal is the target
frame (i.e., the malicious frame). The yellow signal represents the injection made
by the officer. The first injection of a dominant value stops the malicious frame.
Then, the following injections target error frames automatically generated by
the attacker’s ECU. This increases the attacker’s ECU error counters, eventually
reaching the bus-off state.

Detecting this attack may seem more challenging since the officer needs to
differentiate between malicious and legitimate packets with the same ID. How-
ever, since the officer knows the state of the CANTX of the monitored ECUs, it
can tell the source of a frame. With this strategy, during detection mode, 100%
of the malicious packets are detected, while 0% of the legitimate packets are
wrongly classified as malicious.

In this scenario, prevention shows the same difficulties as detection. When
the officer is in prevention mode, it can block all the malicious frames, pushing
the attacker’s ECU into the bus-off state without modifying the behavior of
legitimate frames that are received by other ECUs correctly. In our experiments,
CANTXSec got a success rate of 100% in stopping malicious frames.

7.2 Single bit access attacks

If detecting and partially preventing frame spoofing has already been investi-
gated by other works, SBAs are intrinsically more challenging to detect. These
kinds of attacks bypass the controller with different techniques, for instance, us-
ing a modified ECU, hacking the controller, or exploiting design errors (e.g., bus
clock gating [29]).

As a representative example of these attacks, we implemented the Selective
DoS, first proposed by Palanca et al. [43]. Usually, these kinds of attacks exploit
the generation of errors in the bus to maliciously stop a packet or increase
error counters in ECUs. Since these bits are injected during the transmission of
legitimate packets, trying to stop them by launching BOAs is counterproductive
for two reasons. First, this will likely stop the legitimate frame and possibly
help the attacker by increasing even more victims’ error counters. Second, to
control single bits in the bus, the attacker has probably bypassed the controller



18 Donadel et al.

in some way and, therefore, they no longer need to behave to the standard. For
these reasons, we just investigate the detection of these kinds of attacks since
prevention is not possible with our strategy. After detection, the victim should
stop the automobile and ask for assistance to identify and fix the problem.

The Selective DoS [43] works by injecting a dominant value during the trans-
mission of a recessive value, thus generating an error that stops the packet trans-
mission. The transmitting ECU reacts by sending an error frame and reschedul-
ing the transmission of the packet as soon as possible. Then, the attacker uses
the same strategy to stop the retransmitted frame, and the cycle begins again. In
some cases, the victim ECU may go into the bus-off state, completely stopping
packet transmissions.

We implemented the attack on a Nucleo H743ZI2 board [61] (Attacker 2 in
our testbed) by monitoring the bus for frames with the target arbitration ID
and then injecting a dominant value during the first transmission of a recessive
bit. To check the effectiveness of the attack, we monitor the reception of packets
from the dashboard while launching the attack. We measure the ASR as the
percentage of packets correctly stopped by the attacker. We assessed that no
packets are received when the attack is active, indicating an ASR of 100%.

The detection of Selective DoS goes through the identification of injections
of single bits after the transmission of the arbitration ID. Since, by design, the
attack will generate a lot of consecutive traffic (i.e., the retransmissions), the
officer MCU is not fast enough to print an alert for each message. Therefore,
we employed a different strategy. We program the attacker to target exactly
200 frames (regardless of whether they are first sends or retransmissions), and
we program CANTXSec to alert every 200 detection. We avoid notifying each
attack on the serial port since this action is time-consuming compared to the
attack frequency, and it may result in some attacks passing unnoticed during the
notification. By repeating this process several times, we were able to ensure that
all the attacks were identified by CANTXSec, thus reaching a 100% detection
rate for SBA. In a production environment, there are different strategies to miti-
gate this issue. First, a faster MCU may be employed, possibly implementing the
logic on a Field Programmable Gate Array (FPGA) to maximize performances.
Second, another MCU may be delegated to collect alerts and queue the print-
ing of errors to the driver. Third, since getting the precise number of attacks is
usually not essential, the driver may be alerted only for the first attack received.

8 Related Works

IDS on CAN bus. Plenty of works in the literature propose to detect attacks
in the CAN bus by analyzing frame content employing ML and Deep Learning
(DL) models [53, 60]. Different models have been employed, such as Random
Forest [37], CNN [11], GAN [53] and LSTM [60]. GIDS [53] is an IDS proposed
by Seo et al. [53] together with a dataset including DoS, fuzzing (i.e., spoofing
of packets with random content and ID), and modification. A GAN is trained
with benign data and used to detect attacks with 98% of accuracy. The same



CANTXSec 19

dataset is also used by Song et al. [60] to test an IDS based on different DL
models achieving higher accuracy.

Other approaches have been discussed in the literature as well. Five different
features have been used by Xiu et al. [23] to detect spoofing attacks, including
the ID, time interval between packets, and three features related to the frame
content (correlation, changing amplitude, and value range). Other works [51,68]
try to fingerprint ECUs based on the voltage level imposed on the bus. However,
these mechanisms exploit an average over different measurements during the
transmission of the same packet, making them unreliable when dealing with
SBAs. Moreover, they have been proven vulnerable to attacks [3, 50].

Time intervals are another feature employed in the literature to detect attacks
in the CAN bus [23, 59, 64]. However, these techniques have some limitations
and cannot provide protection against the injection of single bits during the
transmission of legitimate frames (i.e., SBAs).

IPS on CAN bus. Because of the bus nature of the CAN protocol, IPSs are
not frequent in the literature. The first to theorize the utilization of the error
handling mechanism to prevent the reception of malicious messages have been
Matsumoto et al. [33]. They theorize a modification of ECUs to include a flag
to be set when transmitting so as to enable a security device to send an error
if someone else is transmitting in the same period. However, a software and
hardware modification of each ECU is requested, together with the wiring cost
of flags and the extra device. It is suitable for new networks and devices but
not for legacy systems. Moreover, the authors did not tackle the implementation
challenge. De Araujo-Filho et al. [10] propose an IPS based on an unsupervised
Isolation Forest, which requires some unlabelled training data without attacks
in it. Moreover, through the injection of error frames, malicious packets can be
stopped. However, only fuzzing and modification attacks are discussed without
including any SBA. A different solution is called Parrot [9], a spoofing prevention
system based on the fact that the legitimate ECU being spoofed can easily detect
it and launch a bus-off attack against the attacker. However, other attacks, such
as SBAs, are not discussed, and some limitations hold, for instance, related to
the speed of the CAN transmitter and the impossibility of preventing the first
spoofed frame. Another approach has been proposed with ZBCan [54], a secu-
rity solution able to authenticate messages exploiting the intra-packet time and
stop attacks using a SBA. However, the implementation requires a new device
and a modification of ECUs’ software to include authentication management.
Moreover, SBAs are discussed only as a countermeasure, and the system cannot
detect or prevent them.

9 Discussion

In this section, we discuss some aspects of our work. We compare CANTXSec
with other approaches in the literature in Section 9.1. Then, we investigate the
ECUs coverage requirement in Section 9.2 and discuss limitations in Section 9.3.



20 Donadel et al.

9.1 Comparison with other works

Despite the huge amount of IDS in the literature, only a few papers describe
an effective prevention system that can block attacks in the CAN bus [10, 54],
as described in Section 8. Table 3 summarizes the capabilities of our work with
respect to other relevant papers in the literature. Detection of FIAs is usually
one of the main targets of papers and is thus always satisfied, even if with
differences. For instance, papers such as GIDS [53] and Song et al. [60] employ
ML models to detect attacks. However, they only consider certain specific attacks
(i.e., DoS, Fuzzy, Gear Spoofing, RPM Spoofing) that were included in their
datasets. Scores vary based on the detected attack, with precisions reaching
99.9%. Another approach employing voltage levels, VALID [51], only reaches
99.5% of accuracy and has been proven vulnerable by certain attacks [3, 50].
Detection of SBAs is, instead, a completely new topic, and, to the best of our
knowledge, CANTXSec is the first paper in the literature addressing this issue.

Moreover, our solution is also able to stop attacks, which is instead a topic
discussed in just a couple of other works. Compared to our solution, both Par-
rot [9] and ZBCan [54] require software modification of each ECU, which may
be cumbersome when dealing with proprietary software in the automotive sce-
nario. On the other side, the hardware modification required by CANTXSec can
be applied on every ECU by inspecting the PCB for the CANTX line, which
is easier than dealing with integrity protection and digital signatures applied in
all modern ECU firmware [25, 28]. Moreover, both approaches can only detect
FIA, while SBAs will pass undetected without CANTXSec. While both ZBCan
and CANTXSec are based on almost deterministic solutions, the approach dis-
cussed by De Araujo-Filho et al. [10] includes training of ML models, resulting
in increased setup time and need for computation resources. Finally, it is worth
mentioning the development of secure CAN transceivers [41] providing certain se-
curity measures such as spoofing and flooding protection. However, they cannot
protect against threats that are transparent for the transceiver, such as SBAs,
which are still possible with such devices.

Table 3: Our solution compared to other IDSs and IPSs in the literature. ∼ in-
dicates a lightweight not-ML training process.

Detection Prevention TrainingFIA SBA FIA SBA
GIDS [53] ✓ ✗ ✗ ✗ ✓

Song et al. [60] ✓ ✗ ✗ ✗ ✓

Xu et al. [68] ✓ ✗ ✗ ✗ ∼
VALID [51] ✓ ✗ ✗ ✗ ∼
Jin et al. [23] ✓ ✗ ✗ ✗ ✓

De Araujo-Filho et al. [10] ✓ ✗ ✓ ✗ ✓

Parrot [9] ✓ ✗ ✓ ✗ ✗

ZBCan [54] ✓ ✗ ✓ ✗ ✗

CANTXSec ✔ ✔ ✔ ✘ ✘



CANTXSec 21

9.2 ECUs coverage

The most significant requirement of CANTXSec is the need to wire the ECUs
to the officer, which is somehow a limiting feature in a CPS like an automobile,
while it can be more easily applicable in ICSs or ships. However, it is worth noting
that not all the ECUs in a vehicle have the same risk model, and CANTXSec can
be easily implemented and deployed to cover only the most critical ECUs. For
instance, it is essential to protect safety-critical ECUs (e.g., brakes) to ensure
reliable operation and to avoid malicious sudden actions that might harm the
driver. On the other side, devices such as the infotainment system are less critical
and, if compromised, cannot physically harm the passengers. An iteration of such
an analysis prioritizes the ECUs that most require protection.

The number of ECUs in a vehicle is quite variable. Cheap automobiles are
equipped with only a bunch of them, while luxury cars may have up to 150
ECUs [18]. Accessing information about the number of ECUs in a vehicle and the
related messages is tough because of the closed source of the automotive environ-
ment. According to openDBC [8], a collection of reverse-engineered database of
CAN messages for different vehicles, they have a mean of 35 ECUs, even though
the number is quite variable, and databases are not always complete. Usually,
each ECU sends various messages through different frame IDs, indicating the
content of the message and its priority. Since, in the worst-case scenario, attacks
target the entire ECU (e.g., bus-off attacks will stop the ECU from sending any
message), in our analysis, we considered only the lowest ID for each ECU.

Even though the repository [8] does not offer a complete collection of vehicle
messages and ECUs, we analyzed the most complete dataset to estimate the
number of ECUs CANTXSec should be connected to in different scenarios. Since
the ID indicates the priority of the frame, we suppose that lower IDs correspond
to safety-critical messages, while high IDs are reserved for infotainment and
other non-critical applications. Therefore, to roughly estimate the number of
safety-critical ECU, we sort them by IDs and threshold them with the first
clearly not-critical ECU. A utility automobile such as a Hyundai Kia contains
43 ECUs. Out of them, we identify the 12 ECUs with lower IDs to be considered
safety-critical, using as a threshold the ID of the parking assistance ECU, which
can be considered non-critical. More expensive vehicles, such as BMW E9X,
contain slightly more ECUs (50). We identify 14 of them as safety-critical, using
as a threshold the IDs adaptive front lighting system, which represents the set of
the most important ECUs to be covered by CANTXSec. The effects of limited
coverage are discussed deeper in Appendix A.3.

Based on the simple risk assessment we propose, or others in the litera-
ture [39], each vehicle owner can decide how many ECUs should be covered by
CANTXSec. Just by connecting less than 30% of ECUs to the officer, it is pos-
sible to protect safety-critical ECUs from FIAs from both remote and physical
attackers. If more than one CAN bus is deployed in a vehicle, another solution
could be to cover only the ECUs connected to the safety-critical buses (e.g., the
power train), leaving unprotected less essential networks (e.g., the infotainment
systems). While this could be the most widely adopted scenario, high-risk usages



22 Donadel et al.

may require that all the ECUs should be covered with CANTXSec to ensure full
detection of both FIAs and SBAs.

9.3 Limitations

This work introduced for the first time a novel strategy to reduce the long-
discussed issue of false positives in the field of attack detection for CPSs and
propose the first strategy to eradicate them. However, some limitations should
be addressed in future works.

First, the requirement to cover all the ECUs with CANTXSec to comprehen-
sively detect all the discussed attacks may restrain some producers who could
see production prices and vehicle weight rise. However, we offer the reader an
analysis to consciously decide how to deploy the system based on the personal
risk assessment. Moreover, the most common and straightforward attacks (i.e.,
FIAs) are detected and prevented with 100% accuracy just by connecting to
CANTXSec the most safety-critical ECUs, relaxing the full wired requirement
for the standard user while providing the possibility to increase security for
high-risk cases.

Another weakness is that the capability of stopping attacks is limited to FIAs.
SBAs represent a huge challenge for prevention since they may be effective after
a single injected bit, rendering the time frame to act and stop the attack virtually
zero. Mitigation strategies could include firmware and architecture hardening to
prevent single-bit access to the bus. Another approach could be to physically
prevent ECUs other than the one winning the arbitration from transmitting on
the bus when not allowed, for instance, forcing the CANTX pin to a high value.
Moreover, forensics tools may be deployed to secure the system after the attack.

Finally, this research focuses on network-level threats, leaving aside data-
level attacks such as modification attacks. CANTXSec correlates IDs on the
bus with ECUs activations to spot attacks without looking at the actual data
transmitted. Due to this architecture, modification attacks are not possible to
be detected. Further research should be conducted to port the proposed deter-
ministic approach to the data level.

10 Conclusions

In this paper, we bridged the gap in the detection and prevention of attacks
in the CAN bus by proposing CANTXSec. Our solution is 1) deterministic, 2)
covers advanced attacks never discussed in the literature before, and 3) does
not require any software modification of ECUs and is thus easier to implement.
To test and analyze its characteristics, we introduced a novel categorization of
attacks in the CAN bus based on the access an attacker needs to carry them
out. In fact, we introduced FIAs requiring typical frame-level access and SBAs
employing more sophisticated bit-level access. Through the usage of a physical
testbed we developed, we demonstrated that CANTXSec achieves 100% accuracy



CANTXSec 23

in detecting both FIAs and SBAs. Moreover, we demonstrate how our solution
is even able to prevent FIAs with 100% accuracy.

Future works include further tests through the deployment of CANTXSec
in a real vehicle and augmenting the number of connected devices. Such an im-
proved testbed will allow for new experiments to test performance and latency
under high-load conditions (e.g., heavy traffic on the bus). Increasing the number
of ECUs could also allow testing the practical effects of partial ECUs cover by
CANTXSec. The development of such a testbed could also allow considerations
about the complexity of deploying CANTXSec, such as evaluating the ease of
wiring the CANTX lines of legacy and modern ECUs. Moreover, this work opens
a new research direction aiming at the prevention of the newly introduced cate-
gory of threats we called SBAs, which is a topic not addressed in the literature
up to now.

Acknowledgments This work was supported by the European Commission un-
der the Horizon Europe Programme, as part of the project LAZARUS (https:
//lazarus-he.eu/) (Grant Agreement no. 101070303). The content of this ar-
ticle does not reflect the official opinion of the European Union. Responsibility
for the information and views expressed therein lies entirely with the authors.
This work was partially supported by project SERICS (PE00000014) under the
NRRP MUR program funded by the EU - NGEU. This research was also par-
tially funded by the Research Fund for the Italian Electrical System under the
Contract Agreement “Accordo di Programma 2022–2024 between ENEA and
Ministry of the Environment and Energetic Safety – Project 2.1. Moreover, this
work has received support from grants N00014-23-1-2386 from US Office of Naval
Research and CNS-2153136 from US National Science Foundation.

References

1. Arduino: Arduino: open-source electronic prototyping platform enabling users to
create interactive electronic objects. https://www.arduino.cc/ (February 2023)

2. Balasubramanian, K., Baragur, A.G., Donadel, D., Sahabandu, D., Brighente, A.,
Ramasubramanian, B., Conti, M., Poovendran, R.: CANLP: A NLP-based intru-
sion detection system for CAN. In: Proceedings of the 2024 ACM/ SIGAPP Sym-
posium on Applied Computing. pp. 212–214 (2024)

3. Bhatia, R., Kumar, V., Serag, K., Celik, Z.B., Payer, M., Xu, D.: Evading voltage-
based intrusion detection on automotive can. In: NDSS (2021)

4. bitbane: CANT (2016), https://github.com/bitbane/CANT, defcon 26 Car Hack-
ing Village

5. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental
analyses of automotive attack surfaces. In: 20th USENIX security symposium
(USENIX Security 11) (2011)

6. Chiscop, I., Gazdag, A., Bosman, J., Biczók, G.: Detecting message modifica-
tion attacks on the can bus with temporal convolutional networks. arXiv preprint
arXiv:2106.08692 (2021)

https://lazarus-he.eu/
https://lazarus-he.eu/
https://www.arduino.cc/
https://github.com/bitbane/CANT


24 Donadel et al.

7. Cho, K.T., Shin, K.G.: Error handling of in-vehicle networks makes them vulner-
able. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1044–1055 (2016)

8. commaai: opendbc. https://github.com/commaai/opendbc (2023), accessed: Aug.
13, 2023

9. Dagan, T., Wool, A.: Parrot, a software-only anti-spoofing defense system for the
can bus. ESCAR EUROPE 34 (2016)

10. De Araujo-Filho, P.F., Pinheiro, A.J., Kaddoum, G., Campelo, D.R., Soares, F.L.:
An efficient intrusion prevention system for can: Hindering cyber-attacks with a
low-cost platform. IEEE Access 9, 166855–166869 (2021)

11. Desta, A.K., Ohira, S., Arai, I., Fujikawa, K.: Rec-cnn: In-vehicle networks in-
trusion detection using convolutional neural networks trained on recurrence plots.
Vehicular Communications 35, 100470 (2022)

12. Doan, T.P., Ganesan, S.: Can crypto fpga chip to secure data transmitted through
can fd bus using aes-128 and sha-1 algorithms with a symmetric key. Tech. rep.,
SAE Technical Paper (2017)

13. Elend, B., Adamson, T.: Cyber security enhancing CAN transceivers (2017)
14. de Faveri Tron, A., Longari, S., Carminati, M., Polino, M., Zanero, S.: Canflict:

exploiting peripheral conflicts for data-link layer attacks on automotive networks.
In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 711–723 (2022)

15. Foster, I., Prudhomme, A., Koscher, K., Savage, S.: Fast and vulnerable: A story of
telematic failures. In: 9th USENIX Workshop on Offensive Technologies (WOOT
15) (2015)

16. Groza, B., Murvay, S., Van Herrewege, A., Verbauwhede, I.: Libra-can: A
lightweight broadcast authentication protocol for controller area networks. In:
Cryptology and Network Security: 11th International Conference, CANS 2012,
Darmstadt, Germany, December 12-14, 2012. Proceedings 11. pp. 185–200.
Springer (2012)

17. Halabi, J., Artail, H.: A lightweight synchronous cryptographic hash chain solution
to securing the vehicle can bus. In: 2018 IEEE International Multidisciplinary
Conference on Engineering Technology (IMCET). pp. 1–6. IEEE (2018)

18. Hammerschmidt, C.: Number of automotive ecus continues to rise. https://www.
eenewseurope.com/en/number-of-automotive-ecus-continues-to-rise/ (May
2019), accessed: Dic. 13, 2023

19. Hartkopp, O., Reuber, C., Schilling, R.: Macan-message authenticated can. In:
10th Int. Conf. on Embedded Security in Cars (ESCAR 2012) (2012)

20. Iehira, K., Inoue, H., Ishida, K.: Spoofing attack using bus-off attacks against a
specific ecu of the can bus. In: 2018 15th IEEE Annual Consumer Communications
& Networking Conference (CCNC). pp. 1–4. IEEE (2018)

21. International Standard Organization (ISO): CAN Standard ISO 11898-1:2015.
www.iso.org/standard/63648.html (2015), accessed: Aug. 23, 2023

22. Iqbal, S., Haque, A., Zulkernine, M.: Towards a security architecture for protect-
ing connected vehicles from malware. In: 2019 IEEE 89th Vehicular Technology
Conference (VTC2019-Spring). pp. 1–5. IEEE (2019)

23. Jin, S., Chung, J.G., Xu, Y.: Signature-based intrusion detection system (ids) for
in-vehicle can bus network. In: 2021 IEEE International Symposium on Circuits
and Systems (ISCAS). pp. 1–5. IEEE (2021)

24. Kalutarage, H.K., Al-Kadri, M.O., Cheah, M., Madzudzo, G.: Context-aware
anomaly detector for monitoring cyber attacks on automotive can bus. In: Pro-
ceedings of the 3rd ACM Computer Science in Cars Symposium. pp. 1–8 (2019)

https://github.com/commaai/opendbc
https://www.eenewseurope.com/en/number-of-automotive-ecus-continues-to-rise/
https://www.eenewseurope.com/en/number-of-automotive-ecus-continues-to-rise/
www.iso.org/standard/63648.html


CANTXSec 25

25. Karthik, T., Brown, A., Awwad, S., McCoy, D., Bielawski, R., Mott, C., Lauzon, S.,
Weimerskirch, A., Cappos, J.: Uptane: Securing software updates for automobiles.
In: International Conference on Embedded Security in Car. pp. 1–11 (2016)

26. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., et al.: Experimental security analysis
of a modern automobile. In: 2010 IEEE symposium on security and privacy. pp.
447–462. IEEE (2010)

27. Kruegel, C., Toth, T.: Using decision trees to improve signature-based intrusion
detection. In: International workshop on recent advances in intrusion detection.
pp. 173–191. Springer (2003)

28. KT Secure: Software Code Signing (2023), https://ktsecure.co.uk/services/
software-code-signing/, accessed: Jan. 15, 2024

29. Kulandaivel, S., Jain, S., Guajardo, J., Sekar, V.: Cannon: Reliable and stealthy
remote shutdown attacks via unaltered automotive microcontrollers. In: 2021 IEEE
Symposium on Security and Privacy (SP). pp. 195–210. IEEE (2021)

30. Lokman, S.F., Othman, A.T., Abu-Bakar, M.H.: Intrusion detection system for
automotive controller area network (can) bus system: a review. EURASIP Journal
on Wireless Communications and Networking 2019, 1–17 (2019)

31. Lotto, A., Marchiori, F., Brighente, A., Conti, M.: A survey and comparative
analysis of security properties of can authentication protocols. IEEE Communi-
cations Surveys & Tutorials pp. 1–1 (2024). https://doi.org/10.1109/COMST.
2024.3486367

32. Maggi, F.: A vulnerability in modern automotive standards and how we exploited
it. Trend Micro (2017)

33. Matsumoto, T., Hata, M., Tanabe, M., Yoshioka, K., Oishi, K.: A method of pre-
venting unauthorized data transmission in controller area network. In: 2012 IEEE
75th Vehicular Technology Conference (VTC Spring). pp. 1–5. IEEE (2012)

34. Microchip: SN65HVD230: 3.3 V CAN Transceiver with Standby Mode (4 2018),
rev. 0

35. Microchip: MCP2515: Stand-Alone CAN Controller with SPI Interface (4 2021),
rev. K

36. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle.
Black Hat USA 2015(S 91), 1–91 (2015)

37. Minawi, O., Whelan, J., Almehmadi, A., El-Khatib, K.: Machine learning-based
intrusion detection system for controller area networks. In: Proceedings of the 10th
ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and
Applications. pp. 41–47 (2020)

38. Mitchell, R., Chen, I.R.: A survey of intrusion detection techniques for cyber-
physical systems. ACM Computing Surveys (CSUR) 46(4), 1–29 (2014)

39. Nilsson, D.K., Phung, P.H., Larson, U.E.: Vehicle ecu classification based on safety-
security characteristics. In: IET Road Transport Information and Control-RTIC
2008 and ITS United Kingdom Members’ Conference. pp. 1–7. IET (2008)

40. Nürnberger, S., Rossow, C.: –vatican–vetted, authenticated can bus. In: Crypto-
graphic Hardware and Embedded Systems–CHES 2016: 18th International Confer-
ence, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings 18. pp. 106–124.
Springer (2016)

41. NXP: Secure TJA115x CAN Transceiver Family (1 2020), rev. 3
42. Onuma, Y., Terashima, Y., Nakamura, S., Kiyohara, R.: A method of ecu software

updating. In: 2018 International Conference on Information Networking (ICOIN).
pp. 298–303. IEEE (2018)

https://ktsecure.co.uk/services/software-code-signing/
https://ktsecure.co.uk/services/software-code-signing/
https://doi.org/10.1109/COMST.2024.3486367
https://doi.org/10.1109/COMST.2024.3486367
https://doi.org/10.1109/COMST.2024.3486367
https://doi.org/10.1109/COMST.2024.3486367


26 Donadel et al.

43. Palanca, A., Evenchick, E., Maggi, F., Zanero, S.: A stealth, selective, link-
layer denial-of-service attack against automotive networks. In: Detection of In-
trusions and Malware, and Vulnerability Assessment: 14th International Confer-
ence, DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings 14. pp. 185–206.
Springer (2017)

44. Park, S.B., Jo, H.J., Lee, D.H.: Flooding attack mitigator for in-vehicle can using
fault confinement in can protocol. Computers & Security 126, 103091 (2023)

45. Pesé, M.D., Stacer, T., Campos, C.A., Newberry, E., Chen, D., Shin, K.G.: Libre-
can: Automated can message translator. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. pp. 2283–2300 (2019)

46. phil-eqtech: CH-Workshop. https://github.com/phil-eqtech/CH-Workshop
(2020), accessed: Dec. 13, 2023

47. Piętak, A., Mikulski, M.: On the adaptation of can bus network for use in the ship
electronic systems. Polish Maritime Research 16(4), 62–69 (2009)

48. Punde, A.: Understanding risks in over the air firmware upgrade for automo-
tives including evs. https://www.einfochips.com/blog/understanding-risks-
in-over-the-air-firmware-upgrade-for-automotives-including-evs/ (Jan-
uary 2023)

49. Raspberry Pi Foundation: Raspberry Pi: Putting the power of computing and digi-
tal making into the hands of people all over the world. https://www.raspberrypi.
org/ (February 2023)

50. Sagong, S.U., Ying, X., Poovendran, R., Bushnell, L.: Exploring attack surfaces
of voltage-based intrusion detection systems in controller area networks. In: Proc.
ESCAR Eur. pp. 1–13 (2018)

51. Schell, O., Kneib, M.: Valid: Voltage-based lightweight intrusion detection for the
controller area network. In: 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom). pp. 225–
232. IEEE (2020)

52. SeeedStudio: CAN-BUS Shield V2 - high-performance MCP2515 controller &
MCP2551 transceiver. https://www.seeedstudio.com/CAN-BUS-Shield-V2.html
(February 2023)

53. Seo, E., Song, H.M., Kim, H.K.: Gids: Gan based intrusion detection system for in-
vehicle network. In: 2018 16th Annual Conference on Privacy, Security and Trust
(PST). pp. 1–6. IEEE (2018)

54. Serag, K., Bhatia, R., Faqih, A., Ozmen, M.O., Kumar, V., Celik, Z.B., Xu, D.:
ZBCAN: A zero-byte can defense system. In: 32nd USENIX Security Symposium
(USENIX Security 23). pp. 6893–6910 (2023)

55. Serag, K., Bhatia, R., Kumar, V., Celik, Z.B., Xu, D.: Exposing new vulnerabil-
ities of error handling mechanism in can. In: 30th USENIX Security Symposium
(USENIX Security 21). pp. 4241–4258 (2021)

56. Serag, K., Kumar, V., Celik, Z.B., Bhatia, R., Payer, M., Xu, D.: Attacks on
can error handling mechanism. In: International Workshop on Automotive and
Autonomous Vehicle Security (AutoSec) (2022)

57. Siddiqui, A.S., Gui, Y., Plusquellic, J., Saqib, F.: Secure communication over can-
bus. In: 2017 IEEE 60th International Midwest Symposium on Circuits and Sys-
tems (MWSCAS). pp. 1264–1267. IEEE (2017)

58. SK Pang Electronics: PiCAN2 Duo CAN-Bus Board for Raspberry Pi. https://
copperhilltech.com/pican2-duo-can-bus-board-for-raspberry-pi/ (Febru-
ary 2023)

https://github.com/phil-eqtech/CH-Workshop
https://www.einfochips.com/blog/understanding-risks-in-over-the-air-firmware-upgrade-for-automotives-including-evs/
https://www.einfochips.com/blog/understanding-risks-in-over-the-air-firmware-upgrade-for-automotives-including-evs/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.seeedstudio.com/CAN-BUS-Shield-V2.html
https://copperhilltech.com/pican2-duo-can-bus-board-for-raspberry-pi/
https://copperhilltech.com/pican2-duo-can-bus-board-for-raspberry-pi/


CANTXSec 27

59. Song, H.M., Kim, H.R., Kim, H.K.: Intrusion detection system based on the anal-
ysis of time intervals of can messages for in-vehicle network. In: 2016 international
conference on information networking (ICOIN). pp. 63–68. IEEE (2016)

60. Song, H.M., Woo, J., Kim, H.K.: In-vehicle network intrusion detection using deep
convolutional neural network. Vehicular Communications 21, 100198 (2020)

61. STMicroelectronics: Stm32 nucleo-144 development board with stm32h743zi
mcu. https://www.st.com/en/evaluation-tools/nucleo-h743zi.html/ (Febru-
ary 2023)

62. STMicroelectronics: Interrupt overview - stm32mpu (2024), https://wiki.st.
com/stm32mpu/wiki/Interrupt_overview, accessed: Jan. 15, 2024

63. Takada, M., Osada, Y., Morii, M.: Counter attack against the bus-off attack on
can. In: 2019 14th Asia Joint Conference on Information Security (AsiaJCIS). pp.
96–102. IEEE (2019)

64. Taylor, A., Japkowicz, N., Leblanc, S.: Frequency-based anomaly detection for
the automotive can bus. In: 2015 World Congress on Industrial Control Systems
Security (WCICSS). pp. 45–49. IEEE (2015)

65. Thompson, S.: Application of controller area network bus and CANopen protocol
in Industrial Automation. Ph.D. thesis, Murdoch University (2018)

66. Tindell, K.: CAN Bus Security - Attacks on CAN bus and their mitigations. Canis
Labs White Paper (2019)

67. Tindell, K.: Can injection: keyless car theft. https://kentindell.github.io/
2023/04/03/can-injection/ (April 2023)

68. Xu, T., Lu, X., Xiao, L., Tang, Y., Dai, H.: Voltage based authentication for
controller area networks with reinforcement learning. In: ICC 2019-2019 IEEE
International Conference on Communications (ICC). pp. 1–5. IEEE (2019)

69. Zhang, M., Masrur, A.: Improving timing behavior on encrypted can buses. In:
2019 IEEE 25th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). pp. 1–6. IEEE (2019)

https://www.st.com/en/evaluation-tools/nucleo-h743zi.html/
https://wiki.st.com/stm32mpu/wiki/Interrupt_overview
https://wiki.st.com/stm32mpu/wiki/Interrupt_overview
https://kentindell.github.io/2023/04/03/can-injection/
https://kentindell.github.io/2023/04/03/can-injection/


28 Donadel et al.

A Appendix

A.1 Attack Detection Delay

The fastest way for a MCU to monitor several lines is through the usage of inter-
rupts. Therefore, we employed changing edge interrupts to check every CANTX
line our officer is monitoring. We set the interrupts to fire every time a rising
or falling edge is observed on the line. This is perfect for detecting Error #2,
which is generated by an ECU passing from idle (recessive value) to a dominant
value on the bus. However, it can also be used to identify if the correct ECU
is transmitting some data. It can be done by monitoring the first bits after the
arbitration ID, looking for a bit of change. Theoretically, in the space of binary
messages, there exist cases where all the bits in the frames are the same. Prac-
tically, this is not possible in a CAN bus because of bit stuffing that forces a
different bit after five consecutive equal bits.

Even if we understand that Error #1 will eventually trigger, it is interesting
to know the mean delay for having such an error raised. The theoretical limit is
given by the definition of bit stuffing: 5 + 1 bit times. However, we investigated
the probability of waiting that time before detecting Error #1 by computing the
time to wait for an edge after the completion of the arbitration ID. We extracted
data from a dataset of 10 minutes of CAN traffic to compute the number of bits
to wait for an Error #1 to be raised. Figure 6 shows the probability of waiting
up to a certain amount of bit times to have an alert. As shown, after 4 bits
time, almost all the frames have transmitted a dominant value. However, 6 bits
is the maximum number of bits to wait to have a 0, as mandated by the bit
stuffing mechanism. This guarantees an upper bound on the time to wait for the
detection, which is anyway negligible, and ensures detection and prevention of
attacks before the end of the frame.

Fig. 6: CDF of maximum bit times to wait for an Error #1 to be raised.



CANTXSec 29

A.2 A toy example of attack prevention

To demonstrate the capabilities of CANTXSec, we conducted an experiment in a
scenario that could happen in a real vehicle. In particular, we imagine an attacker
launching a spoofing attack against a sensor in order to tamper with the real
value. We targeted a light sensor that is available in our testbed. Similar sensors
are everywhere in vehicles, for instance, to measure engine temperatures or tire
pressure. As explained in Section 6, the environment light value is broadcasted
every 100ms. The value is almost constant and exhibits small changes through
time since the environment brightness does not usually vary with high frequency.

We started with a bus without any security measures. At the time t = t0,
we imagine that a compromised ECU monitored by CANTXSec starts sending
frames at a very high frequency containing a tampered value and spoofing the
light sensor ID. The effect is visible in Figure 7, where it is easy to spot the
malicious high value being imposed. In particular, from t0, the flooding of tam-
pered messages with an abnormally high value tries to push the reading out of
the normal scenario. The consecutive drops are caused by the legitimate reading
that is still periodically sent from the sensor and, therefore, received from the
other ECUs. An advanced adversary could exploit a BOA against the legitimate
sensor to avoid the drops [7, 20].

To prevent the attack, we activated CANTXSec in prevention mode at time
t = t1. Blocking malicious frames restores the normal value, and the attack is
stopped. This highlights our system’s capabilities to stop spoofing attacks, which
are the starting point for all FIAs. Of course, with respect to this example, in a
real vehicle, the system will be activated when the vehicle is turned on, so the
attack will be stopped from the beginning.

t0 t1
t

Normal

Attack

Se
ns

or
 v

al
ue

Fig. 7: Values of a light sensor over time received by the dashboard. At t = t0, a
compromised ECU initiates an adaptive spoofing attack, forcing the sensor value
to be abnormally high. At t = t1, CANTXSec is activated in prevention mode,
and the attack is defeated.



30 Donadel et al.

A.3 Effect of partial ECU covering on CANTXSec capabilities

Covering more or less ECUs with CANTXSec impacts the attacks that can
detected and, possibly, prevented. The detection of FIAs is quite resilient to
narrow coverage of ECUs by CANTXSec, as shown in Table 4a. In fact, spoofing
is detected and prevented even if the compromised ECU is not connected to the
security system. This happens because, during spoofing, the legitimate ECU’s
CANTX will be idle while the officer detects its ID on the bus. It is worth
noticing that the malicious ECU could be a not monitored ECU or a completely
new device connected from the attacker to the bus [67]. Therefore, for normal
use cases, covering safety-critical ECUs is enough to secure the system against
common FIAs.

Table 4: Detectability of a spoofing attack (Table 4a) and a SBA (Table 4b) for
different configurations of monitored or unmonitored ECUs. X̄ means the ECU
sending ID=X is monitored by CANTXSec.

Spoofed ID

A B C D

O
ri

gi
n

E
C

U Ā − ✓ ✓ ✓

B̄ ✓ − ✓ ✓

C ✓ ✓ − ✗

D ✓ ✓ ✗ −

(a) Spoofing attack.

Victim frame ID

A B C D

A
tt

ac
ke

r
E
C

U Ā − ✓ ✓ ✓

B̄ ✓ − ✓ ✓

C ✗ ✗ − ✗

D ✗ ✗ ✗ −

(b) SBA.

When dealing with SBAs, the situation is more complicated, as shown in
Table 4b. In this class of attacks, identifying the transmitter of the malicious
bits is essential to detect attacks. All the attacks originated from ECUs connected
to CANTXSec are identified since the officer will notice a dominant value during
the transmission of a frame not linked to the transmitting ECU. However, this
does not apply to unmonitored ECUs since they are outside the control of the
officer. This implies that to have complete detection of SBAs, all the ECUs must
be connected to CANTXSec.


	CANTXSec: A Deterministic Intrusion Detection and Prevention System for CAN Bus Monitoring ECU Activations

