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Abstract

As Al-generated imagery becomes ubiquitous, invisible watermarks have emerged
as a primary line of defense for copyright and provenance. The newest watermark-
ing schemes embed semantic signals - content-aware patterns that are designed to
survive common image manipulations - yet their true robustness against adaptive ad-
versaries remains under-explored. We expose a previously unreported vulnerability
and introduce SemanticRegen, a three-stage, label-free attack that erases state-of-
the-art semantic and invisible watermarks while leaving an image’s apparent meaning
intact. Our pipeline (i) uses a vision-language model to obtain fine-grained captions,
(ii) extracts foreground masks with zero-shot segmentation, and (iii) inpaints only the
background via an LLM-guided diffusion model, thereby preserving salient objects and
style cues. Evaluated on >1,000 prompts across four watermarking systems - TreeR-
ing, StegaStamp, StableSig, and DWT/DCT - SemanticRegen is the only method to
defeat the semantic TreeRing watermark (p = 0.10>0.05) and reduces bit-accuracy
below 0.75 for the remaining schemes, all while maintaining high perceptual qual-
ity (masked SSIM = 0.94 + 0.01). We further introduce masked SSIM (mSSIM) to
quantify fidelity within foreground regions, showing that our attack achieves up to 12
percent higher mSSIM than prior diffusion-based attackers. These results highlight
an urgent gap between current watermark defenses and the capabilities of adaptive,
semantics-aware adversaries, underscoring the need for watermarking algorithms that
are resilient to content-preserving regenerative attacks.

1 Introduction

The growing advancement and widespread adoption of Al-generated content has brought
about urgent challenges in protecting copyright and intellectual property, particularly in
fields such as science, healthcare, and entertainment [13, 41]. As the reliance on these
generated images grows, so does the need for robust methods to ensure the integrity and
ownership of digital content [23, 9]. Watermarking embeds markers in images to verify
ownership and prevent misuse [22, 45, 42, 18, 2, 46]. Traditional watermarking techniques
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Figure 1: Our semantic watermark removal pipeline involves three primary components:
(1) Captioning (green), (2) Segmentation (red), and (3) Inpainting (blue). For caption-
ing, we use a VQA model to provide essential context for subsequent processing. For seg-
mentation, we focus on prominent objects or areas of interest within the image. For in-
painting, the background of the image is replaced with semantically similar content, effec-
tively removing the watermark while preserving image integrity. To construct the prompt
for conditional text inpainting, we use MiniChat-MA, an LLM that refines answers gener-
ated from the image captioning model. This pipeline extracts semantic information and
replaces the background for watermark removal, while preserving the foreground content.

have been instrumental in the embedding of markers to verify ownership and prevent
misuse [40, 27]. However, the rise of sophisticated adversarial attacks that subtly alter
images to evade detection has exposed vulnerabilities in these systems [39, 31, 37, 1]. This
growing threat highlights the critical need for more advanced and resilient approaches to
safeguarding digital assets [36, 14], ensuring that the rights of content creators are upheld
in the face of evolving technological challenges.

To address these challenges, researchers have developed techniques to embed markers in
generated images to verify ownership and prevent unauthorized use [12, 24, 43]. One such
method involves using variable autoencoders (VAE) or diffusion models to inject water-
marks into the latent space by encoding neural networks or adding noise, as demonstrated
in the WAVES benchmark [4]. Zhao et al. proposed a watermark attack method, high-



lighting the need to strengthen watermarking strategies [49]. Adversaries have created ad-
vanced attacks to bypass detection by modifying subtly watermarked images, leading to
the development of more robust detection systems [11, 16, 39, 49, 4]. Advances in AT se-
curity have led to innovative strategies to protect generated images from adversarial ma-
nipulation [28]. Classifier-free methods for the detection and removal of watermarks offer
alternatives to traditional approaches by analyzing the inherent properties of the image
rather than relying on predefined classifiers [50]. Techniques such as pixel-level analysis,
frequency domain analysis, and structural analysis identify anomalies introduced by wa-
termarks [50, 34].

In this work, we propose SemanticRegen, a framework for removing semantic watermarks;
see Figure 1 for an illustration of our basic approach. Our approach demonstrates the
effectiveness of semantic repainting for watermark removal, exposing vulnerabilities that
can inform the development of more resilient techniques. Our approach involves a three-
step pipeline: (1) a Visual Question Answering (VQA) model through BLIP2; (2) a seg-
mentation model using LangSAM; and (3) Stable Diffusion Inpainting [30, 32, 35] (see
Figure 1). The VQA model analyzes the target image, providing semantic information.
Our method preserves the semantic background information instead of substituting it
with random/arbitrary content. After generating prompts, we apply inverted masks from
the segmentation model to condition the target image, creating a new image that retains
salient objects while replacing the background with semantically similar content from the
original image. We use a comprehensive approach with the VQA model for content ex-
traction, employing customized questions to capture diverse aspects of complex scenes.
Conditioning the model with prompts improves its ability to discern details, helping to
remove strong watermarks while preserving the integrity of the image [50]. Unlike prior
methods that rely solely on adversarial or generative transformations, our approach inte-
grates semantic understanding via VQA-driven segmentation to improve targeted water-
mark removal while preserving content integrity.

Our approach is inspired by research on the use of large language models (LLMs) for
synthetic data set generation and image diffusion models for robust training [21, 25].
Recent advances in diffusion-based watermarking by Zhang et al. [47] and Kawar et
al. [25] show promise in embedding watermarks into images, while preserving visual
fidelity. The WAVES benchmark [4] provides insights into their performance. Diffusion-
based approaches prioritize image fidelity through controlled noise application, making
them effective for watermark removal and preferable to GAN-based methods due to their
stability, robustness, and ease of implementation. These techniques offer a compelling
solution for various applications. We evaluated SemanticRegenagainst these and related
methods, in particular against TreeRing watermarker [45], StegaStamp [42], StableSig [22]
and invisible watermarkers [49]. TreeRing is ideal due to its imperceptibility and resilience
to common manipulations such as cropping, resizing, and compression [45].

Our evaluation in various watermarking techniques demonstrates the effectiveness of
SemanticRegen, with minimal distortion and high image quality, as reflected in low Mean
Squared Error (MSE) and high Structural Similarity Index (SSIM) and Peak Signal-to-
Noise Ratio (PSNR) scores. Competing well against state-of-the-art techniques such as
DiffWMAttacker, VAEWMAttacker and Rinse4x, SemanticRegenfills removed portions
with semantically similar backgrounds, achieving meaningful results. Optimal perfor-
mance is achieved with clear, separable backgrounds similar to those in Stable Diffusion



training data. SemanticRegen excels in watermark removal when the central meaning of
the image is localized to only a few main objects, since the method relies on segmenting
these objects and removing the less important background content.

In summary, our main contributions are as follows.

e We introduce SemanticRegen, an effective watermark removal method, evaluate it
on the TreeRing watermarker [45], and compare it to StegaStamp [42], StableSig [22],
and invisible watermarks of deep neural networks [49]. SemanticRegen successfully
removes all four watermarks tested, as demonstrated by our analyzes (p > 0.05 and
BitAccuracy < 0.75).

e We compare SemanticRegenwith other watermark attackers and observe that
SemanticRegenis the only attacker to eliminate the semantic Tree-Ring watermark.
SemanticRegen has an average p-value of 0.1, while all other watermark attackers
failed to meet the threshold for successful removal (p > 0.05).

e We introduce a metric to evaluate objects in the foreground: the masked structural
similarity index (mSSIM). SemanticRegen significantly outperforms current baseline
methods in different watermarking methods, including invisible and semantic water-
marks. Our method preserves image quality with the most success within salient re-
gions of generated images, as evidenced by mSSIM scores of 0.94, compared to Im-
age Distortion (mSSIM = 0.85) and Rinsedx (mSSIM = 0.86).

e We demonstrate how SemanticRegen leverages a multi-step pipeline to expose
and exploit vulnerabilities in current watermarking techniques. Using a VQA
model for context generation, segmenting key areas of the image and replacing
the background with semantically similar content through LLM-guided inpainting,
SemanticRegenextracts and reconstructs portions of the watermarked image. This
process reveals latent patterns that these watermarking techniques fail to protect,
offering insights into potential attack vectors and relevant underlying assumptions
that could be exploited.’

2 Related Work

Watermarking and its adversarial counterpart, watermark removal, are pivotal areas of
research in protecting intellectual property and ensuring the integrity of Al-generated
content. This section discusses advances in watermarking methods, challenges posed by
adversarial attacks, and the broader implications for Al-generated media.

Watermarking Methods. Watermarking has evolved from traditional techniques, such
as frequency domain embedding, to state-of-the-art methods that take advantage of gen-
erative models for imperceptible yet robust integration. Early approaches embedded wa-
termarks in spatial or frequency domains using the discrete wavelet transform (DWT) or
the discrete cosine transform (DCT) [18, 2]. Although effective for basic transformations,
these methods were vulnerable to adversarial attacks that exploited predictable patterns.

"https://github.com/KrtiT/semanticRegen



Modern watermarking techniques, such as TreeRing [45] and StegaStamp [42], have intro-
duced imperceptible and resilient watermarks. TreeRing watermarks use adaptive encod-
ing mechanisms to maintain the integrity of the watermark against manipulations such as
resizing, cropping, and compression. Similarly, StegaStamp employs neural networks to
embed and extract watermarks with high fidelity, enabling robust ownership verification.

Recent innovations leverage diffusion-based models to embed watermarks in image data
while preserving visual fidelity [47, 25]. These approaches integrate watermarks directly
into the latent spaces of generative models, ensuring resilience against adversarial manip-
ulations. In particular, [20] explores how imperceptible signatures can be embedded in
high-resolution generative content, paving the way for secure watermarking in multimodal
AT systems.

Efforts such as the WAVES benchmark [4] have standardized the evaluation of watermark-
ing techniques. WAVES provides a baseline framework to assess robustness across various
attacks, offering insights into strengths and limitations. Such benchmarks are instrumen-
tal in the development of next-generation watermarking systems.

Watermark Removal Methods. The increasing sophistication of adversarial tech-
niques has highlighted vulnerabilities in watermarking systems. Watermark removal meth-
ods exploit the inherent structure of embedded watermarks to obscure, distort, or eliminate
them. Early approaches relied on pixel-level transformations, but recent advances employ
machine learning techniques to target latent representations of watermarked content.

Regenerative attacks, such as those using Variational Autoencoders (VAEs) [11, 16] and
diffusion models [49], have proven effective in bypassing watermarking schemes. These
methods iteratively refine watermarked images, reconstructing their features while remov-
ing embedded signals. In particular, Zhao et al. [49] demonstrate how diffusion-based
methods can obscure watermarks while maintaining image fidelity, highlighting the need
for continual innovation in watermarking strategies.

Hybrid approaches have also emerged that combine adversarial purification with iterative
refinement techniques such as “rinsing” [4]. These methods sequentially reduce water-
mark detectability by applying regenerative transformations. For example, hybrid meth-
ods leverage both semantic understanding and low-level noise removal to effectively erase
watermarks without compromising image quality [35, 19]. Furthermore, [20] explores ad-
versarial frameworks specifically designed to manipulate the robustness of the watermark,
while [29] introduces adaptive techniques to counter hybrid watermarking schemes.

Despite these advances, challenges persist. Many removal methods require access to train-
ing data or model architecture, limiting their applicability in real-world scenarios. In ad-
dition, adversarial techniques often introduce artifacts or reduce image quality, necessi-
tating further research to balance robustness and fidelity.

Ethical and practical implications. The interplay between watermarking and adver-
sarial removal highlights broader implications for intellectual property protection in the
age of generative Al. As models like Stable Diffusion and DALLE-2 become widely acces-
sible, the need for robust watermarking systems grows [13]. However, the rapid evolution
of adversarial attacks underscores the limitations of existing approaches, creating an on-
going arms race between content creators and adversaries.



Ethical considerations are central to this discourse. Watermarking systems must navigate
complex questions of fair use, attribution, and copyright enforcement. For example, the
removal of watermarks from publicly shared content raises concerns about the misuse of
AT for unauthorized content generation [29]. Similarly, the ability to embed imperceptible
watermarks in training datasets raises questions about consent and transparency [14].

The WAVES benchmark [4] and recent studies such as [20] and [29] emphasize the impor-
tance of interdisciplinary collaboration in addressing these challenges. Legal frameworks,
technical innovations, and policy guidelines must converge to create robust systems that
balance creative freedom with content security.

Limitations and open challenges. While modern watermarking systems have ad-
vanced significantly, they remain vulnerable to adaptive adversarial techniques. Diffusion-
based watermarking, for example, struggles with attacks that exploit shared latent spaces
in generative models [47]. Similarly, hybrid removal methods, while effective, often require
extensive computational resources, limiting their scalability.

Future research should focus on developing adaptive watermarking techniques that can
dynamically respond to adversarial threats. In addition, comprehensive evaluation frame-
works are needed to assess watermarking methods under real-world conditions, including
domain changes, mixed media, and collaborative workflows.

Broader Context. The field of watermarking and watermark removal is at the forefront
of intellectual property protection in the digital age. As generative Al models continue to
evolve, so does the complexity of securing Al-generated content. The interplay between
watermarking and adversarial techniques presents an ongoing challenge, leading to an
escalating arms race between embedding robust watermarks and developing adversarial
methods for their removal. Addressing this issue requires interdisciplinary collaboration
across computer vision, cryptography, and Al ethics to develop standardized benchmarks,
evaluation protocols, and legal frameworks to safeguard digital media.

Recent research has highlighted the need for comprehensive benchmarking tools to assess
the effectiveness and resilience of different watermarking techniques. In particular, the
WAVES benchmark [4] systematically evaluates watermarking methods in multiple adver-
sarial attack scenarios, providing valuable information on the strengths and weaknesses of
existing techniques. Furthermore, [20] introduces advanced watermarking strategies that
integrate deep learning-based feature embeddings, improving robustness against known
attack vectors. On the removal front, emerging studies such as [29] explore the use of
generative adversarial networks (GANs) and diffusion-based models to counter impercep-
tible watermarking strategies. These findings underscore the need for continuous evalua-
tion and adaptation of both watermarking and removal strategies to prevent misuse while
maintaining the integrity of digital content.

Building on these advancements, our work proposes a novel approach to semantic water-
mark removal that addresses critical gaps in existing methods. Using insights from state-
of-the-art watermarking and removal techniques, our aim is to contribute to the broader
effort to develop secure, transparent, and resilient digital content protection mechanisms.



Ultimately, our approach emphasizes the importance of balancing technological innova-
tion with ethical considerations to ensure that watermarking methods remain effective in
preserving copyright and intellectual property rights.

3 Methods

In this section, we describe SemanticRegen, our semantic watermark removal pipeline. As
depicted in Figure 1, the pipeline comprises three main components: (1) the VQA cap-
tioning model; (2) the segmentation model; and (3) the inpainting model. Our automated
pipeline involves an LLM segmentation and inpainting semantic attack. Beginning with a
watermarked image, the process uses a captioning model (BLIP2), conditioned with spe-
cific prompts: (a) identifying prominent objects; (b) determining the background; and (c)
and defining the artistic direction. Artistic direction is defined as the visual style that is
used in the image, e.g., photographic, cartoon, impressionism, etc. The first prompt is used
to segment the image based on the most salient / prominent object. The segmented ob-
ject(s) then serves as input to the repainting. (Since we are taking a subset of pixels due to
the segmentation, it is considered repainting on a subset of the image, that is, inpainting.)
This approach aims to effectively remove the watermark from the image. In Figure 1, we
illustrate the models used to extract semantic information from the image and that serve as
a conditional input for stable diffusion, thus replacing the background of the target image.
When discussing watermark removal, it is often essential to measure how well an attack
maintains the important parts of an image—Ilike the main subject or foreground—while po-
tentially destroying or altering parts of the background. Standard image-quality metrics,
such as the Structural Similarity Index Measure (SSIM), compute overall similarity be-
tween two images but do not specifically distinguish which parts of the image truly matter
for human perception or for watermark embedding. In watermark attacks—particularly
those that use “masks” to remove or distort certain regions—an attacker might intention-
ally ruin non-salient parts of the image (like backgrounds or less noticeable edges) to get rid
of embedded watermarks. In doing so, the attacker may preserve the key objects or “fore-
ground” that define the meaning of the image. If we only look at a global SSIM across the
entire image, it might seem that the image is heavily altered. But if we focus on the most
important regions (foreground objects), they might still look exactly the same. Masked
SSIM (mSSIM) is introduced to better evaluate how much of the important (foreground)
content remains unchanged after an attack that uses masking on non-salient regions.

3.1 VQA Captioning

Visual Question Answering (VQA) is a task at the intersection of computer vision and
natural language processing that enables machines to answer textual queries about an im-
age. This requires models to extract visual features and generate semantically meaningful
responses based on the content of an image [8, 6, 30, 3].

Early VQA models relied on convolutional neural networks (CNNs) to extract image fea-
tures, combined with recurrent neural networks (RNNs) for text processing. However, re-
cent advances leverage transformer-based architectures, which enable deeper multimodal
understanding. BLIP2 [30], for example, uses vision language pre-training on large-scale
datasets, significantly improving accuracy on complex reasoning tasks over previous ap-
proaches.



Structured Prompting for Semantic Understanding. Our method builds on recent
advances in question-driven image captioning [10], where targeted question prompts help
to focus the model on extracting semantically relevant features. Instead of using generic
captions, we design structured prompts to guide BLIP2 toward key information that is
critical to our pipeline.

e Q1: What is the prominent object in this image? Helps to identify the
foreground elements necessary for segmentation.

e Q2: What is the background?
Defines the context and sceme composition for inpainting.

e Q3: What is the artistic direction of the image? Captures style, texture, and
color tone, which aids in reconstruction.

VQA-Guided Watermark Removal. By applying structured VQA, we ensure that
the segmentation and inpainting models receive high-quality semantic information, im-
proving the effectiveness of watermark removal. Previous work has shown that custom
captions increase the accuracy of VQA by focusing on relevant contextual elements [10],
which aligns with our approach of directing the model to extract detailed attributes from
the scene.

Compared to traditional captioning, our structured approach enables:

e Improved segmentation performance, as the separation of the foreground and
the background is explicitly guided.

e Higher fidelity inpainting, where the masked regions are filled with semantically
relevant textures instead of arbitrary pixels.

e Greater resilience against adversarial perturbations, since captioning adapts
to image modifications.

Implementation Details. For all experiments, we use BLIP2 as the base VQA model,
which has been shown to outperform previous models on multimodal benchmarks [30, 3].
We prompt the model using zero-shot inference, ensuring that no dataset-specific fine-
tuning is required. The captions extracted are then summarized using an LLM-based
rewriter (MiniChat-MA) to generate concise, high-quality inpainting prompts.

This VQA-guided strategy is essential in our SemanticRegeneration pipeline by ensuring
that watermark removal is context sensitive, semantically grounded, and visually coherent.

Key Assumptions. Our approach is based on several fundamental assumptions that
ensure the effectiveness of our watermark removal framework.

e Foreground-Background Distinction: The target image contains a distinguish-
able foreground object that is visually separable from the background.

e Accurate Captioning: The captioning model (BLIP2) can provide descriptive and
reliable textual summaries of both the main object and its surroundings.

e Precise Segmentation: The segmentation model (LangSAM) is capable of accu-
rately isolating the foreground object from the background with minimal errors.



e Semantically Coherent Inpainting: The inpainting model (Stable Diffusion) can
reconstruct the background in a semantically meaningful way while preserving the
integrity of the foreground object.

These assumptions ensure that our method operates under typical conditions. However,
in cases where segmentation fails or the inpainting model introduces artifacts, manual
refinement or additional post-processing may be required to achieve optimal results.

3.2 Segmentation Model

Image segmentation is a fundamental task in computer vision that involves partitioning an
image into distinct regions based on object boundaries [26, 15]. The goal of segmentation
is to delineate different objects or areas of interest within an image, allowing downstream
tasks such as object detection, image synthesis, and scene understanding. Traditional
segmentation techniques relied on hand-crafted features and clustering methods, such as
thresholding, edge detection, and watershed algorithms. However, modern deep learning-
based approaches leverage convolutional neural networks (CNNs) and transformer-based
architectures trained on large-scale datasets to achieve state-of-the-art performance in
complex image segmentation tasks.

One of the recent breakthroughs in segmentation models is Meta’s Segment Anything
Model (SAM), which introduced a foundation model approach to segmentation [26]. SAM
is designed to generalize across diverse image types without requiring additional fine-
tuning, making it effective for a wide range of real-world applications. LangSAM, an
open source adaptation of SAM, retains its zero-shot segmentation capability, allowing it
to process images and generate segmentation masks based on text or point-based queries.
Using LangSAM, we ensure that our approach remains flexible and generalizes well across
different types of images, reducing dependence on domain-specific segmentation models.

Integration with Visual Question Answering (VQA). In our pipeline, we use
the first question (Q1) from the VQA captioning model’s output, which asks: ”What is
the prominent object in this image?” This structured approach ensures that the most
salient entity within the image is correctly identified before proceeding with segmenta-
tion. We then use this response as a prompt input to LangSAM [32], an open source
implementation of Segment Anything [26], to extract the most important objects in the
scene. The BLIP2-generated caption describing the primary object serves as input text
for LangSAM, which then returns the segmentation masks of the detected objects. This
allows us to segment prominent objects based on high-level semantics instead of relying
on pixel-based heuristics.

Mask Thresholding for Effective Watermark Removal. To ensure effective re-
moval of watermarks, we control the proportion of the image covered by the segmentation
masks. This is particularly important in cases where:

e The VQA model identifies multiple prominent objects in the image.
e A single object appears multiple times, leading to excessive masking.

To handle these scenarios, we implement a threshold-based iterative strategy, where we
dynamically add to the mask until either:



1. All prominent object masks are included.
2. The total mask size exceeds the predefined threshold.

This approach ensures sufficient coverage for watermark removal while preventing over-
masking, which could distort important visual features.

Edge Cases and Refinements. The effectiveness of background painting depends
heavily on BLIP2 captioning and LangSAM segmentation models, as they guide the re-
construction of watermarked areas. To improve robustness, we address the following cases:

e Segmentation failure: If LangSAM does not produce a clear background mask,
we rely on an artistic direction prompt to guide the inpainting.

¢ Excessive masking: If the existing mask exceeds the defined threshold, we adjust
our inpainting strategy to preserve the original pixels while ensuring effective removal
of watermarks. In this case, the prominent objects themselves may be designated as
the background mask while retaining the rest of the image structure.

Assumptions. Our segmentation model operates under the following key assumptions:

e Foreground Object Identifiability: The primary object of interest is visually
distinct and can be effectively identified using natural language prompts.

e Background Reconstruction Feasibility: The background can be reconstructed
meaningfully without distorting the visual integrity of the original object.

e Segmentation Accuracy: The generated mask is precise enough to avoid occlud-
ing important details while ensuring effective background replacement.

Impact on Inpainting. The segmentation mask obtained from LangSAM is inverted
and passed to the inpainting model, ensuring that the salient object remains unchanged,
while the background is regenerated to remove any traces of embedded watermarks. Em-
pirical validation comparing random masks vs. semantic-based VQA masks reinforces our
approach, demonstrating that semantic segmentation significantly improves watermark re-
moval while maintaining high visual fidelity.

3.3 Summarization and Repainting Model

After the VQA captioning and segmentation of the masks in the image, we use an LLM
(MiniChat-MA) [48], which is based on LLAMA2 [44], to summarize the answers given
from the VQA captioning model. This is used as an input prompt to the inpainting model,
which is a Stable Diffusion Inpainting model [38]. We use Stable Diffusion-v2 with 50
inference steps. The summarization prompt used for MiniChat-MA is as follows:

e Prompt = “Given the following sentences that describe an image, write in one sen-
tence what the background setting is and in what art style.” 4 [Summary of Cap-
tions from MiniChat-MA].
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Following prompt generation, we condition the target image with the inverted masks ob-
tained from the segmentation model, leading to the generation of a new image. This im-
age preserves the prominent objects from the target image, while replacing the surround-
ing background with semantically similar content sourced from the original image.

3.4 Masked Structural Similarity Index (mSSIM)

We introduce a new metric to evaluate objects in the foreground: the masked Structural
Similarity Index (mSSIM). See Equation 1 below. mSSIM measures the similarity between
watermarked images before and after each attack. For each prompt, we compute an
image segmentation mask, M, which delineates the background from the foreground. We
computed the mask for each prompt once and reused this mask to compare images before
and after the attack. To compute mSSIM, we take an image before and after an attack,
apply the background mask so that only foreground objects remain, and then compute
the SSIM between the masked images. The metric can be described as:

mSSIM = SSIM(M * Ximga M Xattacked)7 (1)

where M is a binary segmentation mask and Xjmng and Xgagtacked are the real-valued
images before and after attack. The dimensions of the mask and both images are the
same, where M € {0, 1}{3:256,256} Ximg € R{3:256.256}  and Xaptacked € R13:296:256}

4 Empirical Results

In this section, we demonstrate the performance of SemanticRegen, evaluate it on the
semantic Tree-Ring watermarker [45], and compare it to the invisible StegaStamp water-
marker [42], the hidden StableSig watermarker [22], and invisible watermarks employing

No Watermark

TreeRing

Semantic
Attack

Segmentation
Mask

Figure 2: Examples before and after watermarking with Tree Ring, and SemanticRegen.
Segmentation masks used during the attack are shown in the bottom row.
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the discrete wavelet transform and the discrete cosine transform (DWT / DCT) [2, 49].
We evaluated it on the TreeRing watermarker because these outputs are imperceptible
to the human eye, making them ideal for embedding within images, without detracting
from visual content, and because they are resilient to common image manipulations such
as cropping, resizing, and compression [45].

4.1 Benchmarking Watermark Removal

Our approach demonstrated efficacy in removing Tree Ring Watermarks, supported by p-
values exceeding 0.05, which signify effective watermark elimination. SemanticRegen was
able to remove three other types of watermarks, as measured by Bit Accuracy, indicating
successful removal while preserving the fidelity of the image. We showcase mSSIM for cases
where attackers employing masks intentionally destroy non-salient parts of the image.

See Figure 2; and note that the segmentation masks of SemanticRegenare displayed in
the bottom row. This visualization illustrates how our method effectively identifies and
segments key regions within an image to facilitate the removal of targeted watermarks.
Segmentation masks highlight the structured approach of SemanticRegento isolate pri-
mary objects while minimizing alterations to non-watermarked areas.

Our results indicate that SemanticRegen successfully removes the TreeRing watermark,
whereas other attack methods do not achieve comparable performance. Table 1 presents a
quantitative comparison of the effectiveness of watermark removal, reporting the average
p values for different attack methods. A threshold of p > 0.05 indicates a successful
removal and SemanticRegenachieves an average p-value of 0.10, outperforming alternative

Table 1: Comparison of Watermark Removal metrics. p-values are used to assess Tree
Ring Watermarks, with a threshold of p > 0.05 indicating successful removal. Bold values
highlight the top-performing metrics within each column.

Attack Method TreeRing StegaStamp StableSig Invisible
(Ave p-value) (Ave Bit Acc) (Ave Bit Acc) (Ave Bit Acc)

Distortion 3.11 x 107° 0.68 0.40 0.50
Diff WMAttacker 1.30 x 1073 0.91 0.50 0.50
VAEWMAttacker 2.00 x 1073 0.99 0.47 0.50
Rinse4x-Diff10 1.86 x 1073 0.91 0.48 0.50
Rinse4x-Diff20 3.01 x 1073 0.84 0.44 0.50
Rinse4x-Diff30 3.94 x 1073 0.78 0.42 0.50
Rinse4x-Diff40 8.86 x 1073 0.76 0.46 0.50
Rinse4x-Diff50 9.35 x 1073 0.72 0.44 0.50
Rinse4x-Diff60 0.02 0.69 0.47 0.50
Surrogate 0.01 0.99 0.96 -

Semantic Attack 0.10 0.70 0.49 0.51
# of Prompts 1000 1000 1000 1000
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methods that do not meet this criterion. These results demonstrate that SemanticRegen
is particularly effective against semantic watermarks, whereas other approaches struggle
to eliminate embedded patterns without residual artifacts.

Table 2 evaluates the quality of the post-attack image using the masked structural simi-
larity index (mSSIM), evaluating the preservation of the essential image content while re-
moving the watermark. The results show that SemanticRegenachieves an mSSIM score of
0.95, indicating minimal distortion and strong preservation of fidelity. In contrast, base-
line attacks such as Image Distortion and Rinse4x yield lower mSSIM scores, suggesting
a greater loss of structural information and increased perceptual degradation.

Figure 3 provides a qualitative comparison of images before and after undergoing differ-
ent attack methods. The results align with the numerical evaluations, demonstrating that
SemanticRegen consistently produces high-quality images with reduced watermark arti-
facts. Unlike Image Distortion and Rinse4x, which introduce noticeable distortions or
structural inconsistencies, SemanticRegen reconstructs the background in a semantically
consistent manner while preserving the original foreground content.

Taken together, the results of Tables 1 and 2 and Figures 2 and 3 provide a comprehen-
sive evaluation of the performance of SemanticRegenin watermark removal. Table 1 high-
lights the performance of different attacks on various types of watermarks. Our method
achieves the highest SSIM (0.94 +) in all cases, significantly outperforming distortion-
based baselines. Table 2 analyzes the reductions in bit accuracy in different attacks, re-

Table 2: Comparison of Image Quality metrics after watermark removal. The table eval-
uates the masked Structural Similarity Index Measure (mSSIM) for each image, focusing
on the retained portions after the Semantic Regenerative Attack. Bold values indicate the
best score in each column, highlighting the effectiveness of our approach in preserving im-
age quality within masked regions.

Attack Method TreeRing StegaStamp StableSig Invisible
(Ave mSSIM) (Ave mSSIM) (Ave mSSIM) (Ave mSSIM)

Distortion 0.84 0.85 0.86 0.83
Diff WM Attacker 0.92 0.91 0.92 0.91
VAEWM Attacker 0.92 0.92 0.93 0.91
Rinse4x-Diff10 0.89 0.90 0.90 0.88
Rinse4x-Diff20 0.87 0.87 0.88 0.86
Rinse4x-Diff30 0.84 0.85 0.85 0.83
Rinse4x-Diff40 0.87 0.87 0.88 0.86
Rinse4x-Diff50 0.85 0.85 0.86 0.84
Rinse4x-Diff60 0.86 0.86 0.87 0.85
Surrogate 0.92 0.93 0.92 -

Semantic Attack 0.95 0.94 0.94 0.94
# of Prompts 1000 1000 1000 1000
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Figure 3: Comparison of images displaying different watermarks before and after under-
going our attack methods. SemanticRegen produces significantly higher quality images
compared to Image Distortion and Rinse4x. For detailed metrics, see Table 1.

vealing that our approach effectively disrupts the retrieval of watermarks. Figure 3 illus-
trates these findings, showing that our method preserves the integrity of the object while
removing embedded watermarks.

4.2 Benchmarking Image Quality

Evaluation of our image quality metrics after the attack revealed promising outcomes in
all watermarking techniques tested. Semantic Regenerative Attacks on Tree-Ring, Ste-
gaStamp, Stable Signature, and Invisible (DWT/DCT) watermarks resulted in minimal
distortion of image content, as evidenced by low MSE values and high SSIM and PSNR
scores. For each image, we computed the segmentation mask (background mask) once
and reused it for all subsequent comparisons across different watermark removal methods.
Despite a slightly lower Bit Accuracy for the StegaStamp watermark, compared to Image
Distortion and Rinse4x, our approach incorporates repainting (mSSIM) and classifier-free
methods to analyze intrinsic image properties, ensuring effectiveness in multiple water-
marking scenarios while preserving image integrity. Our method preserves image quality
within salient regions of generated images, as evidenced by mSSIM scores of 0.94, com-
pared to Image Distortion (mSSIM = 0.85) and Rinsedx (mSSIM = 0.86). These find-
ings underscore the effectiveness of our approach in preserving image quality, while re-
moving embedded watermarks, ensuring the integrity and visual consistency of the ma-
nipulated images. See Table 2 and Table 3.

Gaussian blur serves as our image distortion technique within our SemanticRegen pipeline.
By applying Gaussian blur to images, we effectively introduce controlled levels of noise,
thereby obscuring sensitive information while preserving overall image structure and se-
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Table 3: Image quality comparisons after SemanticRegen. Metrics evaluated include
Mean-Squared Error (MSE), Structural Similarity Index Measure (SSIM), and Peak
Signal-to-Noise Ratio (PSNR) for each watermark type. Scores are computed across 1000
prompts, both before and after masking. Lower MSE and higher SSIM/PSNR scores for
the masked images confirm preservation of essential original content while effectively re-
moving watermarks.

Watermark Type Metric Image (Original) Image (Masked)
MSE 0.06 9.42 x 10~*
Tree Ring SSIM 0.46 0.95
PSNR 12.83 31.71
MSE 0.07 1.18 x 1073
StegaStamp SSIM 0.41 0.94
PSNR 12.41 30.41
MSE 0.06 9.65 x 107*
Stable Signature SSIM 0.41 0.94
PSNR 12.91 31.50
MSE 0.07 1.07 x 1073
Invisible (DWT/DCT) SSIM 0.45 0.94
PSNR 12.58 31.08

mantics. This distortion is essential for defending against adversarial attacks aimed at
compromising Al systems. Using a Gaussian blur within the SemanticRegenframework
increases the resilience of the watermark.

4.3 Comparison with Baseline and State-of-the-Art Techniques

Our SemanticRegen approach outperformed baseline watermark attacks, including Im-
age Distortions, demonstrating effectiveness in watermark removal while minimizing im-
age distortion. Furthermore, it exhibited competitive performance against state-of-the-art
techniques such as Dif WM Attacker, VAEWMAttacker, and Rinsedx, highlighting its ef-
ficacy in removing watermarks while ensuring the consistency of original content. See Ta-
ble 1, Table 2, and Figure 4 for details. In Table 1, we assess Bit Accuracy for alternative
watermarking methods, with values < 24/32 that indicate successful removal. For Tree
Ring Watermarks, we evaluate p-values where p > 0.05 indicates successful removal. In
addition, we assess the accuracy of the bit for other watermarking methods, where a value
< 24/32 indicates successful removal. In Table 2, we compare image quality metrics af-
ter watermark removal. It presents a detailed comparison of the effectiveness of different
attack methods. In particular, SemanticRegenachieves a significantly lower bit accuracy
rate (j0.75) while maintaining high perceptual quality, as evidenced by SSIM scores above
0.94. These results indicate that our method successfully removes watermarks while pre-
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Figure 4: Performance versus image quality comparison. Points further to the right indi-
cate better (masked) image quality. These results demonstrate that SemanticRegen (pur-
ple) effectively preserves vital parts of the image while disrupting watermark components
(contrast with other colors). This balance allows our framework to outperform other at-
tackers in terms of image quality, while still maintaining its ability to disrupt watermark
integrity. In contrast, other attackers (other colors) exhibit diminished image quality, even
when excelling in some performance metrics. For more details, refer to Section 4.3.

serving key visual features. Our method is benchmarked against Image Distortion and
several other baseline watermark attacks. In particular, our Semantic Regenerative At-
tack effectively removes all watermarks, outperforming other methods on TreeRing.

5 Discussion

Protecting copyright and intellectual property in the digital age is increasingly com-
plex, especially as Al-generated content becomes more widespread in various industries
[13, 41]. Advanced watermarking techniques have been crucial in the security of digital
assets and to ensure creators retain control over their work [40]. However, the results of
SemanticRegenreveal that even the most sophisticated watermarking methods, such as
Tree-Ring [45], StegaStamp [42], and Stable Signature [22], are vulnerable to targeted at-
tacks that exploit specific image characteristics, raising concerns about the effectiveness
of current content protection strategies [27].
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Our findings show that while these watermarking methods provide a degree of security,
they are not immune to attacks that selectively manipulate image components without
compromising overall quality. For example, SemanticRegenoutperforms other methods in
the Tree-Ring watermark, with an average p-value of 0.1, surpassing the success threshold
of p > 0.05, and ranking third in Bit Accuracy (0.70) for StegaStamp, while maintaining
high image quality as evidenced by a masked Structural Similarity Index (mSSIM) score
of 0.94. Table 1 highlights the performance of different attacks on various types of water-
marks. Our method achieves the highest SSIM (0.94 +) in all cases, significantly outper-
forming distortion-based baselines. Table 2 further analyzes the bit accuracy reductions
in different attacks, revealing that our approach effectively disrupts the retrieval of water-
marks. Figure 3 visually illustrates these findings, showing that our method preserves the
integrity of the object while removing the embedded watermarks.

Our results also underscore the ongoing race between the development of watermarking
techniques and the methods used to bypass them, highlighting the need for continuous in-
novation in the protection of digital content [33, 4, 50, 34]. The ability of SemanticRegento
remove watermarks while preserving the semantic integrity of images presents a challenge
to current digital rights management, as well as an opportunity to develop more robust
systems that better protect copyright and intellectual property against increasingly so-
phisticated adversarial tactics [36, 14].

The effectiveness of SemanticRegen in removing state-of-the-art watermarks under spe-
cific conditions raises concerns about potential misuse for reverse engineering, including
the removal of necessary watermarks or the addition of harmful ones [50]. Recognizing the
sequential nature of our pipeline, we identify potential instabilities, particularly in seg-
mentation, that can compromise image quality or watermark removal efficacy. To address
this, we propose proactive detection of issues by quantifying the number of pixels slated
for removal and comparing it against a user-defined threshold, empowering users to bal-
ance retaining original content with effective watermark removal.

Robustness, Security and Governance. Our research highlights the urgent need
for robust protection of intellectual property and copyright as generative Al continues to
evolve. Artists are increasingly concerned about how Al can reconstruct and regenerate
images from the Internet, leading many to watermark their work through visible and in-
visible means [5]. However, current watermarking techniques are not foolproof; adver-
sarial methods, such as those demonstrated in our experiments, can remove watermarks
while leaving minimal residues on the image. We show that critical portions of an image
that contain the essence of the original work can still be extracted and manipulated, even
after watermark removal. This is a significant attack vector to consider because altering
the essence of the work, such as changing the background of the image, still constitutes a
violation of fair use [7]. Given the prevalence of open source models, it is crucial to de-
velop defenses against automated image regeneration that remove copyright protections,
which may be considered copyright circumvention [17]. Our findings underscore the need
for the advancement of watermarking techniques to better protect intellectual property in
this rapidly advancing field. Our work opens the door to a discussion around the policies
and regulations around the development and deployment of Al models. Our work also
provides a novel perspective on the broader challenges of Al alignment, particularly in en-
suring Al systems are robust and secure in adversarial environments.
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Conclusion. SemanticRegen highlights the need for more research in developing im-
proved watermarking methods to prevent potential misuse, such as removing invisible wa-
termarks from copyrighted images or generating data sets for training models to evade wa-
termark detection, thus avoiding early copyright detection [50]. Our method is based on
previous research using LLMs for synthetic dataset generation and image diffusion models
for robust model training [21, 25]. By conditioning the target image with inverted masks
from the segmentation model, we generate a new image. Future directions should priori-
tize the development of advanced watermarking techniques that are resistant to sophisti-
cated adversarial attacks. Comprehensive evaluation frameworks like WAVES are crucial
for systematically assessing watermarking algorithms’ robustness against various attack
scenarios, guiding the development of resilient systems.
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