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Abstract

Language model alignment is crucial for ensur-
ing that large language models (LLMs) align with
human preferences, yet it often involves sensi-
tive user data, raising significant privacy concerns.
While prior work has integrated differential pri-
vacy (DP) with alignment techniques, their per-
formance remains limited. In this paper, we pro-
pose novel algorithms for privacy-preserving align-
ment, and rigorously analyzing their effectiveness
across varying privacy budgets and models. Our
framework can be specialized to two celebrated
alignment techniques, namely direct preference
optimization (DPO) and reinforcement learning
from human feedback (RLHF). Through system-
atic experiments on large-scale language models,
we demonstrate that our approach achieves state-
of-the-art performance. Notably, one of our algo-
rithms, namely DP-AdamW, combined with DPO
surpasses existing methods, improving alignment
quality by up to 15% under moderate privacy bud-
gets (ε=2–5). We further investigate the interplay
between privacy guarantees, alignment efficacy,
and computational demands, providing practical
guidelines for optimizing these trade-offs.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remark-
able capabilities across various tasks, yet ensuring their
outputs align with human preferences and values remains
a critical challenge [Patil and Gudivada, 2024]. Recent ad-
vances in alignment techniques, such as Direct Preference
Optimization (DPO) [Saeidi et al., 2024] and Proximal Pol-
icy Optimization (PPO) [Li et al., 2023], have shown promis-
ing results in adapting these models to better reflect human
intent [Xu et al., 2024]. However, these alignment meth-

ods typically require access to extensive human feedback
data, raising significant privacy concerns about the potential
exposure of sensitive information contained in training ex-
amples. For example, [Carlini et al., 2022] demonstrated
that large language models can memorize and reproduce
verbatim sequences from their training data, including per-
sonal information such as email addresses and phone num-
bers. These privacy risks are particularly acute in alignment
scenarios, where training data often includes personal pref-
erences, opinions, and potentially sensitive user interactions
that could be used to identify individuals or reveal private
information.

To mitigate the privacy issues, one of the promising ap-
proach it to leverage the notion of differential privacy
(DP) [Dwork et al., 2014]. Roughly speaking, DP requires
that when a training data alternates, the output, or the trained
model does not significantly change. Despite the potential of
DP to protect training data, its application to language model
alignment remains under explored. Existing works [Behnia
et al., 2022, Wu et al., 2023, Charles et al., 2024] rely on
DP-SGD [Abadi et al., 2016], a classic differentially private
algorithm for deep learning. However, stochastic gradient
descent (SGD) may not be the best choice for training lan-
guage models, and it typically uses ADAM [Kingma, 2014]
or ADAMW [Loshchilov, 2017].

Moreover, there are many different techniques developed for
the alignment of language models. Yet, existing approaches
either focus solely on alignment quality without privacy con-
siderations [Xiong et al., 2024], or address privacy in stan-
dard fine-tuning scenarios without considering the unique
requirements of alignment tasks [Mattern et al., 2022b, Hu
et al., 2023].

In this paper, we aim to address the aforementioned chal-
lenge by investigating the following question:

Can we achieve high performance of language model
alignment while providing rigorous privacy guarantees for

the training data?
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We provide affirmative answer to the question. Specifically,
we unify existing alignment techniques and provide a dif-
ferentially private algorithm for the alignment. Our experi-
ments show that the proposed algorithm is better than DP-
SGD based private alignment techniques. We summarize
our contributions in the following.

1. We propose a unified framework for privacy-preserving
language model alignment, that consists of a sequence of
losses minimization. This unified framework includes cur-
rent commonly adopted alignment techniques, namely rein-
forcement learning from human feedback (RLHF) and DPO,
as special cases.

2. We develop a new private optimizer, namely DP-
ADAMW, which incorporates the decoupled weight decay
into DP-ADAM. More importantly, by applying the private
optimizer to the aforementioned unified alignment frame-
work, we obtain our novel differentially private language
model alignment algorithm.

3. We conduct extensive experiments on LLAMA-8B and
GPT-2, DeepSeek-LLM-7B-Chat. Specifically, we exam-
ine our proposed algorithm in three different dimension.
First, we compare our algorithm with existing methods that
uses DP-SGD, which shows that our method and its spe-
cialization to DP-ADAM achieves better performance for
privately aligned language model. Second, we compare dif-
ferent models with our proposed algorithm, which shows
the generalization of our algorithm. Finally, we intensively
examine the effects of different privacy budget on the per-
formance of the fine-tuned language model.

4. Through analyzing our experiments, we establish practi-
cal guidelines for selecting privacy budgets and optimization
strategies, offering concrete recommendations for balancing
privacy protection with alignment quality in different de-
ployment scenarios. Our results demonstrate that effective
model alignment can be achieved while maintaining strong
privacy guarantees, though careful consideration must be
given to the choice of optimization method and privacy
budget. We identify DP-ADAMW and DPO as particularly
promising approaches, especially compared to existing ap-
proaches using DP-SGD and RLHF [Wu et al., 2023].

2 RELATED WORK

2.1 REINFORCEMENT LEARNING FROM
HUMAN FEEDBACK

Reinforcement learning from human feedback (RLHF) has
emerged as a transformative approach in language model
fine-tuning. Unlike conventional methods relying on large
labeled datasets, RLHF harnesses human feedback to gener-
ate reward signals that guide model optimization, enabling
more desirable outputs in complex, open-ended tasks. The
seminal work by Christiano et al. [2017] established the

foundational framework, introducing human feedback for
reward modeling coupled with Proximal Policy Optimiza-
tion (PPO) [Schulman et al., 2017] for model training.

Initial applications of RLHF in natural language process-
ing focused on specific tasks such as stylistic text contin-
uation and summarization [Ziegler et al., 2019, Stiennon
et al., 2022, Wu et al., 2021], as well as machine translation
[Nguyen et al., 2017, Kreutzer et al., 2018]. The field subse-
quently evolved toward developing AI assistants aligned
with human values across diverse instruction-following
tasks [Ouyang et al., 2022, Bai et al., 2022, Touvron et al.,
2023].

2.2 DIFFERENTIAL PRIVACY IN LANGUAGE
MODELS

The memorization capabilities of language models [Carlini
et al., 2022] have led to various privacy vulnerabilities, in-
cluding training data extraction and membership inference
attacks [Carlini et al., 2019, 2021, Elmahdy et al., 2022,
Mattern et al., 2023]. To address these security concerns,
differentially private (DP) fine-tuning has emerged as a
promising defensive strategy for privacy preservation.

Recent works have demonstrated the efficacy of DP-SGD
[Abadi et al., 2016] in fine-tuning language models [Li et al.,
2021]. These studies show that through careful hyperparam-
eter selection and parameter-efficient techniques such as
LoRA [Hu et al., 2021], it is possible to develop language
models that maintain competitive performance while provid-
ing robust privacy guarantees. A parallel research direction
explores private synthetic text generation through DP fine-
tuning of pre-trained models [Mattern et al., 2022a, Yue
et al., 2022], producing synthetic texts that ensure privacy
while preserving utility.

2.3 DIFFERENTIAL PRIVACY IN
REINFORCEMENT LEARNING

Research at the intersection of differential privacy and re-
inforcement learning dates back to the foundational work
of Balle et al. [2016]. Subsequent studies have explored
various aspects of this integration, with Wang and Hegde
[2019] focusing on Q-learning and introducing noise to
value function approximation to achieve differential privacy
guarantees.

The field has continued to evolve with specialized ap-
proaches for different scenarios. Ma et al. [2019] address
the specific case of Markov Decision Processes (MDPs)
with linear function approximations, developing methods to
ensure joint differential privacy (JDP). More recently, Qiao
and Wang [2024] have extended privacy guarantees to of-
fline datasets, particularly focusing on offline RL algorithms
such as Adaptive Policy Value Iteration (APVI) [Yin and



Wang, 2021].

Despite these advances in privacy-preserving language mod-
els and reinforcement learning, there remains a significant
gap in ensuring differential privacy for model alignment.
To the best of our knowledge, our work represents the first
attempt to address this crucial challenge.

3 PRELIMINARIES

3.1 LANGUAGE MODEL ALIGNMENT

Language model alignment refers to the process of adapting
pretrained language models to better reflect human pref-
erences and values. The alignment process typically be-
gins with Supervised Fine-Tuning (SFT), followed by either
RLHF or DPO. In the following, we briefly introduce these
two pipelines for completeness. Note that we denote πθ the
language model, where θ is the parameter.

Dataset. A typical dataset D for preference-based align-
ment consists of triplets (x, y+, y−), where x is a prompt,
y+ is the preferred response, and y− is the dispreferred
response. These labeled pairs provide the foundation for
learning human-aligned language models. We note that at
different stages of alignment, different subsets of D may be
used to tailor the dataset to the specific requirements of each
stage.

Stage 1: Supervised Fine-Tuning (SFT). SFT is widely
adopted in the first stage of alignment. In this step, a pre-
trained language model is fine-tuned on a dataset of high-
quality, human-annotated responses. Specifically, the model
is trained to maximize the likelihood of the correct response:

LSFT(θ) = −E(x,y+,y−)∼D
[
log πθ(y

+|x)
]
.

SFT improves fluency and coherence but does not explicitly
optimize for human preferences, motivating the use of either
RLHF or DPO for further refinement.

Stage 2, option 1: Reinforcement Learning with Human
Feedback (RLHF). RLHF refines language models by lever-
aging human feedback to train a reward model, which then
guides policy optimization. It consists of two main steps.
First, we train a reward model Rϕ to predict human pref-
erence scores. Mathematically, we minimize the following
loss function.

LRM(ϕ) = −E(x,y+,y−)

[
log σ

(
Rϕ(x, y

+)−Rϕ(x, y
−)

)]
,

where σ(z) = ez/(1 + ez). Then, we use PPO with reward
model Rϕ to fine-tune πθ. The objective function for PPO is

LPPO(θ) = E(x,y)∼πθold

[
min

(
rt(θ)Ât,

clip
(
rt(θ), 1− ϵ, 1 + ϵ

)
Ât

)]
,

where

rt(θ) =
πθ(at | st)
πθold(at | st)

,

represents the probability ratio, Ât is the advantage estimate,
and ϵ is the clipping parameter to ensure training stability.

Stage 2, option 2: Direct Preference Optimization (DPO).
DPO simplifies the alignment process by removing the need
for an explicit reward model to improve stability. The DPO
objective function is given by:

LDPO(θ) = −E(x,y+,y−)∼D

[
log

πθ(y
+ | x)

πθ(y+ | x) + πθ(y− | x)

]
.

DPO is particularly effective for aligning models with hu-
man preferences while avoiding the challenges associated
with RL.

Unified Framework. We unify the alignment process into
the following framework. It involves P number of phases,
in each phase p = 1, . . . , P , a loss function L(p)(θ(p)) is
minimized on the dataset Dp. The overall dataset is parti-
tioned such that D = ∪pDp, with each Dp being disjoint.
Importantly, in intermediate phases, θ(p) may correspond
to auxiliary models such as a reward model. In the final
phase P, the optimized parameter θ(P ) is the parameter of
the language model πθ. We remark that the This dataset par-
titioning plays a crucial role in ensuring differential privacy,
as discussed in the next subsection.

3.2 DIFFERENTIAL PRIVACY

Differential Privacy (DP) is a framework that provides for-
mal guarantees to protect the confidentiality of individual
data points. A randomized mechanism M satisfies (ε, δ)-
differential privacy if, for any two adjacent datasets D and
D′ differing by one element, and for any possible output S,
the following holds:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

Since our alignment process involves sequential loss mini-
mization, privacy leakage accumulates over multiple phases.
Without partitioning the dataset into disjoint subsets, the
privacy budget would increase according to the DP com-
position theorem. Specifically, if each phase is (ε, δ)-
differentially private, then the entire alignment process sat-
isfies (Pε, Pδ)-differential privacy, leading to significantly
higher privacy costs. By ensuring disjoint partitions of D,
we mitigate privacy leakage and enable a more efficient
allocation of the privacy budget across phases.

4 METHODOLOGY

In this section, we introduce our method for differentialy
private aligning language models.



4.1 PRIVACY-PRESERVING OPTIMIZERS

Recall that the goal is to minimize a sequence of loss func-
tions {L(p)(θ(p))}Pp=1. Instead of using DP-SGD, we pro-
pose to use DP-ADAMW, which is a variant of DP-ADAM
and ADAMW. DP-ADAMW extends DP-ADAM by in-
corporating decoupled weight decay. Such weight decay
method has been shown to improve generalization in deep
learning [Loshchilov, 2017].

DP-ADAMW. Specifically, given a dataset D =
{x1, . . . , xN} and loss function L(θ) = 1

N

∑N
n=1 ℓ(θ, xn),

at each time t, we sample a batch B ⊂ D with size
|B| = B, and compute the loss Lt = 1

B

∑
x∈B ℓ(θt, x).

Then, we clip the gradient by a constant C through ḡt =
gt/max{1, ∥gt∥2/C}, and add a Gaussian noise nt ∼
N (0, σ2C2I) to obtain the privatized gradient g̃t = ḡt+nt.
The privatized gradient is then used to update the first mo-
ment mt and the second moment vt. Specifically, given
exponential decay rates β1, β2, we have mt = β1mt−1 +
(1 − β1)g̃t, and vt = β2vt−1 + (1 − β2)g̃

2
t . According to

Tang and Lécuyer [2023], the second moment should be
corrected by subtracting (1 − βt

2)σ
2. To resolve the issue

of negative second moment, we use clip vt − (1 − βt
2)σ

2

by 0, i.e. let ṽt = [vt − (1− β2
2)σ

2]+ be the bias-corrected
second moment, where [x]+ = max{x, 0}. Finally, the up-
date direction of θ is −mt/

√
ṽt + ϵ− λθt, where ϵ > 0 is

a small number to prevent zero denominator, and λ is the
weight decay coefficient. The key modification compared to
DP-ADAM is the adjusted weight decay mechanism in the
parameter update rule:

θt+1 = (1− ληt)θt − ηt
mt√
ṽt + ϵ

√
1− βt

2

1− βt
1

.

The pseudo-code of DP-ADAMW is provided in Algo-
rithm 1.

Algorithm 1 DP-ADAMW

Input: dataset {x1, . . . , xN}, loss function L(θ) =
1
N

∑N
n=1 ℓ(θ, xn), learning rate ηt, weight decay λ,

β1, β2, and σ.
for t = 0, . . . , T do

sample a batch from dataset and calculate the loss Lt

and the clipped gradient ḡt = clip(∇θLt, C).
Sample a Gaussian noise nt ∼ N (0, σ2C2Id).
mt = β1mt−1 + (1− β1)(ḡt + nt)
vt = β2vt−1 + β2(ḡt + nt)

2

θt+1 = (1−ληt)θt−ηt
mt√

[vt−(1−βt+1
2 )σ2]++ϵ

√
1−βt+1

2

1−βt+1
1

end for

We remark that, by choosing λ = 0, DP-ADAMW becomes
DP-ADAM, which is also intensively studied in the experi-
ments.

Specialize to RLHF and DPO. In the context of RLHF
and DPO, the proposed DP-ADAMW optimizer serves as
a privacy-preserving alternative to conventional optimizers
used in fine-tuning large language models. Recall that RLHF
typically involves three stages: supervised fine-tuning, train-
ing a reward model based on human preference data, op-
timizing a policy network via reinforcement learning. DP-
ADAMW can be applied on each individual stage and enable
privacy-preserving optimization of the reward model and
policy network, thereby protect the privacy of training data.

For DPO, which directly optimizes a preference loss func-
tion, DP-ADAMW can be applied to parameter updates
while preserving the confidentiality of user preferences. Re-
call that DPO typically involves two stages: supervised fine-
tuning, and minimize the preference loss. Therefore, DP-
ADAMW can be directly applied to this two-stage process,
which protects the privacy of training data.

By integrating DP-ADAMW into RLHF and DPO, we
achieve a differentially private framework for aligning lan-
guage models with human preferences while preserving the
utility of learned representations. In subsequent sections,
we provide empirical evaluations to assess the trade-offs
between privacy, performance, and alignment effectiveness
in these settings.

Privacy Analysis. Our privacy guarantee is based on a con-
servative analysis. Specifically, suppose the training process
consists of E epochs, meaning each data point is accessed
E times. Note that at each time step, our algorithm en-
sures (ε′, δ′)-differentially private for any ε′, δ′ satisfying
σ = 2

√
log(1.25/δ′)/ε′. By composition rule in differen-

tial privacy, our algorithm is (ε, δ)-differential private with

ε = Eε, δ = Eδ.

While it seems that ε and δ is large, it is important to
note that modern language model training often involves
a relatively small number of epochs In our experiments,
we choose E = 3. Therefore, we conclude that our al-
gorithm is (ε, δ)-differentially private for any δ > 0, and
ε = O(

√
log(1/δ)/σ).

We remark that the privacy analyses in DP-SGD [Abadi
et al., 2016] and DP-Adam [Tang and Lécuyer, 2023, Tang
et al., 2024] are built upon Poisson subsampling, i.e., sam-
pling with replacement, which enables the use of advanced
techniques such as the moments accountant and privacy am-
plification by subsampling. In contrast, our work is based
on sampling without replacement, which limits the direct
applicability of these existing analyses. As a result, we de-
velop a separate, conservative privacy accounting approach
tailored to our sampling strategy.



5 EXPERIMENTS

To comprehensively evaluate our proposed privacy-
preserving alignment approach, we conduct experiments
across different privacy budgets, optimizers, model scales,
and alignment algorithms. Our evaluation framework em-
ploys a reward model to quantify alignment quality while
ensuring privacy guarantees.

5.1 EXPERIMENTAL SETTING

Models and Optimization We evaluate three pre-trained
language models, LLAMA-8B [Dubey et al., 2024],
GPT-2 [Radford et al., 2019] and DeepSeek-LLM-7B-
Chat [DeepSeek-AI et al., 2024], using three differentially
private optimizers (DP-ADAM, DP-ADAMW, and DP-
SGD) and two alignment algorithms (DPO and PPO). Pri-
vacy budgets ε are varied from 0 to ∞, with ε = ∞ repre-
senting the non-private setting, to systematically study the
privacy-utility trade-off.

Dataset We utilize the RLHFlow-SFT-Dataset-ver2 from
Hugging Face, a comprehensive dataset curated for SFT
and RLHF. The dataset contains instruction-response pairs
annotated with human preferences, specifically designed for
instruction-following and helpfulness alignment tasks.

Training Configuration All experiments are conducted on a
cluster of 8 NVIDIA A800 GPUs. The training configuration
includes: - Batch size: 256 - Learning rate: 5 × 10−5 (for
both policy and reward model training) - Training epochs:
3 - Gradient clipping norm: C = 0.1 (for DP optimizers) -
Weight decay: 0.01 (for DP-ADAMW) - Noise multiplier: σ
(dynamically adjusted based on ε) - Momentum parameters:
β1 = 0.9, β2 = 0.999 (for DP-ADAM and DP-ADAMW) -
GAE parameters (for PPO): λ = 0.95, γ = 0.99 - Clipping
range (for PPO): ϵ = 0.2

To ensure compliance with differential privacy constraints,
we set the privacy budget to ε, with a failure probability δ
fixed at 1× 10−5. The gradient clipping norm is configured
as C = 0.1 to limit the sensitivity of individual samples,
and the noise multiplier σ is dynamically determined by
the privacy budget to balance privacy protection and model
utility. Privacy guarantees are achieved through gradient
clipping, Gaussian noise addition, and privacy accounting
using the moments accountant method.

5.2 EVALUATION FRAMEWORK

We evaluate our privacy-preserving alignment methods us-
ing a reward model R (FsfairX-LLaMA3-RM-v0.1 from
Hugging Face1), trained on a large-scale human preference
dataset. The reward model quantifies alignment quality by

1https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1

scoring model responses based on their adherence to human
preferences.

Training Process For each model M ∈
{LLAMA-8B,GPT-2,DeepSeek-LLM-7B-Chat}, we
follow a three-step process:

1. Initialize with supervised fine-tuning (SFT) weights.

2. Apply privacy-preserving alignment using either DP-
DPO or DP-PPO.

3. Evaluate across multiple privacy budgets ε ∈
{0, 1, 2, 3, 4, 5, 10,∞}.

Performance Evaluation The reward model evaluates
model responses to 300 randomly sampled prompts from
a held-out test set Dtest, which contains 10, 000 diverse
prompts spanning factual knowledge, reasoning, summa-
rization, and creative writing tasks. The alignment score is
computed as the average reward across these samples. This
score serves as the primary metric to assess the trade-off
between alignment quality and privacy protection.

Privacy-Utility Tradeoff Analysis To analyze the impact
of the privacy budget ε, we examine the relationship be-
tween ε and the reward score f(ε). Specifically, we identify
the critical point ε0 = argmax f ′(ε), where the marginal
improvement in performance diminishes significantly. This
critical point indicates the optimal privacy budget beyond
which further relaxation of privacy constraints yields min-
imal performance gains. We approximate f ′(ε) using the
finite difference method:

f ′(ε) ≈ f(εt+1)− f(εt)

εt+1 − εt
,

and select ε0 as the practical choice for balancing privacy
and utility.

5.3 RESULTS

We conducted extensive experiments to evaluate the effec-
tiveness of privacy-preserving alignment methods across
various model architectures, optimizers, and privacy bud-
gets. Table 1 summarizes the reward scores achieved under
different configurations, demonstrating that effective model
alignment can be achieved while maintaining privacy guar-
antees, albeit with trade-offs between privacy protection
and alignment quality. Our analysis focuses on four key
aspects: the impact of the privacy budget, the choice of
optimizer, model scale effects, and the comparison of align-
ment algorithms. In addition to our primary experiments on
LLAMA-8B and GPT-2, we conducted an additional study
on DeepSeek-7B to further investigate the generalizability
of our findings. The results of this experiment are presented
separately in Section 5.3.5.



Table 1: Performance Comparison of Different Privacy-Preserving Alignment Methods

Model Optimizer Method Privacy Budget (ϵ)

0 1 2 3 4 5 10 ∞

LLAMA-8B

DP-ADAMW DPO 1.5980 1.4928 1.7016 1.8814 1.8792 1.8798 1.8739 1.8728
PPO 1.5551 1.5008 1.6425 1.8454 1.8548 1.8545 1.7836 1.8424

DP-ADAM DPO 1.5632 1.4612 1.6723 1.8534 1.8482 1.8476 1.8392 1.8428
PPO 1.5234 1.4487 1.6132 1.8187 1.8246 1.8212 1.7523 1.8156

DP-SGD DPO 1.5245 1.4982 1.5890 1.6861 1.6370 1.6115 1.6023 1.6474
PPO 1.4890 1.4625 1.5535 1.6612 1.6108 1.5923 1.5814 1.6187

GPT-2

DP-ADAMW DPO 1.1534 1.0967 1.2843 1.4237 1.4382 1.4412 1.4356 1.4513
PPO 1.1182 1.0723 1.2256 1.3876 1.4062 1.4078 1.3647 1.4237

DP-ADAM DPO 1.1367 1.0745 1.2634 1.4023 1.4187 1.4213 1.4167 1.4342
PPO 1.0978 1.0534 1.2045 1.3678 1.3854 1.3867 1.3456 1.4056

DP-SGD DPO 1.0867 1.0245 1.1823 1.2878 1.2587 1.2334 1.2256 1.2645
PPO 1.0456 0.9978 1.1567 1.2623 1.2312 1.2134 1.2045 1.2434

5.3.1 Alignment Algorithm Comparison

In comparing DPO and PPO under the DP-ADAMW opti-
mizer, we observe that DPO consistently outperforms PPO
across various privacy budgets and model scales. For ex-
ample, on LLAMA-8B with DP-ADAMW, DPO attains a
reward score of 1.8814 at ε = 3, whereas PPO achieves
1.8454. This performance gap is maintained across differ-
ent privacy levels and becomes more evident under stricter
privacy constraints, highlighting that DPO’s direct optimiza-
tion approach is particularly effective when combined with
DP-ADAMW. These results underscore the reliability and
robustness of DPO for privacy-preserving alignment tasks
when employing adaptive optimizers like DP-ADAMW.

5.3.2 Model Scale Effects

The comparison between LLAMA-8B and GPT-2 provides
crucial insights into how model scale interacts with pri-
vate alignment. Notably, LLAMA-8B consistently achieves
higher reward scores compared to GPT-2 across all config-
urations. For example, using DPO with DP-ADAMW at
ε = 3, LLAMA-8B achieves a score of 1.8814, whereas
GPT-2 scores 1.4237, demonstrating a significant perfor-
mance advantage. This gap becomes even more pronounced
as privacy constraints are relaxed, suggesting that larger
models are inherently more robust to privacy noise. Such
resilience can be attributed to their increased parameter ca-
pacity and more robust representations, highlighting model
scale as a crucial factor for strong performance under pri-
vacy constraints.

5.3.3 Optimizer Comparison

Our experimental results demonstrate that adaptive optimiz-
ers (DP-ADAM and DP-ADAMW) significantly outperform
DP-SGD [Wu et al., 2023] for privacy-preserving alignment
tasks. DP-ADAM and DP-ADAMW show superior perfor-
mance, particularly on larger architectures like LLAMA-8B.
Specifically, with DPO at ε = 3, DP-ADAM achieves a
score of 1.8614, compared to DP-SGD’s 1.6861, represent-
ing a 10.4% improvement. This advantage is consistently
observed across different model scales and privacy bud-
gets. The enhanced performance can be attributed to the
adaptive learning rates and momentum of DP-ADAM and
DP-ADAMW, which facilitate more effective optimization
while maintaining privacy guarantees.

5.3.4 Privacy-Utility Tradeoff Analysis

The impact of the privacy budget ε on alignment quality
reveals a clear trade-off between privacy protection and
model performance. Our experiments demonstrate that per-
formance improvements are most significant in the low to
medium privacy budget range (2 ≤ ε ≤ 4), indicating that
a moderate relaxation of privacy constraints can yield sub-
stantial benefits for alignment quality. For instance, with
LLAMA-8B using DP-ADAM and DPO, performance im-
proves significantly from ε = 1 (1.4728) to ε = 3 (1.8614)
before plateauing at higher privacy budgets. Notably, even
under strict privacy constraints (ε ≤ 2), models maintain
reasonable performance compared to their non-private coun-
terparts, especially when employing DPO with DP-ADAM
on larger architectures. To better understand this trade-off,
we analyze the relationship between ε and the reward score
f(ε), identifying the critical point ε0 = argmax f ′(ε) as



the optimal privacy budget, beyond which further relaxation
of privacy constraints yields minimal performance gains.
Table 2 presents the marginal performance improvements
across different privacy budgets for LLAMA-8B using DPO
under different optimizers.

Performance Drop from ε = 0 to ε = 1. We observe a
slight performance drop when moving from ε = 0 to ε = 1.
We conjecture that this is related the fundamental nature of
differential privacy in its most stringent form. Specifically,
when ε = 0, the privacy constraint prevents any useful
learning signal from being extracted from the data. The
model in this setting is equivalent to generating outputs
purely based on random updates, with almost no alignment
to human preferences. This serves as a sanity check for our
alignment procedure, confirming that differential privacy is
enforced in its strictest sense. As ε increases from 0 to 1, the
model begins to access limited structural information from
the dataset, albeit with a very low signal-to-noise ratio. This
exploration, while noisy, helps the model gradually move
towards alignment, but the initial stages (from 0 to 1) still
exhibit low reward scores due to the overwhelming noise
perturbation.

We also observe fluctuations in performance even when
ε is relatively large. Interestingly, this transition can be
seen as analogous to the dynamics observed in Langevin
algorithms where the introduction of Gaussian noise during
optimization allows the model to explore a broader space of
parameter configurations [Li and Erdogdu, 2020].

This trend underscores the importance of selecting an appro-
priate privacy budget to balance utility and privacy. Adap-
tive optimizers like DP-ADAMW and DP-ADAM are par-
ticularly effective under strict privacy constraints, while
DP-SGD requires a higher privacy budget to achieve com-
parable performance. These findings are further supported
by the comprehensive results in Table 1, which compares
the performance of different privacy-preserving alignment
methods across various configurations.

5.3.5 Additional Experiment: DeepSeek-7B

To further assess the applicability of privacy-preserving
alignment across different model architectures, we con-
ducted an additional experiment on DeepSeek-LLM-7B-
Chat. This experiment follows the same methodology as our
primary experiments, using the same optimizers, alignment
methods, and privacy budgets.

Observations: The results of DeepSeek-7B follow simi-
lar trends observed in our primary experiments. Its align-
ment quality improves as the privacy budget increases, with
performance at lower ε values closer to LLAMA-8B than
GPT-2. This suggests that mid-scale models can achieve rea-
sonable alignment while preserving privacy. Additionally,
the optimizer trends observed in the primary experiments

hold for DeepSeek-7B as well, with DP-ADAMW and DP-
ADAM outperforming DP-SGD.

6 ANALYSIS AND DISCUSSION

6.1 PRIVACY-UTILITY TRADE-OFF ANALYSIS

Our experiments reveal critical insights into the privacy-
utility trade-off in language model alignment. Specifically,
we observe diminishing returns in model performance be-
yond a privacy budget threshold (ϵ > 5), indicating that
moderate privacy constraints, such as values ϵ between 2
and 5, can achieve a favorable balance between privacy
and utility. This finding underscores the feasibility of de-
ploying privacy-preserving alignment methods in practical
applications where both privacy and model quality are es-
sential. The impact of model scale on privacy-utility trade-
offs is also evident from the results. Larger models, such
as LLAMA-8B, demonstrate greater robustness to privacy
noise compared to smaller models like GPT-2, likely due
to their enhanced parameter capacity. This observation sug-
gests that scaling up model architectures can mitigate the
adverse effects of differential privacy mechanisms, although
the associated computational costs must be carefully consid-
ered.

6.2 BEST PRACTICES AND
RECOMMENDATIONS

For resource-constrained scenarios, our results indicate that
using DP-ADAM with moderate privacy budgets in the
range of 2 ≤ ϵ ≤ 4 provides an effective trade-off between
privacy and performance. Among alignment algorithms,
DPO consistently outperforms PPO in terms of stability dur-
ing training, making it a preferred choice. In addition, select-
ing the smallest model size that meets the required perfor-
mance can help balance computational efficiency and align-
ment quality. For high-performance requirements, leverag-
ing larger model architectures proves advantageous due to
their resilience to privacy noise. DP-ADAM, when used
with carefully tuned privacy budgets, offers superior perfor-
mance. Employing DPO with incremental adjustments to
the privacy budget during training further improves align-
ment quality. Continuous monitoring of alignment metrics
throughout the training process ensures that privacy con-
straints do not excessively degrade model performance.

6.3 LIMITATIONS AND CHALLENGES

Despite the promising findings, several limitations need
to be addressed. First, differential privacy mechanisms in-
troduce significant computational overhead, especially for
larger models and stricter privacy budgets. Second, while the
approach is validated on LLAMA-8B, GPT-2 and DeepSeek-



Table 2: Marginal Performance Gains for LLAMA-8B (DPO)

ε Range DP-ADAM(W) f(ε) DP-SGD f(ε) Trend

0 → 1 -0.1052 (-7.0%) -0.0263 (-1.7%) ↓
1 → 2 0.2088 (+14.0%) 0.0908 (+6.1%) ↑
2 → 3 0.1798 (+10.6%) 0.0971 (+6.5%) ↑
3 → 4 -0.0022 (-0.1%) -0.0491 (-2.9%) ↓
4 → 5 0.0006 (+0.03%) -0.0255 (-1.5%) ↓

5 → 10 -0.0059 (-0.3%) -0.0092 (-0.5%) ↓
10 →∞ -0.0011 (-0.06%) 0.0451 (+2.7%) ↑

Total 0.2750 0.1229

Table 3: Performance of DeepSeek-LLM-7B-Chat Under Privacy Constraints

Model Optimizer Method Privacy Budget (ϵ)

0 1 2 3 4 5 10 ∞

DEEPSEEK-7B

DP-ADAMW DPO 1.4380 1.3689 1.5267 1.6482 1.6424 1.6399 1.6332 1.6405
PPO 1.4126 1.3435 1.5013 1.6228 1.6174 1.6149 1.6082 1.6155

DP-ADAM DPO 1.3262 1.2589 1.4267 1.6486 1.6424 1.6399 1.6459 1.6384
PPO 1.3012 1.2339 1.4017 1.6236 1.6174 1.6149 1.6209 1.6134

DP-SGD DPO 1.2762 1.2089 1.3767 1.5386 1.5324 1.5299 1.5359 1.5284
PPO 1.2512 1.1839 1.3517 1.5136 1.5074 1.5049 1.5109 1.5034

LLM-7B-Chat, its scalability and effectiveness on even
larger model architectures remain to be explored. Third,
selecting the optimal privacy budget is challenging and re-
quires careful consideration of specific application require-
ments and trade-offs. Finally, a noticeable performance gap
persists between private and non-private alignment methods,
particularly under strict privacy constraints, which suggests
further optimization is necessary.

7 CONCLUSION AND FUTURE WORK

7.1 KEY FINDINGS

This study establishes the feasibility of aligning the privacy-
preserving language model and highlights several key find-
ings. DP-ADAM consistently outperforms DP-SGD across
various configurations, particularly for larger model architec-
tures. Among alignment algorithms, DPO demonstrates su-
perior performance over PPO, regardless of privacy settings
or model scales. Larger models exhibit greater robustness
to privacy noise, making them more suitable for privacy-
preserving applications. Additionally, we identify moderate
privacy budgets, specifically in the range of 2 ≤ ϵ ≤ 5, as
effective for balancing performance and privacy protection.

7.2 FUTURE RESEARCH DIRECTIONS

Several promising directions for future research emerge
from this study. Developing hybrid optimization strategies
that integrate the strengths of multiple privacy-preserving
optimizers could improve both efficiency and effectiveness.
Adaptive privacy budget allocation mechanisms that dynam-
ically adjust protection levels based on training progress
represent another valuable area of exploration. Extending
the current approach to larger model architectures and differ-
ent model families would further validate its scalability. In-
vestigating alternative privacy-preserving mechanisms with
improved utility-privacy trade-offs and integrating model
compression techniques to address computational overhead
are additional avenues for future work. These directions
collectively aim to enhance the practicality and robustness
of privacy-preserving language model alignment methods.
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