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Abstract—Mobile applications continuously generate DNS
queries that can reveal sensitive user behavioral patterns even
when communications are encrypted. This paper presents a
privacy enhancement framework based on query forgery to
protect users against profiling attempts that leverage these
background communications. We first mathematically model
user profiles as probability distributions over interest categories
derived from mobile application traffic. We then evaluate three
query forgery strategies—uniform sampling, TrackMeNot-based
generation, and an optimized approach that minimizes Kullback-
Leibler divergence—to quantify their effectiveness in obfuscating
user profiles. Then we create a synthetic dataset comprising 1,000
user traces constructed from real mobile application traffic and
we extract the user profiles based on DNS traffic. Our evaluation
reveals that a 50% privacy improvement is achievable with less
than 20% traffic overhead when using our approach, while
achieving 100% privacy protection requires approximately 40-
60% additional traffic. We further propose a modular system
architecture for practical implementation of our protection mech-
anisms on mobile devices. This work offers a client-side privacy
solution that operates without third-party trust requirements,
empowering individual users to defend against traffic analysis
without compromising application functionality.

Index Terms—DNS traffic, Data Perturbation Techniques,
Privacy-Enhancing Technologies, Query Forgery, User Privacy,
User Profiling

I. INTRODUCTION

Over the past decade, mobile application usage has grown
substantially due to improved device capabilities, increased
high-data content, and enhanced network performance [1]. As
users interact with these applications (hereafter abbreviated
as apps), they explicitly and implicitly disclose personal in-
formation. This information is typically utilized by Personal
Information System (PIS), such as Location-Based Systems
(LBS) and Recommender Systems (RS), which tailor services
based on user data. However, the very process of personaliza-
tion introduces inherent privacy risks. As personal data flows
into countless online services, unintended parties—including
cybercriminals and network observers—gain more ways to
target users and their assets. In response to these privacy
concerns, Privacy-Enhancing Technologies (PET) have been
in development since the late 20th century, aiming to protect
user information in data-driven environments.

The vulnerabilities of user profiling, traditionally associated
with foreground interactions, is not limited to direct app-server
communications. Background interactions as Domain Name
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System (DNS) traffic also enable user profiling. Every time
a user loads a webpage, or sends a message, DNS is the
first checkpoint on the path as it is responsible for translat-
ing human-readable domain names into machine-readable IP
addresses. The DNS queries expose sensitive data that may be
exploited for profiling purposes.

Network observers such as eavesdroppers or DNS resolvers
can infer user behavior from the domain patterns. Despite of
the development of encrypted DNS protocols such as DNS
over TLS (DoT), DNS over HTTPS (DoH), and DNS over
QUIC (DoQ) their overall adoption remains relatively low as
stated in the study [2]. DNS queries continue to be transmitted
in clear text over port 53 (Do53) as demonstrated in the
analysis conducted by [3].

Although encrypted DNS communications between clients
and resolvers prevents eavesdropping, a malicious or compro-
mised resolver can still violate user privacy. Moreover, most
encrypted-DNS traffic is handled by a few major providers
such as Google and Cloudflare 1. Such centralization could
lead to data monopolization that ultimately harms clients’
privacy. There are emerging DNS Privacy-preserving solutions
such as [4, 5, 6, 7] to address this vulnerability.

As shown in our analysis, domain names from DNS queries
within a fixed time window readily expose user activity pat-
terns, even with encrypted communications. This fundamental
vulnerability exists wherever DNS observers can see queried
domains. Our main contribution addresses this privacy risk
by applying Data Perturbation Techniques (DPT) to DNS
traffic through query forgery. While previous work like [8]
has applied these techniques to foreground interactions in
location-based systems, we extend them to background DNS
communications. Our approach mixes genuine DNS queries
with strategically generated false ones, creating an obfuscated
view of user behavior. Unlike traditional DPT applications
that balance personalization utility against privacy, our DNS
implementation only incurs network overhead costs. This
overhead represents a reasonable trade-off for the significant
privacy protection gained against profiling attempts based on
DNS traffic analysis.

In this context, this paper makes the following main
contributions. First, we present a mathematical model of
user profiles derived from DNS queries and we apply DPT
via query forgery to enhance DNS privacy. Second, we
evaluate three false-query strategies—uniform sampling, a

1https://dnscrypt.info/public-servers/
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Profiling Parameter Type References Applications

HTTP/HTTPS parameters [11, 12, 13, 14] Personality inference, academic classification

DNS parameters [15, 16] Behavior profiling

Network metadata parameters [17, 18] Activity pattern recognition

TABLE I: User profiling approaches by parameter type, refer-
ences, and applications.

TrackMeNot-inspired generator [9], and a Kullback-Leibler
(KL)-divergence–minimizing optimizer [10]. Third, we build a
synthetic dataset by mapping a real dataset traffic onto 1,000
users and we profile these users with our proposed method
based on DNS traffic. Fourth, through theoretical analysis
and experimental evaluation, we show that query forgery
substantially reduces profiling accuracy with minimal perfor-
mance degradation, and we quantify the trade-off between
added network overhead and achieved privacy gains. Finally,
we propose a modular system architecture for a potential
implementation of our DNS privacy model.

The remainder of this paper is organized as follows. Sec-
tion II presents a comprehensive review of the state of the art.
In Section III, we formally define the problem of DNS-based
user profiling. Section IV introduces our proposed DNS query
forgery mechanism to enhance user privacy against profiling
based on DNS traffic. Section V describes the creation of our
synthetic dataset and outlines the methodology for generating
user traces and deriving DNS-based user profiles. In Sec-
tion VI, we present our experimental evaluation, analyzing the
trade-off between privacy enhancement and traffic overhead,
and discuss the results obtained from applying our method
to 1,000 synthetic users. We propose a practical adaptation
of query forgery for mobile apps in Section VII. Finally,
Section VIII concludes the paper and outlines directions for
future research.

II. STATE OF THE ART

In this section, we review three key areas of literature. First,
we examine studies on user profiling through network traffic
analysis. Next, we explore PETs and their real-world appli-
cations. Finally, we review existing works that apply PETs
to mitigate privacy vulnerabilities in DNS communications.
This review frames our contribution within the broader privacy
protection landscape.

A. User profiling

User profiling through network traffic analysis involves
constructing behavioral patterns of users based on their digital
activities. This subsection reviews various methodologies used
to extract user profiles from network traffic parameters. Each
approach leverages distinct aspects of network communica-
tions to reveal behavioral patterns and user interests. We
categorize the literature into three main groups: profiling based
on HTTP/HTTPS parameters, DNS parameters, and broader
network metadata, as summarized in Table I.

Several studies have exploited the characteristics of
HTTP/HTTPS traffic to build user profiles. Although HTTPS

makes profiling more difficult, it does not eradicate it. Gon-
zalez et al. [11, 12] demonstrated that user profiling is possi-
ble despite encryption. From an eavesdropper’s perspective,
in [11], they utilized the URL a user visits, which can
be obtained from the Server Name Indication (SNI) in the
TLS handshake’s client_hello message, and web fingerprint-
ing techniques to construct user profiles. From a network
observer’s perspective, in [12], they analyzed sequences of
hostnames visited by users within a predefined period of time.
Using a custom Chrome extension to collect browsing data,
they applied natural language processing algorithms to infer
relevant topics from accessed websites, effectively creating
user profiles despite encryption protections.

Building on HTTP/HTTPS-based profiling approaches, Park
et al. [13] conducted a comprehensive investigation into four
distinct profiling scenarios: (i) profiling based on timestamps;
(ii) profiling based on HTTP headers; (iii) profiling based on
domain names, assuming interpretable topical categories of
URLs; and (iv) profiling based on page content, noting its
inapplicability to HTTPS traffic where URLs are encrypted
and only domain names remain visible. Their research used a
proprietary dataset of mobile network traffic from 61 Spanish
participants. By analyzing HTTP(S) traffic patterns of the
users, they modeled personality traits, shopping interests, and
demographic characteristics.

Gao et al. [14] integrated HTTP(S) parameters with network
access records in a campus environment to enhance user
profiling capabilities. Their methodology first extracted fun-
damental identifiers (MAC address, login/logout times, device
location) from network access records, then enriched this
data by analyzing HTTP(S) packets for additional identifiers
like destination IP addresses. Using these parameters, they
built a classifier based on Back Propagation Neural Networks
(BPNN) to distinguish between different user types and predict
academic disciplines.

Several researchers have explored DNS traffic as a rich
source of information for user profiling. Shaman et al. [15]
proposed a method for user identification and behavior pro-
filing using DNS information. They collected a dataset from
23 users on the Plymouth University network, filtered users
based on MAC/IP address mappings, and identified apps
using reverse DNS queries. The authors employed a gradient
boosting machine learning algorithm to create user profiles
based on features such as date and time, destination IP address,
and DNS queries.

Lyu et al. [16] conducted an analysis of unencrypted DNS
traffic collected over one month from both a university campus
and a government research institute. Their research identified
distinctive behavioral patterns among various DNS asset types
(recursive resolvers, authoritative name servers, and mixed
DNS servers). By capturing normal DNS activity patterns
and detecting anomalies indicative of security issues, they
demonstrated DNS traffic’s dual utility for both profiling and
security monitoring. Their implementation of an unsupervised
machine learning algorithm to classify over 100 DNS assets
based on network, functional, and service characteristics fur-
ther established DNS behavior profiling as a valuable tool for
automated security management.
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Beyond HTTP/HTTPS and DNS parameters, broader net-
work metadata provides valuable insights for user profiling
without requiring access to communication content. Alotibi
et al. [17] developed user behavioral profiles based on net-
work metadata parameters such as connection type, duration,
number of packets, and packet size. Their research utilized
custom-collected network metadata from 27 participants with
static IP addresses, providing ground truth for their analysis.
After filtering the traffic to focus on user interactions with
popular apps (Google, YouTube, Skype, Facebook, etc.), their
methodology achieved remarkable identification accuracies.
Their results demonstrate network metadata’s effectiveness for
forensic investigations targeting insider threats.

Li et al. [18] analyzed user activity sequences using real-
world data from a Shanghai ISP. Their methodology con-
structed user profiles from network access records containing
user IDs, timestamps, and connection metadata. Their ap-
proach used the ISP’s systematic classification of apps into
categories (games, shopping, education) and observed that
each user’s records followed a power-law distribution. By
segmenting app usage traces into time windows and applying
a probabilistic topic model, they successfully inferred users’
cyber activities. Their research conclusively demonstrated that
digital activity patterns could characterize users’ daily life both
individually and collectively.

In conclusion, previous studies has shown that a variety
of traffic network parameters—including HTTP/HTTPS at-
tributes (timestamps, headers, hostnames), DNS characteristics
(query patterns, response types), and generic flow metadata
(durations, packet sizes)—can be used to reconstruct user
behavior even when traffic is encrypted.

B. Privacy-Enhancing Technology Applications

Numerous PETs have been proposed in the literature and
applied in real-world scenarios. According to [19], a possible
classification of PETs can be summarized into five groups:
(a) basic anti-tracking technologies, (b) approaches based on
Trusted Third Parties (TTPs), (c) collaborative mechanisms,
(d) methods based on Private Information Retrieval (PIR)
cryptography, and (e) DPTs. We concentrate on DPTs which
aim to obfuscate the data users share with PIS. In practice,
these techniques are specifically designed to hinder the pre-
cise profiling of users by third-party privacy attackers. The
paradigmatic example of DPT is the transmission of real user
data mixed with false data.

Among the five broad PET categories, DPTs operate under
a zero-trust model regarding third-party entities. Unlike other
approaches that rely on trusted intermediaries, DPTs treat
any third party as a potential privacy threat. This approach
implements local privacy (user-side privacy), although it can
still be combined with collaborative profiling mechanisms
when appropriate.

Another important property of DPTs in the context of PISs
is the trade-off between cost and benefit. The primary goal
of these techniques is to find a balance between system func-
tionality cost (personalization), which depends on data utility,
against user privacy protection, which mitigates profiling risk.

Data-perturbation techniques References Applications
• Forgery [9, 10, 20, 21, 22, 23, 24, 25, 26] PWS, PIR, RSs
• Supression [27, 28, 29] PWS, RSs
• Both [30, 31] RSs
• Generalization [8] LBS

TABLE II: DPTs, references, and applications.

In DNS traffic between mobile apps and DNS servers—where
no personalization occurs—this functionality cost manifests as
network overhead rather than reduced service quality.

While DPTs are typically applied to PISs, their principles
can be extended to the scenario of DNS traffic generated
by mobile apps. This subsection examines the different ap-
proaches to data perturbation of the literature, which we
categorize based on their mechanism: forgery, suppression,
hybrid approaches combining both, and generalization, as
summarized in Table II with their respective references and
applications.

It is important to clarify that, in all cases, we refer to
deterministic perturbations, as opposed to techniques that rely
on random perturbations. Notably, all these techniques have
analogous counterparts in the field of Statistical Disclosure
Control (SDC), although the object of protection differs. While
the studies analyzed in this section focus on protecting a user
profile—typically modeled as a Probability Mass Function
(PMF)—SDC techniques are designed to safeguard an entire
database of records.

Query forgery techniques involve adding false queries to
genuine ones. This approach allows users to protect themselves
from precise profiling by privacy attackers while avoiding the
need to rely on third parties.

Several significant query forgery–based proposals had
emerged in the literature. The private web browsing system
known as PRAW [20, 21, 22, 23] complicated user profiling
by generating false browsing traces when users accessed the
web through a shared login session. Similarly, in [24] the
authors presented a query injector that generated false queries
with probabilities complementary to real ones. That approach
assumed that the proportions of real and false queries remained
inaccessible to an adversary and were only available on the
user side.

A software implementation of query forgery was
GooPir [25]. GooPir operated by sending batches of
both genuine and false keywords to a web search engine. The
selection of false keywords was based on usage frequency
similar to that of genuine ones, making profiling attacks more
challenging. However, in [32] the authors highlighted that this
strategy could be vulnerable to correlation attacks between
keywords across different batches.

Similarly, TrackMeNot [9] was a web browsing plugin
that implemented query forgery using various strategies. False
queries were generated through a continuously updated key-
word dictionary sourced from diverse information channels.
The transmission strategy of false queries to the server could
either mimic human behavior through bursts or be set at
predefined time intervals. As with the previous proposal, [33]
argued that certain semantic or timing-based attacks on false
queries could lead to potential inference of real queries, thus
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exposing TrackMeNot users.
A fundamental drawback of adding false queries was the im-

plicit traffic overhead it generated. Addressing this challenge
required balancing privacy and overhead, a scenario studied
in [10] within the field of PIR. In that work, the authors
presented a mathematical model to achieve an optimal trade-
off between the rate of falsified queries and user privacy. Later,
in [26], researchers investigated and validated tag forgery in
real-world scenarios within content-based RSs.

Data suppression was a fully viable and conceptually
straightforward DPT, representing the opposite approach to
adding activity to a user profile. Suppression had been vali-
dated in various scenarios. In [27], applied to the Semantic
Web, a limited privacy improvement was achieved through
a tag removal process, incurring resource costs that traded
off with semantic degradation. The same objective was ana-
lytically explored via convex optimization in [28]. Shannon
entropy of the perturbed profile and the proportion of tags
the user was willing to remove served as the respective
privacy and utility metrics for studying the optimal balance.
Finally, in [29], parental control and resource recommendation
were presented as application scenarios. The evaluation of
suppression-based perturbation considered costs resulting from
data degradation and the accuracy of predefined parental
control policies, offering an insightful perspective.

A combined approach involving both forgery and suppres-
sion was also applied to personalized RSs (e.g., Amazon,
Spotify, Netflix). Essentially, this strategy, investigated in [30],
enabled users to submit false ratings and/or withhold ratings
for items of interest. A closed-form solution to the problem
of optimal and simultaneous forgery and suppression of real-
world ratings was presented in [31].

More recently, in [8] the authors proposed and evaluated
a real-world data perturbation strategy based on the general-
ization of interest categories arranged in a hierarchical tax-
onomy with varying depth levels. That study proved effective
in systems utilizing hierarchical semantic taxonomies or in
LBSs, where POI coordinates could be recursively categorized
within a properly partitioned area of interest. As in previous
studies, and among other properties of the convex optimization
problem modeling the privacy–utility trade-off, the authors
introduced a critical ratio as a measure of the maximum
generalization rate beyond which privacy could not be further
improved.

In conclusion, DPTs present various methodologies for en-
hancing user privacy protection. Query forgery mechanisms, as
implemented in systems like PRAW, GooPir, and TrackMeNot,
function by strategically mixing false queries with genuine
ones to obfuscate user profiles. Data suppression techniques
operate on the contrary principle, selectively removing sensi-
tive elements from user profiles to limit information disclosure.
Hybrid approaches combine both falsification and suppression
strategies to optimize privacy protection, while generalization
techniques organize sensitive data into hierarchical taxonomies
that balance utility with privacy. These different approaches
demonstrate the versatility of DPTs in addressing privacy
challenges across various app domains.

C. Applications of PETs to DNS

Beyond DPT, researchers have also explored PIR for DNS
privacy. Bhat et al. [4] propose an information-theoretically
perfect, single-database PIR scheme for private DNS resolu-
tion, and more recently Zhou et al. [34] introduce PIANO, a
highly practical, single-server PIR with sublinear server work
that scales to 100 GB DNS-sized datasets. However, DNS
records are frequently updated, which contradicts a funda-
mental assumption of PIANO that requires a static database.
Moreover, PIR privacy requires also server support so they
cannot be deployed purely on the client side. This makes
private DNS query particularly challenging to implement with
PIR-based approaches.

In the same spirit of DNS privacy, Arana et al. [5] propose
Never Query Alone (NQA), a cooperative routing strategy in
which users forward their DNS queries through their neigh-
bors, thereby diluting an attacker’s ability to link a query to
its source. NQA requires cooperation among multiple clients.

Researchers have also explored privacy-enhancing solutions
specifically for DNS. Schmitt et al. [6] propose Oblivious
DNS (ODNS), which decouples client identity from queries by
encrypting requests that recursive resolvers forward to ODNS
resolvers. Building on this concept, Singanamalla et al. [7] de-
veloped Oblivious DNS over HTTPS (ODoH), adding HTTPS
transport to ODNS. Cloudflare has implemented ODoH in
their public DNS resolver 2, and the protocol is being stan-
dardized through an IETF draft co-authored by Cloudflare and
Apple [35].

In conclusion, building upon the aforementioned works, our
paper aims to demonstrate that the domain names queried over
a fixed time window leaks rich user-level behavior patterns.
As long as eavesdroppers or network observers sees those do-
main names, user activity remains fundamentally exposed. To
counter this we apply DPT via query forgery not only because
it empowers users to shield themselves without relying on
systems that require server-side deployments, but also because
it operates under a zero-trust model for any external entity and
strikes a practical balance between system-functionality cost
and user-privacy protection.

III. FORMAL PROBLEM STATEMENT

Generally, individual private data generated and transacted
between users and PISs over communication networks can
be represented as sequences of random variables. In this
work, we adopt this representation for DNS traffic, specifically
DNS queries or parts thereof (e.g., tuples consisting of the
app issuing a query, the queried domain, and the timestamp)
generated by user devices through various installed mobile
apps. Ultimately, these sequences can assume values in a finite,
common, and reduced alphabet of categories, which we define
as the set X = {1, . . . , n} for some integer n ≥ 2.

Assuming that these random variables are independent
and identically distributed, we mathematically model a user’s
profile using a PMF over the distribution of these variables.
We profile each user based on the percentage of DNS queries

2https://developers.cloudflare.com/1.1.1.1/encryption/oblivious-dns-over-
https/
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generated by each app in a predefined interval. The primary
advantage of PMF, widely accepted in the privacy litera-
ture [10, 36, 37, 38, 39], is its ability to efficiently aggregate
large amounts of individual user data and present it as a
histogram of relative frequencies across predefined interest
categories. Consequently, user profiles based on discrete prob-
ability distributions are well-suited for numerical computation
and widely applicable in privacy metrics.

Our goal in this formulation is not to identify specific
individuals or extract personal details, but rather to formalize
how DNS query patterns inherently reveal user behavior
signatures. We aim to establish the mathematical foundation
for understanding the fundamental privacy vulnerability that
exists whenever DNS traffic can be monitored by third parties,
regardless of how that information might be exploited.

Considering these aspects, we define q as the distribution
of genuine DNS queries from a user, reflecting their interests
(e.g., entertainment, culture, etc.) based on the DNS traffic
generated by mobile apps installed on their device. Similarly,
we define r as the distribution of the user’s false queries and
p as a reference distribution, which may correspond to the
population distribution or the average distribution of a user
group. In profiling terms, q, r, and p represent the user’s real
profile, false profile, and reference profile, respectively.

Finally, as a result of profile mixing, we define t as the
user’s apparent profile, derived from the combination of the
real and false profiles. In this work, t = (1 − ρ)p + ρr, a
simple deterministic perturbation strategy based on the convex
combination of genuine and false queries, where ρ is the false
query rate, also known as the perturbation ratio, with values
between 0 and 1.

With the formal problem statement established, the follow-
ing section presents the key components of our proposal to
enhance privacy protection against user profiling based on
DNS traffic by employing DNS query forgery. Ultimately, we
aim to determine a distribution of false queries r that optimally
obfuscates the real user profile q in terms of privacy and utility,
making it indistinguishable to a privacy attacker observing
the apparent profile t and leveraging DNS traffic for profiling
activities.

IV. DNS QUERY FORGERY AGAINST USER PROFILING

In this section, we present our proposal for enhancing user
privacy against profiling based on DNS traffic generated by
mobile apps installed on their devices. Fig. 1 illustrates the
diagram of the proposed scenario. First, we define the user
and adversary models that we assume. Next, we introduce
the metrics that will be used to evaluate the obfuscation
strategy forming the basis of our privacy-utility trade-off
model. Finally, we provide a numerical example to illustrate
the proposed privacy model.

A. User Model

The first component to consider in a security analysis is the
entity that a privacy attacker will observe, taking into account
the parameters that may be compromised. As introduced in
Section III, the scenario considered in this work is based

on a stream of DNS queries. At a given instant or over a
specific time period, processing and aggregating part of the
information contained in these queries allows the construction
of a user profile in the form of a discrete histogram of
relative frequencies, summarizing the user’s preferences across
a finite set of predefined interest categories. A straightforward
definition of these categories can be derived from mapping the
mobile apps used by the user on their device, an association
inferred from the traces of DNS queries.

This user model, widely studied and employed in the field
of PISs, enables us to define and delineate the profiling attack
performed by an adversary. It is important to reiterate that user
activity profiling is a primary concern in such systems.

In general, profiling is a method used to identify and
characterize individuals by generating and applying profiles.
However, as discussed in the literature [40, 41], user iden-
tification can be understood from two distinct perspectives:
as individuation, referring to the revelation of an individual’s
unique attributes, and as classification, which involves catego-
rizing an individual as a member of a group.

This duality in profiling usage implies the creation of both
individual and group profiles. For instance, PISs are commonly
characterized by individual profiling, which personalizes ser-
vices based on each user’s specific interests. Conversely, other
systems seek to adapt a group profile to users who may not
have directly contributed to that profile.

In this work, we focus on user individuation, adapting the
adversary model and privacy metrics to this specific profiling
activity. Ultimately, the real and apparent user profiles, denoted
as q and t, respectively, will be the targets of the adversary’s
profiling, whose model we define in the following section.

B. Attacker Model

The level of privacy provided by a PET directly depends
on the assumptions we make about the adversary. For this
reason, evaluating the effectiveness of a PET requires a proper
characterization of the privacy attacker. Clearly, depending on
the adversary’s properties, a user may implement different
techniques, including those reviewed in Section II-B.

Throughout this work, we consider an adversary capable
of accessing the DNS traffic generated by the exchange of
information between the various mobile apps installed on a
user’s device and the servers that resolve DNS queries—an
essential requirement for the apps to function properly.

Given this access, we assume an adversary who can filter
DNS queries and profile users by inferring their interests
through the analysis of the information contained in the traces
recorded on DNS servers, following approaches such as those
described in [3]. The technique we propose assumes that a
user aims to conceal their bias toward specific categories of
interest by perturbing their traffic with false DNS queries. This
ensures that the apparent profile t, as observed by any attacker,
approximates either a uniform profile u or the average user
profile q̄, while deviating as much as possible from the real
profile q.

A final but crucial assumption regarding the privacy attacker
is their inability to estimate a user’s rate of false queries ρ. This



6

User Mobile 
Apps DNS Server

Real User Prof ile

Data-Perturbation 
Mechanism

User-side

Apparent User Prof ile

Real DNS Query
False DNS Query

Attacker/
Eavesdroppers

Fig. 1: Representation of the secured scenario with the user model, the data-perturbation mechanism and attacker model.

is based on the premise that the adversary lacks knowledge of
whether the user employs the proposed privacy strategy.

C. Metrics

We dedicate this section to justifying and describing the
privacy and utility metrics selected for our privacy protection
proposal concerning user DNS traffic in mobile apps. For a
detailed analysis, these metrics have been extensively studied
in [10, 42].

First, we chose to use privacy measures derived from
Information Theory (IT). Specifically, we handle two key
concepts: Shannon entropy and KL divergence. For readers
unfamiliar with this field, we briefly review both measures
below.

The Shannon entropy of a discrete random variable with
PMF q taking values in the set X = 1, . . . , n is a measure of
the uncertainty of this random variable and is defined as

H(q) =
∑
i

qi logb(qi). (1)

where b 3 is the base of the logarithm used. However, all
bases produce equivalent optimization objectives.

Similarly, the KL divergence between two discrete random
variables with PMFs q and p is a measure of their divergence,
also referred to as relative entropy, as it generalizes the
Shannon entropy of one distribution with respect to another.
It is defined as

D(q||p) =
∑
i

qi logb(
qi
pi
). (2)

It is worth noting that Shannon entropy can be considered a
special case of KL divergence when the reference distribution
p is the uniform distribution u, i.e., p = u.

3Common values of b are 2, e and 10. In those cases, the units of entropy
are bit, nat and dit, respectively

With these notions in place, we define the privacy risk
function R as the divergence between the user’s apparent
profile t and the reference profile p, that is,

R(ρ) = D((1− ρ)q + ρr||p), ρ ∈ [0, 1]. (3)

Recall that the apparent profile t results from applying a
simple perturbation strategy based on a convex combination
equivalent to mixing the user’s real profile q with the false pro-
file r in a proportion ρ, which we refer to as the perturbation
rate.

At this point, we address the selection of the user’s false
profile r as a central element of the false DNS query mecha-
nism investigated in this work. To this end, we consider three
variants for shaping this discrete distribution.

First, the simplest option consists of diluting the user’s
real profile with the uniform distribution u, applying the
same number of false DNS queries, 1/n, to each of its n
components, which correspond to categories in our case.

The second option is based on the well-known TrackMeNot
mechanism [9]. For practical and simplification purposes, we
assume that the false query distribution proposed by this PET
is the average of the distribution of a set of users, which we
denote as q̄.

Finally, we consider an optimized option based on the
proposed metrics. In essence, the false query distribution r
results from optimizing the convex problem formulated as
minimizing KL divergence in the unit simplex ∆r [10], i.e.,

r∗ = argmin
r∈∆r

D((1− ρ)q + ρr||p). (4)

It is important to emphasize that a theoretical analysis
of the properties of the function R is initially based on
the assumption that the distributions q and p, understood as
probabilities, are strictly positive:

qi, pi > 0 for all i = 1, . . . , n. (5)
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TABLE III: Summary of the three DNS query forgery strate-
gies we investigated in this paper.

Mechanism Distribution

Uniform (UNF) u (uniform distribution)
TMN-based (TMN) [9] q̄ (TMN distribution)
Optimized (OPT) [10] r∗ = argminr∈∆ D(t||p)

However, in our work, we may refer to continuity arguments
to relax this assumption. Moreover, without loss of generality,
we assume that

qi
pi

≤ · · · ≤ qn
pn

for all i = 1, . . . , n. (6)

We highlight to the reader the initial and final values of
the privacy risk function, R(0) = D(q||p) and, in the case
of the optimized option, R(1) = 0. Analyzing the behavior
of R for intermediate values of ρ when KL divergence is
minimized in the unit simplex ∆r reveals important properties,
such as monotonicity and convexity, the existence of a critical
perturbation rate ρcrit beyond which privacy is maximized
(R(ρ) = 0 for ρ ≥ ρcrit), and the existence of an optimal and
closed-form solution. The theoretical value of this critical rate
is expressed as

ρcrit = 1− qn
pn

(7)

In general, the user’s knowledge of the reference distribution
p determines whether the appropriate metric is divergence or
entropy. Table III summarizes the selected variants for the false
DNS query mechanism that forms the core of our research
proposal.

Finally, as a utility metric for our proposal, we directly
consider the perturbation rate ρ. Intuitively, a higher false
query rate leads to greater traffic overhead and a more
significant degradation of the user’s original profile, making
precise profiling— a privacy threat— more challenging. We
understand that an increase in DNS traffic reduces the user’s
quality of experience with their mobile apps.

D. Numerical Example

We dedicate this final section to illustrating the privacy
model proposed in this work. To this end, we present some
results based on an example that allows the reader to become
familiar with the introduced concepts. A more in-depth evalu-
ation of our mechanism in a real-world scenario is presented
in Section VI.

Let us consider a scenario where, over a given period
and using a standard device, a user’s mobile apps have sent
100 queries to a reference information system. These queries
can be grouped into a set of five categories summarizing
the user’s interests, denoted alphabetically as {a, b, c, d, f}.
Assuming that the query frequencies are (5, 15, 20, 25, 35),
the user’s actual profile with n = 5 categories is consequently
q = (0.05, 0.15, 0.20, 0.25, 0.35). Additionally, we consider
the uniform profile u = (0.20, 0.20, 0.20, 0.20, 0.20) and the
population profile q̄ = (0.01, 0.05, 0.15, 0.35, 0.44).

(a) Entropy-based risk function

(b) Divergence-based risk function

Fig. 2: Privacy risk R(ρ) according to the perturbation ratio ρ
for the numerical example for the three perturbation strategies.
Denoted by a red dashed vertical line, the ρcrit value.

Given these parameters, the initial value of the risk function
based on KL divergence when p = u (equivalent to Shannon
entropy) and when p = q̄ is the same, i.e., R(0) = 0.1386.
However, the final value varies depending on the perturbation
strategy and the metric implemented.

In Fig. 2, we depict the privacy risk function based on
entropy and KL divergence for this fictitious user as a function
of the perturbation rate ρ. In both cases, we show the curves
corresponding to the three data perturbation mechanisms intro-
duced in Section IV-C, namely, uniform (UNF), TrackMeNot-
based (TMN), and optimized (OPT). The figure also includes
the critical perturbation rate ρcrit, specific to the optimized
mechanism, defined as the minimum rate beyond which the
user’s privacy risk is null. When using entropy as the metric,
ρcrit = 0.6643, whereas for KL divergence, ρcrit = 0.8.

As highlighted in Section IV-C, the privacy risk function
R is monotonic and convex in the case of the optimized
mechanism. Undoubtedly, this mechanism is superior to sub-
optimal mechanisms in terms of privacy risk. Intuitively, and as
corroborated by the figures, applying a suboptimal mechanism
where the reference distribution coincides with the distribution
of false queries contradicts the objective of minimizing privacy
risk.

Furthermore, Fig. 3 illustrates how the user’s profile evolves
as the perturbation rate ρ varies between 0 and 1 under the
optimized mechanism. When ρ = ρcrit, the apparent profile t
converges to the target or reference profile p. This corresponds
to the uniform profile when using entropy (t = u) and the
population profile when using KL divergence (t = q̄).
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(a) Entropy-based risk function

(b) Relative-entropy-based risk function

Fig. 3: Evolution of the real and apparent profile (q, t) for the
optimized strategy (oqf) according to different values of the
disturbance ratio ρ = (0, 1/2ρcrit, ρcrit).

We implemented the numerical example and the evalua-
tion presented in Section VI using Matlab (Matlab R2021
9.10.0.1602886 64-bit win64) and executed the computations
on an Intel CoreTM i3-2370 CPU at 2.4 GHz, with 4 GB of
RAM, running a 64-bit Windows 10 operating system.

To conclude this section, we emphasize that our work
presents a comprehensive approach to enhancing user privacy
against profiling based on DNS traffic. This is achieved by
defining user and adversary models, establishing evaluation
metrics to balance privacy and utility, and demonstrating their
application through a numerical example. Our model focuses
on perturbing user profiles by adding false data to genuine
ones, effectively obscuring the real interests of users from
potential attackers. To validate the impact of our proposal
under real-world conditions, the next section introduces the
user dataset and obtains the user profiles employed in the final
evaluation. Our dataset consists of 1,000 synthetically gener-
ated user traces, a number we consider sufficiently significant
to yield robust experimental results. Each trace is composed
by mobile app traffic and represents the traffic generated by a
user over a time interval.

V. USERS DATASET

This section describes the selected mobile app traffic dataset
used to create our synthetic users, then details the creation
of our synthetic dataset composed of mobile app traffic from
1,000 synthetic users. Finally, we explain the process of
extracting user profiles based on DNS traffic. These user

profiles will subsequently be used to evaluate our proposed
privacy model.

We generate a synthetic dataset because there is a notable
lack of publicly available datasets that include traffic tied
to individual users. Previous studies that analyzed personal
traffic [12, 13, 14, 17, 18] do not release their data due to
reasons such as ethical concerns regarding user privacy and
the risks associated with profiling real users.

The synthetic user generation consist of assigning specific
apps and time intervals of traffic of those apps to each user.
To create the synthetic user traces we use mobile app traces.
Thus, the traffic traces labeled by app provides a controlled
environment in which we have a priori knowledge of the active
app at any given time, ensuring reliable labeling of traffic per
user.

In the literature there are several datasets of mobile apps
in Packet Captured (PCAP) format files. The Cross Market
dataset [43] consists of network traffic from 229 apps ran-
domly selected from the most popular Android apps in three
countries (China, India, and USA) in 2017 4. The MAppGraph
dataset [44] which was collected in 2021 and available upon
request. The original dataset has traces from 101 popular
Android apps in Vietnam; however, the version shared with
researchers includes 81 apps. Lastly, the dataset by Mankowski
et al. [45] from 2023 comprises traces for 90 Android apps
from the German market. The traces from the Cross Market
and Mankowski datasets include one traces per app with an
average duration of 5 minutes. In contrast the MAppGraph
dataset has 330 minutes of traffic per app on average, totaling
nearly 500 GB of data.

Therefore, we selected the MAppGraph dataset as our
source for mobile app traffic traces to generate 1,000 synthetic
user traces. This dataset was chosen because it provides data
for 81 mobile apps, offering a broad range of app traffic.
Each app includes an average of 330 minutes of traffic,
which is more extensive compared to other available datasets.
Furthermore, its collection in 2021 ensures that the traffic is
both recent and relevant. These factors make the MAppGraph
dataset ideal for creating diverse and reliable synthetic user
traces.

A. MAppGraph Dataset Description and preprocessing

The MAppGraph dataset comprises encrypted traffic cap-
tures generated by Android mobile apps. Data we collected
at Tan Tao University in Vietnam during multiple sessions. In
each session, volunteer students used smartphones provided
by the research team to access apps from a predefined list.
The primary goal was to record traffic from individual app
executions by human users rather than complete user profiles.
Despite human users generated the traffic, the dataset contains
only records of app executions, not continuous user-specific
traces.

Although the MAppGraph dataset primarily contains en-
crypted traffic, it also includes unencrypted DNS (Do53)

4At the time this research was conducted, the Cross Market Dataset was
publicly available. However, as of the publication date, the dataset is no longer
accessible to the public.
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Fig. 4: DNS queries per minute in the MAppGraph dataset.

traffic. In this study we use the DNS traffic to obtain a user
profiling, as cleartext DNS queries can be used to infer the
app generating the traffic [3]. The preprocessing step involved
extracting the timestamp and domain name from the DNS
requests of each PCAP file. This extracted parameters are
stored in a CSV file per trace; in what follows, we will refer
to this CSV files as the traces of the apps or users. In Fig. 4
illustrates the range of DNS queries per minute for each app in
the MAppGraph dataset. We can see that the density of DNS
queries is different per app.

B. Generation of synthetic user traces

Our approach for generating synthetic user traces involves
a twofold process: first, we analyse the mobile app usage
behavior in order to obtain the distribution of the installation
percentage of the categories and apps. Then, we create the
synthetic user traces and we assign traffic to them. The code
to create 1000 synthetic user traces is available in GitHub5.

1) Mobile App Usage Behaviour: Previous studies have
shown that mobile app usage follows a power-law distribution:
users tend to rely on one main app, and the likelihood of using
additional apps drops off according to a power law [46].

To capture this behavior, we analyze the number of installa-
tions for each app present exclusively in our dataset. Detailed
installation numbers for each app, which can be found in [44],
support our analysis and demonstrate that the installation
numbers follow a power-law trend. Then, we grouped the apps
into 10 categories based on the app-category of Google play.

5https://github.com/AndreaJimBerenguel/user_profiling

In Table IV are presented the categories and the number of
apps per category from the MAppGraph dataset. The numbers
of apps sum 80 because we omitted one app due to insufficient
traffic trace data.

Category Number of apps

BOOKS AND REFERENCE 9
BUSINESS 4
COMMUNICATION 4
EDUCATION 2
ENTERTAINMENT 15
GAMES 10
MUSIC AND AUDIO 10
NEWS AND MAGAZINES 11
SHOPPING 5
SOCIAL 10

TABLE IV: Categories and number of apps per category.

The Fig. 5 are represented the probabilities of installation:
the histogram shown in Fig. 5(a) illustrates that the installation
probabilities aggregated by categories (inter-category) follow a
power-law distribution. Moreover, in Fig. 5(b) are represented
the individual installation probabilities of the apps from the
category games as an example. We can see that when we
analyze the apps within the same category (intra-category), the
installation probabilities of individual apps within a category
also exhibit a similar power-law trend.

Based on the power-law distribution of the inter-category
and intra-category app usage we obtain a set of apps for each
user. In our methodology, we assume that the probability of a
user selecting a particular app is proportional to its installation
probability.
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Fig. 5: Histograms illustrating the installation probabilities
inter and intra-category which follow a power-law distribution.

a) Category and weight assignation: First, we assign
to each user the categories and its weight. In this case,
the weights are equivalent to usage probabilities. We obtain
samples from the power-law distribution of the categories.
Each user gets a sample of this distribution. Because of the
nature of the power-law distribution sampling, each user ends
up with a unique weights vector, some categories may receive
a zero weight while others receive a non-zero value. For

example, user A obtains this categories and weights [‘social:
68’; ‘communications: 11’; ‘business: 6’; ‘music and audio’:
7; ‘games: 4’;‘entertainment: 4’; ‘shopping: 0’; ‘books and
references: 0’; ‘news and magazines: 0’; ‘education: 0’].

b) App per category: Next, for each category that has
a non-zero probability, we randomly select one app from that
category. This selection is not uniform but weighted according
to the power-law distribution observed among the apps within
that category. The end result is a vector named user app usage
for each user that maps each selected category and app to its
assigned percentage of usage. For example, we assign to user
A one app per category with a non-zero value. In Table V we
present the assignation of apps per category to user A.

Category App Weight

Social Facebook 68
Communications Messenger 11
Business Jobway 6
Music and Audio SoundCloud 7
Games Freefire 4
Entertainment Nimo 4
Shopping – 0
Books and References – 0
News and Magazines – 0
Education – 0

TABLE V: Apps and Weights per Category for User A

2) Synthetic User Trace Generation and Traffic Assignment:
We generated traces for 1,000 synthetic users. First, for each
user we defined a user app usage vector that includes the app
categories, selected apps, and the corresponding percentage
of usage for each app, as described in the previous sub-
section. Fig. 6(a) shows an example of the user app usage
vectors of User A and User B. The diagrams represent their
respective categories, apps, and usage percentages derived
from the power-law distribution. Using these user app usage
vectors, we then assigned traffic traces from the corresponding
apps to each user, drawing from the traffic available in the
MAppGraph dataset.

The synthetic trace for each user consists of 100 minutes of
observed traffic. Within this fixed time window, we calculate
the traffic interval for each app based on its usage percentage.
We then extract the corresponding interval from the available
traffic traces in the MAppGraph dataset. Although the power-
law sampling naturally produces varied segments, we further
enhance variability by selecting different starting points for
each extraction. This prevents identical traffic patterns across
users. The resulting traffic trace for each user is labeled by
app and stored in a CSV file. For example, as shown in
Fig. 6(a), user A has a 100-minute trace comprising 68 minutes
of Facebook traffic, 11 minutes of Messenger traffic, 6 minutes
of Jobway traffic, 7 minutes of SoundCloud traffic, 4 minutes
of Freefire traffic, and 4 minute of Nimo traffic.

C. User Profiling

After generating synthetic user traces, we apply the user
profiling described in Section III. We profile the users based
on the percentage of DNS traffic generated by each app within
its respective time interval. This method builds a user profile
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Fig. 6: Comparison between user app usage vector and user DNS profiling vector of User A and User B.

by focusing on the specific DNS traffic produced by each app.
Unlike previous approaches as [15] that derive profiles from
generic network traffic, our method leverages traffic traces that
are directly labeled with the app identity.

Each user trace is stored in a CSV file, we stored each
timestamp and domain name of the DNS requests labeled
per app. For each user, we calculate the percentage of DNS
traffic contributed by each app during the observation period.
These percentages are then mapped to their corresponding app
categories. The final output for each user is a vector named
user DNS profiling, equivalent to the vector user app usage,
where each element represents the percentage of DNS traffic
for a specific category.

In Fig. 6(b) shows the user DNS profiling for Users A and B,
as illustrated in the previous example. Our approach effectively
captures the user’s behavior based on the DNS traffic generated
by the apps. It is important to note that the observed DNS
query percentage does not directly reflect actual app usage
time; different apps generate DNS queries at different rates.
For example, we can appreciate in Fig. 6 between both pie
charts, one app might generate many queries in a short period
as seen with User A in the category entertainment, while
another app produces fewer queries over a longer time as it
happens in the category music and audio in User B.

In addition, we analyze the variability of the user profiles
obtained by our method. Fig.7 displays the average percentage
of DNS traffic per app for each user. While we anticipated
a high percentage of DNS traffic in the social category,
our results also reveal that the business, entertainment, and
shopping categories exhibit high percentages, even though the
corresponding time intervals are much shorter. This observa-
tion suggests that apps in these categories have a higher rate
of DNS queries compared to other categories.

VI. EVALUATION

In this section, we analyze the extent to which our proposal
can help users protect their privacy when using mobile apps in
a real-world scenario. At the same time, we assess the impact
of generating fake DNS queries on the quality of the DNS
resolution service using the utility metric we define as the
forgery rate ρ.
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Fig. 7: Representation of the average percentage of DNS traffic
per app for each user

A. Results

To evaluate how effectively our proposal enhances user
privacy protection, we designed an experiment that measures
the individual privacy improvement for each synthetic user in
the dataset described in Section V. We compute the privacy
risk function for each user based on the perturbation rate ρ for
the three DNS query forgery strategies defined in Section IV-C,
namely, Uniform, TrackMeNot-based, and Optimized. Ulti-
mately, we compile all collected data and represent the privacy
gain as a function of ρ musing the 10%, 50%, and 90%
percentiles of the two best-performing strategies.

In Fig. 8, we present the relative privacy gain for the
two best forgery strategies as a function of the perturbation
rate ρ, conveniently partitioned into 21 values, across the
two privacy metrics and three percentiles. Undoubtedly, in all
cases, the optimized strategy outperforms the suboptimal ones.
With the optimized mechanism, we achieve a 100% privacy
improvement for 90% of users with false query rates above
60% when the risk metric is based on entropy (i.e., when no
reference profile is available, and the uniform distribution is
used). When the risk is based on KL divergence, the same
improvement is obtained at perturbation rates above 40%.
However, a 50% improvement for most users is only achiev-
able with perturbation rates below 20%. These parameters
guide us in understanding the traffic overhead users must
assume to achieve reasonable privacy gains with an optimized
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(a) 10th percentile - Entropy-based (b) 50th percentile - Entropy-based (c) 90th percentile - Entropy-based

(d) 10th percentile - Divergence-based (e) 50th percentile - Divergence-based (f) 90th percentile - Divergence-based

Fig. 8: The representation of the relative privacy gain for the two best forgery strategies as a function of the perturbation rate
ρ, across the entropy and divergence and the 10%, 50%, and 90% percentiles.

mechanism. In contrast, suboptimal mechanisms require a full
perturbation rate to attain any 100% improvement.

Furthermore, for the optimized DNS query forgery strategy,
Fig. 9 displays the distribution of critical perturbation rate
values for the 1,000 users in our dataset. The conclusions
drawn from these results further reinforce those obtained from
the relative privacy gain analysis.

Fig. 9: The distribution of critical perturbation rate values for
the 1,000 users in our dataset.

B. discussion
In this section, we discuss the results obtained from our

DNS privacy model and compare our approach with state-of-
the-art DNS privacy models mentioned in Section II-C.

Our DNS query forgery approach performs best with the
Optimized strategy, achieving 100% privacy improvement for
90% of users at false query rates above 60% with entropy-
based metrics and above 40% with KL divergence metrics. A
50% privacy improvement requires perturbation rates below
20%. These findings clarify the traffic overhead needed for
effective privacy protection, while suboptimal mechanisms
require 100% perturbation for similar results.

Despite the overhead our model introduces, it offers sig-
nificant advantages over other DNS privacy approaches. Un-
like PIR-based DNS privacy proposals like those presented
in [4, 34], our model can adapt to a dynamically changing DNS
environment. PIR-based approaches require static tables and
server-side implementation, meaning both client and server
must implement the privacy model for it to function properly.

When compared to collaborative DNS privacy models like
NQA [5], our approach offers distinct advantages. While NQA
can also adapt to DNS dynamism, it depends on creating a trust
ecosystem with other users. In contrast, our model follows
a zero-trust approach where any third party is considered
a potential privacy threat. This provides user-side privacy
without requiring trust in external entities.

More recent developments like ODNS [6] or ODoH [35]
require implementation of the privacy model both at the user
side (stub resolver) and at the DNS server side (dedicated
ODNS resolver). They also introduce computational overhead
for encrypting each query and forwarding it to a dedicated
ODNS server for decryption before the DNS server can
respond to the request.
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Our model, while adding false queries to the traffic, offers
several key benefits: it does not interfere with app function-
ality, does not require third parties to guarantee user security
(following a zero-trust model), and provides user-side privacy.
The trade-off is a controlled increase in network traffic, which
our results show can be optimized to balance privacy gains
and performance impact.

VII. PRACTICAL ADAPTATION OF QUERY FORGERY FOR
MOBILE APPS

We consider our proposal to be feasible for real-world
implementation. With this premise in mind, we dedicate this
section to establishing the foundations for the eventual de-
ployment of a system that enables mobile app users to protect
their privacy by perturbing the DNS traffic generated during
their online activity. To achieve this, we adopt a high-level
modular scheme, in which different modules perform specific
functions within the system and interact with each other, as
well as externally, to achieve the defined objective.

In practical terms, we envision a mobile app or a similar tool
installed on the user’s device, functioning as a decision-support
system. That is, the app generally operates in the background
and, upon detecting a privacy threat or compromise, alerts
the user and presents possible countermeasures, allowing them
to choose the rate of false DNS queries or the perturbation
strategy itself. It is important to recall the principle underlying
DPT—hard privacy—where the user is responsible for their
own privacy, without relying on potentially untrustworthy third
parties.

Before detailing the main functional components of our
design, we must specify how a user’s profile could be obtained
locally in an app implementing our technique. To this end, we
base our approach on three assumptions regarding the user
profile.

First, as a common knowledge hypothesis, we assume that
both entities—the mobile app and potential privacy attack-
ers—operate over an identical set of interest categories. Con-
sequently, based on their respective categorization algorithms,
they derive the same user profile. This assumption holds as
long as these categories belong to standardized sets available
to both parties.

Second, in terms of profile initialization, we assume that in
order to determine whether to add traffic to a specific category,
our approach requires an initial user profile. One possible way
to address this is by establishing a training phase prior to
deployment.

Additionally, we assume the concept of a long-term profile,
meaning that the user’s profile does not change frequently,
in line with [47]. The profile stabilizes after the initialization
phase, once the user has shared a significant number of
elements. However, we acknowledge that, in practice, user
interests may vary significantly over time. Therefore, our
implementation should account for this dynamic aspect.

Fig. 10 illustrates a modular architecture for a hypothetical
implementation of our methodology as a DNS-query forger.
It consists of a series of modules that interact locally and/or
with the system, each performing a specific function based

Fig. 10: Software architecture for an implementation of our
privacy proposal in the mobile app scenario.

on the parameters it receives. From a general perspective, the
figure depicts a user interacting with a single, straightforward
DNS server. This server provides the user with relevant
information, specifically IP addresses for resolving queried
domains, generating a communication flow composed of DNS
traces that third parties could exploit in undesirable ways,
compromising user privacy. The following section provides
a functional description of the five modules that comprise the
architecture.

The first module, and the only one interacting exter-
nally in our false DNS query app, is the DNS Query
Communicator. This module is responsible for sending all
DNS queries it receives, whether genuine—originating from
the user’s apps—or false, as dictated by our app’s results. Sim-
ilarly, it receives the IP addresses resolved by the DNS server
and returns them to the corresponding apps, provided they
originate from a genuine query. Internally, the communicator
forwards genuine DNS queries, along with the originating app,
to the category extraction module for further processing.

The Categories Extractor module plays a crucial
role in user profiling. Based on DNS queries and their originat-
ing apps, this extractor processes the information primarily by
mapping apps to their corresponding categories. By continu-
ously updating its data, which can be modeled as a connection
to an external database specializing in this type of information,
this module determines the interest category associated with
each DNS query—an essential step for constructing the user
profile. The extracted category is then transmitted to both the
user profiling module and the privacy trigger module.

The User Profiler module is responsible for generat-
ing and/or updating the user’s real profile, denoted as q, based
on the categories received from the category extractor module.
We assume that the discrete histogram of relative frequencies
constructed by this module stabilizes after a certain period.
Consequently, profile initialization is a key aspect of our
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implementation, and we propose several initialization methods.
For example, following [48], the profile can be initialized as
q = (0, . . . , 0), q ∈ Rn. Another alternative, based on the
principle of maximum entropy, involves initializing the real
profile as the uniform profile, q = u. A further option is to
use a self-declared profile provided by the user, which, while
not necessarily matching the profile inferred from their online
activity, would eventually be replaced after the initial phase.
Ultimately, the user’s real profile q is transferred to the DNS
query forgery strategy module.

The core of our app is the Strategy Generator mod-
ule, which ensures user privacy. This module implements
various DNS query forgery strategies that we consider ap-
propriate, such as those detailed in Section IV-C. It generates
corresponding distributions of false DNS queries, denoted as
r, based on the perturbation percentage ρ defined by the user.
The output of this module is then passed to the privacy trigger
module.

Finally, the Privacy Trigger module is responsible
for alerting the user of potential privacy violations based
on the distribution of false queries r. With probability ri,
an alert is issued regarding category i, allowing the user
to decide whether to perturb their profile. The outcome of
these actions is then transmitted to the communication module,
which processes them accordingly, mixing false and genuine
queries in the defined proportion to ultimately externalize the
apparent profile t.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed DNS query forgery, a data perturbation
strategy that minimizes personal information exposure in mo-
bile app DNS traffic while following ‘hard privacy’ principles.
Our approach protects users from profiling by DNS resolvers
without requiring trust in third parties.

Our evaluation demonstrates that query forgery effectively
reduces profiling accuracy with minimal performance impact.
We have quantified the trade-off between network overhead
and privacy gains, showing that with optimal parameters, users
can achieve significant privacy improvements at reasonable
costs. The optimized query forgery strategy, in particular,
delivers the best balance of privacy protection and efficiency.

We validated our DNS privacy model using a novel synthetic
dataset of 1,000 users created from real mobile app traffic. This
methodological innovation enables controlled experimentation
on user profiling that would be difficult to achieve with real
user data due to ethical and privacy constraints. Additionally,
we proposed a modular software architecture that illustrates
the feasibility of implementing our approach in real-world
applications.

In future work, we consider exploring other user profiling
techniques and delving deeper into the context of DNS traf-
fic with targeted attacks on user privacy and new privacy-
enhancing strategies.
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