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We present Kudzu, a high-throughput atomic broadcast protocol with an integrated fast path. Our contribution
is based on the combination of two lines of work. Firstly, our protocol achieves finality in just two rounds
of communication if all but 𝑝 out of 𝑛 = 3𝑓 + 2𝑝 + 1 participating replicas behave correctly, where 𝑓 is the
number of Byzantine faults that are tolerated. Due to the seamless integration of the fast path, even in the
presence of more than 𝑝 faults, our protocol maintains state-of-the-art characteristics. Secondly, our protocol
utilizes the bandwidth of participating replicas in a balanced way, alleviating the bottleneck at the leader,
and thus enabling high throughput. This is achieved by disseminating blocks using erasure codes. Despite
combining a novel set of advantages, Kudzu is remarkably simple: intricacies such as “progress certificates”,
complex view changes, and speculative execution are avoided.

1 INTRODUCTION
Recent years have seen a remarkable surge in popularity and development of resilient distributed
systems. The area of blockchain has become a hotbed of research, where systems akin to decentral-
ized world-computers [6, 12, 36] compete to introduce ever-improving protocols. At the heart of
any such system is a atomic broadcast protocol [13], which allows all replicas in the network to
agree on a stream of transactions.

The crucial requirement that these protocols must satisfy is Byzantine fault tolerance (BFT) [28],
which is the ability of a system composed of 𝑛 different replicas to continue to function even if some
of the replicas fail in arbitrary (potentially adversarial) ways. Moreover, the network connecting the
replicas can be unreliable, or even controlled by an attacker. These harsh conditions meant that early
global decentralized systems suffered severe disadvantages compared to centralized counterparts,
hindering adoption. Despite the challenging setting, research has continued to improve once
infamously slow decentralized protocols, and decentralized systems are closing the performance
gap.

One key dimension of atomic broadcast performance is the finalization latency of new transactions.
Historically, the protocols with the best finalization latency are protocols, such as PBFT [15], where
a designated leader proposes a block of transactions, and which work in the partially synchronous
communication model [19]. In this model liveness is only guaranteed during periods of time where
the network is well behaved, but correctness (i.e., safety) is guaranteed unconditionally. For such
protocols, it is natural to measure finalization latency as the amount of time that may elapse
between when the leader proposes a block and when all other replicas finalize that block. In
measuring finalization latency, we assume the leader is honest and the network is well behaved.
Such protocols assume 𝑛 ≥ 3𝑓 + 1, where 𝑓 is a bound on the number of corrupt replicas, and
achieve finalization latency as low as 3𝛿 , where 𝛿 is the longest actual message latency between
the replicas of the system. However, even 2𝛿 finalization latency is possible in situations where
no more than 𝑝 replicas fail and 𝑛 ≥ 3𝑓 + 2𝑝 + 1 for 𝑝 ≥ 0 (or even 𝑛 ≥ 3𝑓 + 2𝑝 − 1 for 𝑝 ≥ 1).
Protocols achieving 2𝛿 finalization latency in these circumstances employ a special fast path. This
type of protocol was first explored in [30]. Ideally, such protocols would still maintain a finalization
latency of 3𝛿 , even if more than 𝑝 replicas fail, by running a traditional 3𝛿 slow path alongside
the fast path. However, not all fast path protocols enjoy this property (in particular, the protocol
in [30] does not). Moreover, fast path protocols typically suffer from added complexity, such as
complex view-change logic, “progress certificate” messages, or speculative execution logic. This
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added complexity has led to a history of errors (indeed, as pointed out in [1], the protocol in [30]
has a liveness bug).

Another crucial dimension of atomic broadcast performance is its throughput, that is, the number
of transactions that the protocol can process over time given the fixed bandwidth available at
every replica. Unfortunatlely, as has been observed and reported in several works [17, 31, 34],
leader-based protocols often suffer from a severe “bandwidth bottleneck” at the leader. However,
this leader bottleneck can be easily eliminated while still maintaining the leader-based structure
and all of its practical advantages [32]. This is done by using erasure codes to ensure that the leader
can disseminate large blocks with low and well-balanced communication complexity.

Another desirable feature of leader-based protocols is lightweight view-change logic that supp-
ports frequent leader rotation. In older protocols, such as PBFT, a leader is generally kept in place
for an extended period of time, and a complex and somewhat inefficient view-change subprotocol
is used to switch to a new leader if the current leader is suspected of being faulty by other replicas.
A newer breed of protocols, typified by HotStuff [39], employ extremely lightweight view-change
logic that supports frequent leader rotation. Frequently rotating leaders can be beneficial for mul-
tiple reasons, for instance, to increase fairness when block production comes with rewards (e.g.,
maximal extractable value), or to increase censorship resistance.

In this work, our aim is to unite and improve the state-of-the-art in these key dimensions, and to
do so while keeping the protocol as simple as possible.

Our contribution.We present Kudzu1: a fast and high-throughput atomic broadcast protocol
that is remarkably simple compared to its predecessors. Kudzu is the first BFT protocol that
combines an optimistic 2𝛿 latency fast path integrated into a 3𝛿 latency slow path, with high-
throughput data dispersal, as well as lightweight view change logic that supports frequent leader
rotation. We provide a detailed description of the protocol and rigorously prove its security.

(1) Fast path. In a network of 𝑛 = 3𝑓 + 2𝑝 + 1 replicas, Kudzu achieves finalization latency of
2𝛿 if at most 𝑝 replicas are corrupt.

(2) Integrated slow path. If more than 𝑝 replicas fail, Kudzu maintains the best possible
finalization latency of 3𝛿 by running a slow path alongside the fast path.

(3) High throughput. High throughput is achieved by Kudzu using erasure codes to ensure
that the leader can disseminate large blocks with low and well-balanced communication
complexity.

(4) Lightweight view change. Kudzu employs an extremely simple and efficient view change
logic that allows for frequent leader rotation.

Kudzu is the first atomic broadcast protocol to satisfy all of these properties simultaneously. It also
enjoys other properties, such as optimistic responsiveness (the protocol proceeds as fast as the
network will allow, with no artificially introduced delays), and a block time (the delay between
successive honest leaders proposing a block) of just 2𝛿 .

Technical Intuition. Inspired by DispersedSimplex [32], Kudzu introduces the minimal changes
to that protocol required to incorporate a fast path. A designated leader in Kudzu distributes the
block data by sending erasure coded fragments to all other replicas. In turn, these replicas then
broadcast the fragments themselves, together with a first-round vote on the cryptographic hash
identifying the block. The voting logic carefully incorporates a rule that makes sure that a block can
already be finalized given 𝑛 − 𝑝 first-round votes. As a result, replicas can already reassemble the
block and finalize it in 2𝛿 latency in the good case where the network is well behaved, the leader is
honest, and at most 𝑝 replicas are corrupt. Another vote-counting rule is used to finalize the block
on a slower, 3𝛿-latency path, if more than 𝑝 replicas are corrupt. To avoid getting stuck altogether,
1Kudzu is an insidious, fast-growing vine, also known as Mile-a-Minute.
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a replica may also vote for a couple of other blocks than the one it initially received from the leader,
including a special “timeout” block. The main innovation of our paper is the logic for determining
when these “extra” votes are cast — this logic is deceptively simple, but carefully maintains a very
delicate balance between liveness and safety. With this innovation, we avoid intricacies such as
“progress certificates”, complex view changes, and speculative execution as found in other protocols
(such as Banyan [35], SBFT [22], Kuznetsov et al. [27], and HotStuff-1 [23]).

2 RELATEDWORK
2.1 Fast Path Protocols
A long line of work proposes consensus protocols with a fast path, typically called “fast”, “early-
stopping” or “one-step” consensus [10, 20, 21, 26, 30, 33]. FaB Paxos [30] introduces a parametrized
model with 3𝑓 + 2𝑝 + 1 replicas, where 𝑝 ≥ 0. The parameter 𝑝 describes the number of replicas
that are not needed for the fast path. These protocols can terminate optimally fast in theory (2𝛿 ,
or 2 network delays) under optimistic conditions. The paper [30] proves a corresponding lower
bound of 3𝑓 + 2𝑝 + 1 on the number of replicas needed to achieve this fast behavior. However, as
pointed out by Kuznetsov et al. [27] and Abraham et al. [3], this lower bound actually only applies
to a restricted type of protocol. In fact, [27] presents a single-shot consensus protocol that uses
only 3𝑓 + 2𝑝∗ − 1 replicas, with 𝑝∗ ≥ 1, and proves a corresponding lower bound.

2.2 Integrated Slow Path Protocols
Interestingly, in practice, these fast path protocols might increase the finalization latency, as the
fast path requires a round of voting between 𝑛 − 𝑝 replicas, which could be slower than two rounds
of voting between 𝑛 − 𝑓 − 𝑝 replicas that are concentrated in a geographic area. Banyan [35]
performs the fast path in parallel with the 3𝛿 mechanism, which is optimally fast if more than
𝑝 replicas are faulty or exhibit higher network latency. However, Banyan can exhibit unbounded
message complexity when there is a corrupt leader. Kudzu addresses this drawback, shares the
same optimistic latency properties, improves throughput through balanced dispersal, benefits from
a simpler design, and better properties during leader rotation (see section 2.4).

2.3 High-Throughput Protocols
Leader-based protocols such as PBFT [15], HotStuff [39] and Tendermint [11] suffer from a band-
width bottleneck, as in these protocols the leader is responsible for disseminating transactions to
all replicas. As mentioned above, this bottleneck has been well known for quite a while [17, 31, 34].
One way to alleviate this bottleneck is to move away from leader-based protocols to a more sym-
metric, leaderless protocol design where all replicas disseminate transactions. Such an approach
was already taken in [17, 24, 31, 34]. These protocols typically have worse latency than leader-based
protocols, and moreover, since many replicas may end up broadcasting the same transactions, the
supposed improvement in throughput can end up being illusory (note that [34] actually tackles
this duplication problem head on). Protocols such as HotStuff [39] and SBFT [22] aim to eliminate
the all-to-all broadcasts that occur in the voting logic of many other atomic broadcast protocols,
but in so doing increase the finalization latency of the protocol while doing nothing to eliminate
the leader bottleneck.

A different approach to address leader bottlenecks makes use of erasure coding [36]. By splitting
blocks into smaller, erasure-coded shares, the leader can transmit less data, leading to a balanced
utilization of resources. This line of work shines by providing high throughput and low latency [32,
38].
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2.4 View Changes
Some atomic broadcast protocols are notorious for having complex view changes, especially in the
presence of a fast path [5]. In the case of Zzyzzva [25] and UpRight [16], safety errors were later
pointed out [1]. Improved protocols such as Thelma, Velma and Zelma [2] revisit and correct these.

3 MODEL AND PRELIMINARIES
We consider a network of 𝑛 replicas 𝑃1, . . . , 𝑃𝑛 called replicas. Up to 𝑓 replicas can be Byzantine, i.e.,
deviate from the protocol in arbitrary ways, such as collude to attack the protocol. The remaining
replicas follow the protocol and are referred to as honest. We aim to provide better latency if only
up to 𝑝 replicas do not cooperate. In other words, 𝑛 − 𝑝 honest replicas including the leader are
enough for the fast path to be effective.

To prove the security of Kudzu we assume

𝑛 ≥ 3𝑓 + 2𝑝 + 1, (1)

where 𝑓 ≥ 1 and 𝑝 ≥ 0. Moreover, to prove concrete bounds on message, communication, and
storage complexity, we assume

𝑛 < 3(𝑓 + 𝑝 + 1). (2)
Assumption (2) is not a real restriction. Indeed, if 𝑛 ≥ 3(𝑓 + 𝑝 + 1) = 3𝑓 + 3𝑝 + 3, then we can
always increase 𝑝 appropriately, leaving 𝑛 and 𝑓 alone, so that both (1) and (2) are satisfied. This
only increases the overall performance of the protocol.

3.1 Network Assumptions
We will not generally assume network synchrony. However, we say the network is 𝛿-synchronous
at time 𝑇 if every message sent from an honest replica 𝑃 at or before time 𝑇 to an honest replica
𝑄 is received by 𝑄 before time 𝑇 + 𝛿 . We also say the the network is 𝛿-synchronous over an
interval [𝑎, 𝑏 + 𝛿] if it is 𝛿-synchronous at time 𝑇 for all 𝑇 ∈ [𝑎, 𝑏].
While our protocols always guarantee safety, even in periods of asynchrony, liveness will only

be guaranteed in periods of 𝛿-synchrony, for appropriately bounded 𝛿 (and this synchrony bound
may be explicitly used by the protocol). Thus, we are essentially working in the partial synchrony
model of [19]. However, instead of assuming a single point in time (GST) after which the network is
assumed to be synchronous, we take a somewhat more general point of view that models a network
that may alternate between periods of asychrony and synchrony.
Replicas have local clocks that can measure the passage of local time. We do not assume that

clocks are synchronized in any way. However, we do assume that there is no clock skew, that is, all
clocks tick at the same rate (but we could also just assume the skew is bounded and incorporate
that bound into the protocol’s synchrony bound).

3.2 Problem Statement
The purpose of state machine replication is to totally order blocks containing transactions, so that
all replicas output transactions in the same order. Our protocol orders blocks by associating them
with natural numbered slots. Some leader replica is assigned to every slot. For every slot, either
some block produced by the leader might be finalized, or the protocol can yield an empty block.
The guarantees of our protocol can be stated as follows:

• Safety: If some honest replica finalizes block 𝐵 in slot 𝑣 , and another honest replica finalizes
block 𝐵′ in slot 𝑣 , then 𝐵 = 𝐵′.
• Liveness: If the network is in a period of synchrony, each honest replica continues to
finalize blocks for slots 𝑣 = 1, 2, . . .
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In addition to liveness and safety, we support a fast path:
• Fast Termination: If the network is in a period of synchrony, 𝑛 − 𝑝 replicas behave

momentarily honestly, and an honest leader proposes a block 𝐵 at time 𝑡 , then every honest
replica finalizes 𝐵 at time 𝑡 + 2𝛿 .

3.3 Cryptographic Assumptions
3.3.1 Signatures and certificates. We make standard cryptographic assumptions of secure digital
signatures and collision-resistant hash functions. We assume all replicas know the public keys of
other replicas.
We use a 𝑘-out-of-𝑛 threshold signature scheme. We refer to a signature share and a signature

certificate: signature shares from 𝑘 replicas on a given message may be combined to form a sig-
nature certificate on that message. This can be implemented in various ways, e.g., based on BLS
signatures [7–9]. The security property for such a threshold signature scheme may be stated as
follows.

Quorum Size Property: It is infeasible to produce a signature certificate on a message𝑚,
unless 𝑘 − 𝑓 ′ honest replicas have issued signature shares on𝑚, where 𝑓 ′ ≤ 𝑓 is the number
of corrupt replicas.

For ease of exposition and analysis, we assume static corruptions, so the adversary must choose
some number 𝑓 ′ ≤ 𝑓 replicas to corrupt at the very beginning of the protocol execution, and then
does not corrupt any replicas thereafter. That said, we believe all of our the protocols are secure
against adaptive corrupts, provided the threshold signature scheme is as well.
As we will see, we will need a one 𝑘-out-of-𝑛 threshold signature scheme with 𝑘 = 𝑛 − 𝑓 − 𝑝 ,

and another with 𝑘 = 𝑛 − 𝑝 .

3.3.2 Information Dispersal. We make use of well-known techniques for asynchronous verifiable
information dispersal (AVID) involving erasure codes and Merkle trees[14].

Erasure codes. For integer parameters 𝑘 ≥ 𝑑 ≥ 1, a (𝑘, 𝑑)-erasure code encodes a bit string𝑀 as a
vector of 𝑘 fragments, 𝑓1, . . . , 𝑓𝑘 , in such a way that any 𝑑 such fragments may be used to efficiently
reconstruct𝑀 . Note that for variable-length𝑀 , the reconstruction algorithm also takes as input the
length 𝛽 of𝑀 . The reconstruction algorithm may fail (for example, a formatting error)—if it fails it
returns ⊥, while if it succeeds it returns a message that when re-encoded will yield 𝑘 fragments
that agree with the original subset of 𝑑 fragments. We assume that all fragments have the same
size, which is determined as a function of 𝑘 , 𝑑 , and 𝛽 .
Using a Reed-Solomon code, which is based on polynomial interpolation, we can realize a
(𝑘, 𝑑)-erasure code so that if |𝑀 | = 𝛽 , then each fragment has size ≈ 𝛽/𝑑 .
In our protocol, the payload of a block will be encoded using an (𝑛, 𝑓 + 𝑝 + 1)-erasure code. Such

an erasure code encodes a payload 𝑀 as a vector of fragments 𝑓1, . . . , 𝑓𝑛 , any 𝑓 + 𝑝 + 1 of which
can be used to reconstruct 𝑀 . This leads to a data expansion rate of at most roughly 3; that is,∑

𝑖 |𝑓𝑖 | ≈ 𝑛/(𝑓 + 𝑝 + 1) · |𝑀 | < 3|𝑀 |, where last inequality follows from assumption (2).

Merkle trees. Recall that a Merkle tree allows one replica 𝑃 to commit to a vector of values
(𝑣1, . . . , 𝑣𝑘 ) using a collision-resistant hash function by building a (full) binary tree whose leaves
are the hashes of 𝑣1, . . . , 𝑣𝑘 , and where each internal node of the tree is the hash of its two children.
The root 𝑟 of the tree is the commitment. Replica 𝑃 may “open” the commitment at a position
𝑖 ∈ [𝑘] by revealing 𝑣𝑖 along with a “validation path” 𝜋𝑖 , which consists of the siblings of all nodes
along the path in the tree from the hash of 𝑣𝑖 to the root 𝑟 . We call 𝜋𝑖 a validation path from the root
under 𝑟 to the value 𝑣𝑖 at position 𝑖 . Such a validation path is checked by recomputing the nodes
along the corresponding path in the tree, and verifying that the recomputed root is equal to the
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given commitment 𝑟 . The collision resistance of the hash function ensures that 𝑃 cannot open the
commitment to two different values at a given position.

Encoding and decoding. For a given payload 𝑀 of length 𝛽 , we will encode 𝑀 as a vector of
fragments (𝑓1, . . . , 𝑓𝑛) using an (𝑛, 𝑓 + 𝑝 + 1)-erasure code, and then form a Merkle tree with root 𝑟
whose leaves are the hashes of 𝑓1, . . . , 𝑓𝑛 . We define the tag 𝜏 B (𝛽, 𝑟 ).

For a tag 𝜏 = (𝛽, 𝑟 ), we shall call (𝑓𝑖 , 𝜋𝑖 ) a certified fragment for 𝜏 at position 𝑖 if
• 𝑓𝑖 has the correct length of a fragment for a message of length 𝛽 , and
• 𝜋𝑖 is a correct validation path from the root under 𝑟 to the fragment 𝑓𝑖 at position 𝑖 .

The function Encode takes as input a payload𝑀 . It builds a Merkle tree for𝑀 as above with root
𝑟 (encoding 𝑀 as a vector of fragments, and then building the Merkle tree whose leaves are the
hashes of all of these fragments). It returns(

𝜏, {(𝑓𝑖 , 𝜋𝑖 )}𝑖∈[𝑛]
)
,

where 𝜏 is the tag (𝛽, 𝑟 ), 𝛽 is the length of𝑀 , and each (𝑓𝑖 , 𝜋𝑖 ) is a certified fragment for 𝜏 at position
𝑖 .

The function Decode takes as input (
𝜏, {(𝑓𝑖 , 𝜋𝑖 )}𝑖∈I

)
,

where 𝜏 = (𝛽, 𝑟 ) is a tag, I is a subset of [𝑛] of size 𝑓 +𝑝 + 1, and each (𝑓𝑖 , 𝜋𝑖 ) is a certified fragment
for 𝜏 at position 𝑖 . It first reconstructs a message 𝑀 ′ from the fragments {𝑓𝑖 }𝑖∈I , using the size
parameter 𝛽 . If𝑀 ′ = ⊥, it returns ⊥. Otherwise, it encodes𝑀 ′ as a vector of fragments (𝑓 ′1 , . . . , 𝑓 ′𝑛 )
and Merkle tree with root 𝑟 ′ from (𝑓 ′1 , . . . , 𝑓 ′𝑛 ). If 𝑟 ′ ≠ 𝑟 , it returns ⊥. Otherwise, it returns𝑀 ′.

Under collision resistance for the hash function used for the Merkle trees, any 𝑓 + 𝑝 + 1 certified
fragments for given tag 𝜏 will decode to the same payload — moreover, if 𝜏 is the output of the
encoding function, these fragments will decode to 𝑀 (and therefore, if the decoding function
outputs ⊥, we can be sure that 𝜏 was maliciously constructed). This observation is the basis for
the protocols in [18, 29, 37]. Moreover, with this approach, we do not need to use anything like
an “erasure code proof system” (as in [4]), which would add significant computational complexity
(and in particular, the erasure coding would have to be done using parameters compatible with the
proof system, which would likely lead to much less efficient encoding and decoding algorithms).

4 KUDZU PROTOCOL
Kudzu iterates through slots, where in each slot there is a designated leader who proposes a
new block, which is chained to a parent block. Leaders may be rotated in each slot, either in a
round-robin fashion or using some pseudo-random sequence. The slot leader disseminates large
blocks in a way that keeps the overall communication complexity low and avoids a bandwidth
bottleneck at the leader. The communication is balanced, meaning that each replica, including the
leader, transmits roughly the same amount of data over the network.

We describe our protocol as a few simple subprotocols that run concurrently with each other:
• Vote and Certificate Pool: data structure managing the votes and certificates;
• Complete Block Tree: data structure storing the reconstructed blocks;
• Main Loop: loop issuing votes that makes sure some blocks become notarized and finalized.

Notarized blocks can be reconstructed by all replicas and are added to the Complete Block
Tree. Finalized blocks are ordered and output by the protocol.

4.1 Protocol Data Objects
Definition 4.1 (block). A block 𝐵 is of the form Block(𝑣, 𝜏, ℎ𝑝 ), where
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• 𝑣 ∈ {1, 2, . . .} is the slot number associated with the block (and we say 𝐵 is a block for slot 𝑣),
• 𝜏 is the tag obtained by encoding 𝐵’s payload𝑀 ,
• ℎ𝑝 is the hash of 𝐵’s parent block (or ℎ𝑝 = ⊥ by convention if 𝐵’s parent is a notional
“genesis” block).

We also call a certified fragment for the tag 𝜏 a certified fragment for 𝐵.
The block 𝐵timeout

𝑣 = Block(𝑣,⊥,⊥) is a special timeout block.

Votes and certificates.

Definition 4.2 (votes and certificates). A notarization vote from 𝑃𝑖 for block 𝐵 is an object of the
form NotarVote(𝐵, 𝜎𝑖 , 𝑓𝑖 , 𝜋𝑖 ), where 𝜎𝑖 is a valid signature share from 𝑃𝑖 on the object Notar(𝐵),
and (𝑓𝑖 , 𝜋𝑖 ) is either a certified fragment for 𝐵 at position 𝑖 , or (𝑓𝑖 , 𝜋𝑖 ) = (⊥,⊥) if 𝐵 = 𝐵timeout

𝑣 . A
notarization certificate for 𝐵 is an object of the form NotarCert(𝐵, 𝜎), where 𝜎 is a valid (𝑛 − 𝑓 − 𝑝)-
out-of-𝑛 signature certificate on the object Notar(𝐵).

The notarization vote on the timeout block is also called the timeout vote, and the notarization
certificate for the timeout block is called the timeout certificate.
A first vote from 𝑃𝑖 on block 𝐵 is an object of the form FirstVote(𝜎 ′𝑖 ,NotarVote(𝐵, 𝜎𝑖 , 𝑓𝑖 , 𝜋𝑖 )),

where 𝜎 ′𝑖 is a valid signature share from 𝑃𝑖 on the object First(𝐵), and NotarVote(𝐵, 𝜎𝑖 , 𝑓𝑖 , 𝜋𝑖 ) is a
notarization vote from 𝑃𝑖 on block 𝐵. A fast finalization certificate for 𝐵 ≠ 𝐵timeout

𝑣 is an object of the
form FirstCert(𝐵, 𝜎), where 𝜎 is a valid (𝑛 − 𝑝)-out-of-𝑛 signature certificate on the object First(𝐵).

A finalization vote from 𝑃𝑖 on block 𝐵 is an object of the form FinalVote(𝐵, 𝜎𝑖 ), where 𝜎𝑖 is a valid
signature share from 𝑃𝑖 on the object Final(𝐵). A finalization certificate for 𝐵 is an object of the form
FinalCert(𝑣, 𝜎), where 𝜎 is a valid (𝑛 − 𝑓 − 𝑝)-out-of-𝑛 signature certificate on the object Final(𝐵).

4.2 Vote and Certificate Pool.
Each replica maintains a pool with votes and certificates. For every slot, the pool stores votes and
certificates associated with the slot.

As we will see, by design, for any one slot, a honest replica can send only 1 first vote, 1 timeout
vote, and 1 finalization vote. As we will also see later (in Section 5.3), for one slot a honest replica
can only send at most 3 (non-timeout) notarization votes. Any votes exceeding this bound can only
result from misbehavior and are not added to the pool. For example, if a replica receives more than
three notarization votes for a given slot from some replica 𝑃 , the replica can ignore these votes
and conclude that 𝑃 is corrupt. In particular, only one first vote per replica can be observed by the
protocol loop in Protocol 1. When a first vote is added to the pool, also the contained notarization
vote is added to the pool.

Whenever a replica receives enough votes, and it does not already have a corresponding certificate,
it will generate the certificate, add it to the pool, and broadcast the certificate to all replicas. Similarly,
whenever a replica receives a certificate, and it does not already have a corresponding certificate, it
will add it to the pool, and broadcast the certificate to all replicas. For one slot it is impossible that
the pool would receive or create more than: 1 timeout certificate, 1 fast finalization certificate, 1
finalization certificate, and 5 notarization certificates. The first bound is immediate, since there
can be only one timeout certificate per round. The second and third bounds follow from the safety
analysis below. The fourth bound follows from the analysis in Section 5.3.

4.3 Complete Block Tree.
Each replica also maintains a complete block tree, which is a tree of blocks rooted at a notional
genesis block at slot 0. We will show that the number of blocks for a given slot is bounded by 5. A
block 𝐵 = Block(𝑣, 𝜏, ℎ𝑝 ) is added to the tree if each of the following holds:
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• the certificate pool contains a notarization certificate for 𝐵 and 𝐵 ≠ 𝐵timeout

𝑣 ;
• ℎ𝑝 = ⊥ or the complete block tree contains a parent block with the hash ℎ𝑝 ;
• the replica has received enough (i.e. 𝑓 + 𝑝 + 1) notarization votes to reconstruct the effective
payload𝑀 of 𝐵 as

𝑀 ← Decode(𝜏, {(𝑓𝑖 , 𝜋𝑖 )}𝑖∈I),
where {(𝑓𝑖 , 𝜋𝑖 )}𝑖∈I is the corresponding collection of certified fragments for 𝜏 ;
• 𝑀 ≠ ⊥ and satisfies some correctness predicate that may depend on the path of blocks (and
their payloads) from genesis to block 𝐵.

A replica does not broadcast anything in addition to adding a block to the block tree.

4.4 Finalization
We say that a block 𝐵 for slot 𝑣 is explicitly finalized by replica 𝑃 if the complete block tree of
𝑃 contains 𝐵 and the certificate pool of 𝑃 contains either a fast finalization certificate for 𝐵 or
finalization certificate for 𝐵. In this case, we say that all of the predecessors of block 𝐵 in the
complete block tree are implicitly finalized by 𝑃 . The payloads of finalized blocks may be then
transmitted in order to the execution layer of the protocol stack of a replicated state machine.

4.5 Generating Block Proposals.
The logic for generating block proposal material 𝐵, (𝑓1, 𝜋1), . . . , (𝑓𝑛, 𝜋𝑛) in slot 𝑣 in line 16 of
Protocol 1 is as follows:
• build a payload𝑀 that validly extends the path in the complete block tree ending at a block
𝐵p with hash ℎ𝑝 ;
• compute

(𝜏, {(𝑓𝑖 , 𝜋𝑖 )}𝑖∈[𝑛]) ← Encode(𝑀);
• set 𝐵 B Block(𝑣, 𝜏, ℎ𝑝 ).

4.6 Validating Block Proposals.
To check if BlockProp(𝐵, 𝑓𝑗 , 𝜋 𝑗 ) is a valid block proposal from the leader in slot 𝑣 in line 18 of
Protocol 1, replica 𝑃 𝑗 checks that the following conditions holds:
• 𝐵 is of the form Block(𝑣, 𝜏, ℎ𝑝 ),
• (𝑓𝑗 , 𝜋 𝑗 ) is a certified fragment for 𝜏 at position 𝑗 .

Additionally, we require the following conditions to also be checked:
• the complete block tree contains a block with the hash ℎ𝑝 in a slot 𝑣 ′ < 𝑣 ;
• the pool contains timeout certificates for slots 𝑣 ′ + 1, . . . , 𝑣 − 1;

These last two conditions might not hold at a given point in time, but may hold at a later point
in time, and so might need to be checked again when blocks or certificates are added.

4.7 Main Loop
The main protocol for 𝑃 𝑗 is described in Protocol 1. In the description, leader(𝑣) denotes the leader
for slot 𝑣 — as mentioned, leaders may be rotated in each slot, either in a round-robin fashion or
using some pseudo-random sequence.

As mentioned in Section 4.2, each replica only considers only one first vote that it receives from
any other replica. To make this explicit in the protocol, we use a map firstVote from replicas to
blocks to record these votes. The protocol also uses simple helper functions on this map.
• allVotes(firstVote): the total number of first votes for slot 𝑣 contained in the pool,
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• maxVotes(firstVote): the maximal number of first votes on some non-timeout block 𝐵 for
slot 𝑣 contained in the pool,
• manyVotes(firstVote): returns the set of non-timeout blocks in slot 𝑣 on which the pool
contains at least 𝑓 + 𝑝 + 1 first votes.

For example, if the pool contains 1, 2, 3, 4 first votes on blocks 𝐵1, 𝐵2, 𝐵3, 𝐵timeout

𝑣 respectively (and
𝑓 + 𝑝 + 1 = 2), then allVotes(𝑣) = 10, maxVotes(𝑣) = 3, and manyVotes(𝑣) = {𝐵2, 𝐵3}.
The protocol also uses a subprotocol ReconstructAndNotarize(𝑣, 𝐵), defined in Protocol 2.
Each replica 𝑃 𝑗 moves through slots 𝑣 = 1, 2, . . . . In each slot, it will enter a loop in which it

waits for one of several conditions to trigger an action. These conditions are based on the objects
in its pool and its complete block tree, as well as local variables.
• Lines 9–11 present the logic for the replica successfully exiting the slot by finding a block
𝐵 for that slot in its complete block tree. In addition, if the replica did not broadcast a
notarization vote for any other block (including the timeout block) for that slot, it will also
broadcast a finalization block for 𝐵.
• Lines 12–13 present the logic for the replica unsuccessfully exiting the slot by obtaining a
timeout certificate for that slot.
• Lines 14–17 present the logic for the replica proposing a block for that slot if it is the leader
for that slot. It generates the block proposal as in Section 4.5, extending the path in the
complete block tree ending at 𝐵p. Here, 𝐵p is either the genesis block or the block that it
found in its complete block tree the last time it successfully exited a slot (other choices of
𝐵p are possible).
• Lines 18–21 present the logic for the replica broadcasting a first vote for a non-timeout

block 𝐵. It will do so only if 𝐵 is a valid block proposed by the leader (as in Section 4.6) and
has not already first voted. Recall that a first vote for 𝐵 also includes a notarization vote for
𝐵.
• Lines 22–25 present the logic for the replica broadcasting a first vote for the non-timeout

block for this slot. It will do so only if a sufficient amount of time has passed since it entered
the slot and has not already first voted.
• Lines 26–27 present the logic for updating the map firstVotes. No other actions are taken.
• Lines 28–31 present the logic for the replica taking a “second look” at a block 𝐵, if it has
received sufficiently many first votes for 𝐵. It will do so only if it has already first voted
(and has not already taken a second look at 𝐵). If it can reconstruct a valid payload for 𝐵,
it will broadcast a notarization vote for 𝐵 (if it has not already done so); otherwise, it will
broadcast a notarization vote for the timeout block.
• Lines 32–35 present the logic for the replica broadcasting a timeout vote under special
circumstances. It will do so only if it has already first voted and

allVotes(firstVote) −maxVotes(firstVote) ≥ 𝑓 + 𝑝 + 1.

We note that the quantity

allVotes(firstVote) −maxVotes(firstVote)

cannot decrease as we add entries to firstVote. That is because, when we add an entry, the
first term increases by 1 and the second either decreases by 1 or remains unchanged.

5 PROTOCOL ANALYSIS
We start by proving some helpful properties.
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Protocol 1 Kudzu main loop for replica 𝑃 𝑗

1: 𝐵p ← genesis ⊲ parent of the next block
2: for 𝑣 = 1, 2, . . . do
3: 𝑇start ← clock() ⊲ slot-local initialisation
4: done, proposed, firstVoted← false

5: notarized← {} ⊲ blocks already notarized
6: secondLook← {} ⊲ blocks already reconsidered
7: firstVote← {} ⊲ map 𝑃𝑖 ↦→ 𝐵 for their first vote

8: while ¬done wait until either
9: there exists a block 𝐵 for slot 𝑣 in the complete block tree⇒
10: 𝐵p ← 𝐵; done← true

11: if notarized ⊆ {𝐵} then broadcast FinalVote(𝐵, 𝜎 𝑗 )

12: the pool contains a timeout certificate for 𝑣 ⇒
13: done← true

14: ¬proposed ∧ leader(𝑣) = 𝑃 𝑗 ⇒
15: proposed← true

16: generate block proposal material 𝐵, (𝑓1, 𝜋1), . . . , (𝑓𝑛, 𝜋𝑛) extending block 𝐵p
17: for all 𝑖 ∈ [𝑛]: send BlockProp(𝐵, 𝑓𝑖 , 𝜋𝑖 ) to 𝑃𝑖

18: ¬firstVoted ∧ received valid BlockProp(𝐵, 𝑓𝑗 , 𝜋 𝑗 ) from leader(𝑣) ⇒
19: firstVoted← true

20: broadcast FirstVote(𝜎 ′𝑗 ,NotarVote(𝐵, 𝜎 𝑗 , 𝑓𝑗 , 𝜋 𝑗 ))
21: notarized← notarized ∪ {𝐵}

22: ¬firstVoted ∧ clock() > 𝑇start + Δtimeout ⇒
23: firstVoted← true

24: broadcast FirstVote(𝜎 ′𝑗 ,NotarVote(𝐵timeout

𝑣 , 𝜎 𝑗 ,⊥,⊥))
25: notarized← notarized ∪ {𝐵timeout

𝑣 }

26: received valid FirstVote(_,NotarVote(𝐵, _)) from 𝑃𝑖 and firstVote[𝑃𝑖 ] = ⊥ ⇒
27: firstVote[𝑃𝑖 ] ← 𝐵

28: firstVoted ∧ ∃𝐵 ∈ manyVotes(firstVote) \ secondLook
29: and 𝐵’s parent is in the complete block tree⇒
30: secondLook← secondLook ∪ {𝐵}
31: ReconstructAndNotarize(𝑣, 𝐵)

32: firstVoted ∧ (allVotes(firstVote) −maxVotes(firstVote) ≥ 𝑓 + 𝑝 + 1)
33: and 𝐵timeout

𝑣 ∉ notarized⇒
34: broadcast NotarVote(𝐵timeout

𝑣 , 𝜎 𝑗 ,⊥,⊥)
35: notarized← notarized ∪ {𝐵timeout

𝑣 }
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Protocol 2 ReconstructAndNotarize(𝑣, 𝐵)
1: reconstruct payload for 𝐵
2: if reconstruction succeeds ∧ payload valid then
3: if 𝐵 ∉ notarized then
4: broadcast NotarVote(𝐵, 𝜎 𝑗 , 𝑓𝑗 , 𝜋 𝑗 )
5: notarized← notarized ∪ {𝐵}
6: else
7: if 𝐵timeout

𝑣 ∉ notarized then
8: broadcast NotarVote(𝐵timeout

𝑣 , 𝜎 𝑗 ,⊥,⊥)
9: notarized← notarized ∪ {𝐵timeout

𝑣 }

Lemma 5.1 (Validity Property). Suppose that a block 𝐵 for some slot 𝑣 is added to the complete
block tree of some replica. If the leader for slot 𝑣 is honest, 𝐵 must have been proposed by that leader.

Proof. By the Quorum Size Property (see Section 3.3.1) for notarization certificates, at least
𝑛 − 2𝑓 − 𝑝 honest replicas must have broadcast notarization shares for 𝐵. Since we are assuming
𝑛 ≥ 3𝑓 + 2𝑝 + 1, it follows that 𝑛 − 2𝑓 − 𝑝 > 0, so some honest replica 𝑃 must have broadcast a
notarization share for 𝐵. This could happen either at line 20 or at line line 31. In the first case, 𝐵
must be the block that 𝑃 received as a proposal from the leader. In the second case, since 𝑃 received
𝑓 + 𝑝 + 1 first votes for 𝐵, one of these must be a first vote for 𝐵 from some honest replica𝑄 , and so
𝐵 must be the block that 𝑄 received as a proposal from the leader. □

Lemma 5.2 (Completeness Property for Certificates). If a certificate 𝑋 appears in the vote
and certificate pool (so 𝑋 is a notarization, finalization, or timeout certificate) then 𝑋 (or its equivalent)
will eventually appear in the corresponding pool of every other replica. Moreover, if 𝑋 appears in a
replica’s pool at a time 𝑇 at which the network is 𝛿-synchronous, it will appear in every replica’s pool
before time 𝑇 + 𝛿 .

Proof. This is clear, since a certificate appearing in the vote and certificate pool is broadcast
immediately. □

Lemma 5.3 (Completeness Property for Blocks). If a block 𝐵 appears in the complete block tree,
then 𝐵 will eventually appear in the corresponding tree of every other replica. Moreover, if 𝐵 appears
in a replica’s tree at a time 𝑇 at which the network is 𝛿-synchronous, it will appear in every replica’s
tree before time 𝑇 + 𝛿 .

Proof. We are relying on the Quorum Size Property (see Section 3.3.1) for notarization certifi-
cates: when a notarization certificate for a block 𝐵 is added to the certificate pool, at least 𝑛 − 2𝑓 −𝑝
honest replicas must have already broadcast notarization votes for 𝐵, which contain 𝐵 as well as
fragments sufficient to reconstruct 𝐵’s payload, since 𝑛 − 2𝑓 − 𝑝 ≥ 𝑓 + 𝑝 + 1. □

5.1 Safety
Lemma 5.4 (Fast Finalization Implication). Suppose a block 𝐵 is fast finalized by some honest

replica, then the number of honest replicas that first vote for anything other than 𝐵 is at most 𝑝 .

Proof. Let 𝑓 ′ ≤ 𝑓 be the actual number of corrupt replicas. If some honest replica fast finalizes
𝐵, then — by the Quorum Size Property (see Section 3.3.1) for fast finalization certificates — at least
𝑛 − 𝑝 − 𝑓 ′ honest replicas first voted for 𝐵. So the number of honest replicas that first vote for
anything other than 𝐵 is at most (𝑛 − 𝑓 ′) − (𝑛 − 𝑝 − 𝑓 ′) = 𝑝 . □
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Lemma 5.5 (Uniqeness of Fast Finalization Property). If an honest replica receives 𝑓 + 𝑝 + 1
first votes for a block 𝐵 in round 𝑣 , then no block different from 𝐵 can be fast finalized in round 𝑣 by
any honest replica.

Proof. Suppose towards contradiction that and some replica 𝑃 receives 𝑓 + 𝑝 + 1 first votes for
a block 𝐵 but a block 𝐶 ≠ 𝐵 is fast finalized by some honest replica 𝑄 . By the previous lemma, at
most 𝑝 honest replicas could first vote for anything other than 𝐶 . Therefore, 𝑃 can receive at most
𝑓 + 𝑝 first votes for 𝐵, a contradiction. □

Lemma 5.6 (Absence of Fast Finalization Property). If the inequality allVotes(firstVote) −
maxVotes(firstVote) ≥ 𝑓 + 𝑝 + 1 holds for a replica in round 𝑣 , then no block can be fast finalized in
round 𝑣 by any replica.

Proof. Suppose towards contradiction that a replica 𝑃 fast finalized block 𝐵 while for replica 𝑄
the inequality holds. By Lemma 5.4, at most 𝑝 honest replicas fast vote for anything other than 𝐵.
Therefore, 𝑄 can receive at most 𝑓 + 𝑝 fast votes for anything other than 𝐵. Let count𝐵 denote the
number of first votes for 𝐵 received by𝑄 . It follows that, at any point in time, for replica𝑄 , we have

allVotes(firstVote) −maxVotes(firstVote) ≤ allVotes(firstVote) − count𝐵 ≤ 𝑓 + 𝑝,
a contradiction. □

Lemma 5.7 (Incompatibility of Notarization and (Fast) Finalization Property). Suppose
that a valid block 𝐵 for some slot 𝑣 is (fast) finalized by some replica. If any replica obtains a notarization
certificate for a block 𝐶 in slot 𝑣 , then 𝐶 = 𝐵. (In particular, no other block for slot 𝑣 can be added to
the complete block tree of any replica and no timeout certificate can be obtained for slot 𝑣 .)

Proof. We first prove the Incompatibility of Notarization and Fast Finalization. Suppose towards
contradiction that for slot 𝑣 a fast finalization certificate exists for block 𝐵 and a notarization
certificate exists for block 𝐶 , with 𝐶 ≠ 𝐵. By the Quorum Size Property (see Section 3.3.1) for
notarization certificates, this implies that an honest replica broadcast a notarization vote for 𝐶 .
• On the one hand, suppose that the notarization vote for𝐶 was sent by the protocol on line 31.

Due to the condition on line 28, this means that 𝑓 +𝑝 + 1 first votes were received for a block
𝐷 . Note that 𝐷 is a non-timeout block. Moreover, by the logic of ReconstructAndNotarize,
either 𝐶 is a timeout block or 𝐷 = 𝐶 . By the Uniqueness of Fast Finalization Property
(Lemma 5.5) we know that 𝐷 = 𝐵. Since 𝐵 is assumed to be valid, 𝐶 cannot be a timeout
block, so we also have 𝐵 = 𝐷 = 𝐶 , a contradiction.
• On the other hand, suppose that the notarization vote for 𝐶 was sent on line 34. By the
Absence of Fast Finalization Property (Lemma 5.6), this implies that no block is fast finalized,
again a contradiction.

The Incompatibility of Notarization and Finalization Property follows from a standard quorum
intersection argument, based on the fact that in each slot an honest replica issues a finalization
vote only for a block only if it did not send a notarization vote for a different block in that slot (see
line 11). Suppose towards contradiction that for slot 𝑣 a finalization certificate exists for block 𝐵

and a notarization certificate exists for block 𝐶 , with 𝐶 ≠ 𝐵. By the Quorum Size property (see
Section 3.3.1) for finalization and notarization certificates, if 𝑓 ′ ≤ 𝑓 is the number of corrupt
replicas, then at least 𝑛 − 𝑓 − 𝑝 − 𝑓 ′ honest replicas broadcast finalization votes for 𝐵, and a disjoint
set of at least the same number of honest replicas broadcast notarization votes for 𝐶 . This implies
that there are at least 2(𝑛 − 𝑓 − 𝑝 − 𝑓 ′) distinct honest replicas. However, under the assumption
that 𝑛 ≥ 3𝑓 + 2𝑝 + 1, we have 2(𝑛 − 𝑓 − 𝑝 − 𝑓 ′) ≥ 𝑛 − 𝑓 ′ + 1, a contradiction. □

We can now easily state and prove our main safety lemma:
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Lemma 5.8 (Safety). Suppose a replica 𝑃 explicitly finalizes a block 𝐵 for slot 𝑣 , and a block 𝐶 for
slot𝑤 ≥ 𝑣 is in the complete block tree of some replica 𝑄 . Then 𝐵 is an ancestor of 𝐶 in 𝑄’s complete
block tree.

Proof. By the Incompatibility of Notarization and (Fast) Finalization Property (Lemma 5.7), no
timeout certificate for slot 𝑣 can be produced. Let 𝐶′ be the parent of 𝐶 and suppose𝑤 ′ is the slot
number of 𝐶′. Since 𝐶′ is in 𝑄’s complete block tree, a notarization certificate for 𝐶′ must have
been produced, which means at least one honest replica must have issued a notarization vote for
𝐶′, which means 𝑣 ≤ 𝑤 ′ < 𝑤 . The inequality 𝑣 ≤ 𝑤 ′ follows from the fact that there is no timeout
certificate for slot 𝑣 , and an honest replica will issue a notarization share for𝐶 only if it has timeout
certificates for slots𝑤 ′ + 1, · · · ,𝑤 − 1. If 𝑣 = 𝑤 ′, we are done by the Incompatibility of Notarization
and (Fast) Finalization Property (Lemma 5.7), and if 𝑣 < 𝑤 ′, we can repeat the argument inductively
with 𝐶′ in place of 𝐶 . □

5.2 Liveness
Liveness follows from the following lemmas. The first lemma analyzes the optimistic case where
the network is synchronous and the leader of a given slot is honest, showing that the leader’s block
will be committed.

Lemma 5.9 (Liveness I). Consider a slot 𝑣 ≥ 1 and suppose the leader for slot 𝑣 is an honest replica
𝑄 . Suppose that the first honest replica 𝑃 to enter the loop iteration for slot 𝑣 does so at time𝑇0. Suppose
that the network is 𝛿-synchronous over the interval [𝑇0,𝑇0 + 4𝛿] for some 𝛿 with Δtimeout ≥ 2𝛿 . Then,
𝑄 will propose a block for slot 𝑣 by time 𝑇 ≤ 𝑇0 + 𝛿 . Each honest replica will finish the loop iteration
before time𝑇 + 2𝛿 by adding𝑄 ’s proposed block 𝐵 to its complete block tree. Moreover, if 𝑛 − 𝑝 replicas
are honest, each honest replica will finalize 𝐵 by time 𝑇 + 2𝛿 . If more than 𝑝 replicas are corrupt, each
honest replica will finalize 𝐵 by time 𝑇 + 3𝛿 .

Proof. By the Completeness Properties (Lemma 5.2 and Lemma 5.3), before time 𝑇0 + 𝛿 , each
honest replica will enter slot 𝑣 by time 𝑇0 + 𝛿 , having either a timeout certificate for slot 𝑣 − 1 or a
block for slot 𝑣 − 1 in its complete block tree. Before time 𝑇 ≤ 𝑇0 + 𝛿 , the leader 𝑄 will propose
a block 𝐵 that extends a block 𝐵′ with slot number 𝑣 ′ < 𝑣 . By the logic of the protocol, we know
that 𝑄 must have timeout certificates for slots 𝑣 ′ + 1, . . . , 𝑣 − 1 at the time it makes its proposal, as
well as a notarization certificate for 𝐵′. Again by the Completeness Properties, before time 𝑇 + 𝛿 ,
each honest replica will have 𝐵′ in its complete block tree and all of these timeout certificates in
its certificate pool. Each honest replica will receive 𝐵 before this time, and because Δtimeout ≥ 2𝛿 ,
will broadcast a first vote for 𝐵 by this time. Because all honest replicas broadcast a first vote for 𝐵,
each such replica will only see ever see at most 𝑓 first votes for any other block. It follows that
each honest replica will only ever see

• manyVotes(firstVote) ⊆ {𝐵}, and
• allVotes(firstVote) −maxVotes(firstVote) ≤ allVotes(firstVote) − count𝐵 ≤ 𝑓 , where count𝐵
is the number of of first votes for 𝐵 that it sees.

Therefore, honest replicas will not broadcast a notarization votes in slot 𝑣 for anything other
than 𝐵. Before time 𝑇 + 2𝛿 , each honest replica will have added 𝐵 to its complete block tree and
broadcast a finalization vote on 𝐵. If 𝑛 − 𝑝 replicas are honest, each honest replica will have added
a fast finalization certificate to its pool by time 𝑇 + 2𝛿 as well. Otherwise, if more than 𝑝 replicas
are corrupt, each honest replica will finalize 𝐵 before time 𝑇 + 3𝛿 , when adding the finalization
certificate for slot 𝑣 to its pool. □
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The second lemma analyzes the pessimistic case, when the network is asynchronous or the
leader of a given round is corrupt. It says that eventually, all honest replicas will move on to the
next round.

Lemma 5.10 (Liveness II). Suppose that the network is 𝛿-synchronous over an interval [𝑇,𝑇 +
Δtimeout +3𝛿], for an arbitrary value of 𝛿 , and that at time𝑇 , some honest replica is in the loop iteration
for slot 𝑣 and all other honest replicas are in a loop iteration for 𝑣 or a previous slot. Then, before time
𝑇 + Δtimeout + 3𝛿 , all honest replicas exit slot 𝑣 .

Proof. By the Completeness Properties (Lemma 5.2 and Lemma 5.3), every honest replica will
enter the slot 𝑣 before time 𝑇 + 𝛿 . By time 𝑇 + 𝛿 + Δtimeout, every honest replica will broadcast a
first vote either for a block proposal, or for 𝐵timeout

𝑣 .
Consider two cases:

(a) At least 𝑓 + 𝑝 + 1 honest replicas broadcast a first vote for the same non-timeout block 𝐵.
(b) No set of 𝑓 + 𝑝 + 1 honest replicas broadcast a first vote for the same non-timeout block 𝐵.

Case (a). Since 𝑓 + 𝑝 + 1 replicas cast notarization votes for 𝐵, some honest replica did so. Since this
replica had to have 𝐵’s parent in its complete block tree, by Completeness Properties (Lemma 5.3)
each honest replica will have 𝐵’s parent in its complete block tree by time 𝑇 + Δtimeout + 2𝛿 . All
honest replicas observe all first votes from other honest replicas before time 𝑇 + Δtimeout + 2𝛿 ,
and so each honest replica will call ReconstructAndNotarize(𝑣, 𝐵) before that time, unless it has
already exited slot 𝑣 . If some honest replica has exited slot 𝑣 before that time, the by Completeness
Properties (Lemma 5.2 and Lemma 5.3), all honest replicas will exit the slot before time 𝑇 +
Δtimeout+3𝛿 . Otherwise, assume no honest replica has exited before time𝑇 +Δtimeout+2𝛿 . Whenever
ReconstructAndNotarize(𝑣, 𝐵) is called by some honest replica, it has received at least 𝑓 + 𝑝 + 1
first votes for 𝐵, and so can attempt to reconstruct 𝐵. If it fails to reconstruct 𝐵’s payload or finds
that it is invalid, then it and all honest replicas will do so and issue a timeout vote (this follows
from collision resistance of the hash function and the fragment decoding logic). Otherwise, each
honest replica will issue a notarization vote for 𝐵. Therefore, before time 𝑇 + Δtimeout + 3𝛿 , each
honest replica will either add 𝐵 to its complete block tree or the timeout certificate to its pool, and
proceed exit the slot.
(b). Consider some honest replica 𝑃 . By time𝑇 +Δtimeout + 2𝛿 , 𝑃 will have observed all votes of other
honest replicas. If the only entries in firstVote are those from honest replicas, then the inequality
allVotes(firstVote) −maxVotes(firstVote) ≥ 𝑓 + 𝑝 + 1 must hold. To see this, if 𝑓 ′ ≤ 𝑓 is the number
of corrupt replicas, then

allVotes(firstVote) −maxVotes(firstVote) ≥ (𝑛 − 𝑓 ′) − (𝑓 + 𝑝)
≥ 𝑛 − 2𝑓 − 𝑝
≥ 𝑓 + 𝑝 + 1 (since 𝑛 ≥ 3𝑓 + 2𝑝 + 1).

As we have already observed, the quantity allVotes(firstVote)−maxVotes(firstVote) cannot decrease
as we add entries to firstVote. Therefore if 𝑃 has not cast a timeout vote in slot 𝑣 yet, it will do so
by time 𝑇 + Δtimeout + 2𝛿 , unless it has already exited slot 𝑣 by that time. In either case, all honest
replicas will exit slot 𝑣 by time 𝑇 + Δtimeout + 3𝛿 . □

5.3 Boundedness
We prove some simple results that allow us to bound message and storage complexity. Here, we
are assuming both (1) and (2).

Let us consider notarization votes on non-timeout locks. An honest replica sends a first vote for
at most one such block. Any notarization vote for some other non-timeout block 𝐵 requires that
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the replica found 𝐵 ∈ manyVotes(firstVotes). In other words, the replica has seen at least 𝑓 + 𝑝 + 1
other replica’s first votes for 𝐵. At most one first vote per replica is considered when computing
manyVotes(firstVotes). Therefore, an honest replica can cast at most ⌊𝑛/(𝑓 + 𝑝 + 1)⌋ notarization
votes beyond the first vote, and by (2), ⌊𝑛/(𝑓 + 𝑝 + 1)⌋ ≤ 2, for a total of 3 notarization votes for
non-timeout blocks.
Suppose there are 𝑓 ′ ≤ 𝑓 corrupt replicas, and so 𝑛 − 𝑓 ′ honest replicas. The honest replicas

therefore issue at most 3(𝑛 − 𝑓 ′) notarization votes for non-timeout blocks per slot.
Now, to construct a notarization certificate for a non-timeout block 𝐵, we require that (𝑛 −

𝑓 − 𝑝 − 𝑓 ′) honest replicas cast a notarization vote for 𝐵. Therefore, by the result in the previous
paragraph, there can be at most

𝑁 B ⌊(3(𝑛 − 𝑓 ′))/(𝑛 − 𝑓 − 𝑝 − 𝑓 ′)⌋ (3)

distinct blocks for which a notarization certificate can be constructed.
We claim that 𝑁 ≤ 5. To see this, first note that the derivative of (3(𝑛 − 𝑓 ′))/(𝑛 − 𝑓 − 𝑝 − 𝑓 ′)

with respect to 𝑓 ′ is positive, and therefore the right-hand side of (3) is maximized when 𝑓 = 𝑓 ′,
and so

𝑁 ≤ ⌊(3(𝑛 − 𝑓 ))/(𝑛 − 2𝑓 − 𝑝)⌋ .

So it suffices to show that (3(𝑛 − 𝑓 ))/(𝑛 − 2𝑓 − 𝑝) < 6. This is easily seen to follow by a simple
calculation using (1).

So to summarize, we have shown that in any slot,

(1) each replica casts a notarization vote for at most 2 non-timeout blocks besides its first vote,
and

(2) there are at most 5 distinct blocks for which a notarization certificate can be constructed.

This immediately gives us bounds on the message and storage complexity if the protocol per slot.

5.4 Complexity
Based on the concrete bounds in Section 5.3 (and the preliminary discussion in Section 4.2), it
is easily seen that the message complexity per slot is 𝑂 (𝑛2). Based on the properties of erasure
codes and Merkle trees discussed in Section 3.3.2, the communication complexity per slot is
𝑂 (𝛽𝑛 + 𝑛2 log(𝑛)𝜅 + 𝑛2𝜆), where 𝛽 is a bound on the payload size, 𝜅 is the output length of the
collision-resistant hash, and 𝜆 is a bound on the length of any signature share or certificate.
Moreover, the communication is balanced, in that every replica, including the leader, transmits the
same amount of data, up to a constant facrtor. It is also easily seen that each replica needs to store
𝑂 (𝛽 + 𝑛 log(𝑛)𝜅 + 𝑛𝜆) bits of data.

6 PROTOCOL VARIATIONS
Our protocol can be adapted to the setting of 𝑛 ≥ 3𝑓 + 2𝑝∗ − 1, where 𝑝∗ ≥ 1 [3], with the insight
that if honest replicas vote for different blocks in the same slot, the leader has to be corrupt. The
liveness analysis can leverage the fact that, in this case, honest replicas will observe at least 𝑛 − 𝑓

votes from non-leader replicas, as is done in [35]. We plan to analyze a variation of Kudzu with
this adaptation in an extended version of this paper.

A variation of DispersedSimplex [32] features segments of consecutive slots with the same leader.
Such stable leader assignment is beneficial for the throughput of the protocol. The same technique
can be applied to our protocol, and we plan to analyze a variation of Kudzu featuring stable leaders
in an extended version of this paper.
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