
ar
X

iv
:2

50
5.

08
11

4v
1

 [
cs

.C
R

]
 1

2
M

ay
 2

02
5

Valida ISA Spec, version 1.0
A zk-Optimized Instruction Set Architecture

Morgan Thomas1, Mamy Ratsimbazafy1, Marcin Bugaj1, Lewis Revill1,
Carlo Modica1, Sebastian Schmidt1, Ventali Tan1,
Daniel Lubarov 〈daniel.l@polygon.technology〉,

Max Gillett〈max.gillett@gmail.com〉, Wei Dai 〈me@wdai.us〉

1 Lita, global
{morgan,mamy,marcin,lewis,carlo,sebastian,ventali}@lita.foundation

June 9, 2025

Abstract

The Valida instruction set architecture is designed for implementation in zkVMs to optimize for fast,
efficient execution proving. This specification intends to guide implementors of zkVMs and compiler
toolchains for Valida. It provides an unambiguous definition of the semantics of Valida programs and
may be used as a starting point for formalization efforts.

Contents

1 Motivation 1
1.1 Why Valida is efficient for succinct proofs . 2

2 Scope 3

3 Notation 7

4 Outline 9

5 Program, state model, initial state, and result function definitions 10

6 Preliminaries for transition function definition 14

7 Transition function definition 17

1 Motivation

Succinct proofs of execution (SPEs) are a way of implementing verifiable computation which balances
efficiency with ease of implementation. [1] SPEs prove the result of executing a program, without revealing
the exact input or requiring the verifier to re-run the computation. Verifiable computation using SPEs is
important for ensuring the integrity of blockchain protocols. For example, SPEs are involved in the designs
of ZK rollups [8, 3], but also increasingly in the designs of optimistic rollups, with the rise of ZK fraud
proofs [5, 11].

1

https://arxiv.org/abs/2505.08114v1

Succinct proofs of complex facts are challenging to create due to their resource-intensive nature and
the complexity of the algorithms for making them. The motivation for SPEs is to simplify the process
of creating succinct proofs. Given the ability to create SPEs for programs running on a virtual machine,
usually called a zkVM,1 it reduces the problem of creating succinct proofs to the problem of creating
programs to run on the zkVM. The need to create succinct proofs of execution (SPEs) gives rise to challenges
and opportunities in implementing programming language toolchains.

The challenge with applying zkVM implementations, traditionally, has been that creating the proofs of
execution is computationally intensive. The unique nature of succinct proofs gives rise to unique oppor-
tunities to optimize the execution of programs in the zkVM environments. The zkVM environment itself
can be optimized, but so can the programming language toolchains used to target it, and the instruction
set architecture which the zkVM is designed to run.

Since the zkVM execution environment is substantially different from a hardware execution environ-
ment, a different cost model applies. This means that optimal code generation strategies and instruction
set architectures will be different for a zkVM execution environment as compared to a hardware execu-
tion environment. These observations led to various attempts to make ISAs and programming language
toolchains which are optimized for making SPEs. These include Cairo [9], Leo [2], and Valida [7, 4].

Lita has been developing a Valida zkVM and associated compiler toolchain since 2023. The Valida
compiler toolchain supports compiling Rust, C, WASM, and LLVM IR to Valida machine code. The
research, testing, and user feedback which Lita has performed and received during that time indicate that
Valida is an excellent choice of ISA for fast and efficient succinct execution proving. [10] Lita’s research has
also indicated that some changes to the Valida ISA as specified in [4] are not only beneficial for performance,
but also needed for functional completeness of the execution environment.

This spec reflects all of the changes to the basic Valida ISA made by Lita. The reason for creating and
publishing this spec is to support efforts to implement Valida and compiler toolchains for Valida. A precise
understanding of Valida’s semantics is needed to ensure correctness of zkVMs and compiler toolchains
based on Valida. This spec therefore provides such a rigorous definition of Valida’s semantics, in a form
which is sufficient as a starting point for formalization.

1.1 Why Valida is efficient for succinct proofs

Why build a zkVM based on Valida, rather than a more established standard such as RISC-V? (What
follows in this section is re-printed with light editing from [10].)

For purposes of efficiently making succinct proofs of execution, Valida is a better starting point than
RISC-V. The Valida ISA was designed specifically for making SPEs. The main difference is that RISC-V
has a bank of 31 general-purpose registers, whereas Valida has no general-purpose registers and instead,
most Valida opcodes directly address stack operands held in RAM. As a result, Valida programs do not
need instructions to deal with register spilling or saving and restoring register values at function call
boundaries. This allows compilers to generate Valida code which in many cases executes fewer instructions
than would be needed in the case of RISC-V. Executing fewer instructions tends to correlate with more
efficient proving.

In a CPU, a register is a memory location that is located relatively close to the control unit and
arithmetic logic unit (ALU), offering relatively fast read-write latency. A register holds a relatively small
amount of data: typically one word, a small number of words, or as little as one bit. A general-purpose
register is typically used for holding inputs and outputs of arithmetic and logical operations.

Registers are the lowest-latency form of volatile memory, with the least storage capacity. The next
lowest-latency form of volatile memory is L1 cache, followed by L2 cache, etc., and then RAM. As a rule,

1The term “zkVM” as commonly applied is often a misnomer in that many zkVM projects do not actually attempt to
enforce the zero-knowledge property which is the namesake of zkVM, short for “zero-knowledge virtual machine.”

2

lower latency implies less storage capacity. The fact that information travels no faster than the speed of
light within computer hardware explains this. This is known as the principle of memory locality: memory
which is closer to the point of processing is faster to access.

The principle of memory locality has a very pronounced effect on the performance of code running
on hardware, since memory access latency is often much higher than processing latency. In the context
of SNARK proving, the principle of memory locality does not apply in the same way. There is still a
general tendency that accessing smaller memories has less cost, but this is less pronounced than in the
case of CPUs. SNARKs work with immutable, timeless mathematical relations, whereas hardware works
with chains of cause and effect. Since information does not travel through space and time in the relations
of SNARK proofs, there is no principle of memory locality for SNARKs in the physical sense having to
do with the speed of information travel. In SNARK proving, there is a general tendency that updating
smaller memories can be done by committing to less information, and this can make the costs of accessing
smaller memories less.

In common with all modern CPU architectures, the architecture of RISC-V uses general-purpose regis-
ters to store inputs and outputs of logical and arithmetic operations. This results in a need to move data
between RAM and registers, particularly at function call boundaries, where the contents of registers must
be saved and restored by the caller and/or the callee (according to the calling convention). Compared to
Valida, code generation for RISC-V will tend to emit more opcodes that deal with loading and storing
data.

The use of general-purpose registers has a cost in terms of complexity of generated code. In the context
of a CPU architecture, general-purpose registers have a benefit which outweighs the cost. On a typical
program, the processor runs much faster than it would if it did not have general-purpose registers. On the
other hand, in SNARK proving, there is not a benefit that outweighs the cost for having general-purpose
registers. As Lita, we believe that this is a major reason why according to Lita’s testing [6] and the feedback
Lita receives from users, Valida offers faster proving compared to zkVMs using RISC-V.

2 Scope

This document specifies the basic Valida instruction set architecture (ISA). This is the ISA supported by
the default machine in Lita’s implementation of Valida.

Valida is a Harvard architecture, with three separate address spaces holding the program code, the
program data, and the RAM. The program code address space is executable, but not readable or writable.
The program data address space is not executable, readable, or writable, and its values are simply initialized
into RAM prior to program startup. The RAM address space is readable and writable, but not executable.

Valida is a 32-bit, little endian architecture. It has two special purpose registers: the frame pointer
(FP) and the program counter (PC). Most opcodes directly address stack operands, specified by a fixed
offset from FP. This is in lieu of having general purpose registers. All interaction of a Valida program with
its environment is via a sequentially readable input tape and a sequentially writable output tape.

Valida is a modular ISA. Each chip in Valida introduces zero or more opcodes. By specifying a set of
chips, one gets a Valida ISA. This document covers the basic Valida ISA, which is the ISA given by the
set of chips in Figure 1, and enumerated below:

1. The CPU chip provides core opcodes for memory access, flow control, loading constants, I/O, and
reading special-purpose registers.

2. The Program chip provides no opcodes, but stores the program code. The program chip and the
static data chip together store the program.

3

CPU Program Memory

StaticData OutputRange

Core Chips

Add32 Sub32 Mul32

Div32 Shift32 Lt32

Bitwise32

32-bit ALU chips

Com32

Figure 1: The chips in the basic Valida machine.

4

Op A B C Description
Store32 A B Store the word at fp + B to the word-aligned address at fp + A.
StoreU8 A B Store the LSB of the byte-valued word at fp + B to the address at fp + A.
Load32 A B Store to fp + A the word at the word-aligned address at fp + B.
LoadU8 A B Store to the word at fp + A the unsigned byte at the address at fp + B.
LoadS8 A B Store to the word at fp + A the sign-extended byte at the address at fp + B.
Jal A B C Set pc to B, store pc to fp + A, and add C to fp.
Jalv A B C Set pc to the word at fp + B, store fp at fp + A, and set fp to the word at fp + A.
Beq A B C Set pc to A if the word at fp + B is the word at fp + C.
Beqi A B C Set pc to A if the word at fp + B is C.
Bne A B C Set pc to A if the word at fp + B is not the word at fp + C.
Bnei A B C Set pc to A if the word at fp + B is not C.
Imm32 A B Set the word at fp + A to B.
ReadAdvice A Set the word at fp + A to the next byte of the input.
Stop Halt the program successfully.
LoadFp A B Store fp + B to the word at fp + A.
Write A Append the LSB of the word at fp + A to the output.
Add A B C Set the word at fp + A to the word at fp + B plus the word at fp + C.
Addi A B C Set the word at fp + A to the the word at fp + B plus C.
Addc A B C Set the word at fp + A to the sum carry of the words at fp + B and fp + C.
Addci A B C Set the word at fp + A to the sum carry of the word at fp + B and C.
Sub A B C Set the word at fp + A to the word at fp + B minus the word at fp + C.
Subi A B C Set the word at fp + A to the the word at fp + B minus C.
Isub A B C Set the word at fp + A to B minus the word at fp + C.
Subb A B C Set the word at fp + A to the borrow of the words at fp + B minus fp + C.
Subbi A B C Set the word at fp + A to the borrow of the word at fp + B minus C.
Isubb A B C Set the word at fp + A to the borrow of B minus the word at fp + C.
Mul A B C Set the word at fp + A to the product of the words at fp + B and fp + C.
Muli A B C Set the word at fp + A to the product LSBs of the word at fp + B and C.
Mulhs A B C Store the signed product MSBs of the words at fp + B and fp + C at fp + A.
Mulhsi A B C Store the signed product MSBs of the word at fp + B and C at fp + A.
Mulhu A B C Store the unsigned product MSBs of the words at fp + B and fp + C at fp + A.
Mulhui A B C Store the unsigned product MSBs of the word at fp + B and C at fp + A.
Div A B C Set the word at fp + A to the quotient of the words at fp + B over fp + C.
Divi A B C Set the word at fp + A to the quotient of the word at fp + B over C.
Sdiv A B C Set the word at fp + A to the signed quotient of the words at fp + B over fp + C.
Sdivi A B C Set the word at fp + A to the signed quotient of the word at fp + B over C.
Shl A B C Set the word at fp + A to the word at fp + B bit-shift left the word at fp + C.
Shli A B C Set the word at fp + A to the word at fp + B bit-shift left C.
Ishl A B C Set the word at fp + A to B bit-shift left the word at fp + C.
Shr A B C Set the word at fp + A to the word at fp + B bit-shift right the word at fp + C.
Shri A B C Set the word at fp + A to the word at fp + B bit-shift right C.
Ishr A B C Set the word at fp + A to B bit-shift right the word at fp + C.
Sra A B C Set the word at fp + A to the words at fp + B arithmetic shift right fp + C.
Srai A B C Set the word at fp + A to the word at fp + B arithmetic shift right C.
Isra A B C Set the word at fp + A to B arithmetic shift right C the word at fp + C.

Figure 2: The Valida opcodes (1 of 2).

5

Op A B C Description
Lt A B C Set the word at fp + A to say if the word at fp + B is less than the word at fp + C.
Lti A B C Set the word at fp + A to say if the word at fp + B is less than C.
Ilt A B C Set the word at fp + A to say if the word at fp + B is less than C.
Lte A B C Set the word at fp + A to say if the word at fp + C is greater than the word at fp + B.
Ltei A B C Set the word at fp + A to say if C is greater than the word at fp + B.
Ilte A B C Set the word at fp + A to say if the word at fp + C is greater than B.
Slt A B C Set the word at fp + A to say if the word at fp + B is less than the word at fp + C.

(Signed variant.)
Slti A B C Set the word at fp + A to say if the word at fp + B is less than C. (Signed variant.)
Islt A B C Set the word at fp + A to say if B is less than the word at fp + C. (Signed variant.)
Slte A B C Set the word at fp + A to say if the word at fp + C is greater than the word at fp + B.

(Signed variant.)
Sltei A B C Set the word at fp + A to say if C is greater than the word at fp + B. (Signed variant.)
Eq A B C Set the word at fp + A to say if the word at fp + B is the word at fp + C.
Eqi A B C Set the word at fp + A to say if the word at fp + B is C.
Ne A B C Set the word at fp + A to say if the word at fp + B is not the word at fp + C.
Nei A B C Set the word at fp + A to say if the word at fp + B is not C.
And A B C Set the word at fp + A to the bitwise conjunction of the words at fp + B and fp + C.
Andi A B C Set the word at fp + A to the bitwise conjunction of the word at fp + B and C.
Or A B C Set the word at fp + A to the inclusive bit disjunction of the words at fp + B and fp + C.
Ori A B C Set the word at fp + A to the inclusive bi tdisjunction of the word at fp + B and C.
Xor A B C Set the word at fp + A to the exclusive bit disjunction of the words at fp + B and fp + C.
Xori A B C Set the word at fp + A to the exclusive bit disjunction of the word at fp + B and C.

Figure 3: The Valida opcodes (2 of 2).

6

3. The StaticData chip provides no opcodes, but stores the program data, i.e., the initial static data
values that are loaded into RAM prior to execution.

4. The Memory chip provides no opcodes, but stores the RAM access trace, which specifies all of the
RAM reads and writes, including their results.

5. The Range chip provides no opcodes, but is used by other chips to check that values are in the
range 0 to 255, inclusive.

6. The Output chip provides no opcodes, but stores the output trace, which specifies all of the data
written by the program to the output tape.

7. The Add32 chip provides opcodes for 32-bit addition.

8. The Sub32 chip provides opcodes for 32-bit subtraction.

9. The Mul32 chip provides opcodes for 32-bit multiplication.

10. The Div32 chip provides opcodes for 32-bit division.

11. The Shift32 chip provides opcodes for 32-bit arithmetic shifts and logical shifts.

12. The Lt32 chip provides opcodes for 32-bit inequality comparisons.

13. The Com32 chip provides opcodes for 32-bit equality comparisons.

3 Notation

This spec uses the following standard mathematical notations.
Sets are unordered collections of objects. Sets are extensional, i.e., two sets are equal if and only if they

have all the same elements. x ∈ S means that S is a set and x is an element of S.
∅ denotes the empty set. Finite sets can be denoted by enumerating their elements in between curly

braces, e.g.: {0, 1, 2}. Set builder notation can be used to denote a subset of a set, the subset of all elements
satisyfing a condition. For example, the set

{x ∈ {0, 1, 2, 3} | x < 1} (1)

is pronounced “the set of x such that x is in {0, 1, 2, 3} and x is less than one,” and is equal to {0}.
Although it is not always well defined, set builder notation can also be used without specifying a set
that the set being built is a subset of, but just specifying the condition that elements must satisfy, as in
Equation 2 below.

The Cartesian product of sets A and B is denoted A×B. A Cartesian product is a set of ordered pairs:

A × B = {(a, b) | a ∈ A and b ∈ B}. (2)

A function f : A → B is a subset of the Cartesian product A × B of sets A and B, f ⊆ A × B, such
that for every a ∈ A, there is a unique b ∈ B such that (a, b) ∈ f . If f : A → B is a function, and x ∈ A,
then f(x) denotes the unique b ∈ B such that (x, b) ∈ f .

The inverse of a function f : A → B, or more generally a set f ⊆ A × B, is denoted f−1 and is defined
as the set:

f−1 := {(b, a) ∈ B × A | (a, b) ∈ f}. (3)

7

The inverse f−1 is a subset of B ×A. f−1 is sometimes not a function. In the case where f−1 is a function,
f is called a bijection. A bijection is also called an isomorphism of sets.

For any given f : A × B and y ∈ B, if there is a unique x ∈ A such that f(x) = y, then f−1(y)
denotes that x. If there not a unique x ∈ B such that f(x) = y, then the notation f−1(y) does not have a
denotation.

The generic projection functions π1 : A × B → A and π2 : A × B → B are defined as follows.

π1((a, b)) := a. (4)

π2((a, b)) := b. (5)
The Cartesian product and its projection functions can be extended to triples, quadruples, and so forth,

by for example, by defining A × B × C as (A × B) × C.
The union of sets A and B is denoted A ∪ B:

A ∪ B := {x | x ∈ A or x ∈ B}. (6)

The difference of sets A and B is denoted A \ B:

A \ B := {x ∈ A | x /∈ B}. (7)

Natural numbers (i.e., non-negative integers) are represented as von Neumann ordinals, i.e., as the
set of smaller natural numbers. For example, the natural number 0 is represented as the empty set, also
denoted ∅. The number 1 is represented as {0}. The number 2 is represented as {0, 1}.

In general, the natural number n is represented as the set {0, ..., n − 1}. So for example, “232” denotes
the set of 32-bit non-negative integers. The set of all natural numbers is denoted N is defined as the set of
all finite von Neumann ordinals: {0, 1, 2, ...}.

The Kleene star notation is used to denote sets of strings. If S is a set, then S∗ (pronounced “S star”
or “the Kleene star of S”) is the set of (finite length) strings of elements of S. If a0, ..., an are elements of
S, then (a0, ..., an) denotes the string of those elements. () denotes the empty string. If s0, s1 ∈ S∗, then
let s0 +∗ s1 denote the concatenation of s0 and s1.

For any set S, let
head : (S∗ \ {()}) → S (8)

be the function which takes the first element of a non-empty string. Let:

tail : (S∗ \ {()}) → S∗ (9)

be the function which takes everything but the first element of a non-empty string. Let:

tail′ : S∗ → S∗ (10)

be the function which is like tail except that it is defined to return the empty string () when given the
empty string as input.

If S and T are sets, then S → T denotes the set of functions with domain S and codomain T . The
notation f : S → T means that f is a function in S → T . Depending on the context, S → T can also
denote the set of partial functions from S to T .

An indexed set of sets such as {Ai}i∈S is in other words a function S → Set which maps each element
i ∈ S to a set Ai. Given an indexed set of sets {Ai}i∈S , its Cartesian product is denoted by

∏
i∈S Ai. This

is a generalization of the Cartesian product of two sets. The indexed product
∏

i∈S Ai is in other words
the dependent function space (i : S) → Ai, which can be defined using set builder notation:∏

i∈S

Ai := {f | f is a function with domain S and for all i ∈ S, f(i) ∈ Ai}. (11)

8

If f : A → B is a function, and (a, b) ∈ A × B, then f [a 7→ b] denotes the function in A → B which is
identical to f except that it maps a to b (replacing any mapping from a that is in f):

f [a 7→ b] := (f \ {(a, b′) | b′ ∈ B}) ∪ {(a, b)}. (12)

If (a1, b1), ..., (an, bn) are in A × B, then:

f [a1 7→ b1, ..., an 7→ bn] := f [a1 7→ b1] · · · [an 7→ bn]. (13)

The union of an indexed set of sets {Ai}i∈S can be written
⋃

i∈S Ai and defined as:⋃
i∈S

Ai := {a| there exists i ∈ S such that a ∈ Ai}. (14)

Equality definition is denoted by :=. For example, to say that A is 2 by definition, write A := 2.
Isomorphism is denoted by ∼=. To say that an isomorphism exists between A and B, write A ∼= B.
“Zn” denotes the ring of integers modulo n. Addition in Zn is denoted +Zn . Multiplication in the ring

Zn is denoted ×Zn . The set of elements of Zn can conveniently be defined as the von Neumann ordinal n.
The addition and multiplication operations are defined in the usual way for integers mod n.

“Z” denotes the ring of integers. Addition in the ring of integers Z is denoted +Z, and the corresponding
subtraction is denoted −Z. Multiplication in the ring of integers is denoted ×Z. The set of elements of the
ring of integers is defined as the set:

{0} ∪ ({−, +} × (N \ {0})). (15)

Division in the ring of integers is denoted ÷Z. Division is only a partial operation on the ring of integers.
It is undefined when the denominator is zero or does not divide the numerator.

For any x ∈ Z, |x| denotes the absolute value of x, which is defined as follows:

|x| :=
{

x if 0 ≤ x,

−x if x < 0.
(16)

4 Outline

This spec consists of the following basic parts:
1. The program model definition defines a set Π whose elements represent all possible basic Valida

programs.

2. The state model definition defines a set Σ whose elements represent all possible states of a basic
Valida program execution.

3. The initial state definition defines a function ι : Π × (232)∗ → Σ which maps a basic Valida
program, and a string of 32-bit values representing the contents of the input tape, to the resulting
initial state of the execution of that program with that input.

4. The transition function definition defines a function τ : Σ → Σ. A single application of τ maps a
state to the resulting state after executing the next instruction. τ maps the state of a halted program
onto the same state.

5. The result function definition defines a function

ρ : Σ → ({Halted, NotHalted} × (232)∗). (17)

This function maps a program execution state to the result of that execution so far, including whether
it has halted or not, and the contents of the output tape so far.

9

5 Program, state model, initial state, and result function definitions

A Valida program consists of its code and its data, plus its correct initial values for PC and FP:

Π := ProgramCode × ProgramData × PC × FP. (18)

Let 4(230) denote the set of elements of 232 which are multiples of 4, i.e.:

4(230) := {4 × i | i ∈ 230}. (19)

Similarly, let 24(178956970) denote the set of elements of 232 which are multiplies of 24, i.e.:

24(178956970) := {24 × i | i ∈ 178956970}. (20)

PC := 24(178956970). (21)

FP := 4(230). (22)

The program data lives in a 32-bit, byte-indexed address space, and can be defined as the following set
of partial functions:

ProgramData := 232 → 28. (23)

The program code lives in an instruction-indexed address space, with as many addresses as possible,
subject to the byte-addressed program addresses being 32-bit. In the Valida state model, instructions
are represented in decoded form. The program code model can be defined as the following set of partial
functions:

ProgramCode := CodeAddress → Instruction. (24)

CodeAddress := 178956970. (25)

Instruction :=
⋃

i∈Chips
Instructioni. (26)

Here is the set of chips:

Chips := { CPU, Program, Memory, Range, StaticData, Output,
Add32, Sub32, Mul32, Div32, Shift32, Lt32, Com32, Bitwise32 }.

(27)

Here are the instruction set definitions for each chip. For the purposes of this spec, the opcodes Opcodei

can be any objects, as long as they are all distinct from each other.

InstructionCPU := Store32 ∪ StoreU8 ∪ Load32 ∪ LoadU8
∪ LoadS8 ∪ Jal ∪ Jalv ∪ Beq ∪ Beqi ∪ Bne ∪ Bnei ∪ Imm32
∪ ReadAdvice ∪ Stop ∪ LoadFp.

(28)

Store32 := {OpcodeStore32} × 4(230) × 4(230). (29)

StoreU8 := {OpcodeStoreU8} × 4(230) × 4(230). (30)

Load32 := {OpcodeLoad32} × 4(230) × 4(230). (31)

10

LoadU8 := {OpcodeLoadU8} × 4(230) × 4(230). (32)

LoadS8 := {OpcodeLoadS8} × 232 × 232. (33)

Jal := {OpcodeJal} × 4(230) × 24(178956970) × 4(230). (34)

Jalv := {OpcodeJalv} × 4(230) × 4(230) × 4(230). (35)

Beq := {OpcodeBeq} × 24(178956970) × 4(230) × 4(230). (36)

Beqi := {OpcodeBeqi} × 24(178956970) × 4(230) × 232. (37)

Bne := {OpcodeBne} × 24(178956970) × 4(230) × 4(230). (38)

Bnei := {OpcodeBnei} × 24(178956970) × 4(230) × 232. (39)

Imm32 := {OpcodeImm32} × 232 × 232. (40)

ReadAdvice := {OpcodeReadAdvice} × 4(230). (41)

Stop := {OpcodeStop}. (42)

LoadFp := {OpcodeLoadFp} × 4(230) × 232. (43)

InstructionProgram := ∅. (44)

InstructionMemory := ∅. (45)

InstructionRange := ∅. (46)

InstructionOutput := Write. (47)

Write := {OpcodeWrite} × 232. (48)

InstructionAdd32 := Add ∪ Addi ∪ Addc ∪ Addci. (49)

InstructionSub32 := Sub ∪ Subi ∪ Isub ∪ Subb ∪ Subbi ∪ Isubb. (50)

11

InstructionMul32 := Mul ∪ Muli ∪ Mulhs ∪ Mulhsi ∪ Mulhu ∪ Mulhui. (51)

InstructionDiv32 := Div ∪ Divi ∪ Sdiv ∪ Sdivi. (52)

InstructionShift32 := Shl ∪ Shli ∪ Ishl ∪ Shr ∪ Shri ∪ Ishr ∪ Sra ∪ Srai ∪ Isra. (53)

InstructionLt32 := Lt ∪ Lti ∪ Ilt ∪ Lte ∪ Ltei ∪ Ilte ∪ Slt ∪ Slti ∪ Islt ∪ Slte ∪ Islte ∪ Sltei. (54)

InstructionCom32 := Eq ∪ Eqi ∪ Ne ∪ Nei. (55)

InstructionBitwise32 := And ∪ Andi ∪ Or ∪ Ori ∪ Xor ∪ Xori. (56)

For all i ∈ {Add, Addc, Sub, Subb, Mul, Mulhs, Mulhu, Div, Sdiv, Shl, Shr, Sra, Lt, Lte, Slt, Slte, Eq,
Ne, And, Or, Xor}:

i := {Opcodei} × 4(230) × 4(230) × 4(230). (57)

For all i ∈ {Addi, Addci, Subi, Subbi, Muli, Mulhsi, Mulhui, Divi, Sdivi, Shli, Shri, Srai, Lti, Ltei, Slti,
Sltei, Eqi, Nei, Andi, Ori, Xori}:

i := {Opcodei} × 4(230) × 4(230) × 232. (58)

For all i ∈ {Isub, Isubb, Ishl, Ishr, Isra, Ilt, Ilte, Islt, Islte}:

i := {Opcodei} × 4(230) × 232 × 4(230). (59)

The Valida state model can be defined as simply the Cartesian product of the state models of all chips:

Σ :=
∏

i∈Chips
Σi. (60)

For each i ∈ Chips, let πi : Σ → Σi denote the projection function which maps a machine state s ∈ Σ
to the state of chip i in s.

Most of the chips are stateless. This means that their state models contain no information. A stateless
chip’s state can be modeled as a set with one element, such as the von Neumann ordinal 1 = {0}. These
stateless chips’ state models can safely be omitted from the basic Valida state model, without changing
the isomorphism class.

The following chips are stateful: CPU, Program, StaticData, Memory, and Output. All other chips are
stateless. Program and StaticData have immutable state, meaning that their states do not change during a
program execution. CPU, Memory, and Output have mutable state, meaning that their states can change
during a program execution.

The Valida state model can be explicitly represented this way:

Σ ∼= ΣCPU × ΣProgram × ΣStaticData × ΣMemory × ΣOutput. (61)

What follows are each of the stateful chips’ state model definitions, and the definitions they depend on.
The CPU chip’s state consists of the special purpose register states, plus the remaining contents of the

input tape, and a boolean value indicating if the program has halted or not.

12

ΣCPU := PC × FP × UnconsumedInput × {Halted, NotHalted}. (62)

UnconsumedInput := (232)∗. (63)

Let there be the following projection functions:

πPC : ΣCPU → PC. (64)

πFP : ΣCPU → FP. (65)

πUnconsumedInput : ΣCPU → UnconsumedInput. (66)

πHalting : ΣCPU → {Halted, NotHalted}. (67)

The Program chip’s state is simply the program code, as in the first coordinate of Π. It can be modeled
as the following set of partial functions:

ΣProgram := CodeAddress → Instruction. (68)

The StaticData chip’s state is the program data, as in the second coordinate of Π (Equation 18). It
can be modeled as the following set of partial functions:

ΣStaticData := 232 → 28. (69)

The Memory chip’s state is the contents of RAM. It can be modeled as the same set of partial functions:

ΣMemory := 232 → 28. (70)

Memory is stored in little endian order. The following function can be used to load a word from
memory:

load : Σ × 232 → 232. (71)

load(s, a) :=
3∑

i=0
28i ×Z232 πMemory(s)(a +Z232 i). (72)

The following function can be used to store a word to memory:

store : Σ × 4(230) × 232 → ΣMemory. (73)

store(s, a,
3∑

i=0
28ixi) := πMemory(s)[a 7→ x0, a + 1 7→ x1, a + 2 7→ x2, a + 3 7→ x3]. (74)

The Output chip’s state is the contents of the output tape:

ΣOutput := (232)∗. (75)

That completes the state model definition.
Here is the initial state definition:

13

ι(c, d, pc0, fp0) =




i,



(0, pc0 ÷Z 24, fp0, i, NotHalted)) if i = CPU,

c if i = Program,

d if i = StaticData,

d if i = RAM,

() if i = Output,
0 otherwise


| i ∈ Chips


. (76)

Here is the result function definition:

ρ(s) = (πHalting(πCPU(s)), πOutput(s)). (77)

6 Preliminaries for transition function definition

Let there be the following projection functions:

πu32 : 232 → Z. (78)

πu32(x) :=
{

0 if x = 0,

+x otherwise.
(79)

πs32 : 232 → Z. (80)

πs32(x) :=


0 if x = 0,

+x if 0 < x < 231,

−(232 − x) otherwise.

(81)

πu8 : 28 → Z. (82)

πu8(x) :=
{

0 if x = 0,

+x otherwise.
(83)

πs8 : 28 → Z. (84)

πs8(x) :=


0 if x = 0,

+x if x < 27,

−(28 − x) otherwise.

(85)

Let there be the following functions, which truncate integers to 32 bits (signed or unsigned):

truncu32 : Z → Z. (86)

truncu32(x) := x +Z (232 ×Z n), (87)

where n ∈ Z is the unique integer such that:

0 ≤ x +Z (232 ×Z n) < 232. (88)

truncs32 : Z → Z. (89)

14

truncs32(x) := x +Z (232 ×Z n), (90)

where n ∈ Z is the unique integer such that:

−231 ≤ x +Z (232 ×Z n) < 231. (91)

Let there be the following functions, which truncate integers to 8 or 5 bits (unsigned):

truncu8 : Z → Z. (92)

truncu8(x) := x +Z (28 ×Z n), (93)

where n is the unique integer such that:

0 ≤ x +Z (28 ×Z n) < 28. (94)

truncu5 : Z → Z. (95)

truncu5(x) := x +Z (25 ×Z n), (96)

where n is the unique integer such that:

0 ≤ x +Z (25 ×Z n) < 25. (97)

Let there be the following functions, which take the high bits of a result, discarding the lower 32 bits:

highu32 : Z → Z. (98)

highu32(x) := (x − truncu32(x)) ÷Z 232. (99)

highs32 : Z → Z. (100)

highs32(x) := (x − truncs32(x)) ÷Z 232. (101)

Let there be the following function, which computes the borrow of a 32-bit unsigned subtraction:

borrowu32 : 232 × 232 → 232. (102)

borrowu32(x, y) =
{

0 if y ≤ x,

1 if y > x.
(103)

Let there be the following function, which computes the sign of an integer:

sign : Z → Z. (104)

sign(x) :=


−1 if x < 0,

0 if x = 0,

1 if x > 0.

(105)

Let there be the following function, which computes integer division, truncating towards zero:

truncdiv : Z × Z → Z. (106)

15

truncdiv(x, y) := the unique z ∈ Z such that for some r ∈ Z, 0 ≤ |r| < |y| and x = y ×Z z +Z r,
and sign(r) = sign(x) ×Z sign(y). (107)

Let there be the following functions, which compute the truth values of integer equalities and inequal-
ities:

=Z : Z × Z → Z. (108)

=Z (x, y) :=
{

1 if x = y,

0 otherwise.
(109)

≤Z : Z × Z → Z (110)

≤Z (x, y) :=
{

1 if x ≤ y,

0 otherwise.
(111)

<Z : Z × Z → Z (112)

<Z (x, y) :=
{

1 if x < y,

0 otherwise.
(113)

Let there be the following function, which decomposes a 32-bit integer into a bit vector:

bitsu32 : 232 → (32 → 2). (114)

Recall that 32 and 2 are von Neumann ordinals, being respectively the sets {0, ..., 31} and {0, 1}.

bitsu32(x) = the unique f : 32 → 2 such that x =
31∑

i=0
2i ×Z f(i). (115)

Let the following boolean operations be defined on bits:

bitand : 2 × 2 → 2 (116)

bitand(x, y) =
{

1 if x = 1 and y = 1,

0 otherwise.
(117)

bitor : 2 × 2 → 2 (118)

bitor(x, y) =
{

1 if x = 1 or y = 1,

0 otherwise.
(119)

bitxor : 2 × 2 → 2 (120)

bitor(x, y) =
{

1 if exactly one of x or y is 1,

0 otherwise.
(121)

Let the following function be defined:

fmap2→232 : (2 × 2 → 2) → (232 × 232 → 232). (122)

fmap2→232(f)(x, y) := bits−1
u32(λi : 32 7→ f(bitsu32(x)(i), bitsu32(y)(i))). (123)

In the above, λi : 32 7→ · · · denotes the function which maps any i ∈ 32 to the value of · · · for that i.

16

7 Transition function definition

The transition function will execute the instruction pointed at by PC, and increment PC by one, unless
one of the following is true:

1. The instruction at PC is a jump.

2. The machine is in a halted state.

3. PC is not aligned to an instruction boundary.

4. The instruction cannot be successfully executed given the current state.

In conditions 2–4, the transition function maps the state to itself. This makes each of the conditions 3–4,
where the machine is in a non-halted state, semantically equivalent to non-termination. Implementations
may, in practice, halt execution with a useful error message when one of the conditions 3–4 occurs, instead
of non-terminating.

The transition function τ has type
τ : Σ → Σ. (124)

Recall that Σ is defined as a Cartesian product:

Σ :=
∏

i∈Chips
Σi. (125)

τ can be defined as a Cartesian product of functions:

τ :=
∏

i∈Chips
τi. (126)

For all i ∈ Chips:
τi : Σ → Σi. (127)

For all i ∈ Chips \ {CPU, Program, StaticData, Memory, Output}, Σi
∼= 1 and therefore τi can be defined

as the unique function τi : Σ → Σi. So to define τ , it suffices to define the following functions:

τCPU : Σ → ΣCPU, (128)

τProgram : Σ → ΣProgram, (129)

τStaticData : Σ → ΣStaticData, (130)

τMemory : Σ → ΣMemory, (131)

τOutput : Σ → ΣOutput. (132)

Of these, τProgram and τStaticData are easiest to define, because these chips’ states are immutable:

τProgram := πProgram. (133)

τStaticData := πStaticData. (134)

For the remaining chips, namely CPU, Memory, and Output, the result of the transition function
depends on which instruction is located at the current PC. These functions are defined as follows, for all
i ∈ {CPU, Memory, Output}:

17

τi(s) =
{

s fetch(s) ∈ FetchError,
τi,fetch(s)(s) fetch(s) ∈ Instruction.

(135)

The fetch function maps a state to the instruction at the current PC, or an error. Its type is as follows:

fetch : Σ → (Instruction ∪ FetchError). (136)

FetchError := {PCNotDefined}. (137)

The set FetchError is assumed to be disjoint from Instruction. The error PCNotDefined indicates that
there is no instruction in the current program, at the current value of PC.

fetch(s) :=
{

πProgram(s)(pc ÷Z 24) if πProgram(s)(pc ÷Z 24) is defined,

PCNotDefined otherwise,
(138)

where pc := πPC(πCPU(s)).
The functions τi,j , for all i ∈ {CPU, Memory, Output} and all j ∈ Instruction, have the following

types:
τi,j : Σ → Σi. (139)

Most Valida opcodes perform a binary operation on two inputs, 1–2 of which are stack variables, and
0–1 of which are immediate values, with a single output which is stored in a stack variable. Figures 4 and 5
enumerate these binary function opcodes, specifying which inputs are variable and which are immediate,
and which binary function is used to compute the output from the input. The transition functions for
instructions i ∈ Instruction with binary function opcodes are defined generically as follows.

τCPU,i(s) := (πPC(s′) +Z232 1, πFP(s′), πUnconsumedInput(s′), πHalting(s′)), where s′ = πCPU(s). (140)

The above indicates that a binary function instruction acts on the CPU state by simply incrementing
PC (with wrap-around) and doing nothing else. It is a fact (provable by induction on the length of an
execution) that if the program is in a halted state, then the current instruction is a STOP opcode, and
hence not a binary function opcode. This means that the final term in the above definition, πHalting(s),
could be replaced with NotHalted without changing the semantics.

τOutput,i(s) := πOutput(s). (141)

The above indicates that a binary function instruction acts on the output tape state by doing nothing
to it. The definition of how a binary function instruction acts on memory is more complex. It depends on
the binary function’s operand types (stack variable or immediate), as well as the binary function for the
instruction opcode.

The following function can be used to get the value denoted by an input operand, based on its type as
determined by the opcode, its value, and the state:

ι : {Var, Imm} × 232 × Σ → 232. (142)

ι(Imm, v, s) := v. (143)

ι(Var, v, s) := load(s, πFP(πCPU(s)) +Z232 v). (144)

18

Opcode (π1(i)) Left Right Operator (ϕi)
Add Var Var ϕi(x, y) := π−1

u32(truncu32(πu32(x) +Z πu32(x)))
Addi Var Imm ϕi(x, y) := π−1

u32(truncu32(πu32(x) +Z πu32(x)))
Addc Var Var ϕi(x, y) := π−1

u32(highu32(πu32(x) +Z πu32(x)))
Addci Var Imm ϕi(x, y) := π−1

u32(highu32(πu32(x) +Z πu32(x)))
Sub Var Var ϕi(x, y) := π−1

u32(truncu32(πu32(x) −Z πu32(x)))
Subi Var Imm ϕi(x, y) := π−1

u32(truncu32(πu32(x) −Z πu32(x)))
Isub Imm Var ϕi(x, y) := π−1

u32(truncu32(πu32(x) −Z πu32(x)))
Subb Var Var ϕi(x, y) := borrowu32(x, y)
Subbi Var Imm ϕi(x, y) := borrowu32(x, y)
Isubb Imm Var ϕi(x, y) := borrowu32(x, y)
Mul Var Var ϕi(x, y) := π−1

u32(truncu32(πu32(x) ×Z πu32(y)))
Muli Var Imm ϕi(x, y) := π−1

u32(truncu32(πu32(x) ×Z πu32(y)))
Mulhs Var Var ϕi(x, y) := π−1

s32(highs32(πs32(x) ×Z πs32(y)))
Mulhsi Var Imm ϕi(x, y) := π−1

s32(highs32(πs32(x) ×Z πs32(y)))
Mulhu Var Var ϕi(x, y) := π−1

u32(highu32(πu32(x) ×Z πu32(y)))
Mulhui Var Imm ϕi(x, y) := π−1

u32(highu32(πu32(x) ×Z πu32(y)))
Div Var Var ϕi(x, y) := π−1

u32(truncdiv(πu32(x), πu32(y)))
Divi Var Imm ϕi(x, y) := π−1

u32(truncdiv(πu32(x), πu32(y)))
Sdiv Var Var ϕi(x, y) := π−1

s32(truncdiv(πs32(x), πs32(y)))
Sdivi Var Imm ϕi(x, y) := π−1

s32(truncdiv(πs32(x), πs32(y)))
Shl Var Var ϕi(x, y) := π−1

u32(truncu32(πu32(x) ×Z 2truncu5(πu32(y))))
Shli Var Imm ϕi(x, y) := π−1

u32(truncu32(πu32(x) ×Z 2truncu5(πu32(y))))
Ishl Imm Var ϕi(x, y) := π−1

u32(truncu32(πu32(x) ×Z 2truncu5(πu32(y))))
Shr Var Var ϕi(x, y) := π−1

u32(truncdiv(πu32(x), 2truncu5(πu32(y))))
Shri Var Imm ϕi(x, y) := π−1

u32(truncdiv(πu32(x), 2truncu5(πu32(y))))
Ishr Imm Var ϕi(x, y) := π−1

u32(truncdiv(πu32(x), 2truncu5(πu32(y))))
Sra Var Var ϕi(x, y) := π−1

s32(truncdiv(πs32(x), 2truncu5(πu32(y))))
Srai Var Imm ϕi(x, y) := π−1

s32(truncdiv(πs32(x), 2truncu5(πu32(y))))
Isra Imm Var ϕi(x, y) := π−1

s32(truncdiv(πs32(x), 2truncu5(πu32(y))))

Figure 4: Binary function opcodes (1 of 2)

19

Lt Var Var ϕi(x, y) := π−1
u32(<Z (πu32(x), πu32(y)))

Lti Var Imm ϕi(x, y) := π−1
u32(<Z (πu32(x), πu32(y)))

Ilt Imm Var ϕi(x, y) := π−1
u32(<Z (πu32(x), πu32(y)))

Lte Var Var ϕi(x, y) := π−1
u32(≤Z (πu32(x), πu32(y)))

Ltei Var Imm ϕi(x, y) := π−1
u32(≤Z (πu32(x), πu32(y)))

Ilte Imm Var ϕi(x, y) := π−1
u32(≤Z (πu32(x), πu32(y)))

Slt Var Var ϕi(x, y) := π−1
u32(<Z (πs32(x), πs32(y)))

Slti Var Imm ϕi(x, y) := π−1
u32(<Z (πs32(x), πs32(y)))

Islt Imm Var ϕi(x, y) := π−1
u32(<Z (πs32(x), πs32(y)))

Slte Var Var ϕi(x, y) := π−1
u32(≤Z (πs32(x), πs32(y)))

Islte Imm Var ϕi(x, y) := π−1
u32(≤Z (πs32(x), πs32(y)))

Sltei Var Imm ϕi(x, y) := π−1
u32(≤Z (πs32(x), πs32(y)))

Eq Var Var ϕi(x, y) := π−1
u32(=Z (πu32(x), πu32(y)))

Eqi Var Imm ϕi(x, y) := π−1
u32(=Z (πu32(x), πu32(y)))

Ne Var Var ϕi(x, y) := π−1
u32(1− =Z (πu32(x), πu32(y)))

Nei Var Imm ϕi(x, y) := π−1
u32(1− =Z (πu32(x), πu32(y)))

And Var Var ϕi := fmap2→232(bitand)
Andi Var Imm ϕi := fmap2→232(bitand)
Or Var Var ϕi := fmap2→232(bitor)
Ori Var Imm ϕi := fmap2→232(bitor)
Xor Var Var ϕi := fmap2→232(bitxor)
Xori Var Imm ϕi := fmap2→232(bitxor)

Figure 5: Binary function opcodes (2 of 2)

The following function can be used to denote a memory state where the stack operand with the specified
FP offset is updated to the specified value:

Update : Σ → 4(230) → 232 → ΣMemory. (145)

Update(s, v, x) := store(s, πFP(πCPU(s)) + v, x). (146)

Let i be an instruction with a binary function opcode. Let ϕi : 232 × 232 → 232 be the binary
function corresponding to the opcode πOP(i) of instruction i, as enumerated in Figure 4 and Figure 5. Let
ti,1 ∈ {Var, Imm} be the first operand type of instruction i, as indicated in the same figures. Let ti,2 be
the second operand type of instruction i, as indicated in the same figures. Then the memory transition
function τMemory,i is defined as follows:

τMemory,i(s) := Update(s, π1(i), ϕi(ι(ti,1, π2(i), s), ι(ti,2, π3(i), s))). (147)

That completes the definition of the transition function for binary function opcodes. The remaining
(i.e., non binary function) opcodes are all and only the CPU and Output chip opcodes, namely: Store32,
StoreU8, Load32, LoadU8, LoadS8, Jal, Jalv, Beq, Beqi, Bne, Bnei, Imm32, ReadAdvice, Stop, LoadFp,
and Write. To define the transition function for these remaining opcodes, it suffices to define the CPU,
Memory, and Output chip transition functions for these opcodes.

The non binary function opcodes can be further subcategorized into the jump and non-jump opcodes.
The jump opcodes are Jal, Jalv, Beq, Beqi, Bne, and Bnei. The non-jump opcodes are Store32, StoreU8,
Load32, LoadU8, LoadS8, Imm32, ReadAdvice, LoadFp, Stop, and Write. The jump opcodes can modify
FP, and they can modify PC (other than by incrementing it), but they do not modify memory. The

20

non-jump opcodes can modify memory, but they cannot modify FP, and they cannot modify PC (other
than by incrementing it).

For all instructions i with opcodes of StoreU8, LoadU8, LoadS8, Imm32, ReadAdvice, LoadFp, and
Write, the CPU chip transition function is defined in Equation 140.

For all instructions i with opcode Store32, the CPU chip transition function is defined as:

τCPU,i(s) :=
{

(πPC(s′) +Z232 1, πFP(s′), πUnconsumedInput(s′), πHalting(s′)) if a ∈ 4(230),
s′ otherwise,

(148)

where s′ := πCPU(s) and a = ι(Var, π2(i), s).
For all instructions i with opcode Load32, the CPU chip transition function is defined as:

τCPU,i(s) :=
{

(πPC(s′) +Z232 1, πFP(s′), πUnconsumedInput(s′), πHalting(s′)) if a ∈ 4(230),
s′ otherwise,

(149)

where s′ = πCPU(s) and a = ι(Var, π3(i), s).
For all instructions with opcodes of Beq, Beqi, Bne, or Bnei, the CPU chip transition function is defined

as:
τCPU,i(s) := (p, πFP(s′), πUnconsumedInput(s′), πHalting(s′)), (150)

where
s′ = πCPU(s), (151)

p =
{

πPC(s′) +Z232 1 if c = 0,

π−1
u32(truncdiv(πu32(π1(i)), 24)) if c = 1,

(152)

c =
{

x =Z y if Opcodei ∈ {Beq, Beqi},

1 − (x =Z y) if Opcodei ∈ {Bne, Bnei},
(153)

x = ι(Var, π2(i), s), (154)

y = ι(ty, π3(i), s), (155)

ty =
{

Var if Opcodei ∈ {Beq, Bne},

Imm if Opcodei ∈ {Beqi, Bnei}.
(156)

For all instructions i with opcode Stop, the CPU chip transition function is defined as:

τCPU,i(s) := (πPC(s′), πFP(s′), πUnconsumedInput(s′), Halted), where s′ = πCPU(s). (157)

For all instructions i with opcode Jal, the CPU chip transition function is defined as:

τJal,i(s) := (a, πFP(s′) +Z232 π3(i), πUnconsumedInput(s′), πHalting(s′)), (158)

where
a := π−1

u32(truncdiv(πu32(π2(i)), 24)), (159)

s′ := πCPU(s). (160)

For all instructions i with opcode Jalv, the CPU chip transition function is defined as:

τJalv,i(s) := (ι(Var, π2(i), s), ι(Var, π1(i), s), πUnconsumedInput(s′), πHalting(s′)), (161)

21

where
s′ = πCPU(s). (162)

For all instructions i with opcode ReadAdvice, the CPU chip transition function is defined as:

τCPU,i(s) := (πPC(s′) +Z232 1, πFP(s′), tail′(πUnconsumedInput(s′)), πHalting(s′)), where s′ = πCPU(s). (163)

For all instructions i with opcode ReadAdvice, the memory chip transition function is defined as:

τMemory,i(s) := Update(s, π1(i), c), where (164)

c :=
{

head(πUnconsumedInput(πCPU(s))), if πUnconsumedInput(πCPU(s)) is non-empty,

232 − 1 otherwise.
(165)

For all instructions i with opcodes of Beq, Beqi, Bne, Bnei, Stop, or Write, the Memory chip transition
function is just the projection function, because the opcode does not modify memory:

τMemory,i := πMemory. (166)

For all instructions i with opcode of LoadFp, the Memory chip transition function is:

τMemory,i(s) := Update(s, π1(i), πFP(πCPU(s)) + π2(i)). (167)

For all instructions i with opcode of Imm32, the Memory chip transition function is:

τMemory,i(s) := Update(s, π1(i),
3∑

j=0
2j ×Z232 π2+j(i)). (168)

For all instructions i with opcode of Store32, the Memory chip transition function is:

τMemory,i(s) :=
{

store(s, load(s, a), ι(Var, π3(i), s)) if a ∈ 4(230),
πMemory(s) otherwise.

(169)

where
a := ι(Var, π2(i), s). (170)

For all instructions i with opcode of StoreU8, the Memory chip transition function is:

τMemory,i(s) := πMemory(s)[ι(Var, π2(i), s) 7→ πMemory(s)(ι(Var, π3(i), s))]. (171)

For all instructions i with opcode of Load32, the Memory chip transition function is:

τMemory,i(s) :=
{

Update(s, π1(i), load(s, a)) if a ∈ 4(230),
πMemory(s) otherwise,

(172)

where
a := ι(Var, π2(i), s). (173)

For all instructions i with opcode of LoadU8, the Memory chip transition function is:

τMemory,i(s) := Update(s, π1(i), π−1
u32(πu8(πMemory(s)(ι(Var, π3(i), s))))). (174)

22

For all instructions i with opcode of LoadS8, the Memory chip transition function is:

τMemory,i(s) := Update(s, π1(i), π−1
s32(πs8(πMemory(s)(ι(Var, π3(i), s))))). (175)

For all instructions i with opcode of Jal or Jalv, the Memory chip transition function is:

τMemory,i(s) := store(s, ι(Var, π1(i), s), π−1
u32(24 ×Z (πu32(πPC(πCPU(s))) +Z 1))). (176)

For all instructions i with opcodes other than Write, the Output chip transition function is just the
projection function, because the opcode does not modify the output. See Equation 141 for the definition
of the Output chip transition function for instructions i with opcodes other than Write.

For instructions i with opcode Write, the Output chip transition function is:

τOutput,i(s) := πOutput(s) +∗ (truncu8(ι(Var, π1(i), s))). (177)

References

[1] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu. Zexe:
Enabling Decentralized Private Computation. Cryptology ePrint Archive, Paper 2018/962, 2018.
https://eprint.iacr.org/2018/962.pdf.

[2] Collin Chin, Howard Wu, Raymond Chu, Alessandro Coglio, Eric McCarthy, and Eric Smith. Leo:
A Programming Language for Formally Verified, Zero-Knowledge Applications. Cryptology ePrint
Archive, Paper 2021/651, 2021. https://eprint.iacr.org/2021/651.pdf.

[3] The ZKsync Community. ZKsync Protocol. https://docs.zksync.io/zksync-protocol.

[4] Max Gillett, Daniel Lubarov, and Wei Dai. Working ISA Spec. https://github.com/valida-xyz/
valida-compiler/issues/2, 2023.

[5] Edward Li. Introducing OP Succinct Lite: ZK Fraud Proofs on the OP Stack. https://blog.
succinct.xyz/op-succinct-lite/?ref=conduit.xyz, February 2025.

[6] Lita. Benchmarks. https://lita.gitbook.io/lita-documentation/architecture/benchmarks,
August 2024.

[7] Lita. Lita Docs. https://lita.gitbook.io/lita-documentation, 2025.

[8] StarkEx. StarkEx Docs. https://docs.starkware.co/starkex/index.html, 2023.

[9] Starkware. Cairo. https://starkware.co/cairo/, 2025.

[10] Morgan Thomas. Optimizing the Ethereum Execution Engine for Succinct Proofs With Val-
ida. https://www.lita.foundation/blog/optimizing-the-ethereum-execution-engine-for-
succinct-proofs-with-valida, April 2025.

[11] Whisker Yu. How to Develop ZK Fraud Proof with RISC0. https://0xwhisker.hashnode.dev/
how-to-develop-zk-fraud-proof-with-risc0, January 2024.

23

https://eprint.iacr.org/2018/962.pdf
https://eprint.iacr.org/2021/651.pdf
https://docs.zksync.io/zksync-protocol
https://github.com/valida-xyz/valida-compiler/issues/2
https://github.com/valida-xyz/valida-compiler/issues/2
https://blog.succinct.xyz/op-succinct-lite/?ref=conduit.xyz
https://blog.succinct.xyz/op-succinct-lite/?ref=conduit.xyz
https://lita.gitbook.io/lita-documentation/architecture/benchmarks
https://lita.gitbook.io/lita-documentation
https://docs.starkware.co/starkex/index.html
https://starkware.co/cairo/
https://0xwhisker.hashnode.dev/how-to-develop-zk-fraud-proof-with-risc0
https://0xwhisker.hashnode.dev/how-to-develop-zk-fraud-proof-with-risc0

	Motivation
	Why Valida is efficient for succinct proofs

	Scope
	Notation
	Outline
	Program, state model, initial state, and result function definitions
	Preliminaries for transition function definition
	Transition function definition

