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Blockchain is a type of decentralized distributed database. Unlike traditional relational database management
systems, it does not require management or maintenance by a third party. All data management and update
processes are open and transparent, solving the trust issues of centralized database management systems.
Blockchain ensures network-wide consistency, consensus, traceability, and immutability. Under the premise of
mutual distrust between nodes, blockchain technology integrates various technologies, such as P2P protocols,
asymmetric encryption, consensus mechanisms, and chain structures. Data is distributed and stored across
multiple nodes, maintained by all nodes, ensuring transaction data integrity, undeniability, and security. This
facilitates trusted information sharing and supervision. The basic principles of blockchain form the foundation
for all related research. Understanding the working principles is essential for further study of blockchain
technology. There are many platforms based on blockchain technology, and they differ from one another.
This paper will analyze the architecture of blockchain systems at each layer, focusing on the principles and
technologies of blockchain platforms such as Bitcoin, Ethereum, and Hyperledger Fabric. The analysis will
cover their scalability and security and highlight their similarities, differences, advantages, and disadvantages.

CCS Concepts: » Information systems — Distributed databases; « Security and privacy — Cryptography;
Distributed systems security; « Networks — Peer-to-peer protocols.

Additional Key Words and Phrases: Blockchain, Bitcoin, Ethereum, Hyperledger Fabric

1 Introduction

Bitcoin is the world’s first decentralized cryptocurrency proposed by Satoshi Nakamoto[39]. Essen-
tially, it is a digital currency generated by a distributed network system, and its issuance process does
not rely on a central authority. Instead, it is governed collectively by all the nodes in the distributed
network. As the underlying technology of Bitcoin, blockchain[41] has gained widespread attention
with Bitcoin’s popularity. Ethereum([9], proposed by Buterin, is the second most popular blockchain
platform after Bitcoin. In addition to enabling decentralized digital currency transactions[26], it
provides a Turing-complete programming language for writing smart contracts, marking the first
application of smart contracts on the blockchain[28]. Hyperledger[10], an open-source blockchain
project developed by the Linux Foundation, aims to create cross-industry business platforms. Due
to varying needs and service requirements across different sectors, different blockchains need to be
constructed. Hyperledger offers several blockchain projects, with Fabric being the most notable.
Unlike Bitcoin and Ethereum[35], Hyperledger Fabric is specifically designed for enterprise-level
blockchain applications and introduces a membership management service.

In addition to the three blockchain projects mentioned above, numerous other representative
initiatives exist in the industry. This paper focuses on analyzing these three blockchain systems, as
shown in Table 1. Section 1 presents the overall system architecture of blockchain systems; Section
2 compares blockchain data from three aspects: data structure, data model, and data storage; Section
3 briefly explains the differences in the network layers of the three blockchain systems; Section
4 provides a detailed analysis of the consensus mechanisms used in the three systems; Section 5
discusses smart contracts from three perspectives: programming languages, runtime environments,
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and operating principles; Section 6 briefly summarizes the main applications of the three systems;
Section 7 analyzes the scalability solutions of the three systems; and Section 8 introduces solutions
for data security and privacy.

Table 1. Comparative Analysis of Different Blockchains

Blockchain  Plat- Bitcion Etherum Hyperledger Fabric

form

Entry Mechanism Public Chain Public Chain Consortium Chain

Data Structure Merkle Tree / Merkle Patricia Tree / Merkle Bocket Tree /
Blockchain Table Blockchain Table Blockchain Table

Data Model Transaction-based Account-based Model  Account-based Model
Model

Blockchain Storage File Storage Level DB File Storage

Network Layer TCP-based P2P TCP-based P2P HTTP/2-based P2P

Consensus Layer POW POW/POS PBFT/SBFT

Programming  Lan- Script-based Solidity/Serpent Go/Java

guage

Sandbox Environment - EVM Docker

Application Layer Bitcoin Transactions ~ Dapp/Ethereum Trans- Enterprise-level

actions Blockchain Applica-

tions

2 System Architecture

Many different platforms based on blockchain technology have emerged [31], each with its specific
implementation, but there are many commonalities in their overall system architecture. As shown
in Figure 1, blockchain platforms can generally be divided into five layers: from bottom to top, these
are the Data Layer, Network Layer, Consensus Layer, Contract Layer, and Application Layer[49].

Application Layer (Programming languages, code interfaces, user interfaces)

Smart Contract Layer (Virtual Machine, Docker, Scripts)

Consensus Layer (Incentive Mechanism, PoW, PoS, PBFT)

Network Layer (P2P, Chain Mechanism, Broadcast Mechanism)

Data Layer (Merkle Tree, Transaction Structure, Signature Structure)

3 Data Layer

Fig. 1. Blockchain System Architecture

Blockchain technology[33] utilizes two important concepts from cryptography[23]: hash functions
and signatures. Hash functions have three characteristics:



e Collision resistance: It is impossible to find m" = m such that H (m') = H (m), meaning
that it is not possible to tamper with data without detection.

e Hiding: The process of calculating the hash value H(x) for an input xis irreversible and can
only be broken through brute force.

e Puzzle friendly: The hash value computation is unpredictable in advance. One must try
different possibilities without shortcuts to obtain the desired hash value.

3.1 Data Structure

Blockchain[50] uses a linked list structure based on blocks and a Merkle tree to ensure data
immutability. The blockchain data structure of the Bitcoin system is shown in Figure 2.
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Fig. 2. Blockchain Data Structure of the Bitcoin System

3.1.1 Hash Pointer. Blockchain uses hash pointers instead of ordinary pointers[37], as shown in
Figure 3. The content of the entire block is hashed together, creating a tamper-evident log. This
means that if a value in any block is altered, the hash values of all subsequent blocks will also
change, triggering a domino effect where a small change causes a chain reaction. If the hash value
of the last block is known, it can be used to verify whether any previous block has been tampered
with.

p— —H()

Hash Pointer

Ordinary Pointer

Fig. 3. Ordinary pointers and Hash pointers

3.1.2  Merkle Tree. Transactions and other activities in a block are hashed in the form of a Merkle
tree, which is an important part of blockchain. It uses hash pointers instead of ordinary pointers,
ensuring data authenticity, security, and non-repudiation. Bitcoin uses the simplest binary Merkle
tree, as shown in Figure 4. Each transaction is hashed using SHA-256 and stored in the leaf nodes.
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Fig. 4. Mrekle tree

The values of every two child nodes are connected, and then hashed to record them in the parent
node. The final root hash of the transactions is stored in the Bitcoin block header. To confirm
whether a specific transaction exists in the block [30], only the path from the transaction node to the
Merkle root needs to be checked, without the involvement of other nodes in the tree. This is known
as Simplified Payment Verification (SPV). As shown in Figure 4, to verify whether transaction D1
exists in the block, one only needs to check if the hash of the transaction equals N1. If they are
equal, N1 and NO are concatenated and hashed, then compared with N4. If they match, the process
repeats until it matches the Merkle root hash, confirming the existence of transaction D1 with a
time complexity of © (log (N)). The entire Merkle tree can be transmitted to a lightweight node to
prove that a transaction does not exist. If the tree’s construction and the hash values at each level
are correct, and no leaf node corresponds to the transaction, then the transaction does not exist,
with a time complexity of ® (N).

Ethereum uses the Merkle Patricia tree [38][7]. The state data is extensive and frequently changes.
When constructing a new block, only the changed account states need to be calculated, without
recalculating the entire tree. The Merkle Patricia tree allows for fast lookup of state data in accounts.
It uses the account address as a lookup path, starting from the root node and proceeding down to
the leaf nodes. This lookup capability is not present in binary Merkle trees.

Hyperledger Fabric uses a multi-branch Merkle Bucket tree to compute the State Root. The leaf
nodes store key-value type state data sets, and when calculating the root hash, buckets that have
not changed can be skipped, making the process very fast.

3.1.3 Blocks and Nodes. A block is the basic unit of a blockchain and is divided into a block header
and a block body[47]. The transaction list, which consists of all parts of the Merkle tree except for
the root hash, is stored in the block body. The block header contains macro information such as
the block version number, timestamp, a hash pointer to the previous block (hash of the last header
block), the Merkle root hash, mining[32] difficulty target (target), and a nonce. In Bitcoin, nodes
are categorized into full nodes and lightweight nodes. Full nodes store the entire block content,
while lightweight nodes only store the block header content. The differences between them are
shown in Table 2.



Table 2. Full Node and Light Node

Full Node

Light Node

Always stays online

Keeps the complete blockchain information on
the local hard drive

Maintains UTXO set for fast verification of
valid transactions

Monitors transaction data from specific net-
works to verify the legality of the transactions

Cannot verify the legality of many transactions,
only can verify the legality of transactions re-
lated to itself

Needs to listen to blocks mined in specific re-
gions to verify its legality

Can perform a search, selecting the longest
chain, but cannot verify if this longest chain is

Does not need to stay online

Does not store the entire blockchain informa-
tion, only the headers of each block

Does not store all transactions, only those rele-
vant to its own transactions

Cannot verify the legality of many transactions,
only can verify the legality of transactions re-
lated to itself

Cannot detect the correctness of blocks pub-
lished on the network

Can verify the difficulty of mining

Can only detect the longest chain, but cannot
verify if this longest chain is valid

valid

3.1.4 Blockchain Structure. Each node in the chain is linked to another node through the previous
block’s hash pointer, forming a chain-like structure. If any block is tampered with, it will cause a
chain reaction, altering all subsequent blocks.

3.2 Data Models

3.2.1 Transaction-Based Model. Bitcoin uses a transaction-based data model (transaction-based
ledger), where each transaction consists of two parts: inputs and outputs. The inputs indicate the
source of the transaction, and the outputs specify the destination. As a result, all transactions
are linked together and can be traced back to the Coinbase source created through mining[36]
and the unspent coins. The transaction inputs include the Bitcoin holder’s signature, the hash
of the previous transaction, and the output index. The outputs include the transfer amount and
the recipient’s public key hash, which is their address. The signature and public key hash ensure
non-forgeability. Bitcoin full nodes maintain a UTXO (Unspent Transaction Output) data structure,
which helps confirm whether a Bitcoin has been spent, effectively preventing double-spending
attacks[22]. The balance of a Bitcoin account[34] is the sum of all unspent Bitcoins under a specific
address, which can be more complex to verify.

3.2.2  Account-Based Model. Ethereum and Hyperledger Fabric, with their rich functionalities, use
an account-based model (account-based ledger), allowing for quick queries of current balances
or states [40]. Ethereum accounts are divided into external and contract accounts, representing
Ether balances and smart contracts, respectively. Unlike the transaction-based model, the state
variables and account balances in smart contracts are state data. Ethereum transaction data includes
the recipient’s address, the transfer amount, the per-unit gas price, the maximum allowed gas
consumption, transaction count, message data for invoking smart contracts[29], and the sender’s
signature.



3.3 Data Storage

Bitcoin, Ethereum, and Hyperledger Fabric all use Level DB databases to store index data[6]. Level
DB is a lightweight, single-node database that does not require installation or deployment, offers
high write performance, and can meet the system’s needs for large amounts of hash-based key-value
retrievals. However, an architecture based on Level DB cannot meet the business requirements of
enterprise-level applications. Hyperledger Fabric 1.0 provides a plug-in data access mechanism,
supporting both Level DB and the distributed CouchDB database[1].

4 Network Layer

Information exchange takes place at the network layer, with blockchain platforms selecting the P2P
protocol as the network transmission protocol, which can tolerate single points[20] of failure, thus
achieving decentralization. All nodes in the network are equal and autonomous, and they can freely
join or exit the network. Any two nodes can directly transact with each other[2]. In a blockchain
network, all broadcasted data is constantly monitored by nodes. When a neighboring node sends
new data, the data’s validity is first verified. If valid, it is processed; if not, it is discarded.

Bitcoin uses an unstructured networking approach based on the TCP protocol, which facilitates
firewall traversal with a randomized routing table. If a node wants to join the blockchain network, it
must first contact a seed node, which will then inform the new node of other nodes in the network.
Nodes use multicast to transmit data, initially based on the Gossip protocol[14], but it was later
implemented using the Diffusion protocol[17] to improve resistance to anonymous analysis. In
terms of data transmission, Bitcoin uses the anonymous communication network Tor for data
delivery, with multi-layer encryption on the path protecting the identity of the endpoints. Bitcoin’s
design principle is simplicity and robustness rather than efficiency.

Ethereum’s underlying peer-to-peer network protocol cluster is called DEVP2P. In addition to
meeting the blockchain network’s functionality, it also meets the needs of any associated Ethereum
applications. A node’s public key is used as an identifier, and the Kademlia algorithm is applied to
compute the XOR distance between nodes, enabling structured networking. Data propagation is
achieved through Gossip, which is multi-point broadcast. For data transmission protection, nodes
use Elliptic Curve Integrated Encryption Scheme (ECIES) to generate public and private keys for
data encryption. Hyperledger Fabric is based on the HTTP/2 protocol and builds node clusters by
organization. The network uses a hybrid peer-to-peer structure. An organization includes both
regular nodes and anchor nodes, which are responsible for routing messages within the organization
and across organizations, respectively. Hyperledger Fabric uses Gossip for network initialization,
and nodes periodically broadcast their survival status, with other nodes updating their routing
tables accordingly. Unlike Bitcoin and Ethereum, Hyperledger Fabric is a permissioned blockchain
requiring stricter network layer security mechanisms.

5 Consensus Layer

In a decentralized network, nodes lack trust in one another. Achieving consensus and ensuring all
nodes act in unison to make the correct decisions is known as the Byzantine Generals Problem[27].

Bitcoin uses the PoW (Proof of Work) algorithm for node consensus, with the threshold set to
produce one block every 10 minutes. A reward and penalty mechanism ensures the sustainability of
consensus, mainly through transaction fees, mining rewards, and mining pool distribution strategies.
Ethereum uses the PoW consensus, with the threshold set to produce one block every 15 seconds,
and plans to adopt the PoS (Proof of Stake) or Casper consensus protocol in the future. The lower
computational difficulty may lead to frequent branch chain formations, so Ethereum uses its unique
reward and penalty mechanism, the GHOST protocol (Greedy Heaviest-Observed-Sub-Tree)[45], to



incentivize miners’ consensus participation. Hyperledger Fabric initially used the PBFT (Practical
Byzantine Fault Tolerance) consensus protocol. Later, to improve transaction throughput and
reduce security, the consensus process was decomposed into two services: ordering and validating.
As a permissioned chain, Hyperledger Fabric participants have transparent identities and shared
intentions, so there is no possibility of node idleness or malicious attacks, eliminating the need for
a reward and penalty mechanism. This section will analyze the PoW, PoS, and PBFT algorithms.

5.1 Proof of Work

Voting-based consensus algorithms are not suitable for public chains. On one hand, attackers can
create many malicious nodes to increase their voting power and launch Sybil attacks[16]; on the
other hand, since nodes in a public chain can freely join or leave, not all nodes can guarantee
timely participation in voting. Bitcoin and Ethereum use the Proof of Work (PoW) mechanism,
where nodes compete for the right to record blocks based on computational power, effectively
ensuring data consistency and security. PoW, also known as mining, originates from the work of
Dwork [18] and is the first-generation consensus mechanism. All nodes can participate in mining,
competing to solve mathematical problems in the blockchain. The block’s accounting rights are
assigned to the first miner who solves the problem, and the miner is responsible for packaging the
transaction into a new block and publishing it. The miner also receives a block reward. In simple
terms, you get rewards for the work you do. Nodes that do not receive the accounting rights will
verify the content of the new block after receiving it. Only valid data is accepted and added to the
local blockchain, and new blocks are built on top. When a new transaction occurs, it is broadcasted
to the network. Mining nodes collect all transaction data that has occurred since the last block was
published, calculate the Merkle root of the transactions within a specific period, and increment a
random number in the block header starting from zero until they find a nonce that satisfies the
condition H(blockheader) < target. Bitcoin uses the SHA-256 hash algorithm for this calculation,
while Ethereum uses the Ethash algorithm.

Mining is an ongoing process of attempting various nonces to solve a puzzle. Each attempt can be
viewed as a Bernoulli trial, where each trial is random. A Bernoulli trial has the property of being
memoryless, ensuring the fairness of mining. Stronger miners do not have a proportional advantage,
and previous mining efforts do not increase the chance of success. Bitcoin’s block production time
follows an exponential distribution[5], with an average block time of 10 minutes for the system. As
the total computational power of the system increases, the block time becomes shorter, which can
lead to system forks, compromising system security. To maintain a consistent average block time,
Bitcoin adjusts the difficulty level every 2016 blocks. The mining difficulty is inversely proportional
to the target threshold, as shown in formula (1), where dif ficulty_1_target represents the target
threshold corresponding to a mining difficulty of 1.

o dif ficulty_1_target
dif ficulty = rarget

1)
The system adjusts mining difficulty based on formula (2).

actual_time
target = target X ——— (2)
expected_time

The block reward is halved every 4 years, becoming smaller over time. However, the incentive
for mining intensifies due to the skyrocketing price of Bitcoin. When the block reward decreases to
nearly zero, transaction fees will become the primary incentive for mining.

Under the PoW mechanism, the difficulty and cost of an attack are extremely high. If an attacker
wants to alter a specific block, they must recalculate the nonce of that block and all subsequent



blocks. To accomplish this, the attacker’s computational speed must exceed that of the main chain.
Only by controlling more than 51% of the network’s total computational power can the attack
succeed[4]. Unlike other consensus algorithms, the PoW mechanism integrates economic incentives,
which attracts more nodes to actively participate in mining and encourages nodes to maintain
honesty, effectively improving the network’s security and reliability. However, PoW consumes
significant electricity, which contradicts the human pursuit of energy conservation, cleanliness,
and environmental sustainability. Furthermore, over time, the providers of computational power
are no longer just individual computers. Users have evolved from personal mining to large mining
pools and data centers, leading to more concentrated computational power, which goes against
the decentralization principle and gradually threatens network security. Bitcoin’s block reward is
halved every 4 years, and once mining costs exceed the mining rewards, people’s enthusiasm for
mining will decrease, leading to a reduction in computational power and triggering security issues.

5.2 Proof of Stake

The Proof of Stake (PoS) mechanism first appeared in Peercoin [25]. This mechanism binds difficulty
with coin age, where a node must hold coins for a certain period to mine a block. Coin age is
the product of the number of coins held and the length of time those coins are held. The mining
difficulty decreases proportionally with coin age, thus accelerating block production speed. The
right to mine is distributed based on the amount and duration of staked Ether.

In essence, PoS, like PoW, still relies on hash computations for mining. Under the PoS mechanism,
only nodes holding more than 50% of the system’s tokens can initiate a 51% attack. However,
the rewards from such an attack are less than those earned by remaining an honest node, thus
enhancing the system’s security. PoS substitutes external computational power with stake-based
power, solving the resource-wasting issue of PoW. However, when the network environment is
poor, forks may occur, which affects the blockchain’s integrity.

Ethereum, based on the PoS mechanism, introduced the Casper consensus [21], a Security-
Deposit Based Economic Consensus Protocol. In this protocol, nodes act as validating nodes by
locking a deposit. They must purchase Ether and stake it into Ethereum to participate in consensus,
essentially betting on the consensus. Only those who have staked Ether can participate in block
production and consensus formation. Consensus results are formed based on the betting patterns of
the validating nodes. These nodes must predict which block other nodes will bet on, and if they bet
correctly, they retrieve their stake along with transaction fees. If consensus is not quickly reached,
only part of the deposit is returned. Over several rounds, the betting distribution of validating nodes
converges. Thus, transactions are essentially bets on certain blocks. Once a block is confirmed, the
validating nodes who bet on that block receive rewards, while nodes that bet on other blocks are
fined by losing part of their staked Ether.

Many early PoS algorithms only considered rewarding block creation without implementing
penalties, which led to undesirable outcomes. In the case of multiple competing blockchains,
validating nodes could create blocks on each chain to ensure rewards. If all participants are purely
profit-driven, consensus may not be achieved even in the absence of attackers. Casper includes
penalty mechanisms where dishonest miners lose their entire stake, and their rights are revoked.
This resolves the issue in PoS protocols of low cost for malicious actions, often referred to as the
"no-stakes problem." Additionally, if validating nodes change their bets too significantly—such as
first betting on one block with a high probability of winning, then switching to another block with a
high probability of winning—they will be severely punished. This rule ensures that validating nodes
only bet heavily on blocks they are very confident others will also bet on. This mechanism prevents
a situation where betting first converges on one result, only to later shift to another. Casper does



not require additional power consumption for mining, reduces block times to 4 seconds, and is
more resource-efficient and faster than PoW.

5.3 Practical Byzantine Fault Tolerance

The PoW mechanism, based on proof-of-work, relies on computational power competition to ensure
data consistency and security in blockchain networks. While it is suitable for public chains with
freely joining and exiting nodes, it consumes a significant amount of computational resources
and energy, making it unsuitable for consortium blockchains used in enterprise applications.
Hyperledger Fabric adopts the Practical Byzantine Fault Tolerance (PBFT) algorithm [15], which is
based on a voting mechanism. PBFT increases the system’s fault tolerance to around 33%, ensuring
data consistency and security as long as honest nodes exceed two-thirds of the total nodes. PBFT is
computation-based and does not offer token rewards. The system selects a primary node through
rotation or a random algorithm. As long as the primary node remains unchanged, this is referred to
as a "view!" In this view, when a client initiates a transaction, it sends a request to the primary node,
which then broadcasts the message to all backup nodes. The backup nodes validate the message,
and if validated, they send a confirmation. When confirmation messages exceed 2f+1, the result is
returned to the client and written into the blockchain. The process consists of three phases: the
pre-prepare phase, the prepare phase, and the commit phase. Each block is generated by a unique
primary node, eliminating the risk of forks. However, when more than one-third of the accounting
nodes stop working, the system can no longer function. Additionally, in large networks with many
nodes, validating messages creates significant network overhead. Therefore, PBFT is better suited
for private chains or consortium chains with fewer nodes, rather than public chains with large,
dynamic node networks.

5.4 Comparison of Consensus Algorithms

Currently, no consensus algorithm offers optimal performance in all aspects. The choice depends
on specific requirements and trade-offs. Table 3 compares PoW, PoS, and PBFT. To ensure the
security and decentralization of blockchain systems, performance must be continually improved to
accommodate large-scale applications, while also motivating users to actively participate in the
Consensus process.

Table 3. Comparison of Consensus Algorithms

Indicator Performance Ef- Degree of De- Fault Tolerance Resource Con-
ficiency centralization  Rate sumption

PoW Low High 50% High

PoS Relatively High ~ High 50% Low

PBFT High Low 33% Low

6 Smart Contract

A smart contract[46] is a set of digitally defined commitments. On the blockchain, it is an exe-
cutable program code[11] designed to automatically enforce the terms and conditions between
two untrusted parties. Blockchain-based smart contracts have interfaces to receive and respond
to external messages, with a greater focus on transactions. Smart contracts neither generate nor
modify data; they serve as modules for transaction processing and state recording, enabling the
automatic execution of contract terms under predefined conditions, achieving the goal of "code as



law." Smart contracts can be classified into three categories based on their execution environment
and programming language: script-based, Turing-complete, and verifiable smart contracts.

The Bitcoin system uses script-based encoding to facilitate basic transactions of digital currency.
These scripts are not Turing-complete programming languages; they are simply a set of limited,
type-specific stack instructions. There is no strict implementation of smart contracts in the Bitcoin
platform, which can only be considered as an early prototype of smart contracts. Ethereum, in
its whitepaper, was the first to introduce the application of smart contracts to the blockchain,
effectively reviving the concept of smart contracts. Hyperledger Fabric supports a pluggable
consensus mechanism, which provides developers with convenient options for selecting appropriate
consensus algorithms.

6.1 Programming Languages

Ethereum has custom-designed Turing-complete scripting languages such as Solidity and Serpent,
which enhance contract logic functionality and reduce the complexity of contract creation, but
also introduce security risks. After a smart contract is written, it is compiled into Ethereum Virtual
Machine (EVM) bytecode by a compiler and uploaded to the blockchain by the client. It is then
executed in the Ethereum Virtual Machine (EVM) by miners. Michael Coblenz and others have
identified numerous bugs in smart contracts designed with Solidity and developed Obsidian[12] as
a solution. Hyperledger Fabric allows for the development of smart contracts based on advanced
programming languages such as Go and Java. These high-level languages are not only Turing-
complete but also feature mature compilation techniques, which help reduce the learning curve for
contract developers.

6.2 Execution Environment

Smart contracts must run in an isolated sandbox environment because they are human-written,
and therefore, contain numerous potential vulnerabilities. They cannot run directly in the known
environment of blockchain nodes. In a sandbox environment, contracts are effectively isolated from
both the host and other contracts, improving security. The Ethereum Virtual Machine (EVM) [13]is
a custom-built sandbox for Ethereum. It does not have a network interface, compiled bytecode
cannot access the host machine, and the inter-contract calls are highly restricted. For a single smart
contract, multiple instances often need to run simultaneously across several Ethereum Virtual
Machines to ensure data consistency and high fault tolerance across the blockchain, though this also
limits the overall capacity of the network. Hyperledger Fabric, on the other hand, uses lightweight
Docker containers as sandboxes, providing isolated Linux environments. Contracts in Docker
containers still have access to the internet.

6.3 Operating Principle

Currently, smart contracts are simply a set of fixed rules implementing an IF-THEN program
structure. They are not truly intelligent, but can monitor the state data of the blockchain in real
time. As shown in Figure 5, when the external environment changes to match a predefined state,
the contract is triggered, and the account’s state is modified. If an external application wants to
invoke a smart contract to modify a particular element, it must first obtain consensus across the
entire network. Only then will the blockchain record this modification and save the result to the
state database.

Ethereum is the most widely used Turing-complete blockchain platform[24]. It uses accounts to
record system states directly, allowing developers to write smart contracts that include ownership,
transaction formats, and state transition functionalities, following random rules. Anyone can
participate in the Ethereum blockchain network[44] on their machine. Ethereum supports data
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Fig. 5. Operational Principle of Smart Contracts

transfer between different accounts to enable more complex logic. The main components of an
Ethereum smart contract are functions, events, and state variables written stably[19]. Ethereum
accounts are of two types: Contract Accounts and Externally Owned Accounts (EOAs). Contract
accounts are used to store the executed smart contract code and can only be activated by externally
owned accounts. Externally owned accounts are owned by Ether holders and correspond to a
specific public key. Accounts include fields such as nonce, balance, storageRoot, and codeHash,
which are controlled by individuals. Ethereum smart contract accounts[42] consist of executable
code, contract addresses, state, and virtual currency balances. When a contract account is invoked,
the smart contract automatically executes in the virtual machine. During execution, it consumes gas
(fuel), and when the gas runs out, the contract execution halts immediately and reverts the state. The
consumed gas is not refunded, which effectively prevents spam transactions and infinite loop attacks.
Ethereum’s account address data is built-in, making it more suitable for payment applications
based on digital currencies. In Ethereum, a transaction refers to message data transferred from
one account to another. Ethereum uses transactions as the smallest execution unit. Similar to
Bitcoin, users must pay a transaction fee when sending transactions, using Ether as payment and
consumption. Currently, the Ethereum network supports a transaction rate higher than Bitcoin’s
(up to several dozen transactions per second). The currency in the Ethereum network is Ether,
mainly used to purchase gas to maintain the cost of running smart contracts. Ether, like Bitcoin, can
be mined, and miners who generate new blocks are rewarded with five Ether and the transaction
fees contained in the block. Users can also directly purchase Ether from others. Currently, more
than ten million Ether can be generated annually through mining, with a market price exceeding
300 USD per Ether. Gas controls the maximum execution instructions for a given transaction and
can be exchanged for Ether. It is important to note that the price of Ether fluctuates, but the fuel
cost for running a particular smart contract can be fixed by adjusting parameters like the Gas price.

In Hyperledger Fabric, nodes start new containers based on contracts packaged into Docker
images. These containers initialize according to the rules in the smart contract and then wait for



invocation. Hyperledger Fabric’s smart contracts are called Chaincode[43] and are the only way
to interact with the blockchain and generate transactions. Chaincode can be seen as managing
transactions, and it controls how to package smart contracts for deployment. Chaincode enforces
rules to read or modify key-value pairs or other state database information, executing on the
current state of the ledger and starting through transaction proposals. Chaincode executes a set of
key-value writes that can be submitted to the network and applied to the ledger across all peers. By
granting appropriate permissions, chaincode status in one network can be accessed via the same
network’s chaincode Go API. Writing a contract essentially means implementing the initialize,
modify, and query methods in the chaincode interface. Multiple smart contracts can be defined
within the same main code, and when a chaincode is deployed, all the smart contracts within it
can be used by applications. At the simplest level, the blockchain immutably records transactions
updated in the ledger. Smart contracts programmatically access two distinct parts of the ledger: the
blockchain, which immutably records all transaction histories, and the world state, which stores
the current values of these states as cached objects representing the current value of typically
needed objects. Smart contracts allow for the retrieval and deletion of states in the world state
and can query immutable blockchain transaction records. Whether a transaction creates, reads,
updates, or deletes business objects in the world state, the blockchain contains immutable records
of these changes. Each chaincode is associated with an endorsement policy that applies to all smart
contracts defined within it. Important transaction instructions in the blockchain are announced in
the smart contract chain, and significant transactions must be validated via the blockchain. Each
smart contract has an associated endorsement policy, which determines which organizations must
approve the transactions generated by the smart contract before they can be marked as valid. If
the endorsement policy specifies that multiple organizations must sign off on the transaction, the
smart contract must be executed by enough organizations to generate a valid transaction. The
endorsement policy distinguishes Hyperledger Fabric from Ethereum and Bitcoin, where any node
in the network can generate valid transactions. Hyperledger Fabric more accurately simulates
the real world by requiring transactions to be validated by trusted network organizations; the
endorsement policy is designed to model these real-world interactions better. Smart contracts run
on peer nodes owned by organizations in the blockchain network. The contract accepts a set of
transaction proposals and combines program logic to read and write the ledger. Changes to the
world state are captured as transaction proposal responses (or just transaction responses), with
the read-write set containing the states that were read and the new states to be written when the
transaction is validated. Transactions, distributed to all peers in the network, are processed in
two phases: first, the endorsement policy checks whether enough organizations have signed the
transaction; second, it checks to ensure that the current value of the world state matches the read
set of the transaction when signed by the endorsing peers, with no intermediate updates. If the
transaction passes both tests, it is marked as valid. All valid and invalid transactions are added to
the blockchain’s history, but only valid transactions lead to updates to the world state.

7 Application Layer

The application layer includes services and applications. After the underlying data and computing
tools are integrated, they provide services to upper-layer applications. Current service platforms
lack general applicability and are mainly designed to meet the needs of specific services. Bitcoin
is primarily used for digital currency transactions, while Ethereum also supports communication
with smart contracts through JSONRPC to enable decentralized applications (DApps) built with
JavaScript. Hyperledger Fabric is mainly geared toward enterprise-level applications and does not
provide digital currencies. Its applications can be built using SDKs in languages such as Go, Java,
Python, and Node.js.



8 Scalability

With the increasing transaction volume, the blockchain is becoming larger and larger. Each node
must store all transaction information and validate it, and the original block size is limited with a
fixed block time, which cannot meet the demand for real-time processing of millions of data. For
example, Bitcoin can only process around 7 transactions per second [48]. Furthermore, because the
capacity of mining pools is limited, miners tend to select transactions with higher fees, which causes
delays in smaller transactions. To ensure faster transaction confirmations, the transaction fees paid
to miners gradually rise. To resolve the issue of transaction volume saturation and high transaction
fees, and to accelerate blockchain application development and expansion, it is necessary to address
the bottleneck in improving transaction throughput and scaling the blockchain.

When Bitcoin was first created, the block size was not strictly limited. According to Bitcoin’s
data structure rules, a block can be as large as 32MB. However, during the initial phase, the average
block size was only 1-2KB, far from reaching the block size limit, which caused resource waste
and made the system susceptible to Distributed Denial-of-Service (DDoS) attacks. To ensure the
system’s security and stability, Bitcoin later limited the block size to 1MB. Different user groups
have different opinions on scaling. The primary disagreement is between two factions: the core
development team, which wants to maintain Bitcoin’s small block characteristics, and miners and
developers who oppose using centralized solutions like the Lightning Network. To date, many
versions of Bitcoin Improvement Proposals (BIPs) have been proposed to address the scaling issue.
However, BIPs are only proposals, as their implementation requires changes to the Bitcoin source
code, and achieving a scaling solution requires consensus within the entire Bitcoin community.
Generally, Bitcoin’s scaling solutions can be categorized into two types: those that directly change
the block size and those that improve transaction processing capacity without changing the block
size. Regardless of the approach, a difficult consensus process is required, but scaling is a necessary
issue for Bitcoin’s sustainable development.

Buterin proposed a solution for sharding transaction processing in the Ethereum 2.0 whitepaper
[8]. Sharding involves dividing the network into many sub-networks, where each shard consists of
nodes that maintain and execute the same set of smart contracts. Sharding technology addresses
issues from a resource-balancing perspective. The system divides the entire network into many
shards that are independent of each other, with no interdependencies between them. Each shard
maintains its independent sub-chain. Nodes can freely choose which shard to join or which shard
to execute transactions on. Once a node joins a shard, it is responsible for storing and processing
the transactions on that shard. Nodes work together, and data storage and processing can be
parallelized. The overall network processing capacity is no longer constrained by a single node.
However, because of sharding, the computational power of the network is distributed, making it
easier for an attacker to control 51% of the network’s computational power, meaning that PoW is
no longer applicable. To mitigate this, the network uses randomness to randomly select nodes to
form shards. This random sampling method prevents malicious nodes from filling up individual
shards. Additionally, a consensus protocol, such as PoW, is required to ensure that members within
a shard reach an agreement. The randomness in blocks is publicly verifiable, and unified random
bits can be extracted.

Hyperledger Fabric 1.0 proposes a multi-channel solution, where the entire network is divided
into many logical channels. Nodes can freely join channels and process data on different chains
simultaneously, allowing transactions to be executed independently and concurrently, which
improves the network’s throughput.



9 Security
9.1 Data Security

In public blockchains like Bitcoin and Ethereum, any node can freely join or leave the network, and
any user can participate in transactions. All data is open and transparent, which poses significant
security risks.

In the Bitcoin system, for a transaction to occur, the recipient must provide the sender with an
address hashed from the public key, and the sender must sign the transaction data. When the hash
value in the transaction input matches the hash value in the output of the previous transaction, it
confirms that the Bitcoin is indeed owned by the sender, thus preventing double-spending attacks
to some extent. The signing and verification process is automated via scripts, without requiring
manual calculation. Unlike Bitcoin, which is transaction-based, Ethereum is account-based, and
its transaction signing and verification process differs. In Ethereum, the transaction data contains
only the sender’s EDCSA signature, and the sender’s public key can be derived from the signature,
transaction data, and elliptic curve parameters. The account address is then obtained by performing
a SHA3 hash on the public key. This reduces the number of bytes in the transaction, lowering the
overhead.

In Hyperledger Fabric, to meet the requirements of a consortium blockchain, unauthorized nodes
cannot join the network. Hyperledger Fabric provides membership management services and offers
three types of digital certificates: ECert for identity authentication, TCert for transaction signing
and verification, and TLSCert for secure communication between system components based on
SSL/TLS.

9.2 Privacy

All data in blockchain systems is public and transparent, which helps prevent data falsification
and tampering, but privacy is not guaranteed. Bitcoin proposed a privacy protection strategy by
anonymizing the link between user accounts and transactions. Accounts can generate a large
number of public/private key pairs using a seed node and then generate multiple addresses using
hash functions. The real-world identity of the user is not directly linked to the account address,
achieving a degree of anonymity. However, this anonymity is somewhat illusory, as attackers can
analyze transaction records to determine which network a node belongs to. As a result, the account
addresses in the network could still be linked to real-world addresses.

To protect blockchain privacy, it is necessary not only to hide transaction details but also to
verify the correctness of transactions. Zero-Knowledge Proof (ZKP) technology[3] allows for hiding
the sender, receiver, and transaction details. In Ethereum, EliBen and others studied the use of
ZK-STARK to enhance scalability and privacy protection.

Hyperledger Fabric 0.6 adopted a single-chain approach, where all users on the chain could access
all transaction data, which does not meet the privacy requirements of a consortium blockchain for
commercial organizations. Hyperledger Fabric 1.0 adopted a multi-channel approach, establishing
separate channels for transaction nodes, storing transaction data within these channels, and
preventing users outside the channel from accessing the data, thereby ensuring privacy.

10 Conclusion

Without the coordination of a third-party authority, blockchain enables trustworthy data trans-
mission between parties who do not know each other. This plays a crucial role in driving social
management and applications in various fields, and the research and development prospects of
blockchain are vast. Research into the basic principles and technologies serves as the foundation for
all work. This paper provides a comprehensive and comparative analysis of the key technologies in



different blockchain systems, from the perspective of the various layered architectures of blockchain
networks. It examines their similarities, differences, and advantages and disadvantages. In today’s
rapidly advancing technology landscape, more innovations will continue to emerge and impact the
development of various blockchain systems. The ongoing challenge for all blockchain systems will
be how to adapt to technological updates and iterations, secure a place in the internet age, and
meet people’s demands with higher service experiences and standards.
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