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Abstract 
Cybersecurity threats are increasingly marked by 
interdependence, uncertainty, and evolving 
complexity—challenges that traditional assessment 
methods such as CVSS, STRIDE, and attack trees 
fail to adequately capture. This paper reviews the 
application of Bayesian Networks (BNs) in 
cybersecurity risk modeling, highlighting their 
capacity to represent probabilistic dependencies, 
integrate diverse threat indicators, and support 
reasoning under uncertainty. A structured case study 
is presented in which a STRIDE-based attack tree for 
an automotive In-Vehicle Infotainment (IVI) system 
is transformed into a Bayesian Network. Logical 
relationships are encoded using Conditional 
Probability Tables (CPTs), and threat likelihoods are 
derived from normalized DREAD scores. The model 
enables not only probabilistic inference of system 
compromise likelihood but also supports causal 
analysis using do-calculus and local sensitivity 
analysis to identify high-impact vulnerabilities. These 
analyses provide insight into the most influential 
nodes within the threat propagation chain, informing 
targeted mitigation strategies. While demonstrating 
the potential of BNs for dynamic and context-aware 
risk assessment, the study also outlines limitations 
related to scalability, reliance on expert input, static 
structure assumptions, and limited temporal 
modeling. The paper concludes by advocating for 
future enhancements through Dynamic Bayesian 
Networks, structure learning, and adaptive inference 
to better support real-time cybersecurity decision-
making in complex environments. 
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1. Introduction: The Importance of 
Cybersecurity Threat and Risk 
Assessment 
As digital infrastructures grow in complexity and scale, the 
frequency, severity, and sophistication of cyberattacks have 
significantly increased. Cybersecurity threats—from 
ransomware and phishing to supply chain and AI-driven 
attacks—can severely impact organizational operations, 
financial stability, and public trust. These threats have 
escalated in scale and sophistication, posing significant risks 
to critical infrastructures, enterprise assets, and personal data. 
As digital transformation advances, the attack surface 
expands, and threat actors exploit both technical 
vulnerabilities and human factors.  

Cybersecurity risk assessment, therefore, becomes essential in 
identifying, analyzing, and mitigating potential threats to 
maintain system confidentiality, integrity, and availability. It 
supports the triage of vulnerabilities and decision-making 
around mitigation strategies, enabling organizations to allocate 
resources efficiently and improve their security posture.  

Two key performance metrics in this context are listed below 
and reducing both metrics is crucial for minimizing the impact 
of cyber incidents: 

• Mean Time to Identify (MTTI) – the average time 
to detect a threat. 

• Mean Time to Contain (MTTC) – the average time 
taken to respond and neutralize a threat. 

Cybersecurity risk management frameworks typically fall into 
two categories: 

• Qualitative: Subjective scoring or ranking of risks, 
often based on experience or domain knowledge. 

• Quantitative: Objective, model-based analysis of 
risks using metrics, statistical tools, or 
simulations. 

Tools such as risk registers, bow-tie models, and attack 
trees are frequently used to catalog threats and document 
mitigation strategies. Cybersecurity risk modeling necessitates 



both the identification of threats (threat modeling) and the 
quantification of their potential impact (risk assessment). 

Threat Modeling Methodologies 
Threat modeling systematically identifies potential 
vulnerabilities in system architecture before attacks occur. As 
per NIST SP 800-154, a threat model should support both 
defensive and offensive evaluations of logical entities, 
including data flows, hosts, and application boundaries. Some 
of the methodologies are listed below based on the work by 
Das et al [19].  

PASTA (Process for Attack Simulation and Threat 
Analysis) is a structured, risk-driven methodology developed 
to align business objectives with security threats in a seven-
stage process. It's often used in enterprise environments 
requiring in-depth analysis of potential attacker behavior and 
its impact on business operations (UcedaVélez & Morana, 
2015 [15]). While it provides a thorough understanding of 
threats in complex systems, its comprehensive nature makes it 
resource-intensive, which may not be suitable for small teams 
or early-stage projects. 

Attack Tree modeling, introduced by Schneier (1999) [13], 
represents threats in a tree structure with the attack goal as the 
root and various possible approaches as branches. It is 
particularly useful for visualizing the multiple paths an 
attacker could take. The method is effective for scenario 
analysis but lacks direct support for threat mitigation and can 
become unwieldy in complex systems and requires nodes 
meticulously analyzed and requires employing data flow 
diagrams for clarity (Shostack, 2014 [14]). 

CVSS (Common Vulnerability Scoring System) provides 
standardized metrics for evaluating the severity of software 
vulnerabilities (Mell, Scarfone, & Romanosky, 2007 [7]). It is 
commonly used in vulnerability management tools and public 
vulnerability databases. While CVSS allows for consistent 
scoring, it lacks contextual modeling and is not sufficient for 
system-level threat assessment. 

OCTAVE (Operationally Critical Threat, Asset, and 
Vulnerability Evaluation) is a risk-based methodology 
focused on organizational practices and asset protection. 
Developed at Carnegie Mellon University, it is suitable for 
evaluating internal risks and supporting strategic planning 
(Alberts & Dorofee, 2003[2]). However, it is less suited for 
technical system modeling or identifying fine-grained 
vulnerabilities in complex environments. 

VAST (Visual, Agile and Simple Threat Modeling), 
developed as part of the ThreatModeler platform, is intended 
to scale threat modeling practices across enterprise software 
development pipelines (Agarwal, 2021[1]). It supports both 
application-level and operational threat models and 

emphasizes automation. Despite its scalability, the need to 
model both perspectives can increase complexity and 
modeling workload. 

LINDDUN is a privacy-focused methodology that categorizes 
threats across seven dimensions (e.g., Linkability, 
Identifiability, Non-repudiation). It is suitable for systems that 
process sensitive data and aligns with privacy-by-design 
principles (Deng et al., 2011 [4]). While LINDDUN is 
effective in highlighting privacy concerns, it lacks automation 
and is not focused on general cybersecurity threats. 

STRIDE is a Microsoft-developed model that organizes 
threats into six categories: Spoofing, Tampering, Repudiation, 
Information Disclosure, Denial of Service, and Elevation of 
Privilege (Khan et al., 2016 [6]). It is widely adopted due to its 
structured threat mapping based on data flow diagrams. Its 
primary strengths are ease of use, automation support, and 
applicability to software architecture. However, it may 
produce variable results depending on model detail and analyst 
experience. 

1.2. Risk Assessment Methodologies 
Risk assessment evaluates the potential impact and likelihood 
of identified threats. Some of the commonly used risk 
assessment is listed below. 

FMVEA (Failure Mode, Vulnerabilities, and Effects 
Analysis) combines traditional FMEA with cybersecurity 
concerns, focusing on identifying and ranking failure modes 
and vulnerabilities (Schmittner et al., 2014 [12]). It is typically 
applied in safety-critical domains like automotive and 
avionics. Its limitation lies in its inability to model chained or 
multi-stage attacks, making it less ideal for early design 
phases. 

SHIELD is a European framework that evaluates systems 
based on Security, Privacy, and Dependability (SPD) metrics 
(Macher et al., 2016 [10]). It is effective when detailed system 
configurations are available and is often used in embedded 
systems post-implementation. However, it is not well-suited to 
the early design phase due to its dependency on 
implementation specifics. 

CHASSIS integrates safety and security analysis using misuse 
cases and system behavior modeling. It enables trade-off 
analysis between safety and security features and is used in 
early concept modeling (Macher et al., 2016 [10]). Its strength 
lies in combining formal safety analysis with threat modeling, 
but the modeling workload can be substantial. 

HEAVENS (Threat Analysis and Risk Assessment for 
Embedded Systems) extends STRIDE with automotive-
specific considerations, evaluating threats based on attacker 
capability and impact (Macher et al., 2016 [10]). It’s effective 
in system-level modeling where attacker profiles can be 



defined. However, its accuracy depends on the availability of 
detailed architectural data, making it less ideal in early concept 
stages. 

EVITA is a framework developed under the European EVITA 
project to model threats to vehicular IT components using 
attack trees and functional threat classification (Ruddle et al., 
2009 [5]). It supports safety and operational threat evaluation 
but does not align with ISO 26262 for severity ratings, which 
limits its regulatory compliance. 

SAHARA combines the STRIDE model with Hazard Analysis 
and Risk Assessment (HARA) concepts, using attacker 
knowledge, required resources, and threat impact to assign 
security levels (Macher et al., 2015 [11], Macher et al 2016 
[10]). It is best applied in the early phases of automotive 
system development to inform architecture decisions. 
However, it may miss complex threat chaining or adversarial 
persistence tactics. 

DREAD is a lightweight risk scoring method based on five 
dimensions: Damage, Reproducibility, Exploitability, Affected 
Users, and Discoverability (Microsoft, 2002 [9]). It is popular 
in agile software development due to its simplicity. However, 
its subjective scoring can reduce reliability, and it does not 
account for contextual risk dependencies. 

Traditional risk assessment methodologies often struggle to 
account for the dynamic and uncertain nature of cyber threats, 
particularly when historical attack data is limited or 
incomplete. This limitation underscores the need for 
probabilistic modeling approaches that can incorporate expert 
knowledge and uncertainty—of which BNs have emerged as a 
promising solution. 

2.  The Need for Bayesian Networks in 
Cybersecurity 
BNs overcome these limitations by combining graphical 
structures with formal probability theory. They enable 
organizations to shift from static risk catalogues to dynamic, 
inference-driven threat modeling systems. 

Key advantages include: 

• Conditional Dependency Modeling: BNs use 
directed acyclic graphs (DAGs) and CPTs to capture 
how one cyber event probabilistically influences 
others. This feature is critical in environments where 
threats are not isolated—such as in cases of lateral 
movement, privilege escalation, or interdependent 
system failures (Chockalingam et al., 2022 [18]; 
Kazeminajafabadi & Imani, 2023 [23]). 

• Real-Time Inference with Incomplete Data: BNs 
can compute posterior probabilities for unobserved 
events (e.g., insider threat or root compromise) using 

observed evidence (e.g., SIEM alerts). This property 
is central to security information and event 
management (SIEM), extended detection and 
response (XDR), and threat intelligence correlation 
workflows (Microsoft, 2021[9]). 

• Robustness in Sparse or Noisy Data: As 
emphasized by Fenton and Neil (2018) [20], one of 
the most powerful aspects of BNs is their ability to 
integrate expert opinion and uncertain data within a 
coherent probabilistic framework. This is especially 
important in cybersecurity, where historical breach 
data is often incomplete, biased, or unavailable. 

• Support for Multi-Stage Attack Modeling: 
Extensions like Bayesian Attack Graphs (BAGs) use 
BN principles to represent how attackers chain 
exploits across nodes, increasing system-wide 
compromise probability. These have been 
successfully applied to network penetration scenarios 
and ICS/IIoT security environments 
(Kazeminajafabadi & Imani, 2023 [23]; Poolsappasit 
et al., 2012 [28]). 

Fenton and Neil (2018) [20] also critique overreliance on 
deterministic models like Monte Carlo simulations or CVSS 
scores, arguing that such tools break down when systems are 
complex and interdependent. In contrast, BNs provide a 
powerful, modular structure for capturing causal and 
probabilistic relationships, even when input data is uncertain 
or partially missing. 

In summary, BNs offer a mathematically sound and context-
aware framework that supports adaptive cybersecurity risk 
modeling—significantly improving upon traditional registers 
and scoring systems by integrating threat intelligence, 
evidence, and uncertainty. 

3. Bayesian Networks: Mathematical 
Foundations and Applications in 
Cybersecurity 
BNs are probabilistic graphical models that represent a set of 
variables and their conditional dependencies using a Directed 
Acyclic Graph (DAG) (Fenton & Neil, 2018 [20]). Each node 
corresponds to a variable, while directed edges encode causal 
or influential relationships. The network’s structure supports 
both qualitative understanding and quantitative analysis. 

Bayesian Networks are defined as directed acyclic 
graphs G=(V,E), where each node Xi∈V is a random variable 
and each edge (Xi,Xj)∈ E represents a conditional 
dependency. Each node is associated with a Conditional 
Probability Table (CPT) that defines:                



               

Where Pa(Xi) are the parent nodes of Xi. The joint probability 
distribution over all nodes is given by: 

 

 

Mathematically, a BN represents the joint probability 
distribution over variables X={X1,X2,...,Xn} by factoring it 
according to its graph structure. This factorization allows 
efficient inference when new evidence is introduced. For 
example, if abnormal network activity is observed, the BN can 
compute posterior probabilities of underlying causes such as 
malware infection, insider threat, or misconfigured access 
control (Chockalingam et al., 2022 [18]). 

4. Applications of Bayesian Networks 
in Cybersecurity Risk Modelling 
BNs have become increasingly prominent in cybersecurity due 
to their ability to model uncertainty, infer causality, and 
integrate diverse data sources. Their probabilistic structure 
allows for reasoning under incomplete or noisy data—
conditions typical of real-world cyber environments. 

Core Advantages 

• Causal Inference: BNs support reasoning from 
observed effects (e.g., anomalous logins) to likely 
causes (e.g., credential theft), making them 
particularly valuable in threat hunting, root-cause 
analysis, and forensic investigations (Fenton & Neil, 
2018 [20]; Kazeminajafabadi & Imani, 2023 [23]). 

• Uncertainty Modeling: BNs are robust in scenarios 
where historical attack data is sparse or biased, 
allowing analysts to compute meaningful posterior 
probabilities using expert knowledge or partial 
evidence (Fenton & Neil, 2018 [20]). 

• Evidence Fusion: They enable integration of 
heterogeneous data sources—such as SIEM alerts, 
vulnerability scans, and human expert assessments—
into a single cohesive risk model, enhancing 
situational awareness (WRIXTE, 2024 [29]). 

These capabilities make BNs well-suited for applications such 
as: 

• Malware Behavior Prediction: By modeling 
observable indicators, BNs have been used to infer 
the presence of underlying malicious activity 
(Chockalingam et al., 2022 [18]). 

• Insider Threat Detection: Incorporating 
psychosocial and behavioral indicators, BNs have 
supported the prediction of high-risk insider behavior 
(Frigault et al., 2008 [21]). 

• Risk-Based Alert Prioritization: In SIEM and XDR 
environments, BNs have been employed to reduce 
alert fatigue by scoring threats based on probabilistic 
severity and interdependence (Layton, 2024[24]). 

• Adaptive Cyber Defense: Microsoft's BN-based 
frameworks have automated attacker profiling, threat 
tracking, and alert contextualization in enterprise 
settings (Microsoft, 2021[9]). 

Bayesian Attack Graphs (BAGs) 

An extension of standard BNs, Bayesian Attack Graphs 
(BAGs) model multistage attacks using system states as 
nodes and exploit transitions as edges. These models 
incorporate: 

• Exploit probabilities (e.g., from CVSS scores), 
• Logical relations such as AND/OR gates for 

modeling exploit chaining, 
• Monitoring imperfections (e.g., false negatives, 

partial visibility). 

Kazeminajafabadi and Imani (2023) [23] 
demonstrated how BAGs combined with a Minimum 
Mean Square Error (MMSE) detector significantly 
improved detection accuracy and reduced false 
positives in synthetic and simulated networks. Unlike 
traditional attack graphs, BAGs support dynamic 
inference, allowing real-time adaptation to new 
evidence—an essential trait in modern threat 
landscapes (Poolsappasit et al., 2012 [28]). 

Tooling and Implementation 

Several commercial and open-source tools support BN 
modeling in cybersecurity: 

• Bayes Server offers a GUI-based platform for 
building BNs, conducting sensitivity analysis, and 
simulating risk scenarios. 

• Python libraries such 
as pgmpy and pyAgrum enable programmatic BN 
construction and inference, suitable for integrating 
into security analytics pipelines. 

Layton (2024) [24] highlights how BNs are increasingly used 
by small and medium businesses (SMBs) and healthcare 
providers due to their transparency, modularity, and lower data 
demands compared to opaque machine learning models. 

 

 



Cross-Domain Applications 

Bayesian Networks have been effectively applied across a 
variety of cybersecurity domains: 

• Network Risk Assessment: Frigault et al. (2008) 
[21] used Dynamic Bayesian Networks (DBNs) to 
assess the risk across interconnected network 
services, capturing dynamic interactions and 
vulnerabilities under evolving conditions. 

• Intrusion Detection and Adaptive Monitoring: 
MMSE-enhanced BAGs (Kazeminajafabadi & Imani, 
2023 [23]) enabled optimal placement of sensors and 
real-time adjustment of detection policies. 

• Cyber Risk Quantification: Babatunde et al. (2024) 
[17] demonstrated how BNs could guide decision-
making by simulating attack scenarios and assessing 
their business impact. 

• Industrial IoT (IIoT): Karim et al. (2024) [22] 
developed a hybrid BN–swarm intelligence model for 
IIoT threat detection, using feature selection and 
evolutionary optimization to improve accuracy. 

• Real-Time Threat Assessment: Pappaterra et al. 
(2020) [26] embedded BNs in the DETECT 
framework for live cybersecurity monitoring, 
enabling systems to update risk assessments in 
response to incoming data. 

5. Case Demonstration: Modeling 
Interdependent STRIDE Threats Using 
Bayesian Networks in an IVI System 
The case study in this paper draws upon a detailed STRIDE-
based threat modeling framework applied to a modern In-
Vehicle Infotainment (IVI) system, originally presented by 
Das et al. (2024) [19]. The IVI system under consideration is 
a highly interconnected, cyber-physical subsystem embedded 
in automotive environments. It integrates a diverse range of 
components enabling real-time media, communication, and 
vehicle information services. 

The system architecture comprises: 

• A central onboard computer (OBC) acting as the 
processing hub. 

• Interfaces for Bluetooth, Wi-Fi and NFC, facilitating 
external communication. 

• A CAN bus network used to interact with internal 
Electronic Control Units (ECUs). 

• Additional peripheral elements such as a touchscreen 
interface, rear screens, audio system, GPS, USB 
ports, digital radio, camera, and various car 
automation sensors (e.g., parking assistant, 
temperature sensor). 

This IVI system supports bidirectional 
communication between external devices (e.g., smartphones, 
cloud services) and internal vehicle subsystems. While 
enhancing driver convenience and connectivity, this 
heterogeneity introduces critical cybersecurity vulnerabilities, 
especially across trust boundaries—such as data flows 
between Bluetooth/Wi-Fi modules and the onboard computer, 
or between the onboard computer and CAN bus. 

To assess these risks, Das et al. conducted a component-level 
STRIDE threat modeling exercise, identifying 34 distinct 
threats across interactions such 
as Bluetooth_to_OBC, WiFi_to_OBC, and CAN_to_OBC. 
Each threat was further evaluated 
using SAHARA and DREAD methodologies, producing 
detailed risk ratings and prioritization. These findings provide 
a rich, structured threat ontology which this paper maps into 
a BN framework to enable probabilistic inference, threat 
propagation modeling, and dynamic risk evaluation. 

In traditional STRIDE-based models, threats are often mapped 
in isolation without considering their probabilistic 
relationships or downstream implications. However, real-
world attacks often unfold as interconnected sequences. A BN 
enables modeling these relationships explicitly, supporting 
probabilistic inference, evidence fusion, and risk propagation 
analysis. 

The Figure 1 below illustrates an example model Bayesian 
Network constructed from STRIDE threat categories affecting 
an IVI subsystem as adapted from Das et al (2024), where a 
tampering event over Bluetooth initiates a cascade of other 
threats: 

Figure 1: Bayesian Network of STRIDE Threats in an IVI System 
(adapted from Das et al., 2024) 

 

 

5.1 Methodology: Bayesian Network 
Construction for STRIDE Threat 
Propagation in IVI Systems 
This paper focuses on foundational BN-based modeling, with 
an understanding that more sophisticated techniques like 



DBNs and structure learning exist for future extensions. To 
evaluate the effectiveness of BNs in modeling interdependent 
cybersecurity threats, a structured methodology that 
transforms a STRIDE-based attack tree into a probabilistic 
graphical model was applied in this case study. This approach 
supports inference over cascading threats within an In-Vehicle 
Infotainment (IVI) system, enabling probabilistic reasoning, 
dynamic threat propagation analysis, and risk-aware decision-
making under uncertainty. 

5.1.1 Model-to-Model Transformation 
This paper adopted the model-to-model transformation process 
outlined by Pappaterra and Flammini (2018) [27] and Hachem 
[31] et al work, wherein structured attack trees (ATs) are 
systematically mapped into BN elements. Each node in the 
attack tree, derived from Table 7 of Das et al. (2024), 
represents a threat instance using following schema: 

[STRIDE] _[Component Interaction] _[Threat Number]_[Two 
Word Threat Description] 

Where,  

• STRIDE is denoted by first letter of the threat type.  
• Component Interaction, and Threat Number uses the 

same format as Table 7 of Das et al. (2024) [19] paper 
such as WiFitoOBC or BluetoothtoOBC. 

• Two Word Threat Description is the summary of the 
threat description as described in Table 7 of Das et al. 
(2024) [19] paper. 

The transformation process consisted of the following rules: 

• Leaf nodes in the attack tree were converted into root 
nodes in the BN, each representing a STRIDE-
identified threat. 

• Intermediate AT nodes, composed of logical gates 
(AND/OR), were transformed into conditional BN 
nodes, where dependencies were encoded through 
directed edges. 

• Operation logic was preserved by defining node-
specific CPTs to reflect the combinatorial influence 
of parent nodes. 

The attack tree begins with the ultimate adversarial goal 
“Safety Critical System Compromise”, representing 

failure of safety-critical vehicle operations. This outcome 
can be reached via three main attack paths: 

• Initial Recon/Entry Path (OR Logic): Begins with 
reconnaissance attacks like Data Sniffing over 
Bluetooth or Credential Theft via Wi-Fi. 

o I_BluetoothtoOBC_25_DataSniffing is 
triggered by 
T_BluetoothtoOBC_26_UnauthorizedContr
ol or 
D_BluetoothtoOBC_24_OverloadAttack. 

o I_WiFitoOBC_17_CredentialTheft is 
triggered by 
D_WiFitoOBC_16_ServiceDenial or 
T_WiFitoOBC_18_DataAlteration 

• CAN Control Path (AND Logic): Requires 
successful exploitation of: 

o I_CBtoOBC_33_InfoSniffing by sniffing the 
data flow on the CAN bus 

o T_CBtoOBC_34_MessageAlteration (tampe
ring with messages) and 

o S_OBC_1_ProcessImpersonation (mimickin
g valid processes), the latter being triggered 
by R_OBC_3_MaliciousExploitation or 
T_OBC_2_CommandTampering  

• Disruption of Vehicle Functionality (OR Logic): 
Involves either: 

o T_OBC_2_CommandTampering 

o Or service disruption 
through D_OBC_5_ServiceDisruption, 
which itself depends on 
I_OBC_4_PrivacyBreach or 
E_OBC_6_PrivilegedOperations 

The attack tree uses OR and AND gates to represent the 
logical combinations needed to escalate through each threat 
path, culminating in system compromise (Figure 2) 

 

 

 

 

 

 



Figure 2: Attack tree developed with the adversarial goal “Safety Critical System Compromise” for the IVI System described in Das et al., 2024 
paper 

BN was derived based on the model-to-model transformation 
(Figure 3). Each node corresponds to a threat, and directed 
edges represent causal or conditional influence. 

• Root 
Nodes (e.g., T_BluetoothtoOBC_26_UnauthorizedCo 
ntrol) have assigned prior probabilities based on 
DREAD scores. 

• Intermediate 
Nodes like I_BluetoothtoOBC_25_DataSniffing or I_
WiFitoOBC_17_CredentialTheft are activated 
conditionally, influenced by child threats using OR 
logic. 

• Key conditional nodes like CAN_Control are 
activated only when multiple threats (e.g., message 
alteration ANDimpersonation) occur simultaneously. 

• Disruption and compromise paths converge 
at Safety_Critical_System_Compromise, the final 
output node. 

What makes the BN powerful is its ability to: 

• Perform probabilistic inference (e.g., “If onboard 
computer alteration is detected, how likely is CAN 
control compromise?”) 

• Handle uncertainty and interdependence, allowing 
real-time system risk evaluation based on partial 
observations. 

Figure 3: Bayesian network developed with the adversarial goal “Safety Critical System Compromise” for the IVI System described in Das et al., 
2024 paper based on the model-to-model transformation as described by Pappaterra and Flammini (2018) 

 

5.1.2 Data Population of CPTs 
Following the frameworks established by Pappaterra [26] and 
Hachem et al. [31], the Conditional Probability Tables (CPTs) 
of the Bayesian Network (BN) were populated using a hybrid 
data-driven approach that incorporated structured threat 
evaluation metrics from the Das et al. study. In particular, 
prior probabilities for the root nodes 
(e.g., T_BluetoothtoOBC_26_UnauthorizedControl) were 

derived from DREAD scores, focusing on three key 
components: Exploitability (E), Discoverability (D), and 
Reproducibility (R). These scores were normalized to a [0,1] 
scale using the following procedure: 

1. Normalization: Each raw DREAD component score 
(on a 1–3 scale) was divided by 3 to bring it into the 
[0,1] range. 



2. Weighted Aggregation: Component weights were 
assigned based on their relative importance—
Exploitability (50%), Discoverability (30%), and 
Reproducibility (20%). 

3. Likelihood Calculation: A weighted likelihood was 
computed using the formula: 
Likelihood = (0.5 × E) + (0.3 × D) + (0.2 × R) 

This calculation ensured that each root node’s prior probability 
reflected a meaningful combination of severity and 
exploitability. 

Once the root node priors were assigned, marginal 
probabilities for all intermediate and terminal nodes were 
calculated using a bottom-up propagation algorithm that 
incorporates both logical structure and cyber threat 
intelligence. Specifically, CPTs for child nodes were assigned 
grounded in attacker behavior patterns defined in the MITRE 
ATT&CK framework: 

1. Nodes were processed hierarchically, starting from 
root nodes and moving through the network based on 
dependency structure. 

2. For nodes with parents, the law of total probability 
was applied to integrate all possible parent state 
combinations using corresponding CPT entries. 

3. In multi-parent configurations, joint probabilities of 
all parent node states were calculated and multiplied 
by the corresponding row in the node’s MITRE-
informed CPT. 

4. Computed probabilities were recursively propagated 
forward, treating each evaluated node as evidence for 
its descendants. 

5. Final marginal probabilities were verified to ensure 
all distributions summed to 1. 

The BN model was implemented in Python using 
the pyAgrum library. The modeling process involved the 
following key steps: 

• Node Initialization: Twenty binary variables were 
instantiated using gum.LabelizedVariable, each 
representing a vulnerability, system behavior, or 
adversarial event, with two states: 0 (False) and 1 
(True). 

• Topology Definition: Directed edges were added 
between nodes to encode causal relationships and 
threat propagation logic, using both OR and AND 
semantics to accurately represent attack dynamics. 

• CPT Assignment: Root nodes such 
as T_26 and T_18 received prior probabilities 

via .fillWith(), informed by expert assessments and 
CVSS-style scoring. Intermediate and final nodes 
(e.g., I_17, CAN_Control, SystemCompromise) were 
manually configured with conditional probabilities 
based on logical gate semantics and expert-derived 
estimates. 

Inference was conducted using 
the gum.LazyPropagation algorithm to compute marginal 
probabilities across the network in the absence of observed 
evidence. This represented the system’s baseline risk posture. 
Results were visualized using pyagrum.lib.notebook. 

This combined methodology provided a transparent and 
consistent framework for quantitative cybersecurity risk 
assessment. It captured both the individual threat likelihoods 
and their complex interdependencies, ultimately enabling the 
computation of the system-wide compromise probability. 

The calculated prior probabilities (PPTs) for the root nodes are 
summarized in the following Table 1 

Table 1: The table shows the root nodes and its corresponding 
DREAD score and prior probabilities 

 

Conditional probabilities for intermediate nodes were designed 
to reflect logical relationships using OR and AND gate 
semantics. For nodes governed by OR logic, the CPTs were 
configured to produce a high probability output if at least 
one of the parent nodes was in the active (True) state. 
Conversely, for nodes modeled with AND logic, the CPTs 
were calibrated such that a high output probability would 
occur only when all parent nodes were simultaneously active. 
This approach ensured that the probabilistic behavior of the 
network accurately mirrored logical dependencies between 
contributing threats. 

The probability of the 
node I_BluetoothtoOBC_25_DataSniffing was calculated 
based on two parent 
threats: T_BluetoothtoOBC_26_UnauthorizedControl 
and D_BluetoothtoOBC_24_OverloadAttack (Table 2). The 
CPT followed an OR-logic structure. Data sniffing becomes 



increasingly likely when either unauthorized Bluetooth control 
or traffic overload occurs. Unauthorized control (T1546) 
directly enables access to system resources or services that 
may emit sensitive information, while overload attacks 
(T1499) can create conditions where data leakage or reduced 
encryption safeguards occur. The CPT reflects this: risk is low 
(0.20) in absence of threats, moderate (0.60) with overload 
alone, high (0.80) with unauthorized control alone, and near 
certain (0.90) when both threats are active. By applying the 
law of total probability and multiplying each parent state 
combination by its corresponding CPT entry, the marginal 
probability of I_BluetoothtoOBC_25_DataSniffing was 
computed to be approximately 74.7%. This result captures 
both the direct and indirect impacts of Bluetooth tampering 
and system overload on the likelihood of data interception. 

Table 2: The table shows CPT for 
I_BluetoothtoOBC_25_DataSniffing node based on OR Logic 
between 
T_BluetoothtoOBC_26_UnauthorizedControl and D_BluetoothtoOB
C_24_OverloadAttack nodes 

 

The probability of the 
node I_WiFitoOBC_17_CredentialTheft was determined 
based on two parent 
threats: T_WiFitoOBC_18_DataAlteration and D_WiFitoOBC
_16_ServiceDenial (Table 3). The CPT followed an OR-logic 
structure. Credential theft risk grows substantially when 
attackers manipulate transmitted data or cause Wi-Fi-based 
disruptions. Data alteration (T1565.001) is a strong enabler for 
spoofing login packets, and DoS attacks (T1498) can expose 
data by forcing the system into less secure states. The CPT 
reflects this: low baseline risk (0.08), modest risk (0.25) from 
DoS alone, high risk (0.70) from data manipulation alone, and 
very high risk (0.90) when both are active. Using the law of 
total probability, the marginal probability 
of I_WiFitoOBC_17_CredentialTheft was computed to be 
approximately 73.7%. This result reflects the elevated risks 
associated with both active tampering of Wi-Fi or cellular data 
flows and service disruption attacks. 

Table 3: The table shows CPT for I_WiFitoOBC_17_CredentialTheft 
node based on OR Logic between 
T_WiFitoOBC_18_DataAlteration and D_WiFitoOBC_16_ServiceDe
nial nodes 

  

The probability of the 
node S_OBC_1_ProcessImpersonation was assessed based on 
two parent 
threats: R_OBC_3_MaliciousExploitation and T_OBC_2_Co
mmandTampering (Table 4). The CPT followed an OR-logic 
structure. Process impersonation stems from either software 
exploitation or direct manipulation of control commands. 
T1203 provides the attacker with execution capability needed 
to inject or spoof processes, while T1565 allows crafted 
commands to mimic valid behaviors. The CPT reflects high 
risk (0.85) for either parent alone and near certainty (0.98) 
when both are active. With neither, impersonation is unlikely 
(0.10). Applying the law of total probability across all parent 
state combinations, the marginal probability 
of S_OBC_1_ProcessImpersonation was computed to be 
approximately 82.7%. 

Table 4: The table shows CPT for S_OBC_1_ProcessImpersonation 
node based on OR Logic between 
R_OBC_3_MaliciousExploitation and T_OBC_2_CommandTamperi
ng nodes 

 

The probability of the node D_OBC_5_ServiceDisruption was 
determined based on two parent 
threats: E_OBC_6_PrivilegedOperations and I_OBC_4_Priva
cyBreach (Table 5). The CPT followed an OR-logic structure.	
Service disruption becomes highly probable when attackers 
gain access to privileged accounts or internal sensitive data. 
T1078 directly enables unauthorized system manipulation, 
while T1530 informs tailored DoS attempts. Alone, each 
parent leads to significant risk (0.60–0.85), and together they 
escalate the likelihood to 0.95. A low baseline risk (0.20) 
reflects default system resilience. Applying the law of total 
probability, the marginal probability 
of D_OBC_5_ServiceDisruption was computed to be 
approximately 81.4%. This result reflects the cumulative 
impact of access control failures and data privacy breaches 

Table 5: The table shows CPT for D_OBC_5_ServiceDisruption node 
based on OR Logic between 
E_OBC_6_PrivilegedOperations and I_OBC_4_PrivacyBreach 
nodes 



The probability of the node Initial_Recon was evaluated based 
on two parent 
threats: I_BluetoothtoOBC_25_DataSniffing and I_WiFitoOB
C_17_CredentialTheft (Table 6). The CPT follows an OR-logic 
structure. Initial Recon represents the adversary’s first 
foothold. Either Bluetooth sniffing (T1040) or credential theft 
(T1555) is sufficient to begin reconnaissance within the 
system. The CPT shows that the presence of either alone result 
in a high likelihood (0.75), and their combination elevates it to 
near certainty (0.95). With neither active, the threat is minimal 
(0.10), reflecting the need for a reconnaissance vector to 
enable further action. Applying the law of total probability 
across all parent combinations, the marginal probability of 
Initial_Recon was computed to be approximately 81.7%. This 
reflects the heightened risk associated with multiple attack 
vectors and supports a robust quantitative analysis of initial 
access vulnerabilities in automotive cybersecurity modeling   

Table 6: The table shows CPT for Initial_Recon node based on OR 
Logic between 
I_BluetoothtoOBC_25_DataSniffing and I_WiFitoOBC_17_Credenti
alTheft nodes 

 
The CPT for the CAN_control threat models the likelihood of 
an adversary gaining full control over the CAN bus by 
combining three parent threats: I_CBtoOBC_33_InfoSniffing, 
T_CBtoOBC_34_MessageAlteration, and 
S_OBC_1_ProcessImpersonation (Table 7). Info sniffing 
provides critical reconnaissance, message alteration enables 
direct tampering with vehicle operations, and process 
impersonation allows adversaries to bypass security by 
mimicking legitimate processes. CAN bus control requires 
layered attacks: sniffing to learn protocol (T1040), tampering 
with message data (T1565.002), and issuing spoofed 
instructions from a legitimate-looking process (T1055.012). 
The CPT models an AND-like structure with probabilistic 
weighting: single-parent activation leads to low/moderate risk 
(0.15–0.30), dual combinations lead to mid-to-high risk (0.50–
0.70), and all three threats together push risk to near certainty 
(0.95). Minimal risk (0.05) is assigned when none are active. 
This CPT structure captures the layered, multi-stage 
progression typical of real-world CAN bus attacks and 
emphasizes the necessity of defense-in-depth strategies in 
automotive cybersecurity. The probability assignments are 
grounded in expert judgment and form a quantitative basis for 
evaluating CAN bus security vulnerabilities. Applying the law 
of total probability across all parent combinations, the 
marginal probability of CAN_control was computed to be 
approximately 64.4%. 
 

Table 7: The table shows CPT for CAN_control node based on AND 
Logic between I_CBtoOBC_33_InfoSniffing, 
T_CBtoOBC_34_MessageAlteration, and 
S_OBC_1_ProcessImpersonation nodes 

 

The probability of the node Disrupt_Vehicle_Functionality 
was assessed based on two parent threats: 
T_OBC_2_CommandTampering and 
D_OBC_5_ServiceDisruption (Table 8). The CPT follows an 
OR-logic structure.	Vehicle function disruption results when 
control commands are corrupted, or the system is 
overwhelmed. T1565 enables precise tampering, while T1499 
affects availability. Each parent causes high risk alone (0.75–
0.80), and together they push the probability to 0.95. A low 
risk (0.10) is assigned in absence of both. After calculating the 
marginal probability using the law of total probability, 
Disrupt_Vehicle_Functionality was determined to have a 
likelihood of approximately 83.3%. This outcome highlights 
the critical vulnerabilities posed by denial-of-service 
conditions and unauthorized command injection within vehicle 
control systems. 

Table 8: The table shows CPT for Disrupt_Vehicle_Functionality 
node based on OR Logic between T_OBC_2_CommandTampering 
and D_OBC_5_ServiceDisruption nodes 

 

The CPT for the final System Compromise Node, 
Safety_Critical_System_Compromise, reflects the logical OR 
relationship among its three parent nodes: Initial_Recon/Entry, 
CAN_Control, and Disrupt_Vehicle_Functionality (Table 9). 
This design assumes that a successful attack along any one of 
these major threat paths is sufficient to substantially raise the 
likelihood of systemic compromise, while the presence of 
multiple active paths further amplifies the risk. 

To ensure consistency with Bayesian Network requirements, 
each row in the CPT represents a unique combination of 
parent states with a corresponding probability distribution that 
sums to 1. The probability assignments are grounded in 
domain knowledge from cybersecurity literature and 
normalized DREAD scores that indicate high threat severity 
and exploitability. Specifically, a low residual risk 
(approximately 1%) is assigned when none of the parent 
threats are active, reflecting background uncertainty in cyber-



physical systems. When at least one parent threat is active, the 
probability of compromise increases substantially (typically 
ranging from 75% to 95%), and when all three threats are 
present simultaneously, the risk approaches near certainty 
(~99%). 

Following OR-gate computation, the marginal probability of 
Safety_Critical_System_Compromise was calculated as 
approximately 93.5%, highlighting the nonlinear escalation of 
system risk in interdependent threat landscapes such as those 
modeled under STRIDE-based frameworks. This 
configuration adheres to the semantics of probabilistic 
inference while accurately capturing the compounding effects 
of multiple concurrent adversarial actions on vehicle system 
safety  

Table 9: The table shows CPT for final node 
Safety_Critical_System_Compromise 

 

5.2 Model Interpretation: Safety 
Compromise Risk in an IVI System 
The constructed BN models the probabilistic propagation of 
cyber threats culminating in a SystemCompromise event 
within an In-Vehicle Infotainment (IVI) system. It 
incorporates both root-level vulnerabilities (e.g., 
T_BluetoothtoOBC_26_UnauthorizedControl, 
D_WiFitoOBC_16_ServiceDenial) and higher-order 
composite threats (e.g., CAN_Control, 
Disrupt_Vehicle_Functionality), enabling interpretable, real-
time risk assessment under uncertainty. 

The BN captures inference across three principal threat 
propagation paths: 

• Initial Reconnaissance – Represents early-stage 
attack vectors such as data sniDing and credential 
theft. 

• CAN_Control – Reflects unauthorized 
manipulation of vehicle control networks, such as 
CAN bus spoofing or message alteration. 

• Disrupt_Vehicle_Functionality – Models attacks 
that degrade or disable core vehicle operations via 
component-level exploitation. 

Based on the methodology described in Section 5.1, the model 
computes the following posterior probabilities (Figure 4): 

• P(I_BluetoothtoOBC_25_DataSniDing = True) ≈ 
76.73% 

• P(Initial_Recon = True) ≈ 81.69% 
• P(CAN_Control = True) ≈ 64.43% 

Baseline Observations 

In the absence of observed attacks, the system estimates a low 
baseline risk of compromise: P(SystemCompromise=True) ≈ 
0.0652, confirming that an uncompromised system operates 
within a low-risk envelope. However, the model 
demonstrates nonlinear risk escalation when upstream threats 
are activated, due to the dependencies encoded in CPTs. 

Threat Chain Behavior 

When T_BluetoothtoOBC_26_UnauthorizedControl is 
activated (prior: 67%), the posterior probability 
of I_BluetoothtoOBC_25_DataSniffing increases to 76.73%, 
which then propagates forward to Initial_Recon = 81.69%. 
Similarly, T_WiFitoOBC_18_DataAlteration (83%) 
and D_WiFitoOBC_16_ServiceDenial (73%) jointly 
raise I_WiFitoOBC_17_CredentialTheft to 73.69% and also 
contribute to the elevation of Initial_Recon. 

These contribute to an increased belief in SystemCompromise, 
demonstrating how even partial threat chain activation 
significantly alters system risk. 

The CAN_Control node—an AND-composed node—requires 
joint activation 
of I_CBtoOBC_33_InfoSniffing, T_CBtoOBC_34_MessageA
lteration, and S_OBC_1_ProcessImpersonation. With all three 
nodes active at ~67% or higher, CAN_Control=True is 
inferred at 64.43%. In the third 
path, Disrupt_Vehicle_Functionality=True is inferred 
at 83.25%, driven by high prior likelihoods 
of D_OBC_5_ServiceDisruption (81.37%) and its parents. 

Collectively, these threat vectors result in a posterior 
compromise probability of 93.48%, indicating a near-certain 
risk in realistic multi-vector attack scenarios. 

Key Insights 

Propagation Through Alternative Paths 
The Initial_Recon path independently escalates risk without 
CAN pathway involvement, demonstrating how entry-level 
attacks (e.g., data sniffing or credential theft) can be just as 
damaging if unaddressed. 

Nonlinear Risk Escalation 
The model reflects that multiple moderate threats can 
cumulatively drive high system risk. For instance, three ~70% 
activated sub-threats cause CAN_Control=True inference to 
jump to ~64.4%. 

 



Figure 4: Inference of the IVI system  

Logical Gate Fidelity 
Unlike flat scoring models, the BN respects 
the AND/OR logic of threat interdependence. This ensures 
greater fidelity in simulating realistic multi-phase attack 
strategies, such as requiring simultaneous spoofing and 
tampering to impact CAN bus operations. 

Prioritization of Mitigation Strategies 
The model supports prioritizing high-impact vulnerabilities. 
For example, reducing the attack probability 
on CredentialTheft or MessageAlteration has a 
disproportionately strong downstream effect on compromise 
risk, making them valuable mitigation targets. 

6. Causal Analysis and Intervention 
Impact 
To move beyond correlation and quantify the true influence of 
individual threats on system-level risk, the paper 
demonstrates causal impact analysis using a do-
calculus approach on the BN. While traditional BN inference 
computes posterior probabilities based on observations 
(i.e., P(Y|X)), causal reasoning estimates the effect of actively 
forcing a node into a specific state, expressed 
as P(SystemCompromise | do(X=1)). 

In practical terms, this means simulating what happens when a 
threat is forcibly activated (e.g., a Bluetooth-based attack 
occurs), regardless of its upstream dependencies. This 
distinction is critical in cybersecurity: not all high-probability 
nodes have high causal influence, and not all influential threats 
are obvious from their marginal probability alone. 

Causal vs. Observational Reasoning 

• The table below compares posterior 
probabilities (inferred from natural propagation in the 
BN) with interventional probabilities (computed via 
causal impact analysis using do(X=1)) for both root 
threats and intermediate nodes (Table 10). 

 

 

Interpretation of Results 

• Most nodes showed a significantly higher impact 
under causal intervention than what their natural BN 
propagation suggested. 

• CAN_Control had the greatest causal 
influence on SystemCompromise, increasing risk by 
over 32% when forcibly activated—despite a 
relatively modest posterior probability of 64.43%. 
This reflects its central role in consolidating multiple 
threat vectors. 

• Several upstream nodes, 
like T_2_CommandTampering and T_34_MessageAl
teration, showed high causal effects (>27%), 
demonstrating that interventions on seemingly 
modest threats can have system-wide consequences. 

Table 10: The table shows casual probabilities for root and middle 
nodes 

 

• Intermediate nodes 
like Initial_Recon and Disrupt_Vehicle_Functionality
 also showed high sensitivity to intervention, 
validating their role as critical pivot points in attack 
propagation. 

 

 



Security Implications 

• Prioritization: Causal analysis enables rational 
prioritization of threats for mitigation. Focusing on 
high-causal-impact nodes (like CAN control and 
Command Tampering) delivers maximum risk 
reduction. 

• Defense Strategy: Nodes with high interventional 
impact should be monitored in real-time and 
subjected to the strongest access control, anomaly 
detection, and hardening strategies. 

• Audit & Compliance: These insights provide a 
defensible basis for targeting specific controls in risk 
registers and security audits. 

7. Sensitivity Analysis of Attack 
Propagation in the Bayesian Network 
To assess the influence of individual nodes on the system-
level security outcome, the paper demonstrates local 
sensitivity analysis using the constructed BN, which models 
cyberattack propagation across interconnected system 
components (based on Hachem et al work). This process 
evaluates the robustness of the output probability 
of SystemCompromise=True against perturbations in the input 
parameters. 

The sensitivity analysis procedure consisted of four main 
steps. First, a baseline computation was conducted using 
probabilistic inference via the LazyPropagation algorithm in 
PyAgrum to calculate the baseline probability of the top-level 

node, SystemCompromise=True, which signifies a successful 
cyberattack within the modeled system. Next, in the PPT 
perturbation phase, each root node—representing individual 
vulnerabilities without parent dependencies—had its "True" 
state probability increased by 0.1 (with an upper limit of 0.99). 
The modified Bayesian Network was then used to 
recompute P(SystemCompromise=True), and the change from 
the baseline was recorded to assess the marginal influence of 
each root node. In the CPT perturbation phase, targeting 
intermediate nodes (such as Initial_Recon or CAN_Control), 
every combination of parent states was iterated through, with 
each associated CPT entry increased by 0.1 while remaining 
bounded within [0.01, 0.99]. The resulting changes 
in P(SystemCompromise=True) were recorded, and the 
average of these differences was calculated to yield a 
sensitivity score for each intermediate node. Finally, during 
the sensitivity aggregation and visualization step, sensitivity 
scores for both root and intermediate nodes were compiled 
into a dictionary. A bar chart ( 

Figure 5) was then generated using Matplotlib to visualize the 
relative impact of each node’s perturbation on the system 

compromise probability, with nodes sorted and labeled 
according to their role in the Bayesian Network. 

Figure 5: Sensitivity analysis for the IVI system based on Hachem et 
al work 

 

 

The sensitivity analysis results are shown in Figure 4 (bar 
chart), which displays the change 
in P(SystemCompromise=True) when each node’s probability 
was perturbed by +0.1. A higher bar indicates greater 
influence of that node on the overall security outcome. 

Notable observations include: 

• The 
nodes T_OBC_2_CommandTampering, I_CBtoOBC
_33_InfoSniffing, 
and T_CBtoOBC_34_MessageAlterationexhibited 
the highest sensitivity scores among root nodes, 
implying that even modest increases in their attack 
likelihood significantly raise the probability of 
system compromise. 

• Intermediate nodes such 
as SystemCompromise, Disrupt_Vehicle_Functionalit
y, and Initial_Recon also showed high influence, 
reflecting their centrality and cumulative impact in 
the attack propagation path. 

• Nodes 
like S_OBC_1_ProcessImpersonation and D_OBC_5
_ServiceDisruption had comparatively lower 
influence, suggesting a more limited role in the 
critical propagation chains under the current BN 
configuration. 

This analysis provides actionable insights into which 
components are most critical to secure in order to reduce 
systemic risk. It also highlights nodes that, despite being lower 



in individual attack likelihood, may lie along high-impact 
propagation pathways. 

8. Limitations 
While BNs provide a structured and probabilistic approach for 
modeling cybersecurity risk, several limitations arise in both 
theory and practical implementation—particularly in the 
context of safety-critical systems like In-Vehicle Infotainment 
(IVI). These limitations are summarized below and should 
guide future improvements to the model presented in this 
paper. 

8.1 Scalability and Complexity 
As the number of threats and dependencies increases, the 
CPTs in BNs grow exponentially, making inference 
computationally expensive. This hinders the scalability of the 
model, particularly for systems with hundreds of 
interdependent components. 

8.2 Dependence on Accurate Prior 
Probabilities 
BNs require well-calibrated prior probabilities and conditional 
relationships to yield meaningful inferences. In this study, 
DREAD and SAHARA scores were used to estimate these 
values; however, such expert-derived metrics are inherently 
subjective and may not generalize across different threat 
contexts or systems. 

8.3 Observability Assumptions 
Many BN-based models—including this one—assume that 
threat states are fully observable or can be inferred with 
reliable certainty. In practice, cybersecurity monitoring is 
often partial, delayed, or noisy, which can distort posterior 
estimations and impact decision-making accuracy. 

8.4 Static Structure and Causal 
Oversimplification 
The causal relationships in BNs are pre-defined and static. 
They do not adapt to newly discovered attack vectors or 
evolving system architectures unless manually updated. 
Moreover, BNs may oversimplify complex causal 
relationships that are time-dependent or adversarial in nature. 

8.5 Real-Time Constraints 
Executing BN inference in real-time embedded environments 
(e.g., automotive systems) may introduce latency, especially 
when multiple intermediate nodes are used for layered 
propagation. Performance tuning is necessary to deploy BNs 
in safety-critical domains without compromising system 
responsiveness. 

8.6 Limited Temporal Reasoning 
This model captures probabilistic dependencies at a single 
point in time. It does not include temporal dynamics such as 
attacker dwell time, threat evolution, or sequence of 
compromise events—features that Dynamic Bayesian 
Networks (DBNs) or Hidden Markov Models (HMMs) could 
capture more effectively. 

9. Conclusion  
As cybersecurity threats grow increasingly dynamic, 
interdependent, and opaque, traditional static risk modeling 
approaches—such as attack trees, risk registers, or CVSS-
based scoring—struggle to capture the real-world complexities 
of system compromise. This paper demonstrated that BNs 
provide a flexible and mathematically grounded alternative, 
enabling probabilistic inference, dynamic threat propagation 
modeling, and evidence-driven risk assessment. 

By applying a structured model-to-model transformation 
process to a STRIDE-based threat analysis of an In-Vehicle 
Infotainment (IVI) system, this study showcased how BNs can 
effectively represent cascading cyber risks under uncertainty. 
The BN framework successfully quantified both direct and 
indirect escalation paths, revealed hidden interdependencies, 
and enabled dynamic updating of system compromise 
likelihoods based on observed threat indicators. 

However, several limitations were also highlighted, including 
challenges related to scalability, dependence on expert-derived 
CPTs, static network structures, and limited support for 
temporal threat evolution. These findings point toward 
promising future directions, including the use of Dynamic 
Bayesian Networks (DBNs), automated structure learning 
algorithms, online parameter updating with real-time 
telemetry, and hybrid BN–machine learning models for 
adaptive cybersecurity defenses. 

In conclusion, Bayesian Networks represent a valuable tool for 
modern cybersecurity operations—particularly when 
thoughtfully integrated with domain knowledge, continuous 
monitoring frameworks, and evolving threat intelligence. By 
advancing probabilistic modeling techniques, cybersecurity 
practitioners and researchers can move toward more resilient, 
transparent, and adaptive defense architectures in the face of 
growing cyber-physical threats. 
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