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ABSTRACT

Large-language models (LLMs) are now able to produce text that is, in many cases, seemingly
indistinguishable from human-generated content. This has fueled the development of watermarks
that imprint a “signal” in LLM-generated text with minimal perturbation of an LLM’s output.
This paper provides an analysis of text watermarking in a one-shot setting. Through the lens
of hypothesis testing with side information, we formulate and analyze the fundamental trade-off
between watermark detection power and distortion in generated textual quality. We argue that a key
component in watermark design is generating a coupling between the side information shared with
the watermark detector and a random partition of the LLM vocabulary. Our analysis identifies the
optimal coupling and randomization strategy under the worst-case LLM next-token distribution that
satisfies a min-entropy constraint. We provide a closed-form expression of the resulting detection
rate under the proposed scheme and quantify the cost in a max-min sense. Finally, we provide
an array of numerical results,comparing the proposed scheme with the theoretical optimum and
existing scheme, in both synthetic data and LLM watermarking. Our code is available at https:
//github.com/Carol-Long/CC_Watermark

1 Introduction

A large language model (LLM) is a generative model that, given a string of input tokens, outputs a probability
distribution @) x for the next token X in the sequence. The emergence of LLMs that generate text that is largely
indistinguishable from humans has led to the creation of trustworthy text generation algorithms [1] that create safe [2],
interpretable [3]], and authentic [4] content. This work focuses on watermarking: the process of embedding a “signal”
at the token level in LLM-generated text. The goal of a watermark is to enable automated detection of Al-generated
content, providing proof of its authenticity (or lack thereof) and potentially of its origin. The past two years have
witnessed the creation of increasingly sophisticated LLM watermarking schemes [S5-21]].

A hallmark of existing LLM watermarks is their reliance on either distorting or coupling the next-token distribution @ x
with a random variable .S drawn from a known distribution Ps. Here, S represents shared randomness known both by

“Equal contributions.

*Correspondence to: carol_long@g.harvard.edu, dortz@post.bgu.ac.il, flavio@seas.harvard.edu

"This paper was prepared by Hsiang Hsu prior to his employment at JPMorgan Chase & Co.. Therefore, this paper is not a
product of the Research Department of JPMorgan Chase & Co. or its affiliates. Neither JPMorgan Chase & Co. nor any of its
affiliates makes any explicit or implied representation or warranty and none of them accept any liability in connection with this paper,
including, without limitation, with respect to the completeness, accuracy, or reliability of the information contained herein and the
potential legal, compliance, tax, or accounting effects thereof. This document is not intended as investment research or investment
advice or as a recommendation, offer, or solicitation for the purchase or sale of any security, financial instrument, financial product,
or service or to be used in any way for evaluating the merits of participating in any transaction.

“This material is based upon work supported by the National Science Foundation under Grant No FAI 2040880, CIF 2231707,
CIF 2312667. The work is also supported by a gift by J.P. Morgan.


https://github.com/Carol-Long/CC_Watermark
https://github.com/Carol-Long/CC_Watermark

Optimized Couplings for Watermarking Large Language Models A PREPRINT

the watermark generator and detector and a coupling refers to a joint probability distribution () x,s whose marginals are
Qx and Pg, representing how the token distribution and side information are probabilistically related while preserving
their individual distributions. For instance, [5] — which ignited the recent interest in LLM watermarking in the machine
learning community — distorts () x by randomly choosing a set of tokens (as determined by .S) to be on a “green list,”
i.e., a subset of tokens that are favored during generation, and increasing the mass of those tokens accordingly. The
detector then counts the number of tokens in a sequence that appears on the green list and declares the text watermarked
(i.e., Al-generated) if this count exceeds a threshold. However, such a distortion of the LLM distribution may impair
the textual quality. Alternative approaches include [7,/9L[10L/17]], which instead couple () x with the distribution Ps.
Such couplings enable “distortion-free” watermarks that (averaged over Pg) do not change the expected next-token
distribution, yet are still detectable.

The exact nature of the shared randomness S between the model and the detector varies across watermark implemen-
tations. S can be, for example, generated from the hash of previous tokens in a sequence [5]] (where a hash function
converts the token history into a fixed-size value that deterministically produces pseudo-random bits) or sophisticated
tournament-like sampling strategies [[12]]. For our theoretical analysis, we abstract away the exact generation process of
the shared randomness S.

At a high level, existing LLM watermarks perform two steps when generating a sequence of tokens { X} ; given
shared randomness {S;}1_;:

1. Watermark Generation: For the i-th generated token and given S; and the predicted next token distribution
() x , draw the next token by sampling from X; ~ Qx|s,-

2. Detection: Given a sequence {(X;, S;)}7,, compute the statistic T, = + 37" | f(X;, S;) for some function

f: X x 8 —0,1], and declare that the sequence {X;}!" , is watermarked if 7}, > 7.

Importantly, a crucial assumption of current LLM watermarking schemes is that the function f does not assume
knowledge of the token distribution ) x~. This allows watermarks that are directly detectable from the sequence
{(X;,S:) I, i.e., directly from generated text, without accessing the underlying LLM. If the distribution of the
generated tokens @) x» was known, then a standard likelihood ratio test (LRT) would suffice for watermark detection.
What makes LLM watermarking distinct from existing information-theoretic watermarking schemes (e.g., [22-27]) are
the assumptions that (i) the source distribution is unknown to the watermark detector and (ii) watermarking is performed

on a per-token (vs. sequence) level.

1.1 Main Contributions

Motivated by the success of token-level schemes for LLM watermarking, we provide an in-depth analysis of a single-
token watermarking process, i.e., when n = 1. Specifically, we study how to generate a coupling () x,s and the
corresponding detection function f that maximizes the probability of detection of the watermark, while controlling
the quality of the text. The latter is controlled through the distortion relative to () x — a quantity we call perception,
following recent trends in the information theory literature on the source coding problem [28-30]]. We refer to this
setting as one-shot watermarking. We jointly optimize ()x s and f given a perception constraint, with the case
Qx = Qx corresponding to the perfect perception setting. We focus on one-shot watermarking since, as mentioned
above, existing schemes are constrained to watermark on a token-by-token basis. Moreover, small gains in single-token
watermark detection compound to exponential gains in detection accuracy in threshold tests applied across multiple
tokens.

We begin with an information-theoretic formulation for one-shot watermarking. We quantify the fundamental trade-off
between watermark detection vs. perception when the underlying next-token distribution () x is known with the side
information Pgs uniformly distributed. This analysis yields a fundamental upper bound on one-shot watermark perfor-
mance; see Theorems[TJand[2] Interestingly, when the watermark does not change the next-token probability (i.e., perfect
perception), optimizing a one-shot watermark is equivalent to maximizing the TV-information TV (Qx s||@x Ps)
across the conditional distribution () x|s — a non-convex optimization problem [31}, Section 7]. This formulation embeds
TV-information with a new operational interpretation.

We optimize one-shot watermarks when @ x is unknown to the detector but satisfies a min-entropy constraint, i.e.,
1Qx|lcc< A (Eq. (6)), which corresponds to Hoo (Qx) > —log(A). Operationally, lower values of A correspond
to higher entropy token distributions with greater uncertainty, while higher values of A indicate more concentrated
distributions where the next token is more predictable. Moreover, we optimize for detection tests of the form 1[f(X) =
S], where f : X — S forms a partition of X’.



Optimized Couplings for Watermarking Large Language Models A PREPRINT

SNPS

® AN{QX, ifC=0

o
@
Q Alice xis, HO=1 - (S, A)
X Qxs Bob [ 945

®
——ah

Charlie |~ 9:(4)

Figure 1: Watermarking problem as a hypothesis test with side information.

Motivated by the fact that deterministic token partitions lead to low detection probabilities, we introduce randomness
to f. In Theorem [3] we characterize the probability of detection of such detection tests under the worst-case token
distribution for any given min-entropy constraint and any size of side information. We pair our analysis with a
characterization of the optimal design of the partition randomization. In Theorem[d] we consider a simplified token
partition strategy and show that it yields a near-optimal detection probability. Together, we provide the complete
characterization of the minimax detection rate for a given vocabulary size, side information, and min-entropy constraint
under the optimal and near-optimal partition randomization strategies, plotted in Figure 3]

We provide an array of numerical results of the Correlated Channel (CC). On synthetic data, we show how the CC
watermark detection meets the theoretical optimum, while outperforming the red-green watermark [5]. We investigate
the effect of the side information alphabet and demonstrate performance in a sequential setting. Finally, we provide
empirical results on LLM watermarking using the Waterbench dataset [32].

Related Work. Watermarking has been extensively studied in information theory [24H26]], particularly through
the Gelfand-Pinsker (GP) channel [22}23,27]]. These approaches typically focus on watermarking sequences via
joint typicality and assume perfect knowledge of the underlying source distribution. The work of [5] led to various
developments in watermarking schemes [9-20], with several approaches that focus on distortion-free methods, e.g.,
[6,/7,[15L/16]. In particular, [17] proposes a watermark using error-correcting codes leading to correlated channels
similar to the ones we find via optimizing couplings. In [33|], the optimal Type-II error for the bounded Type-I error is
analyzed by comparing watermarking schemes with the uniformly most powerful watermark with knowledge of Q) x .
The authors of [[L0] characterize the universal Type II error while controlling the worst-case Type-I error by optimizing
the watermarking scheme and detector. While these works operate on a token-level basis, they focus on the effect of a
given strategy along a sequence. In contrast, we focus on a preliminary step and aim to answer the simple yet important
question — What is the optimal coupling when watermarking a single token:

2 Optimal One-Shot Watermarking

In this section, we formulate the watermarking problem, derive the resulting optimization problem, and discuss the
optimal solution structure. We focus on the fundamental trade-off between detection probability and perceptual quality.
As mentioned above, while the optimal approach to watermarking considers sequence-to-sequence schemes, due to the
autoregressive nature of token generation in LLMs most popular schemes focus on token-level strategies [5},94/10L{12].
As a first step towards token-level watermarking of sequences, we provide an extensive analysis of the one-shot setting.
We discuss the extension to a token-level scheme in the sequential case in Section 4]

2.1 Problem Setting

We consider a hypothesis test using the private side information setting and textual quality of the model as the ability
of an external observer to detect the watermark without access to the side information. Formally, let @) x be the LLM

'Our code is available at https://github.com/Carol-Long/CC_Watermark
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distribution over some finite vocabulary of |X|= m tokens. We consider Alice (the watermarker), whose goal is to
convey a single token to Bob (the detector), which, in turn, tries to detect whether the token is watermarked or not.
Alice and Bob share some random side informatiorﬂ S ~ Pg with |S|= k. Furthermore, we consider Charlie (average
observer), which tries to detect the existence of the watermark but does not have access to the side information. The
setting is depicted in Figure[T]

On Alice’s end, the watermark design boils down to the construction of the conditional distribution () x|s. We consider
a Bayesian setting, in which Alice transmits a token according to the outcome of a fair coin C. The transmitted token is
thus given by:

X ~Qx ifC =0, 1
{XNQX|S ifC=1." er<2) )
where C' 1l (X, X ,S). To detect the watermark, Bob performs the following hypothesis test
Ho: A~ Qx
H1 A~ QX\S-

We assume that Charlie is aware of the watermarking mechanism but is not aware of the specific sample of S. Therefore,
Charlie performs an hypothesis test with a corresponding alternative hypothesis, i.e.

H():ANQX
Hl:ANQXv

where Qx = Eg[Q x|s] is the watermark distribution averaged w.r.t. the side information S, while QXS is the

conditional token distribution given specific side information. Note that Qx is distinct from Q x,s, which would denote
their joint distribution.

2.2 A Detection-Perception Perspective

Given the hypothesis test formulation, we recast the problem of watermarking as a trade-off between two measures:
Bob’s detection and Charlie’s perception probabilities. Motivated by recent advances in lossy source-coding [28-30],
we adopt the notion of perceptual qualities of the data, which is quantified through a discrepancy measure between the
two distributions, e.g. f-divergences, rather than a metric calculated directly on the random variables.

We define two fundamental metrics that capture the trade-off between detection capability for Bob and imperceptibility
for Charlie. For Bob’s detection capability, we weigh true negative (TN) detections with prior 7 and true positive (TP)
detections with prior m; = 1 — 7. The tests are defined as follows:

Definition 1 (Watermark Tests and Error Probabilities). A watermarking scheme comprises of a detection test gq :
X xS = {0,1}, such that for (A, S) € X x S, we respectively define the detection probability with prior T = (¢, 71)
as

Rd = ETF [Pr(gd(s7 A) = C)] )

where C' € {0, 1} is the label indicating whether the token is watermarked and the expectation is with respect to all
randomness in the system, i.e., the side information S and token distributions. Perception probability R, is similarly
defined with a test g. : X — {0, 1} and a uniform prior 7o = 1/2.

Optimally, we aim to maximize detection R4 while minimizing 2, which indicate Charlie’s low perception of the
watermark. Next, we formalize the trade-off.

2.3 Characterizing Optimal Trade-off

Following the Neyman-Pearson Lemma [35]], the likelihood ratio gives the optimal test statistic, resulting in a simple
closed form for (R4,R2,) in terms of E,, (or hockey-stick) divergence. The next proposition is a direct result of the
well-known connection between E., and hypothesis testing; see, e.g., [36-38]|.

Proposition 1. Fix (Ps,Qx,Qx|s) and error priors mo and my. Let y = :—; Using the LRT, the optimal detection
and perception probabilities are given by
Rg=m +mE, (Qx|sPs,QxPs), (2)
1 1 ~
Rp:§+§TV(QX7QX)- 3

2Side information often corresponds to a secret shared key; see, e.g., [[7,[34].
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Remark 1. The E-divergence characterizes the error of hypothesis tests with specified priors on TP and TN rates. It
can be defined asﬂ [38)]

B, (P, Q) £ max[P(A) = 1Q(A)];

where A are rejection regions, P(A) and Q(A) are 1—TN rate and TP rate, respectively. When. my = m and
~ = 1, detection probability boils down to the total variation (TV) distance, in which case, we have Ry = % +
$TV(Qx)s, Qx| Ps), where TV(Qx s, Qx|Ps) = TV(Qx|sPs, Qx Ps) is termed the TV-information between X
and S.

Our hypothesis testing framework employs priors 7y and 73 to explicitly weight the importance of different error types in
the detection process. Setting mp = 7 = % gives equal importance to both errors, whereas asymmetric values prioritize
either minimizing false positives (incorrectly flagging human content as Al-generated) or false negatives (failing to
detect Al-generated content). This Bayesian framework provides a principled approach to designing watermark schemes
with detection rates optimized for specific operational requirements, where the relative costs of different error types
may vary significantly across applications. Due to Jensen’s inequality, for any fixed (Ps, Qx|s), we have R, < R,
i.e., Bob’s access to the shared side information allows for a potentially higher detection probability.

It is important to note that our approach fundamentally relies on the concept of probability couplings, which is
formally defined as a joint distribution @) x,5 whose marginals are () x and Ps. In our watermarking framework, once
Ps is fixed, finding the optimal coupling (x5 is equivalent to optimizing the conditional distribution Q x|g, since
Qx,s(z,s) = Qx|s(x|s)Ps(s). This approach allows us to construct “distortion-free” watermarks that maintain the
expected token distribution while enabling detection.

Generally, for any perception constraint oy, € [1/2, 1], the optimal detection probability is given by the solution to the
following optimization problem:

sup E, (@x|s,@x|Ps), st TV(Qx,Qx) < ay. 4)

Qx|s

We are interested in characterizing the (R4, R,) trade-off region, which amounts to solving (@) as a function of «,.

Note that (@) is a non-convex optimization problem, which generally lacks a closed-form solution. In what follows,
we characterize the several corner points of the optimal curve (i.e., R, = 0.5), which, in turn, gives insight into the
structure of the (Rg4, R,,) region within the box [1,1]2.

We begin by characterizing upper and lower bounds when «,, = 0, i.e., under zero-perception. In this case, Qx = Qx,
which implies perfect textual quality. The following result establishes tight bounds on the optimal detection probability
in this regime

Theorem 1 (Zero perception bounds). Fix Qx and let Ps be uniform over S, with |S|< |X| and let 11 = L. Then, for
R, = 3, we have

1 1 vy
1< < S 2. 5
2 SﬁpstmaX<2’ 2]<;> )

The upper bound emerges from jointly optimizing over both the coupling @ x |5 and ) x . This optimization reduces to
a convex problem over the probability simplex, which we recast as counting the optimally assigning elements of X’
The lower bound is achieved when () x is a singleton.

Beyond bounding detection under zero-perception, we derive an upper bound on the detection probability that holds
across all perception levels. The bound is given as follows:

Theorem 2 (Uniform detection upper bound). Let Qmin 2 mingex Qx (2). For any R, > 0we have Rqg <1 — @

This bound emerges from analyzing a simple strategy of replacing each token with on of the least probable elements
in X,. ie., some x € X that is attained with probability Qmin. The non-convexity of (@) is demonstrated in our
experimental results, see Section [5} where exact solvers are used to compute the trade-off region. In light of this
challenge, we will next derive a simple and tractable watermarking scheme.

3Some works include a residual term (1 — =)+ in the E-divergence definition, e.g., [39], which we omit as it does not affect the
optimization problem.
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3 A One-Shot Watermarking Scheme

While the optimal test that maximizes Bob’s detection accuracy is the LRT, it is infeasible in practical scenarios where
Bob is not assumed to have access to (x. To make use of the shared side information, Bob and Alice look for a
mechanism that couples S with the token distribution. This can be done by applying a map f : X — S. Alice uses
(f(X),S) to construct a watermarked distribution, and Bob uses (f(A), S) to detect its presence. We note that a map f
creates a partition of X into S bins. When k = 2, this can be interpreted as a partition of X into a rejection region and
its complement. We note that considering deterministic mappings is insufficient, as for S ~ Unif([1 : k]), the detection
probability is %, independent of the choice of (f,Qx). Therefore, we introduce randomness into our partitioning
approach by making the function f stochastic rather than deterministic. Specifically, we define a randomized mapping
that varies the way tokens are assigned to each partition based on additional random variables that both Alice and Bob
can access.

3.1 Optimal Randomized Partition — Correlated Channel

We randomize f by introducing a set of m S-valued random variables denoted B™. We assume that B™ is publicly
available to all parties and is therefore not considered a part of the private side information S. Our goal is therefore to
couple the side information with the randomized mapping (X, B"). This boils down to finding a coupling of @ x and
S through the design of partition randomness P~ and conditional distribution @ x|5. We look for such (Ppm.Qx|s)
that are optimal under the worst choice of token distribution ) x within a given class. Our problem is therefore formally
given by the following max-min expression

Ry 2 max min E[Ra(Qx. B"). ©®

l@xloc <A

where ||Qx || co= max,cx Q(z) and Ry(Qx, B™) denotes the detection probability for a given token distribution Q x
and partition randomness B™.. As discussed in Section[I.1] we consider the constraint {Qx € A, Qx| < A}
which enables a more comprehensive analysis by allowing us to adjust the parameter A. This flexibility provides insights
across various scenarios: smaller A values yield higher entropy token distributions with greater uncertainty, while larger
A values produce more deterministic distributions with reduced uncertainty about the next token.

According to (6), given a fixed pair (Pgm,Qx), we maximize R4(Qx,B™) by designing the coupling of
(f(X,B™),S). We consider the mapping of the fornﬂ f(z,b™) = b, under which, the partition’s probabilities
are characterized by the distribution of the random variable Y £ f(X, B™). To this end, we first solve the following
optimization problem:
sup Pr(S=Y), S~ Unif(S),Y ~ Py. @)
Ps,y
This is a maximum coupling problem whose closed-form solution is given below. It is a direct consequence of the
inf-representation of TV distance [40].
Proposition 2. Let S ~ Unif[l : k] and Py = {p1,...,pk} € Ak, t = TV(Ps,Y) and let Z be the set of all couplings
of (Ps, Py). Then, argmax_c; Pr(S =Y) is given by

min(%api)v i =J,
(Y =i,S=j)=q (G —p)p; — ), (i € A)N(j € A,
0, otherwise,

where A = {i :p; > 1}, and A° = [k] \ A.

The resulting coupling can be thought of as a transition kernel that maps Py to Ps under maximum acceptance
probability. When k£ = 2, the optimal coupling boils down to a binary asymmetric channel, known in information
theory as the Z-channel [41]]. That is, when S = 0, the mapping always outputs ¥ = 0, but when S = 1, the mapping
may output either Y = 1 or Y = 0 with certain probabilities. This asymmetric structure is particularly effective for
watermark detection because it creates a distinctive pattern that appears only in watermarked content. We therefore
term this method as the correlated channel (CC) watermark. We note that CC was previously considered, for example,
in [[17].

The CC scheme consists of the following steps: Both Alice and Bob observe (s, b™). Alice samples C' ~ Ber(3). If
C = 0, she samples a ~ () x and sends it. Otherwise, she samples and sends a ~ () x|s—s, Which is given by the CC:

Qx s (2) = Qx (@) PS'Y(ZLﬁS;’ b))

*We consider a vocabulary X = [1 : m], which can be thought of as the enumeration of the tokens.

®)
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Algorithm 1 Correlated Channel Watermark (CC)

Input: LLM distribution () x, Side information S, shared randomness B™.
1: Alice:

Generate ) x|s,pm according to (&)

Flip a coin C' ~ Ber(3) and sample A according to (T).

Bob:

if S = f(A, B™) — Declare Watermarked

else — Declare Not watermarked

EAI AN S

_ 1— B(Po) ~ 1
po O — 0 po O B0 0

Y B;(m) Sy S s, )8
o1— 14 Bl SRS

Figure 2: Optimal coupling between side information S and random partition Y = f(X, B™) for p; < 0.5 (left),

Po < 0.5 (right), with 5(p) = 22,

D=
(SIS

N =

Bob performs the detection test by declaring that a is watermarked if s = f(a,b™). The complete list of steps is
summarized in Algorithm|[I] Note that by coupling (Py, Ps), we result with a coupling of (Qx, Ps). Consequently,
we have Qx = Eg[Qx|s] = Qx, which implies that the CC watermark has zero perception.

3.2 Theoretical Analysis of the CC scheme

Given the optimal coupling, we give a closed-form expression for R in terms of the TV surrogate of mutual information
in the resulting channel.

Proposition 3. The CC watermark detection is given by

1 11
Ry=5 (14+ TV (Ps, Psy|Py)) = 1= o = 5TV (Py, Ps) . ®)

Proposition 3] provides a closed-form characterization of Bob’s detection probability as a function. Specifically, for
k = 2, we have Ry = %(1 4 p), where p £ min (po, p1). This term is maximized when Y ~ Ber(1), with maximum
value of %. A consequence of Propositionis that we are interested in designing a partition that is as close as possible to
Pg as possible. As Pg is uniform over {1,. .., k}, our aim is to obtain a uniform distribution, i.e., a balanced partition
of the token vocabulary &, given the token distribution () x and the partition randomness Ppm.

Remark 2 (Equivalence to the likelihood ratio test). When we consider the indicator test 1{ f (x,b™) = s}, the decision
region obtained by the CC watermark is equivalent to the one attained by the LRT with threshold value of T = 1. This
follows from the observation that Pr[S|f(S, B™)] > 3, ifand only if S = f(X, B™).

Next, we discuss the design of randomness. Specifically, we analyze the dependence of the CC watermark detection
probability on the distribution of B™ and propose an optimal design of Pgm.

3.3 Optimizing the Partition

As seen in Equation (9), the distribution of the resulting partition governs the detection power of the CC watermark.
The partition distribution is determined by the token distribution ) x and the distribution of B™. As () x cannot be
controlled by the designer, we aim to characterize the class of distributions P that maximizes R4 under the worst-case
adversarial distribution @) x. Due to the symmetry of the CC, we can restrict the optimization over permutation classes
of Ppm. First, we show that the optimal Pg= is permutation invariant.

Lemma 1. Let F(Pgn) 2 min gyea,, Eps,, [Ra(Qx, B™)]. Let Pg.. be a distribution that maximizes F'(Pgm ).
[Qx oo <A B B
Consider a permutation: ¢ : S™ — S™. Define Py(B™) = Pf..(¢ o B™) Then, F(Ppm) = F(P;).

Next, let P,,, = {B1, ..., Bk} be the partition of S™ into sets of sequences that are identical up to a permutation,
with |P,,|= K. We refer to each B; as a permutation class. We proceed to characterize the optimal mean detection
probability R} and the corresponding distribution Pg..
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Theorem 3 (Optimal max-min Detection). Let |S|= k and X = m, and assume that m is divisible by k. Given
min-entropy constraint X € [0,1), and let t = HJ The optimal minimax detection probability from Equation@is given
by:
Ry =1~ o — {Elo(@3, B™)] (10)
d ok 4 Wb
where

E[Q(QK’Bm Z

—c 1
A+ (1—At) — —
L) e
(m/k)—c 1
l————— ) lcA——]].
+ < m—t ¢ k
Furthermore, the optimal detection probability is achieved for Pf.. corresponding to uniform sampling over the

permutation class of the sequence with an equal number of each element. For |S|= 2, Pgm = Unif(B*), where
B* = {b™ € {0,1}™|b™ has equal number of 1's and 0’s}.

- (") (’" “") <(<m/k>

Under additional assumptions, we can further simplify the optimal detection.
Corollary 1. Under the setting of Theorem@ assume that A\ = E Then, we have
k—1)m/k
1 (( ) / )

AN)=1——=—= . 11
R3(N\) 5% 2 (,]?) (11
Furthermore, if k = 2 and X € [3, 1] we have
b e o)
* m —
RiN) =93 -2 11 (12)
1 8mo1y o o3=rcy

Here, we have characterized detection for the worst-case distributions ()%, which lie at the extreme point of the feasible
set — probabilities with bounded inf norm ||@ x || .o < A). For example, for A € [0.5, 1], the above minimax detection
probablllty corresponds to token distributions with only two nonzero entries, i.e., Q x takes the form [A,1 — A, 0, ..., 0];
for A € [3, 3], the worst-case token distribution have 3 non-zero elements and has the form [, \, 1 — 2X,0, ..., 0].

Furthermore, we note that due to Equation (9), when k& = 2, Ry is upper bounded by . Thus, the second term in @])
serves as a penalty when considering the max-min setting. Notably, for A € [0.5, 1] and when m is large, this penalty

equals %, which implies that the cost of considering worst-case token distributions is lower bounded by %.

In addition to characterizing the minimax detection rate, Theorem [3] shows that the optimal sampling strategy for
token partition B™ is to sample uniformly from a collection of sets with an equal number of each element in k. Next
we show that we can adopt a much simpler sampling strategy, sampling i.i.d. Bernoulli variables with probability k
and arrive at a near-optimal detection probability. In Figure[3] we plot the probability of detection of both samphng
strategies and show that the Bernoulli sampling strategy results in negligible approximation error. To motivate i.i.d.
Bernoulli sampling, we start with an alternative view of the optimal sampling strategy in Theorem 3] Sampling a b™
uniformly over B* — contalmng sequences with equal numbers of each element in kK — can be equivalently defined
as the following process: given m elements with predefined proportions [1 Zseeny k] sample m times with replacement.
In the following theorem, we obtain an approximation of 12}, for any A by samphng without replacement. We also
shoxiv that, by applying de Finetti’s theorem on finite exchangeable sequences [42], the approximation error decays with
O(;).

Theorem 4 (Approximation of Max-min Detection Rate). Given = m, and the inf-norm constraint
A€ [0,1]. Lert = | 1], and Y ~ Bin(t, +) An approximation of the optimal minimax detection probability is given

by:
A ;D] (13)

~ 2k[L
[ - Rav| < 2] (14)
m
*For discrete probability Q x, inf-norm and entropy are connected via H(Qx) > — log||Qx||co. and we have A = ||Q x || co-
>We take m = 100k. Hence, existing LLMs with much larger vocabulary size would produce negligible approximation error.

R\ =1-— i—i [ZPr[Y:C] (

c=0

(c—t)/\+(1—]1)‘+(k:—1)

The approximation error decays as O( m) Specifically:
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0.0 0.2 0.4 0.6 0.8 1.0
A (inf norm constraint)

Figure 3: Optimal detection probability of CC in one-shot on the adversarial token distribution (Eq. @) is plotted
against the inf-norm constraint \ (or equivalently, an entropy constraint) on Q x>. When \ = 1 (entropy H(Qx) = 0),
Qx is deterministic, and detection is random. As entropy of (Qx grows (moves to smaller A values), single-token
optimal detection probability reaches a maximum of around 0.75 for binary side information. If the side information
one transmits contain a larger set of values, CC achieves a higher detection probability correspondingly. The actual
detection rate (solid lines) and approximate solutions (dotted lines) overlap for large enough vocabulary size*, and their
exact forms are provided in Theorem [3|and [}

We plot the results of Theorem [3|and[d]in Figure[3] For all A and k values, the approximated maxmin detection coincides
with the closed-form R}j(). We choose m = 100 k. The overlap between the actual and approximated R%(\) in
the plot testifies our result that the approximation error decays with m. In practice, since LLMs have a much large
vocabulary, where m ~ 100, 000 [43]], the approximation error will be negligible.

4 Sequential Watermarking

While this paper focused on a single-shot analysis of token distribution watermarking, general text generation involves
sequential prediction of long token sequences. A common approach involves applying a token-level watermarking of
the next token distribution and designing token-level test statistics. This approach was shown to benefit from favorable
performance [5,/9}|10]], albeit being theoretically suboptimal. We note that our one-shot method readily extends to
a sequential token-level scheme as we can treat each step as a one-shot problem, and considering an average test
L3 1[f;(A;, B™) = S;] which we them compare with some threshold 7 € [0, 1]. We leave the theoretical analysis of
the token-level extension of our scheme to future work, while showing empirical results in Section[5] In the simplified
case when X" are i.i.d., we provide the following bounds on the detection probability (a related result was given in [[17]]
bounding mismatch proportion using entropy):

Proposition 4. Let Q" = Q%" be the an i.i.d. token distribution, let S™ ~ P$™ and apply the one-shot CC on each
step i € [1 : n], then

1-27G) (9(3)" < Ry < % 1+ ,1— <M127D2> 7

where p = min(po, p1 ) is similarly defined as in the on-shot case, and g(p) = p+ 1/ 1_Tp (1+1T=2p),pe0,05].

The proof utilizes bounds on TV in terms of the Hellinger distance, which benefits from a tensortization.

S Experimental Results

We numerically evaluate the CC watermark on a uniform source over m = 10 tokens and binary side information.
We compare our results with the solution of an exact GUROBI-based numerical solution [44] of (@) and a popular
watermarking scheme termed red/green list [5]]. Additional information on the numerical solution of (@) is given in
Appendix The red/green watermark tilts () x according to the value of some § € R>( which implicitly controls the
downstream R?,,.
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Figure 4: One-shot watermark detection results on @ x = Unif(X). For «, = 0, CC achieves a detection probability of
0.75 and 0.7 with balanced and Bernoulli partitions, respectively. CC Balanced achieves the optimal detection (Eq. 4]
with v = 1 and |S|= 2). Standard deviations plotted as two-sided bars.

5.1 One-Shot Performance Analysis

Detection-Perception Tradeoff: We present the (R4, R,) tradeoff region for the one-shot watermarking setting. We

consider the worst-case distribution within {Q,, ||@x|/cc< A}. When A = L the resulting distribution is simply the

uniform distribution over X and when A > % it is given by a distribution with two nonzero entries valued (A, 1 — ).
Such a distribution is a representative of a next-token distribution in the low entropy regime (highly predictable next
token). As seen from Figurefa] for uniform @ x, when we apply the CC scheme with Pgm sampled over balanced

partitions, we obtain a gain of ~ 0.07 over sampling B b Ber(%), meeting the upper bound from (@). In contrast,
the red-green detection coincides with ours in the limit of § — oo, intersecting with the suboptimal i.i.d. Bernoulli
sampling method at 6 ~ 7.6. When § = % we observe a decrease in the gain of sampling from the balanced partition
sets.

Effect of k: Next, we analyze the effect of the side information alphabet size on the CC scheme performance. We
present a plot for m = 10 which serves as an extension of the performance we present in Figure #a] and a plot for
m = 60, which allows us to further understand the effect. As seen in Figure E], as k increases, the detection rate of
the CC watermark increases. However, the gain from increasing k decreases as k grows (or alternatively, as the ratio
m/k decreases). Furthermore, we note that the performance depends on the divisibility of m by k; when m/k is not
an integer, we experience a degradation of performance. This follows from the inability to construct equally sized
partitions of X', which, in turn, decreases the probability to result with a balanced partition.

1.0 *
0.9 T :
F 3. T 13 T T :
!
0.9 |
0.8
s s
=] o 08
= o
o 2
@ Q)
8 8 07
s} O T
0.6 -+- RG,6=0 06 -+- RG,6=0
—4- CC —4- CC
s CC, balanced s CC, balanced
2 3 4 5 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k k
(@m =10 (b) m = 60

Figure 5: Detection probability vs. k for two values of m and a uniform token distribution @) x .
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Figure 6: ROC of the sequence-level watermarking scheme. We compare the red-green method [5] with the CC scheme
(Section[3). We consider a range of 6. An increase of ¢ increases detection, at the expense of higher perception (lower
textual quality), while the CC method has fixed zero perception.

5.2 Sequential Watermarking

We now present the performance of the CC watermark on a sequence level scheme. We present preliminary results on
synthetically generated data, with the purpose of demonstrating the applicability of our method to a sequence-level test.

To that end, we consider the generation of n tokens A™, which are generated from a sequence of tokens X" i Qx
using from 7 i.i.d. samples of side information s™ and randomness (B™(i))_,. We apply the token-level watermarking
scheme to each element X; to generate A; and apply the following sequence-level threshold test

(A", 5") = {; LA BT () = Si) = }
i=1

for some threshold 7 € [0, 1]. To understand the performance of the proposed sequence-level generalization, we analyze
the ROC of the results scheme. In out experiment, we consider kK = 2, m = 20 and a sequence of n = 50 tokens.
Figure [ compares the ROC of the CC scheme (sampling from balanced sets) with the red-green scheme for a range of
0 values. We note that, while the CC method is perceptionless, it results in a better ROC than the red-green method.
Specifically, for A = 0.5, the CC method demonstrated better detection than the red-green method for the considered
range of 0 values. However, when A = 0.8, i.e., when the distribution is spikier, the red-green method with higher ¢
values result in a better ROC than the CC method, but at the cost of nonzero perception.

Finally, we analyze the effect of k£ on performance in the sequential setting by observing the ROC for a range of k values.
Specifically, we consider m = 20 and apply the sequential generalization of the CC watermark for k& € {2,3,4,5}. We
consider two distributions within the bounded infinity norm set with A = 0.8. As can be seen in Figure[7] as k increases,
the ROC improves. We note that, aligned with the results for the effect of £ in the one-shot setting, the significant
improvement in the ROC occurs in the smaller k regime, and higher &k values demonstrate diminishing returns.

1.0

0.8

0.8

0.6 0.6

o o
o o
= [=
0.4 0.4
— CC k=2 — CC k=2
02 CC, k=3 02 CC, k=3
—— CC k=4 —— CC k=4
oo — CC, k=5 o0 — CC k=5
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FPR FPR
(a) @x has two nonzero values of Q1 = 0.8 (b) @x has a spike of A = 0.8 and is uniform
and Q2 = 0.2. on the rest of its entries.

Figure 7: ROC of the sequence-level watermarking scheme under CC method for a range of k values.
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6 Watermarking Large Language Models

In this section, we demonstrate the CC watermark on LLM text generation. In this setting, the CC watermark is
applied on a token-level, prior to each next token generation. That is, on each time-step ¢, the token distribution ) x
is the model’s next token prediction distribution given past tokens Q(:|x*~1). Furthermore, the randomness (S, B™)
is generated from the output of some hashing strategy that is similarly applied both on Alice and Bob’s ends. The
hashing function is often a function of a shared secret key and a subset of previously sampled tokens (x;_1, ..., Zi—p)
for some 0 < h < t — 1. To assess the detection performance of this watermarking method, we consider the Z-test,
as considered in, e.g., [5/32]]. For a given statistic Z L7 (:CT) the Z-test quantifies the deviation of Z from its mean
and is usually compared against some threshold. Specifically, we reject the null hypothesis if we observe Z that is
larger than a threshold at the tail of its distribution (e.g., at 95% percentile). As Z corresponds to the sum of token-level
Bernoulli random variables with probability -, its sum is a binomial random variable, which, for a large enough sample,
can be approximated with a Gaussian random variable by the Central Limit Theorem. Specifically, we have

Z — T

ga_ 210
Ty(1—7)

~ N(0,1). (15)

For the RG watermark, we have the test statistic Z, = 23;1 f(x;,b™) and ~ in this case represents the probability of
green tokens. For the CC watermark we have the statistic Z, = Z;TFZI 1{f(z;,b™) = s;}, with v = 1 regardless of the
probability of green tokens. Note that under Hy, Z, and Z. have the same distribution for v = % Hence, both are
valid tests for the CC watermark and the two tests result in the same standard normal distribution under Hy whenever
the RG watermark partitions the vocabulary into balanced red and green lists (y = %). The benefit of the Z-test is
that it provides us with a p-value. As seen form , the larger the Z-score, the larger threshold we can allow, which
translated into bigger true positive values at a given false positive constraint.

Remark 3. Consider some k € N. For the CC watermark, Z corresponds to the sum of token-level Bernoulli random
variables with probability %, assuming both f(x;,b™) and s; follows a categorical distribution uniform over [k|. The
distribution of the detection test under the null is thus 1{f(x;,b™) = s;} ~ Ber(%). Hence, the z-score for a general k
is identical to Eq.(T3) with v = +

In order to compare our CC watermark method with the Red-Green watermark [45]], we follow the WaterBench
benchmark [32] which considers six datasets covering common text generation tasks. The datasets consider short and

PPL, | GM1 | Z-score 1 PPL, | GM 1 | Z-score
Knowledge Understanding (GM=32.76) || Knowledge Memorization (GM=5.84)
CCk=2 (ours) || 0.1594 | 31 0.6448 0.172 5.21 0.6593
CCKk=3 (ours) || 0.1047 | 33.2 0.051 0.153 5.85 0.575
RG, d=1 0.2098 30 1.37974 0.2098 | 5.6 0.6448
RG, d=3 0.14977 | 26.58 | 1.50712 0.232 4.72 1.459
Finance QA (GM=21.35) Longform QA (GM=21.88)
CC k=2 (ours) || 0.1634 | 21.32 | 2.477 0.2346 | 21.17 | 3.393
CCk=3 (ours) || 0.1352 | 21.16 | 2.954552 0.19381 | 21.76 | 4.1967
RG, d=1 0.2044 | 21.51 | 1.5843 0.2883 | 21.32 | 2.5836
RG, d=3 0.2169 | 21.1 4.331 0.3063 | 21.04 | 5.86793
Multi-news (GM=26.18) LCC (GM=51.51)
CC k=2 (ours) || 0.1331 25.86 | 1.62541 0.2476 | 46.11 | 1.7249
CC k=3 (ours) || 0.1073 | 26.07 | 2.19613 0.2466 | 46.44 | 0.7195
RG, d=1 0.16153 | 26.45 | 1.40362 0.3378 | 47.03 | 1.09314
RG, d=3 0.17816 | 25.38 | 3.374 0.3985 | 40.68 | 2.551

Table 1: LLM Watermarking. We compare the CC watermark performance with the red-green (RG) method [5]] on the
WaterBench dataset. We consider six datasets, demonstrating various text generation tasks. We compare C with two
values of k£ and RG with two values of ¢, the tilting parameter. On each dataset, we report the baseline GM value which
measures textual quality under no watermark.
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long text generation tasks, free text generation and True/False questions, and coding tasks. As previously described,
to quantify detection we calculate Z-scores. As we cannot calculate perception in LLM text generation, we measure

two proxies of it. The first is the perplexity under the watermark. That is, for a sequence of generated tokens z7,

we calculate — log PPL(z") = 1 Z;‘F:l log(Qx,|xt-1,s, (x¢|z' 1, 5¢)). We interpret lower perplexity as better textual

quality and denote it by PPL. The second metric we report is WaterBench’s generation metric (GM). For each of the
text generation tasks considered, WaterBench proposes a lexicographical metric, which is a proxy for text generation;
see [32] for more details.

We report the results in Table |1} For generation quality, CC attains the lowest PPL in every task, while maintaining a
competitive GM score. It is improving upon the red-green method by up to 45% in PPL and up to +6.6 GM points
(Knowledge Understanding). For detectability, the CC detector achieves competitive or superior Z-scores: with k=3 it
matches or exceeds the red-green’s performance with d=1 on all tasks (peaking at Z = 4.2 on Longform QA) while
avoiding red-green’s sharp quality drop; with k=2 it still yields statistically significant Z values (= 0.6-3.4) at virtually
no fidelity cost. Overall, CC offers a better tradeoff: maintaining textual quality and proposing improving detection
capabilities.

7 Conclusion

This work presents a rigorous analysis of text watermarking in a one-shot setting through the lens of hypothesis testing
with side information. We analyze the fundamental trade-off between watermark detection power and distortion in
generated textual quality. A key insight of our approach is that effective watermark design hinges on generating
a coupling between the side information shared with the watermark detector and a random partition of the LLM
vocabulary. We develop a perfect perception watermarking scheme — the Correlated Channel Watermark (CC). Our
analysis identifies the optimal coupling and randomization strategy under the worst-case LLM next-token distribution
that satisfies a min-entropy constraint. Under the proposed scheme, we derive a closed-form expression of the resulting
detection rate, quantifying the cost in a max-min sense. The CC scheme offers a framework that can potentially
accommodate additional objectives of LLM watermarking, such as robustness against adversarial manipulations and
embedding capacity. Additionally, we envision future work implementing the scheme for sequential watermarking
and extending it to the positive-perception regime, where minor adjustments to token probabilities are permitted in
exchange for superior detection.
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A Proofs of Theoretical Results

In this appendix, we include comprehensive overview of related works, as well as detailed proofs of our theoretical
results, which are presented in the main body of the paper.

A.1 Related Works

Given the extensive volume of work in LLM watermarking, we focus our discussion on works that inform and contrast
with our main contribution: theoretical frameworks for analyzing the limits of LLM watermarking.

Classical Information-Theoretic Approaches. Post-process watermarking, where watermarks are embedded after
content generation, has been extensively studied through information-theoretic lenses [24-26], particularly through the
Gelfand-Pinsker (GP) channel [22]23][27]], which treats the LLM token X ~ () x as the channel state for constructing the
watermarked token. The GP scheme constructs auxiliary random variables U ~ P(U|X) and encodes the watermarked
token as A = f(U, X). These approaches differ from our approach in two key aspects: (1) they typically require long
sequences for joint typicality to hold, which leads to schemes that are intractable in the online setting with a large token
vocabulary, while we focus on optimizing the one-shot minimax setting motivated by auto-regressive generation; and (2)
they generally assume perfect knowledge of the underlying distributions, whereas our scheme is designed to work with
the assumption that the underlying distribution is unknown, only the sampled token and side information are available.

Modern LLM Watermarking. Kirchenbauer et al. [5]] introduced the first watermarking scheme for LLMs, which divides
the vocabulary into green and red lists and slightly enhances the probability of green tokens in the next token prediction
(NTP) distribution. This seminal work sparked numerous developments [9-20], with several approaches focusing on
distortion-free methods that maintain the original NTP distribution unchanged, e.g., [6L[7}[15l{16]. Unlike these methods
which primarily focus on implementation strategies, our work provides a theoretical framework that characterizes
optimal detection-perception trade-offs. Most related to our approach, Chao et al. [[17]] propose a watermark using
optimal correlated channels, though our work differs by providing a complete characterization through joint optimization
of the randomization distribution in the one-shot setting.

Theoretical Analysis of LLM Watermarking. Recent work has advanced our theoretical understanding of LLM
watermarking limitations. Huang et al. [[33]] designed an optimal watermarking scheme for a specific detector, but their
approach requires knowledge of the original NTP distributions of the watermarked LLM, making it model-dependent.
Li et al. [46] proposed detection rules using pivotal statistics, though their Type II error control relies on asymptotic
techniques from large deviation theory and focuses on large-sample statistics, whereas our analysis addresses the
fundamental one-shot case including explicit characterization of corner point cases and the development of an optimal
correlated channel scheme. Most recently, He et al. [[10]] characterizes the universal Type II error while controlling
the worst-case Type-I error by optimizing the watermarking scheme and detector. In contrast to these approaches, we
analyze optimal mean detection by formulating a minimax framework while balancing Type I and Type II errors through
the use of an F,-information objective. In the minimax formulation, we provide the optimal mean detection in closed
form and characterize the optimal distribution of randomness under adversarial token distributions.

The development of the field is tracked through comprehensive benchmarks [32}|47-H49] and surveys [34,/50].

A.2  Proof for Proposition I]

Proof. Let us start by fixing (Ps,Qx,Qx|s) and the priors (o, 71). Eve’s hypothesis testing problem can be
formulated as distinguishing between Hy : A ~ Qx and Hy : A ~ Q x. By the Neyman-Pearson Lemma, the

optimal test statistic is given by the likelihood ratio L(a) = Qx(a)/Qx (a). The optimal decision rule takes the form
d(a) = 1{L(a) > n} for some threshold 7. The probability of correct detection for Eve can be expressed as:

Pr(Hp = C) = %Pr(é(A) —1|Hy) + %Pr(é(A) — 0| Ho)

For the optimal threshold n = 1, this probability becomes:

~o
=
3
I
a
I

+3 Y 1Qx(a) - Qx(a)

a€EX

+ %TV(QX, Qx)

N = DN =
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Now, we turn to Bob’s detection probability. Bob’s hypothesis testing problem differs from Eve’s due to his access to
the side information S. His testing problem can be formulated as distinguishing between Hy : (4, 5) ~ Qx|s x Ps
and H; : (A,S) ~ QX\S x Pg.

By the Neyman-Pearson Lemma, the optimal test statistic in this case is L(a,s) = Qx|s(als)/Qx|s(als). Given
priors (g, 1) and let v = :—(1], the conditional probability of correct detection given S = s is:

Pr(Hp = C|S = s) = mo Pr(6(A) = 0|Hy) + 71 Pr(6(A) = 1|Hy) (16)

= moQx|s[L(a,s) > 7] + mQxs[L(a,s) <] (17)

=m +mQx|s[L(a,s) > ] — mQx|s[L(a,s) > ] (18)

7r

=m0 | QxjslL(ars) 2] = = QxslL(a,s) 2y (19)

=m + 1B, (Qxs/|Qx|s)- (20)

The last equality comes from the alternative formula for E., where E., (P||Q) = max4[P(A) —vQ(A)], and supremum
is attained with A = {a|L(a, s) > ~}. O

A.3 Proof of Theorem[T]

By the assumption of a uniform prior, we are looking for bounds on the quantity 3 (1+ E. (Qx|s/Qx|Ps)), which boils
down to bounding E, (Qx|s/Q@x|Ps) = Es [E,(Qx|s||@x)]. First, note that under a uniform prior, this quantity
is lower bounded by the performance of a random guess, i.e., % < Ry4. In what follows, we develop an upper for
E,(Qx)s||Qx|Ps). For simplicity, denote |X'|= d and |S|= m. Let Qx|s—s, = pi such that py, ..., p,, € Ay, Where
A, denotes the d-dimensional simplex. Assume that S ~ Unif[m]. Following the zero perception assumption, we have
Qx =Qx.ie, = 3" p; = Qx. Consequently, our TV-optimization, when jointly optimized also over the marginal

distribution @) x is of the form:
m

1
max — E
D1y, Pm €A T P

m

Pi—%ZPi

=1

, 1)
+

where ||z||+= Y, (2;)+ for d > m. We are maximizing a convex function over a polytope, so the optimal solution lies
on the extreme points. Thus p; = e; for some j < d, where e; is the indicator vector with j-th entry equal to one. The
problem boils down to determining how many times each vector e; shows up.

Denote with ¢ the probability vector corresponding to the distribution ) x. We note that ¢ can be rewritten as

d

2 N pi= S e, 22)
=1 7

1

where 3 n; = mand n; € N. Denote the j-th entry of ¢ by ¢;. We have |[e; — g|[+= (1 —¢;)+ = 1 — g;. Therefore:

1 1<
= lpi—vally = > nglle — vl
i=1 j=1

1 d
= an(l —VG)+
j=1

d
b
= g1 —vg)+
j=1

where (a) follows from from rewriting the sum in terms of e; and (b) follows from the relation ¢; = %, as can be seen
from and by the definition of the indicator. Out optimization problem had therefore boiled down to maximizing on
the quantity

d d
qu(l — 7g;)+ such that g; = k/m, k € Z, qu =1. (23)

j=1 j=1

To solve (23), we will examine various settings of the value of ~.
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A31 y<1

First, note that when v = 0 the objective sums up to 1 by the constraints. Otherwise, note that whenever v < 1, we
have (1 — vg;)+ = 1 — vg;. Thus, we have

qu —ygj)4 =1— vij

j=1
Thus, maximization of the objective, borls down to the minimization of the sum of squares. We note that as g is a
probability vectors, the sum of square minimizes under the uniform distribution, with the minimum being % Thus, we
have the upper bound

1 1
5(1 + E,(Qx5/|@x|Ps)) < 3 (1+ 1- %) 1- %

A32 v>1

In this case, we are not guaranteed with the positivity of (1 — yg;). We will look for a strategy to choose the values of
(g;); such that the considered sum is maximized, while not passing the threshold that nullifies the terms (1 — ~g; ). For
each j, denote each summand as f(g;), whose value is

2 1
G -G, 4G <t
f(qg‘)Z{Oj W=

else.

Consequently, as g; is constrained to the set ( )i, Whenever v > m, no positive value of g; will result in a positive

value of f(g;). Thus, the resulting sum is 0, which implies that Ry = 1. Thus we will focus on v € (1, m). In this
case, there is at least one possible value for each ¢; that results in a nonnegative value of f(g;). First, we note that the
mapping x — = — yx2 is a concave function of z for v > 0, whose maximum is obtained in 2* = % Therefore, we

would like to set q; = 2L as this will maximize a single summand. However, in most cases - ¢ (ﬁ)?_ . To that end,
Y 27y m/k=1

we will set the closes possible value to % within the allowed set. Second, we we would like to set as many g;’s to the
value 21 while following the constraint Z?:r g; = 1, we will choose the lower value. To summarize, for each interval
T’fL < 21’v < k“ , we will set ¢; = ,' The maximal amount of such g; we can set while following the sum constraint is
| % ]. Thus, we have the following

B, (@xislxlPs) = |2 (:Z o (:J)

<1-2

m
The corresponding bound on R is 1 — W The bound is achievable whenever m is divisible by k within the resulting
interval. Note that the interval k < 17 < k:;l corresponds to the interval PI=) +1) < v < 3. However, we already

know the resulting bounds for 7 > m and v < 1. Thus, the relevant values of k that correspond to this case are
k € [1: %]. Finally, when 5 < % < L we cannot take the lower value (k = 0), and will therefore take higher value

k = 1. However, note that ﬁ < % corresponds to v > m. Thus, this sub-case (ﬁ < % < %) boils down to v < 3
with corresponding upper bound of 1 — -, which will merge with the interval v < 1. This concludes the proof (|

A.4 Proof of Theorem 2|

LetQ; £ Q X|S=s; The proof follows from analyzing the following steps:

|S]
sup Y Ps(s)Ey(Qx|s—s Qx) = sup 25 ZHQL ¥Qx |1
QXS s QRx|s | | <
\SI
= ﬁ p ZHQf(z —7Qzl1
1
< fsu}gllQi —7Qz |1

216
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=sup|l — vQ. ()]
i€X
=1—79Qmin
Therefore,
1 i
Rd§§(1+1—7Qmin)=1—@
For the second equality, note that argmax of a convex function lies in the corner of the probability simplex. |

A.5 Proof of Correlated Channel (CC) with Perfect Perception

We prove that CC is a perfect perception scheme, i.e. Es [Qxs] (#) = Qx (z). Recall that S = (Y, B™).We have the

following

m Pyiy (ylf (@, ™))
QX\S ;ﬂ/’bB b )Q ( ) PY(y)

= Qx(x) > ppm (b™) Pypy (ylf(z,b™)).
y,bm
Denote by By (x) £ {b™ : f(z,b™) = 1} and denote By(z) by the same token. We have
Es [Qxs] (z)

—Qx@ | S w0 S0Py )+ S e S e (57

bmeBy(x) y=0,1 bmeBo(x) y=0,1

)Py |y (y0)

=1
= QX (.r)
This concludes the proof.

A.6  Proof of Proposition 2]

By the dual representation of the total variation
TV(P,Q) = glin{]P’[X #Y]: Px = P, Py =Q},
XY

Given S ~ Unif[k] and Py = {p1,...,pr} € Ap. Wehave TV(Ps, Py) =1 — Z - mln(k,pl)
We propose a coupling and shows that it achieves TV (Pg, Py ).

=1

(24)

To simplify notation, let the distribution of S and Y be P and Q. Let t = TV(P, Q). Assume that 0 < ¢ < 1. Define
three probability distributions R = PAQ pr— P_It)AQ and Q' = w. Construct Pxy as follows:

T—t°
1. Generate B ~ Bernoulli(t).

2. If B=0,draw Z ~ Randset S =Y = Z.
3. f B=1,draw S ~ P’ and Y ~ Q' independently.

To show that this is a valid coupling, we verify the marginal distribution is kept the same. We have:

Ps(a) = PB(B=0)R(a)+P(B =1)P(a)
_ (1—t)(?é?)(a)—&-t(lj_];/\cg)(a)
= P(a)

Similarly,
Py(a) = P(B=0)R(a) +P(B=1)Q (a)

a-0 (T2 @+ () @
- QW
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Therefore Pgy is a valid coupling.
Lastly, we show that for the specific coupling, P(Y # S) = TV(Ps, Py)

PY #8)=1-P(Y =5)

=1-(1-1)
=t
= TV(Ps, Py)

Thus, we have constructed a coupling Psy that minimizes P (Y # .S), which means that it maximizes P(Y = 5). O

A.7 Proof of Remark[2]

The hypothesis test is the following: Hy : X ~ Qx and Hy : X ~ Qx|s,pm, where Q x|s, pn is the CC-watermark
distribution shown in equation (8], and side information S ~ Ber(0.5). We show Hj, is rejected by the CC detection
test S = f(X, B™) if and only if it is also rejected by the likelihood ratio test (LRT).

If Hy is rejected by CC detection test, then S = f(X, B™). Then, consider the likelihood ratio:

Qx(X) QX) 25)
QXIBm,S(X) Qx (X ) P5|Y(S\f(X B™)
2
~ Psy(SIf(X,B™) (26)
<1, o

The density of Q x|pm,5(X) follows from the CC-watermark, side information Ps () = 0.5. The last inequality come

from the Z-S channel construction: Prg)y (S| f(S, B™) > 1, if and only if S = f(X, B™). Since the likelihood ratio
is less than 1, Hy is rejected by the LRT.

If Hj is rejected by the LRT with threshold 1, then we have

Qx(X)
Qx|pm,s(X)

Expanding the likelihood ratio as above, this implies: Pgjy (S|f(X, B™) < 1. By construction of the Z-S channel,
S = f(X, B™). Hence, H is rejected by CC detection test.

<1

A.8 Proof of Proposition 3]

We start by proving the following identity:
TV (Qx,Qx|(s,5m)|Ps,pm) = TV (Ps, Ps)y|Py)

Proof: Recall that in the correlated channel watermark we have side information .S and partition bits B™. By definition,
we have

TV(Qx, Qx|s,5m|Pssm) =Y > n(0™)Ps(s)TV(Qx, Qxjpm,s)- (28)

bm s=0,1
Next, we simplify the TV expression within the sum. For any (0™, s) we have

Pg)y (s|f(z,0™)) ‘
Ps(s)

TV(Qx,Qx|m,s) = Z ’Qx(l“) - Qx(x)

x

where recall that Y = f(X, B™), psy (s|y) is the corresponding coupling channel parameter, and S ~ Ber(1). We
define the pre-image of f for a fixed b™ as f~1(-,6™) : {0,1} — 2%, with f=1(0), f~1(1) C X. Plugging the
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simplified TV expression back into (28)), we have
TV(Qx, Qx|(bm.5))
m 1
=S um) Y Yo | - palel)
bm s=0,1 =z
1 1
“Sum S S x|y a0+ 3 x|y - pavtin)
bm 5=0,1 \zef~1(0,b™) z€f~1(1,bm)
. 1 1
= Zu(b ) (PY(O) Z 3 —psy(y|0)‘ + Py (1) Z 3 _pSY(Sl)D
bm s=0,1 s=0,1
=TV (Ps, Psjy|Py) ,
where the randomness of Y is determined by the pair (Q x, 1¢). This concludes the proof. (]

With this, we proceed to showing CC’s detection rate. By Theorem 2] CC’s detection rate is equal to that of likelihood

ratio test. By Proposition[T]and under equal priors on TPR and TNR, we have

1
Rq= 5(1 +TV(Qx,Qx|s,8m|Ps,5m))

1
=3 (1+ TV(Ps, Psjy|Py)),

where the last equality is due to the identity above.

Next, we obtain a closed form for TV (Ps, Pg|y |Py). By definition, we have

TV (Ps, Psjy|Py) = poTV (Ps, Psjy—) + p1TV (Ps, Psjy=1) -

Following Proposition the nature of the TV terms depends on wether p; < % or pg < % . For py <

coupling is given by a Z-channel, whose parameter is 2’;15:1. The TV terms are therefore given by

1|1 1|1 1

TV(PS7PSY_0)22‘2—1‘4‘2‘2‘:2

1/1 25 —1] |1 1

s ) =5 (= T )

:1<‘1—~§1 +§1N—1D

2 2py 2py

_ b

2p1

Thus, we have
TV (Ps, Psjy|Py) = po-

By the symmetry of the optimal coupling, for p; < % we have
TV (Ps, Psy|Py) = p1.

Hence, CC’s detection rate is given by Ry = (1 + min(po,p1)) .

A.9 Proof of Theorem[3

We begin by proving Lemmal|[I]

22
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A.9.1 Proof of Lemmalll

LetS = [k] and X = [m]. Foragiven Qx = q = (¢1,...,q¢m) € A,, and an m-length sequence b = (b1,...,by) €
8™, we define the function f : X x 8™ — S as

f(i,b) = b;. €1y

A sequence b induces a probability distribution I3(q, b) over S denoted as (with a slight abuse of notation)

m

P(s,q,b Zqzi s] Vs € [k]. (32)

For a fixed b and q and assuming that Alice uses the optimal coupling, Bob’s probability of detection is given by the
quantity

k
N . 1 ,

Ra(qb) 1= 3TV (QslP(ab) - 7 3 Pls.a.b) (33)

11 )
:1_%_19((1713)7 (34)

where
k

b) £ " |P(s,q,b) ;‘ (35)

s=1

where (g is the uniform distribution. Our goal is to find a distribution over P}, that maximizes the worst-case value
of R; given a set of constraints on q. Specifically, we analyze:

RY(\) 2 E B™
i(A) £ max min E|[Rq(q, B")] (36)
[l <A
-1 S Ppn(b)g(a,b) (37)
oF 4 Bin max BmB)9\q,B)-
lafloc <A PES™
The function
H(Ppm) £ max Elg(q, B™)] (38)
qclA,,
l[alfee <A

is convex in the distribution Pgm, since it is the maximum of linear functions. Let P}, be a distribution that minimized
H and consider the permutation 7 : S™ — 8™, define Pr(b) = P} (7o b).

Since Ep;,, [g9(a, B™)] = Ep [g(7 o q, B™)] for all q, H(P,) = H(Pgn) from the symmetry of the maximum.

Hence, from the equality in (37) F(P,) = F(Ppm) for F(Pgm) £ min qea, Ep,. [Ra(Qx, B™)]. O
llallo <X

Next, we proceed with the proof of Theorem [3]

Let C = m! be the number of permutations of an m-length sequence, we have

I3 .
F(CE;R><<FG@Q. (39)

Consequently, it is sufficient to restrict the minimization in Pg= to distributions that assign equal probability mass to
sequences that are identical up to a permutation.

Denote by P, the partition of S™ into sets of sequences that are equal up to a permutation, with |P,,|= K. For
simplicity, we denote P, = (Bi,. .., Bk) and refer to B; as a permutation class (alternatively, we could have named it
orbits or type classes). Then

min F(Pgm) = min max Z Z (40)
Ppm WEAK qEA,,
llalloo /\z 1 bGB
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Observe that g(q, b) is convex in g (since it is the absolute value of a linear function in q), and thus the inner maximum
is achieved at a vertex of the feasible set. The vertices of the polytope {q € A, | ||q]|c< A} are permutations of the
vector

ay = (A, ..., A 1 —1A,0,...,0),

where q* has (i) exactly ¢ entries equal to A and ¢ is the largest integer such that t\ < 1 (assuming A < 1), (ii) one
entry equal to 1 — ¢, and (iii) the remaining entries equal to 0.

Since the vertices are identical up to a permutation, and for any permutation 7
> gla,b)= > g(roq,b), (41)
beB; beB;

it is sufficient to select a vertex of the form q3. Thus,

pin (P = iy 3™ i 5 o) “

and it sufficient to consider the optimal distribution P.. as a distribution that selects a b uniformly over a single
permutation class in P,,; namely the one that maximizes IBilfl > bes, 9(ax, b).

Next, we aim to characterize R;(\) for different values of A. We denote by Pj3 the distribution resulting from drawing
a sequence at random from the permutation class B € P,,,.

Our goal is to compute

1
E[g(q}, B™)] ZEH qu,Bm)kH (43)

Recall that the optimal choice of Pgm is to draw sequences uniformly from a single permutation class. Assuming
w.l.o.g. that S = [k], fix a sequence b € S™ with n; entries equal to ¢, ¢ € [k]. For example, if k = 2, n; is the number

of entries equal to 1 and ns is the number of entries equal to 2. Naturally, Zle n; = m.

Now, for a fixed s € S, we can write

t
P(s, a3, B™) =AY X+ (1= tA) X1, (44)
i=1

where ¢ = |1/A] and X; £ 1 (B; = s). We can expand the expectation in the lhs of (@3] as

t
> * m 1 ® * m 1
EHP(San7B )_kH =E E P(S,q)\,B )_% ZX_;XZ‘|‘| (45)
t t t 1
=Y "pr <ZX1-:C> (Pr (Xt+1:1 in:c> c)\—f—(l—)\t)—k’ (46)
=0 i=1 i=1
: 1
+Pr| X1 =0 ZXi:c A=zl (47)
i=1
For our sampling without replacement strategy, we have
t nsg\ (m—ms
PT(ZXi:C>:<C)(th)7
= (%
! ng — ¢
Pr| X, =1 Xi=c|=—"—.
r( t+1 ; i C> m—1t
Plugging these expressions in, we have:
- (D) () ((ne—c 1 ne —c 1
E[g(a}, B™)] = e - A+ (1= M) — — 1- - A—— 48
ot B = 33t (g ) [ r o g+ () o)) e
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When we have an equal number of elements of each kind in the permutation class and m is divisible by k, i.e.,
ny = --- = ng = m/k, the expression simplifies to:

E[g(a}, B™)] kzt: m/k)(m =) (<(m/k)t_c> ‘cA+(1At),1€‘+<1(m/k)_c> ‘cAl’)

m — m—t k

(49)

We can simplify this even further in the special case that A = 1/k. In this case, ¢t = k, and we don’t have to consider
the special case of X; | —q} has & entries equal to A. In this case, denoting Z;, = Zle X; @7), simplifies to:

E HP(S ai, B™) — H ZPr ) le—1] (50)
c=0

1
k(Pr (Z), =0) + ZPr (Zi =¢)( cl)> (51)

1
% (2Pr (Zp =0) — 1+ E[Zg]) (52)

2
=7 Pr(Z, =0) (53)

(k—1)m/k
2 O ot ) (54)
B ()
and, consequently, we arrive at the elegant expression
((k—l)m/k)
E[g(q}, B™)] =2 % (752) (55)
k
Hence, for any given m, k, A, that satisfies A\ = % and m divisible by k, we have (following Eq. (37)):
Ry(A) =1- % Z]E l9(ax, B™)] (56)
1 1 (k-Dm/k
=1- — — ,% (57)
2k 2 (k)

For 1/2 < X < 1, g} has two non-zero entries equal to A and 1 — A. Consequently, P(qj, b) assigns probability 1 to
one value of S if by = by, otherwise assigns mass 1 — A and )\ to two separate values of s. Thus for a fixed distribution
P

k—1 1

2 1 1
o ,Zpr(Bl 7é132)><<1+‘/\’+‘1/\‘>. (58)

* m 1
Ep, [Ra(a), B™)] = 1— - —Pr(B; = Bz)x A A 3

2k

We need to select the set B that maximizes Pr(B; # Bs). For m even and k = 2 (i.e., S bmary) B is the permutation

class of the sequence of equal number of each element, we have Pr(B; = Bs) = 2(m 1), Pr(B; # Bs) = %,
which simplifies Rq(\)* to
3 mA—1 1
- — fork=2 - <A<1. 5
Rd( ) 4 4( — 1) or ) 9 = >~ ( 9)

Asm — oo, R5(\) — 3 — 2,

Remark 4. We now clarify the structure of B* showing it contains exactly those binary elements with balanced
occurrence of 0’s and 1’s, i.e., B* = {b™ : equal number of 0’s and 1’s}, when % < A<1,k=2andmis even. For
S ={0,1}, i.e. k = 2, permutation classes are characterized by the number of 1's. Let o be the number of 's in B
and m — « be the number of 0’s. From Eq (38), we need to select the set BB that maximizes Pr(B; # Bo):

o = argmax Pr[B; # Bs| = argmax 2M = (60)
a€[m)] aglm] m(m - 1) 2
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Next, we consider the case for % <AL % q} has three non-zero entries: g3 = (A, A, 1 — 2,0, ..., 0). Consequently,
there are 4 cases with the corresponding P(q3, b) and g(q3, b):

a.Bi=By=Bs: P=1[1,0,..,0 g(qi,b):2(1—%)

b.By = By, Bs :# B, P =[2)\,1—2),0...,0] g(qj,b):(2/\7%)+|172)\7%|+%(k72)
¢.Bi # By, By = (BiV By): P=[1—\A0...0] g(qj,b):|Af%\+|1f>\f%|+%(kf2)
d.By# By#Bsy: P=[\\1-2)0..,0] g(q’;,b):2|A—%|+\1—2A—%|+%(k—3)

Recall that to maximize Ep, [Rq(q}, B™)], we need to minimize Ep, [g(q}, B™)].

For k=2, case d is invalid and case ¢ produces the minimum g¢(q3, b). Hence, we select the set /3 that maximizes
Pr[B; # Bs, B3 = (By V B3)], which is equivalent to maximizing Pr[B; # Bs]. Following (60), B* = {b™ :
equal number of 0’s and 1’s}. We have Pr[B; = By = B3] = 4(“:”7:41), Pr[B; = B2,Bs # By] = ﬁ and
PI[Bl # By, B3 = (Bl \Y Bg)] =

=)
The resulting Rg(\)* is:

3 m—2

RZ()\):Z—W

for k = 2, 61)

Asm — oo, R5(A) — 5.

A.10 Proof of Theorem @

Our results so far have been based on the discussion that it is sufficient to consider the optimal distribution Pp.. as one
that selects b uniformly over a single permutation class B* € P,,. Recall that b is a sequence of m elements each take
avalue in S: |b|=m and S = k. Recall as well that /3 can be characterized by the proportion of each element of .S: for
i € [k], denote the proportions as [p1, ..., px], Where

m o 1[b; =
ps = rimtbi=s o p
m
Hence, sampling an b uniformly over 3* can be equivalently defined as the following process: given m elements with

predefined proportions [p1, ..., px], sample m times with replacement.

To generalize the analysis for other ranges of A, k, and m, we consider an alternative process in which rather than fixing
the proportions over m elements, we take [p1, ..., pr] as probabilities. b amounts to m i.i.d samples from a categorical

distribution: b; i CATEGORICAL(py, ..., pr ). Recall that optimal B* amounts to having an equal number for each
element in S. Hence, for all i € [k], p} = +.

Furthermore, recall that the adversarial distribution for a given min-entropy constraint A is: q* = [A\\, ..., 1 —
tA,0,...,0], where ¢ = | 1]. For the purpose of characterizing Ep,g(q*, b), only the color of the first ¢ + 1 draws
matter, because the rest have 0 probabilities.

Let X; 2 1(B; = s), forafixed s € S. X; o BER(7). We can compute Ep,g(q*, b) in closed form. Following
and @7), for sampling with replacement, we have:

b ) 1
Blylai, 5] = 3B |[Plsai 57 - | (62)
s=1
k t t t 1
s=1c=0 i=1 i=1
¢ 1
+ Pr (Xm:o ;Xi:c> c)\—kD (64)
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k;Pr[Yc} (116 c/\+(1)\t)]i‘+(1li) CA;D (65)
:;PﬂY:d((c—t)/\+(1—11)‘+(k—1) c)\—;D 66)

where Y ~ Bin(t, +), and hence Pr[Y = ¢] = (})(£)°(1 — 3)t~¢

c

By Egq. the approximated minimax detection is given by:

. 1 1<
Rd(A)zl—%—i LZ:Pr[Y:c]< .

(c—t)/\+(1—1)‘+(k—1)

A }{D] 67)

Finally, we analyze the approximation error of }NBQ()\) Define Hy, and M)y, as the distribution of b when we sample

without (which yields R%())) and with replacement (which yields R%())). First, notice that g(q*, b) < @ < 2 by
considering the TV between singleton distribution and uniform. Then, by triangular inequality, we have:

RO~ BiO)| = 1 (B g(a’,b) ~ Enerr,gla’, b)) (68)
= 1 X oa b) (s (b) — M (b) (©9)

b
< i 2> (Hy(b) - Mb<b))‘ (70)

b

< 53 (i (b) — My (b)) an

b
= TV(My, Hp) (72)
< 2]{751 (73)

The last inequality follows from de Finetti’s Finite Exchangeable Sequences [42].

A.11 Proof of Proposition[d]

Let n < oo and assume that X" ~ Q®", S™ ~ P®" and (B™)"_, ~ Pgn. Consequently, the CC watermarked

distribution is also i.i.d. distributed according @ = Qx|s- On Bob’s end, the detection probability is given by the

expression
o= (1+7V ((PQ)*", (PO)*")).

where PQ(S, X) = P(S)Q(X|S) To that end, we focus on obtaining bounds on the aforementioned TV term. For a
pair of distributions P, (), we have the following Hellinger bounds on the TV distance [31]:

LHAP.Q) < TV(P.Q) < H(P.Q) 1~ 112 (P.Q). 4

where, for two measures P, () on a finite alphabet X, the squarred Hellinger divergence is given by the following
equivalent forms

2

H*(P,Q) £ Eq (1 - P> _ Z ( 'P(x) — \/Q(x))2 =2-2 Z vV P(z)Q(x).

Q zeX reX

For a pair of product distributions (P®" Q®™), the squarred Hellinger divergence benefits from the relation [31]
1 n
H2 <P®n7 Q(Xm) =2- (1 - §H2<Pa Q)) .
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Our problem therefore boils down to characterize H? (PQ, P@) We have

H? (PQ,P@) = ZP(S) (m— \/%)2

= Es [H*(Q(X), Q(X|S))].

For a given s, b™),we have

H(Q(X),Q(X|S =5)=2-2>_1/Q(2)Q(z|s)

—222@(@\/W

- \/Psyw(x,bm))]

=2Ex

P(s)

where P(S|Y) is the correlated channel. Assuming S ~ Ber (1), we have

1 Pgy (SIY (X, b™))
P(S)

H? (PQ, P@) = 95 x

—Ey |1 - 2POY)] +Ey [1 - v2P(]Y)]

=2 —V2Ey [P(0]Y) + P(1|Y)]

=22 (5o (Vp(010) + Vp(110)) + 51 (v/2(O01) + Vp(1D)) ) .
where Y ~ Ber(pg, p1). Due to the symmetry of the correlated channel, we have for p £ min(po, p1)

H? (PQ, P@) =2 —V2f(p)

it 5l (1 Vi),

H? (PP, Q") =2 275 (f(p))"
The bounds on the detection probability then follow by plugging the squarred Hellinger distance into (73)). (]

where

which implies that

A.12  Proof of Proposition 4]

Let n < oo and assume that X" ~ Q®", S™ ~ P®" and (B!)!_, ~ Pg. Consequently, the CC watermarked

distribution is also i.i.d. distributed according @ = Qx|s- On Bob’s end, the detection probability is given by the
expression

Ri=5 (14 7V ((PQ)*", (PO)*")).

where PQ(S, X) = P(S)Q(X|S) To that end, we focus on obtaining bounds on the aforementioned TV term. For a
pair of distributions P, (), we have the following Hellinger bounds on the TV distance [31]:

2

where, for two measures P, () on a finite alphabet X, the squarred Hellinger divergence is given by the following
equivalent forms

SHA(P.Q) < TV(P.Q) < H(P,Q) 1~ 112 (P.Q). as)

2

H*(P,Q) 2 Eg (1 — P) = Z ( P(z) — \/Q(l‘))Q =2-2 Z vV P(z)Q(x).

Q zeX zeX
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For a pair of product distributions (P®", Q®™), the squarred Hellinger divergence benefits from the relation [31]
1 n
H2 (P, Q%) =2 (1 - SHA(P. Q)) .

Our problem therefore boils down to characterize H? (PQ, P@) We have

H? (pQ,pé) - ZP(S) (\/M— \/M)2

= Es [H*(Q(X), Q(X]9))]

For a given s, b™),we have

H*(Q(X),Q(X|S = 5) =2 -2 \/Q(z)Q(als)

222@(33)\/W

1 Psy (s|Y (X, ™))
P(s) ’

=2Ex

where P(S|Y') is the correlated channel. Assuming S ~ Ber (4 ), we have

| [Pav(siyixem)
P(S)

= Ey [1 - V2P(0]Y)] + Ey |1 - V2P(1]Y)]
=2 —V2Ey [P(0]Y) + P(1|Y)]
=2=v2 (o (Vp{OI0) + Vp(I[0)) + 51 (VRO + V(1) ) .

where Y ~ Ber(pg, p1). Due to the symmetry of the correlated channel, we have for p £ min(po, p1)

H? (PQ, P@) =2-2f(p)

16 25+ 5L (14 VI ),

H? (P¥",Q%") =225 (f(7))".
The bounds on the detection probability then follow by plugging the squarred Hellinger distance into (73)). (|

H? (PQ,P@) =2Es x

where

which implies that

B Additional Information on the Numerical Solution

In this section, we outline the reformulation of the detection-perception optimization problem from the main text
(@), and discuss the resulting solution. We focus on the case where v = 1, under which E, (Q x5, Q@ X|PS) =

TV (Q x5, @x |Ps). Recall that the original optimization problem is given by

sSup TV (QX|SaQX|PS)7 st. TV (QXaQX) < Qp. (76)
Qx5

We define the optimization variable V = [vq, ... ,Uk]T € R¥*™ whose rows are given by v; = Qx|s=s, — @x. The

resulting optimization problem w.r.t V can be written as

sup  [[Vll1a

VeRka
s.t. —pl <V =(1-p)lgm,
PLlem D - ( p) k,m (77)
V]-'m,l = Oka

FIVTLeall; < .
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Figure 8: Numerical solution of (78) vs. |S|= k.

where ||V||1 12 Zle iy |vi j| s the entrywise [1-norm of V, 1,5, , is an (m, n) matrix of ones, and 0y, is an (m, 1)
vector of zeros. Note that we can reduce the objective function from TV (Qx|s, Qx|Ps) to [|[V||1,1 since Ps is a
uniform distribution. The first two constraints ensure that each Q) x|s—, is a valid probability distribution, and the
last constraint enforces o, —level perception. The resulting optimization can be further simplified. By introducing an
auxiliary variable we can linearize the ¢, constraint on V. The auxiliary variable is Z with similar dimensions to V. The
resulting optimization problem is

sup  [[V][11
Z,VEkam
S.t. *p]-k,m <V= (1 — p)]-k,ma
-V j Z, \Y j Z7 kam j Z (78)
Vlm,l = 0k7

FIVTLeall, < o

To stabilize the optimization (78] we introduce an additional constraint that caps the values of Z when they exceed a
certain value M and are governed through an auxiliary binary matrix, which is jointly optimized with (V,Z). The
optimization can be then solved using an exact solver, e.g. GUROBI [44]. The code implementation of this optimization
problem is provided in the project’s GitHub repository.

We visualize the solution o the optimization for several values of |S|= k. The visualization is given in Figure[8] The
figure depicts the optimal trade-off between detection and perception under a uniform source token distribution. We
visualize the optimization problem under an equivalence constraint for perception (TV(Q,,Qx) = ;) and show
the resulting curve, which is the boundary of the trade-off region. The visualization of the resulting trade-off region
clearly delineated the non-convexity of the feasible set, which yields a non-convex region (below the optimality curve).
Furthermore, it can be seen that the upper bound is attained by the coupling that maximizes (8). Unfortunately, as noted
in the main text, solving this optimization is infeasible in practice, due to the solver complexity and the assumption of
logit access at the detector end.
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