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Abstract

Modern web browsers have effectively become the new operating system for business applications, yet
their security posture is often under-scrutinized. This paper presents a novel, comprehensive Browser
Security Posture Analysis Framework[1], a browser-based client-side security assessment toolkit that
runs entirely in JavaScript and WebAssembly within the browser. It performs a battery of over 120 in-
browser security tests in situ, providing fine-grained diagnostics of security policies and features that
network-level or os-level tools cannot observe. This yields insights into how well a browser enforces critical
client-side security invariants. We detail the motivation for such a framework, describe its architecture
and implementation, and dive into the technical design of numerous test modules (covering the same-
origin policy, cross-origin resource sharing, content security policy, sandboxing, XSS protection, extension
interference via WeakRefs, permissions audits, garbage collection behavior, cryptographic APIs, SSL
certificate validation, advanced web platform security features like SharedArrayBuffer, Content filtering
controls ,and internal network accessibility). We then present an experimental evaluation across different
browsers and enterprise scenarios, highlighting gaps in legacy browsers and common misconfigurations.
Finally, we discuss the security and privacy implications of our findings, compare with related work in
browser security and enterprise endpoint solutions, and outline future enhancements such as real-time
posture monitoring and SIEM integration.

1 Introduction
Web browsers are no longer simple rendering tools for static pages; they have evolved into de facto operating
systems for modern applications. In today’s enterprise environments, employees often spend the majority of
their workday inside a browser, using web-based SaaS applications for critical business functions. One study
found that nearly 90% of an organization’s work is conducted in the web browser. With this shift, browsers
have become a primary interface to sensitive corporate data and services. Consequently, the browser’s
security posture – its configuration, policies, and runtime behavior – has a direct impact on enterprise
security.

However, traditional network-centric/os-centric security architectures (firewalls, secure web gateways,
proxies,EDR, etc.) were not designed with this browser-centric reality in mind. These solutions focus on
monitoring and filtering network traffic, os activity , but cannot fully assess or control what happens inside
the browser. As traffic is increasingly end-to-end encrypted (HTTPS by default) and browsers execute rich
client-side scripts, many security-critical decisions are made within the browser environment itself—beyond
the visibility of network/os tools. For example, whether a file download from an in-memory blob is allowed
is determined by the browser at runtime, not by the network. Enterprise security teams are finding that
solely relying on perimeter defenses leaves blind spots in browser behavior.

This paper addresses the rising significance of browser security by introducing Browser Security Pos-
ture Analysis Framework [1], a client-side framework for comprehensive browser security assessment. Our
framework operates within the browser, using JavaScript and WebAssembly to perform a battery of security

1

https://arxiv.org/abs/2505.08050v1


tests in situ. By living inside the “user space” of the browser, it can evaluate fine-grained behavior—such
as DOM manipulation, policy enforcement, and internal API behavior—that would be invisible to external
network/os monitors. In essence, Browser Security Posture[1] treats the browser itself as the subject of
scrutiny, much like a vulnerability assessment tool would treat an operating system.

We proceed as follows: Section 2 articulates the motivation and requirements for a client-side browser
assessment framework in enterprise contexts. Section 3 provides an overview of the architecture and imple-
mentation of Browser Security Posture[1], emphasizing its self-contained, entirely in-browser design. Section 4
details each test module and the technical strategies used to evaluate various security features (ranging from
classical web policies like the Same-Origin Policy to novel detection of external interference via WeakRefs).
Section 5 presents an experimental evaluation with example results across multiple browsers and scenarios,
illustrating the framework’s capability to highlight security posture differences. Section 6 discusses the se-
curity and privacy implications of the findings and the risks of not performing such diagnostics. Section 7
reviews related work, comparing our approach to prior browser security testing tools and enterprise solu-
tions (such as remote browser isolation and secure enterprise browsers). Section 8 concludes with a summary
and outlines future work, including potential real-time posture monitoring extensions and integration into
enterprise security operations.

2 Motivation and Requirements
As enterprises embrace cloud-first strategies and remote work, browsers now mediate access to a vast array
of corporate resources. This expanded role introduces new attack surfaces and failure modes. Users may
unwittingly run browsers with insecure configurations, outdated policies, or malicious extensions, under-
mining corporate security from within the browser itself. Key motivations for a client-side browser security
framework include:

• Invisibility of Browser Internals to Network Tools: Many security-relevant browser decisions
leave no network trace. For instance, whether an in-memory file download occurred, or whether a
webpage attempted to access a local device or a sensitive API, are actions enforced entirely within
the browser, beyond the view of any network monitor. These internal events could pose risks (e.g.,
a malicious script accessing a local resource or data) yet are undetectable by perimeter defenses. A
client-side framework can directly observe and test such behavior to reveal hidden vulnerabilities.

• Complementing Zero Trust and Endpoint Security: Zero Trust models emphasize continuous
verification of device and application posture. While endpoint security solutions monitor OS-level
metrics, they often lack visibility into browser-specific settings and activities (like which sites have
risky permissions or how the browser handles certain content). Browser Security Posture[1] fills this
gap by acting as a specialized “browser auditor” on the endpoint, complementing endpoint protection
platforms (EPP/EDR) with browser-focused checks. Unlike generic endpoint agents, our framework
is tailored to the browser’s execution environment and can perform targeted tests (like attempting a
known bad SSL connection) safely and in a standardized manner.

• Detection of Misconfigurations and Policy Drift: Browsers across a fleet may gradually deviate
from baseline configurations due to user actions, unmanaged updates, or faulty GPO/MDM propaga-
tion. A client-side framework can detect such drifts in real time, ensuring policy adherence.

• Protection Against Malicious Extensions and Plugins: Extensions often operate with elevated
privileges and can leak data, inject malicious scripts, or surveil user behavior. A Browser Security
Posture framework can help detect extensions that inject malicious JavaScript, such as those that
attempt to capture sensitive DOM elements (e.g., login forms, tokens, or clipboard contents).

• Visibility into Browser-Based Data Exfiltration: Sophisticated data exfiltration tactics, such
as copy-paste monitoring, JavaScript-based uploads, or clipboard manipulation, occur entirely within
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the browser. These bypass both network DLP and OS-level logging unless monitored from inside the
browser.

• Enhanced Compliance and Auditability: Certain regulatory standards (e.g., HIPAA, PCI DSS,
ISO 27001) require monitoring of user activities and control over access to sensitive data. A browser-
focused security posture tool can provide compliance evidence by logging access patterns and enforcing
browser hardening guidelines.

• Safe Simulation of Attacks: A client-side framework can simulate known browser-specific exploits
(e.g., outdated SSL/TLS versions, localStorage abuse, DOM-based XSS vectors) in a sandboxed way
to test the browser’s resilience—something not possible with passive monitoring.

• Cross-Browser and Cross-Version Insights: Enterprise environments may host a mix of Chrome,
Edge, Firefox, and even legacy browsers. A unified framework enables standardized posture assessment
across heterogeneous environments, accounting for version-specific vulnerabilities and settings.

In summary, the need for a client-side browser assessment framework arises from the convergence of
two trends: (1) the browser’s emergence as the primary work environment (and thus a primary target for
attackers), and (2) the insufficiency of legacy, network/os-centric defenses to monitor and enforce security
within the browser. Browser Security Posture[1] is designed to empower enterprises to “trust, but verify”
the security of the browsers operating in their environment by performing checks from the inside out rather
than the outside in.

3 Framework Overview

3.1 Architecture
Browser Security Posture[1] is built as a self-contained web application that can be delivered to end-user
browsers (for instance, via an internal security portal or as an injected script by an IT management system).
Crucially, it runs entirely within the browser – there are no external executables, plugins, or native code. The
framework is implemented in JavaScript (ES2020+) and leverages standard Web APIs available in modern
browsers. This design choice ensures that it is platform-agnostic (works on any OS and any modern browser)
and easy to deploy (just visit a URL or open an HTML file). All test logic executes on the client side. If
network access is needed (e.g., to fetch a test resource or check a certificate), those requests are initiated by
the browser itself, often to preconfigured endpoints. The framework does not require any special privileges;
it operates within the normal sandbox of a web page, relying only on the browser’s capabilities to introspect
itself. This means it cannot do anything a regular web page couldn’t do (by design – we assess security
without breaking the browser’s own security model).

Figure 1 illustrates the high-level architecture and flow of Browser Security Posture[1]. The framework
(running as a script inside the browser) comprises multiple test modules that examine different aspects of
the browser’s security posture. These modules interact with the browser’s internal APIs, configurations,
and runtime environment. Some modules may also perform controlled network requests (for example, to
known test sites like badssl.com) to trigger browser behavior under certain conditions (such as handling
of invalid SSL certificates). Throughout the testing process, the framework collects results and can present
them to the user or send them to a backend for aggregation. (In an enterprise deployment, results might
be reported to an IT management console or SIEM; care is taken not to exfiltrate sensitive information –
see Section 7.3 on privacy considerations.) Importantly, all network interactions initiated by the framework
are either loopback (targeting local network addresses for scanning) or directed to innocuous test resources.
There are no external third-party script dependencies – this not only reduces supply-chain risk but also
ensures consistent behavior (no CDN differences, offline capability, etc.).
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Figure 1: Overview of the Browser Security Posture[1] framework architecture and components. The in-
browser agent executes a series of test modules and aggregates results for reporting.

3.2 Implementation
The core of Browser Security Posture[1] is written in modern JavaScript, leveraging features like async/await
for managing asynchronous test sequences and new APIs such as WeakRef and FinalizationRegistry for
certain memory integrity tests (discussed later). We avoided heavy frameworks to keep the payload small.
The main framework, including all tests, is approximately 200KB of JavaScript. It can be loaded as a single
HTML file containing inline scripts for each module, or as a set of bundled modules. No external network
access is required except for specific tests that intentionally fetch resources (all such network tests use well-
defined URLs and can be pointed to either public test servers or an enterprise’s own test endpoints). For
example, we use known hostnames like expired.badssl.com to test certificate validation; these hostnames
can be changed to internal sites if an organization prefers an offline test mode.

The framework includes a simple UI that reports the results of each test (e.g., “CSP Enforcement:
PASSED”, “WeakRef DOM Leakage: DETECTED/NOT DETECTED”). In an enterprise scenario, this UI
could be suppressed and results automatically sent to a central collector. We designed the tests to run
efficiently without significantly disrupting the user’s browsing session – tests run quickly (most complete in
milliseconds; some longer ones like randomness analysis or network scans may take a few seconds but can
be throttled or run in the background). Each module is careful to clean up after itself (removing any test
DOM elements, closing connections, etc.) to avoid side effects in the browser.

3.3 Security Considerations
Because the framework runs inside the browser, we carefully considered the possibility that malware or
malicious extensions could detect or interfere with it. If a user’s browser is already compromised (e.g., by a
malicious extension or a tampered binary), an advanced adversary could theoretically alter the testing script’s
execution or results. Our framework includes self-integrity checks (for instance, verifying the script text
against a known hash, if provided, though this is optional) and uses multiple approaches to detect interference.
For example, one test module uses a WeakRef-based DOM probe (discussed in Section 4.4) which can
reveal if an extension is trying to stealthily intercept or hold references to our test objects. Nonetheless,
the framework is primarily a diagnostic tool and not an active defense mechanism; it assumes a mostly
honest execution environment and is aimed at identifying misconfigurations or unnoticed vulnerabilities
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Figure 2: Browser Security Posture UI

rather than fighting active malware head-on. When integrated into an enterprise IT workflow, running these
tests regularly (e.g., at login) can alert administrators to issues needing remediation (such as “User X has
an extension that retains a DOM reference – possibly unsanctioned” or “Browser Y did not enforce CSP
properly”).

4 Test Modules and Technical Details
The framework’s test suite is organized into modules, each focusing on a different aspect of browser security.
The modules can be run in sequence or in parallel, and each produces a result (pass/fail or data for analysis).
We describe each major module in depth below, explaining the technical approach and any novel techniques
employed.

4.1 Same-Origin Policy (SOP) and CORS Enforcement
Same-Origin Policy (SOP): SOP is the foundational security policy of web browsers, which isolates
content from different origins. It ensures that scripts from one origin (defined by scheme, host, and port)
cannot freely access resources from another origin. This prevents, for example, a malicious site from reading
data from a user’s webmail account open in another tab. To verify SOP enforcement, our framework conducts
a series of checks: we attempt forbidden actions such as reading cross-origin DOM content, accessing cross-
origin cookies, or making fetch/XHR requests to a cross-origin resource without permission. For instance,
we embed an <iframe> from a different domain and then try to read its document.title or modify its
content from the parent page’s script. A compliant browser should block such attempts and throw a security
exception. We catch any exceptions and mark the test as passed if the access is correctly prevented (and
failed if, against expectations, we succeed – which would indicate a serious SOP violation). Additionally, we
test nuanced SOP corner cases (e.g., interactions with the document.domain relaxation setting and location
hash navigation between frames) to ensure no misconfiguration or policy bypass is present. As expected, all
modern browsers strictly enforce SOP. A legacy or atypical configuration where SOP is weakened would be
flagged by these tests.

Cross-Origin Resource Sharing (CORS): CORS is a controlled relaxation of SOP, allowing a web page
to request resources from another domain if the server explicitly consents via specific HTTP headers. We test
the browser’s CORS implementation by performing fetches or XHRs to a test server under various conditions.
For example, we attempt to fetch a JSON resource from example.com while our test page is on test.com. The
test server can be configured to respond with no CORS headers, or with Access-Control-Allow-Origin:
* or a specific origin. Our framework verifies that the browser obeys the rules: a request without the proper
response headers should be blocked by the browser (the fetch promise is rejected with a TypeError due to
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CORS). We try both “simple” requests and those requiring a preflight (e.g., using a custom header or the
PUT method), ensuring the browser properly sends an OPTIONS preflight and handles the response. The
expected outcome is that Chrome, Firefox, Edge, and Safari all pass, enforcing CORS correctly by blocking
unauthorized cross-origin responses and allowing those with correct headers. The test logs detail each sub-
case (e.g., “simple request allowed by server – should succeed; request not allowed by server – should fail”),
providing fine-grained assurance that the policy holds. If a corporate environment had disabled standard
web security checks, these tests would immediately reveal the misconfiguration.

4.2 Content Security Policy and XSS Protections
Content Security Policy (CSP): CSP is a modern security standard that allows web administrators
to declare allowed sources of content, serving as a mitigation against cross-site scripting (XSS) and other
injection attacks. For example, a CSP might forbid inline scripts or loading scripts from unauthorized
domains. To evaluate CSP enforcement, our framework needs a context where CSP is active. We employ
two strategies: (1) if the framework’s host page is served with a CSP header, we can directly test policy
enforcement in that context; (2) if not, we dynamically create a test context with a CSP (for instance, by
injecting a <meta> CSP tag or opening a test page with a CSP header) and then attempt to violate the
policy. In practice, we try to inject or execute scripts in ways that the CSP should forbid (such as inserting a
<script> element with an inline payload when ’unsafe-inline’ is not allowed, or loading a script from an
origin not permitted by the policy). We then observe whether the script executes or is blocked. Typically,
a violation will be blocked by the browser (e.g., the script fails to run and a CSP violation is logged in
the console), which we treat as a pass. If a script we expect to be blocked actually runs, that indicates a
CSP enforcement failure. In our tests, all modern browsers uniformly enforce CSP correctly – for instance,
an attempt to inject an inline script when script-src ’self’ is in effect is blocked (the script does not
run, and a violation event is emitted). This aligns with prior observations (e.g., BrowserAudit’s results)
that major browsers adhere to CSP specifications[12]. Any deviation (which might occur in an outdated
or misconfigured browser) would be flagged by our framework. We note one edge case: legacy IE11 had
only an experimental CSP implementation (using the non-standard X-Content-Security-Policy header),
which our test notes as not supporting the standard CSP header – the framework flags this as a potential
gap for IE11 users (IE11 effectively fails the CSP test because it doesn’t enforce a standard CSP meta tag
or header).

XSS Filter Protections: Historically, some browsers (Internet Explorer and older versions of Chrome)
included built-in XSS auditors or filters that attempted to detect and block reflected XSS attacks. Modern
Chrome and Firefox have removed their legacy XSS auditors (due to limited effectiveness and performance
costs), relying on CSP and other measures instead. Our framework tests for the presence or behavior of
any XSS filtering in two ways. First, we craft a simulated reflected XSS scenario: we reload or navigate
the test page with a URL that includes a snippet like ‘<script>success(1)</script>‘ in a query parameter,
and have the page reflect that string into its HTML (e.g., via a DOM insertion). If an XSS filter is active,
it might detect this pattern and strip or neuter the script. The framework can detect this by checking
whether the script executes or if the injected HTML was altered. Second, we send an X-XSS-Protection:
1; mode=block header from our test server (a legacy header that some browsers honored) and see if the
browser blocks the simulated script injection when that header is present. **Results:** Chrome and Firefox
in current versions do not have XSS auditors – our test confirms that the reflected script will execute in
those browsers unless prevented by CSP (which in our setup it usually is, due to the CSP test above). IE11,
on the other hand, does have an XSS filter; in our test on IE11, the injected script in the URL was detected
and blocked, resulting in a browser notice or the page being stopped from loading that script. We treat that
as a pass for XSS protection in IE. We note this difference: modern Chromium-based browsers yield “Not
Applicable (no built-in XSS filter, rely on CSP)”, whereas IE11’s filter triggers as expected for that legacy
environment. Thus, our framework records whether an XSS auditor was engaged. This information can be
useful for enterprises to know if any outdated browser in use is relying on such filters.
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4.3 Sandbox Escape Testing
Modern browsers allow sandboxing of untrusted content using <iframe sandbox> attributes or via CSP’s
sandbox directive. While sandboxing is typically an application-level configuration (not a browser setting),
we include a test to ensure the browser properly applies sandbox restrictions. We create a sandboxed
<iframe> (with restrictive flags, e.g., sandbox="allow-none" meaning no scripts, no same-origin, etc.) and
then attempt actions from within it that should be disallowed, such as running script inside it or accessing
window.parent from it. A correct implementation will prevent script execution or cross-frame access. If
we find a browser where a sandbox flag is ignored (which would be a serious bug), the test will alert
the user/admin. In our experiments, all tested browsers honored the sandbox attributes (no escapes were
observed in standard configurations)[13].

4.4 External Interference via WeakRefs (DOM Object Leak Test)
A novel test module uses JavaScript Weak References to detect if any unauthorized agent (e.g., an extension
content script [11] or injected script) is retaining references to DOM objects that should have been freed.
The premise is that our framework creates a dummy DOM element that contains identifiers such as credit
card form , username,password, then removes all references to it, and expects the browser’s garbage collector
(GC) to reclaim it. If an extension’s content script has secretly kept a reference to that element (perhaps
via a mutation observer or by wrapping DOM methods), the object will not be garbage-collected, indicating
the presence of an unexpected reference.

Test implementation: The framework inserts a dummy DOM element (for example, a <input id="username">
with some distinctive attributes) into the page. Shortly after, it removes the element from the DOM (e.g.,
via testNode.remove()) and also nulls out any references to it in our own code. We then create a WeakRef
pointing to the element before it is removed, and register the element with a FinalizationRegistry which
will notify us when the object is garbage-collected. We schedule periodic checks in a loop (yielding peri-
odically to avoid locking up the browser’s thread) where we call weakRef.deref() to see if the object is
still alive. Under normal conditions (no external references), the JavaScript engine should garbage-collect
the object on the next GC cycle, at which point weakRef.deref() will start returning undefined and our
finalization callback will fire. If after a reasonable time (a few seconds, with attempts to coax a GC) the
object has not been collected, it suggests something else is still holding a strong reference to it.

Listing 1: Simplified PoC for Detecting Leaked References to Sensitive DOM Elements
export const s impleLeakTest = async (

l og : (msg : s t r i ng , type : ’ in fo ’ | ’ succe s s ’ | ’ e r ro r ’ ) => void
) => {

const r e g i s t r y = new F ina l i z a t i o nReg i s t r y ( ( id ) => {
log ( ‘ Element "${ id }" was garbage c o l l e c t e d ‘ , ’ succes s ’ ) ;

} ) ;

l e t e l = document . createElement ( ’ input ’ ) ;
e l . type = ’ password ’ ;
e l . va lue = ’ s e n s i t i v e −data ’ ;
e l . id = ’ t e s t−password ’ ;
document . body . appendChild ( e l ) ;

const weakRef = new WeakRef ( e l ) ;
r e g i s t r y . r e g i s t e r ( e l , e l . id ) ;

// Delay f o r DOM s t a b i l i z a t i o n
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await new Promise ( r e s => setTimeout ( res , 2 0 0 ) ) ;

document . body . removeChild ( e l ) ;

// Nul l out s t rong r e f e r e n c e
// @ts−ignore
e l = nu l l ;

// Encourage GC
const f i l lMemory = ( ) => {

const data = new Array (1 e6 ) . f i l l ( 0 ) .map( (_, i ) => i ) ;
r e turn data . reduce ( ( a , b ) => a + b , 0 ) ;

} ;

f o r ( l e t i = 0 ; i < 10 ; i++) {
f i l lMemory ( ) ;
await new Promise ( r e s => setTimeout ( res , 5 0 0 ) ) ;

}

l og ( ’ Check conso l e or F i n a l i z a t i o nReg i s t r y ca l l ba ck f o r GC con f i rmat ion . ’ , ’ i n fo ’ ) ;
} ;

Why would an extension or injected script hold references? Many browser extensions inject content
scripts into pages using extension APIs. These scripts might attach event listeners to DOM elements or
keep copies of elements for various purposes. For example, an ad-blocker extension might traverse the DOM
looking for ads and keep references to removed elements to prevent them from reappearing. Similarly, a
malicious extension or a script injected by a compromised content delivery network or a man-in-the-middle
could wrap certain DOM APIs or store references to sensitive form fields (to exfiltrate data). Normally, such
behavior is not visible to the page or external monitors. Our WeakRef probe can catch a subset of these
behaviors: if any content script did capture our #testNode element (perhaps by intercepting its creation or
via a DOM mutation observer) and failed to release it, our test node will not be collected.

In our tests, we observed that in a clean browser with no extensions, the dummy node is collected
as expected (the framework reports “No unauthorized DOM references detected”). We also performed an
experiment with a benign custom extension that intentionally injects a script to hold a reference to any
element with ID testNode. In that scenario, our framework’s WeakRef test flagged that the testNode
element was never collected and thus reported a potential unauthorized reference. This indicates the presence
of an agent in the page holding the object (which in our case was the extension’s content script). To our
knowledge, this is a novel use of WeakRefs for security auditing in the browser – it essentially leverages
the nondeterministic nature of garbage collection to smoke out hidden observers. One challenge is timing:
garbage collection in browsers is not immediate or guaranteed within a fixed interval. Our approach is to
allocate some memory pressure (e.g., creating and discarding other objects) to encourage the GC to run,
and to use heuristics (polling every few hundred milliseconds for a few seconds). If at the end of the test
the object still isn’t collected, it strongly suggests a lingering reference. There is a theoretical possibility
of false positives if the browser’s GC simply didn’t run in time; to mitigate that, the test duration can be
extended or the result can be marked “suspicious” rather than a definitive fail. In practice, in a normal
browsing session the GC will have run within a few seconds, especially if we allocate and free some memory
in between.

This WeakRef DOM test is quite powerful in enterprise scenarios: if it flags an issue, it could mean
an employee has an extension that monitors or modifies the DOM (which might be a data-leak risk if the
extension is not approved), or it could reveal that a corporate proxy is injecting a hidden script into pages
(some security products do DOM injection for SSO or monitoring purposes). Either way, it highlights an
otherwise invisible agent operating in the browser. Our framework logs not only the detection but can also
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attempt to identify the culprit by examining known clues (e.g., global variables or function overrides that
common extensions use), though our current prototype only notes the condition rather than naming the
extension.

4.5 Permissions Audit (Camera, Geolocation, etc.)
Modern browsers include a Permissions API that allows querying the permission status for powerful fea-
tures like camera, microphone, geolocation, notifications, clipboard, sensors, etc. Many of these permissions
can be in one of three states for a given site: granted, denied, or prompt (the default unset state). In
enterprise-managed environments, administrators can also set global defaults or enforce policies for per-
missions. Mismanaged permissions could pose security risks (e.g., a user might have persistently granted
microphone access to a malicious site, or an enterprise might want to know if any site has unusual permissions
on a machine).

Our Permissions audit module uses the standard navigator.permissions.query() method to enumer-
ate and report the status of various permissions. The set of permissions we check includes: geolocation,
camera (video input), microphone, notifications, clipboard-read and clipboard-write (if supported),
background-sync, and any others exposed by the API in the given browser. For each, we call

{ nav igator . pe rmi s s i ons . query ({name : "<permission_name >"})} ,

which returns a promise resolving to a PermissionStatus object containing a state property that is
"granted", "denied", or "prompt". We record these states. In addition, we check for a few permissions not
covered by the API: for example, persistent storage or autoplay policy are not part of navigator.permissions,
but in enterprise settings could be relevant (we note these for future inclusion if appropriate).

Typical outcomes on a fresh browser: most permissions will be in the "prompt" state (meaning the
user has not yet decided). For example, if the user has never used geolocation on our test page, querying
geolocation will return "prompt". We consider this a safe default. If we find any permission in "granted"
state, that means the user (or a policy) has previously granted that permission to the origin running the
test (or globally, in some cases). Since our test likely runs from an internal enterprise testing page (or a
local file context), a granted status could indicate that a default policy is set or the test page was pre-
approved. We flag any granted permissions as noteworthy. For instance, in one test run we observed
notifications: "granted" because the user had at some point allowed notifications for the test page’s
origin. The framework would report: “Notifications permission is granted (possibly via group policy or prior
user consent)”, prompting the admin/user to confirm if that was intentional.

In corporate-managed browsers, administrators sometimes pre-approve or deny certain permissions for
all sites via group policy or master preferences. Our tool can reveal these defaults. For instance, Chrome’s
enterprise policy can automatically deny video capture for all websites. If that is in effect, querying the
camera permission might return "denied" as the status without any user interaction. This is important
information: it shows a restrictive policy is in place (which might be the desired secure baseline). Conversely,
if a policy mistakenly allowed something globally, we’d see "granted" unexpectedly, highlighting a potential
policy oversight.

Additionally, the audit cross-checks consistency. For example, if camera is granted but microphone is
denied, and we know no prompt occurred during the test, it might indicate an inconsistency (perhaps a
user allowed one and not the other at some earlier time). This could point to specific user behavior or policy
exceptions that warrant review.

Overall, the permissions audit is straightforward but provides a snapshot of the browser’s exposure: a
large number of “granted” permissions could indicate risky behavior (e.g., a user indiscriminately accepting
prompts), whereas mostly “denied” or all “prompt” suggests a locked-down posture. In our evaluation, we
found that on unmanaged personal browsers, it’s common to see a few permissions as granted (especially
notifications, which users often allow for various sites without realizing the spam risk), whereas on an
enterprise-locked-down browser, ideally most would be denied by default or still at prompt. The framework
can be used to enforce an expected baseline by comparing the reported states against a desired policy
(alerting if, say, any permission is granted when it should not be).
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4.6 SSL/TLS Certificate Validation
To assess the browser’s handling of invalid TLS certificates, the framework attempts to load resources from
URLs with known bad certificates (using domains from badssl.com, such as expired.badssl.com for an
expired certificate, self-signed.badssl.com for a self-signed certificate, etc.). We do this by programmat-
ically creating requests (for example, inserting an <img> tag or using fetch()) to those URLs and observing
the outcome. A secure browser should block these connections. Our test catches the failure by either an
onerror event on an image or a rejected promise for a fetch (which typically yields a network error for
certificate issues). We do not expect to ever receive a normal onload or success for these resources (since
the connection should not succeed without user intervention to bypass the certificate warning).

For each type of certificate error tested, the framework reports whether the browser correctly blocked it.
For example: “Expired Certificate Test: PASSED (browser refused the connection)” or “Self-signed Certificate
Test: PASSED”. If any of these were to unexpectedly succeed, it would mean the browser accepted a bad
certificate – indicating either a dangerously lenient setting or the presence of a malicious/rogue root certificate
that is implicitly trusting the invalid cert.

One caveat: in some enterprise environments, a security proxy performs SSL interception (terminating
TLS and re-signing certificates for inspection). In such cases, the badssl.com certificate might be replaced by
the proxy with a generated certificate that the browser trusts (because the enterprise’s root CA is installed
in the browser). Our framework accounts for this by trying to detect the presence of such interception. For
instance, if we get an unexpected success loading expired.badssl.com, we suspect a proxy rather than a
browser flaw. We might then attempt a WebSocket connection to the same host (which can sometimes bypass
certain proxies) to see if it fails, or examine the certificate chain via any available JS APIs (if any, which
is limited on the web). We flag these cases for IT to investigate (either the proxy isn’t blocking something
it should, or the browser’s trust store has been modified). In our evaluation, all standard browsers with no
interception blocked the BadSSL tests as expected.

We also test enforcement of Certificate Transparency (CT) where applicable. For example, no-sct.badssl.com
is a certificate deliberately missing the required Signed Certificate Timestamp (SCT). Chrome and Firefox
enforce CT for certain certificates, so our fetch to that URL will fail in CT-enforcing browsers like Chrome
(which treats it as untrusted). Indeed, in our test runs, Chrome blocked no-sct.badssl.com (the fetch
failed), whereas a browser that doesn’t enforce CT (or an older version) might allow it. Our framework
notes this as well: e.g., “Certificate Transparency enforcement: Chrome = yes (blocked unlogged cert), Fire-
fox = yes, Safari = not enforced.” Such insight can be useful if an enterprise is concerned about targeted
attacks with rogue but technically valid certs; CT enforcement helps catch those. (If an enterprise is using
a private CA that doesn’t log to CT, the admin would know their browsers might fail CT tests, which our
tool would highlight as expected behavior requiring an exception.)

4.7 Cryptographic API and Randomness Evaluation
Web browsers offer a suite of cryptographic functions via the Web Crypto API (window.crypto.subtle) and
related utilities, as well as random number generators (Math.random() and crypto.getRandomValues). The
security of these primitives is paramount, as they underpin secure communications (e.g., token generation,
client-side encryption). Our framework performs a cryptographic audit to ensure that the browser’s crypto
functions are present and behaving as expected.

Web Crypto API Checks: We first verify the presence of crypto.subtle (the SubtleCrypto interface)
which provides cryptographic primitives like SHA hashing, RSA/ECDSA signing, encryption, etc. In a mod-
ern secure context (HTTPS), this should exist. (If the framework is run from a file:// URL or an unsecured
origin, some browsers might not enable SubtleCrypto; we ensure to note the context or advise running on a
secure origin to fully test crypto.) We then attempt a few basic operations: for example, generate an AES-
GCM key, use it to encrypt and then decrypt a sample message, and verify we get back the original plaintext.
We also test the availability of certain algorithms – e.g., we call crypto.subtle.digest(’SHA-256’, data)
to ensure hashing works, and perhaps try generating an RSA key pair (though that can be slow, so this
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might be optional or limited in quick tests). If any of these operations fails (due to the API not being
present or some subtle issue), that’s a red flag. In our evaluation, all mainstream browsers passed these
checks, indicating a functioning Web Crypto implementation. (We note that legacy IE11 does not have
the modern crypto.subtle API – it had a legacy msCrypto with a subset of features – so our test notes
“SubtleCrypto not supported” for IE11, which is a mark against using such a browser for apps requiring
modern cryptography.)

Listing 2: Simplified PoC for Validating Browser Cryptographic Algorithm Support
export const s impleCryptoTest = async (

l og : (msg : s t r i ng , type : ’ in fo ’ | ’ succe s s ’ | ’ e r ro r ’ ) => void
) => {

log ( ’ Checking Web Crypto API support . . . ’ , ’ i n fo ’ ) ;

i f ( ! crypto ? . sub t l e ) {
l og ( ’Web Crypto API i s not a v a i l a b l e . ’ , ’ e r ro r ’ ) ;
r e turn ;

}

const a lgor i thms = [
{ name : ’AES−GCM’ , params :
{ name : ’AES−GCM’ , l ength : 256 } , usages : [ ’ encrypt ’ , ’ decrypt ’ ] } ,
{ name : ’RSA−OAEP’ , params : {

name : ’RSA−OAEP’ , modulusLength : 2048 ,
publicExponent : new Uint8Array ( [ 1 , 0 , 1 ] ) , hash : ’SHA−256 ’

} , usages : [ ’ encrypt ’ , ’ decrypt ’ ] } ,
{ name : ’ECDSA’ , params :
{ name : ’ECDSA’ , namedCurve : ’P−256 ’ } , usages : [ ’ s ign ’ , ’ v e r i f y ’ ] }

] ;

f o r ( const a lgo o f a lgor i thms ) {
try {

const key = await crypto . sub t l e . generateKey (
a lgo . params , f a l s e , a lgo . usages
) ;
l og ( ‘ ${ a lgo . name} i s supported ‘ , ’ succes s ’ ) ;

} catch ( e r r ) {
l og ( ‘ ${ a lgo . name} i s not supported : ${ e r r } ‘ , ’ e r ro r ’ ) ;

}
}

} ;

Pseudo-Random Number Generators (PRNG): A secure source of randomness is critical for many
security functions (e.g., generating non-guessable tokens). Browsers provide crypto.getRandomValues() as
a source of cryptographically strong randomness, and Math.random() as a non-cryptographic PRNG. Our
framework performs a basic sanity check on the randomness and integrity of these APIs. We generate multiple
batches of random data using crypto.getRandomValues (for example, 256 bytes at a time) and analyze the
output for obvious anomalies. We ensure, for instance, that consecutive calls do not produce identical byte
arrays and that the distribution of bytes appears roughly uniform. We compute simple statistics like the
frequency of each byte value across samples to catch any gross biases or a stuck RNG. While this is not a full
statistical randomness test, it can detect catastrophic failures (like an RNG that returns all zeros or repeats
the same sequence every time).
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Listing 3: Simplified PoC for Cryptographic Random Number Generator Test
export const simpleRngTest = (

log : (msg : s t r i ng , type : ’ in fo ’ | ’ succe s s ’ | ’ warning ’ | ’ e r ro r ’ ) => void
) => {

log ( ’ Va l idat ing cryptograph ic random number gene ra t i on . . . ’ , ’ i n fo ’ ) ;

i f ( ! crypto ? . getRandomValues ) {
l og ( ’ crypto . getRandomValues i s not a v a i l a b l e . ’ , ’ e r ro r ’ ) ;
r e turn ;

}

const bu f f e r = new Uint8Array ( 1024 ) ;
crypto . getRandomValues ( bu f f e r ) ;

l e t z e r o s = 0 , ones = 0 ;
l e t r epea t s = 0 ;

f o r ( l e t i = 0 ; i < bu f f e r . l ength ; i++) {
const byte = bu f f e r [ i ] ;
f o r ( l e t b = 0 ; b < 8 ; b++) {

( byte & (1 << b ) ) ? ones++ : z e ro s++;
}
i f ( i > 0 && bu f f e r [ i ] === bu f f e r [ i − 1 ] ) {

r epea t s++;
}

}

const t o t a lB i t s = bu f f e r . l ength ∗ 8 ;
const zeroPct = ( ze ro s / t o t a lB i t s ) ∗ 100 ;
const onePct = ( ones / t o t a lB i t s ) ∗ 100 ;

l og ( ‘ Zero b i t s : ${ zeroPct . toFixed (2)}% ‘ , ’ in fo ’ ) ;
l og ( ‘One b i t s : ${onePct . toFixed (2)}% ‘ , ’ in fo ’ ) ;
l og ( ‘ Sequent i a l r epea t s : ${ r epea t s } ‘ , ’ in fo ’ ) ;

const balanced = Math . abs ( zeroPct − 50) < 5 ;
const hasTooManyRepeats = repea t s > 10 ;

i f ( balanced && ! hasTooManyRepeats ) {
l og ( ’ Randomness qua l i t y l ook s acceptab l e . ’ , ’ succe s s ’ ) ;

} e l s e {
l og ( ’ Po t en t i a l i s s u e in randomness qua l i t y detec ted . ’ , ’ warning ’ ) ;

}
} ;

We also verify that the API is available and not tampered with: e.g., nativeToString(crypto.getRandomValues)
should indicate native code (meaning it hasn’t been overridden). In our test runs, all modern browsers pro-
vided getRandomValues and it produced different outputs each time (no obvious issues). We similarly check
Math.random() in a cursory way: we call it many times and ensure results are not constant; we may log if
its outputs appear suspiciously non-random in a trivial sense (though a detailed analysis of Math.random
quality is beyond our scope since it’s not meant for cryptographic security).

Overall, this module verifies that the fundamental cryptographic building blocks in the browser are present
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and working. A browser lacking a proper Web Crypto API or with a faulty random number generator would
fail these tests, which is crucial information if an enterprise relies on in-browser crypto (for example, for Zero
Trust access tokens or client-side encryption of sensitive data).

4.8 Native API Security Checks (SharedArrayBuffer, etc.)
Web platform features are sometimes restricted for security reasons. A notable example is SharedArrayBuffer
(SAB), which was disabled in early 2018 as a mitigation for Spectre CPU vulnerabilities. Browsers have
since re-enabled SAB only when certain security conditions are met (i.e., the page is in a cross-origin
isolated context, requiring specific HTTP headers: Cross-Origin-Opener-Policy: same-origin and
Cross-Origin-Embedder-Policy: require-corp). Our framework checks whether such potentially sen-
sitive APIs are available and under what conditions.

SharedArrayBuffer and Atomics: We attempt to access window.SharedArrayBuffer. In a modern
Chrome/Edge/Firefox without cross-origin isolation, the SharedArrayBuffer constructor is present but not
usable (or in some implementations it might be absent entirely). For example, Chrome hides it unless
crossOriginIsolated is true, in which case referencing it might return undefined or throw when construct-
ing. We also check the value of the global crossOriginIsolated property. On our test page (which we
deliver without the special headers, so it is not isolated), we expect crossOriginIsolated to be false and
SharedArrayBuffer either unavailable or throwing if used. We verify this by attempting a small allocation:

try { new SharedArrayBuffer(8); } catch(e) { ... }

In Chrome 92+ for instance, this throws an error if not isolated. We consider it a pass for security if the
browser correctly restricts SAB usage when the context isn’t isolated. If we found that we could actually
construct a SAB in a non-isolated context, that would indicate either an outdated browser or a configuration
that disabled this security measure (reintroducing Spectre risk), which would be flagged. In our results,
Chrome 136, Firefox 138, Edge 136 all disallowed SAB use in our default test.

We also check the Atomics.wait() function and related Atomics methods. If SAB is unavailable,
Atomics.wait might be a no-op or not present. (Per specification, Atomics is always present, but wait
will throw if used on a non-shared memory). We note this in the report but primarily focus on SAB avail-
ability as the security indicator.

Other Sensitive APIs: We perform quick checks on a few other potentially sensitive APIs. For instance,
Notification (the Web Notifications API): we check for its presence and whether calling

Notification.requestPermission()

without a user gesture is allowed or not (modern browsers typically require a user interaction to trigger
permission prompts for notifications, as a anti-spam measure). Another example is the Clipboard API:
we might check if navigator.clipboard.writeText is available and if it correctly requires a user gesture
(though fully testing that is complex). These checks ensure the browser’s secure defaults are in place for
newer APIs. In summary, all these tests check that the browser has not reverted any security restrictions
on powerful features. Our test results summary for this module is that no tested browser allowed dangerous
access beyond what is expected. The key highlight is the SharedArrayBuffer restriction – an enterprise
might ask “Are my users safe from Spectre attacks in the browser?” and seeing that SAB is gated behind
cross-origin isolation (which our test demonstrates) provides confidence. Conversely, if an enterprise needs
SAB for performance in some app, they must configure cross-origin isolation; our tool would then show
crossOriginIsolated = true for that page, confirming it’s set up correctly (or alert if not).
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4.9 Internal Network Access (Local Service Discovery)
One often overlooked capability of browsers is their ability to make requests to internal networks (e.g.,
http://localhost or http://192.168.0.1). This can be exploited by malicious websites to target internal
infrastructure (so-called browser-based intranet hacking or DNS rebinding attacks). From an enterprise per-
spective, it might be useful to know what internal services are reachable via the browser, as that constitutes
an attack surface or potential exfiltration path. Our framework includes an internal network scanning mod-
ule that uses normal browser requests (like WebSocket, fetch, or <img> tags) to probe for common open
ports on localhost and the local LAN.

Technique: We leverage the browser’s ability to initiate connections to arbitrary IP addresses. For scan-
ning localhost, the most straightforward approach is using the WebSocket API because it provides a clear suc-
cess/fail distinction relatively quickly. For example, to check if something is listening on ws://127.0.0.1:8080,
we attempt

new WebSocket("ws://127.0.0.1:8080")

If the port is open and a service responds (even if it’s not a WebSocket – e.g., a HTTP server might send an
HTTP response which the WebSocket handshake will interpret as a failure with a specific code), the error
message for the WebSocket will indicate an HTTP response code (like 400 or 404). If the port is closed, the
error is more immediately: ERR_CONNECTION_REFUSED. By catching the error (the WebSocket will trigger
onerror), and possibly examining the error details or timing, we can infer whether the port is open (service
present) or not. Our framework simplifies this by attempting connections to a list of ports (e.g., common
admin ports like 22, 80, 443, 3389, 5900, etc.) and measuring how long until the onerror fires or what error
is received. Timing differences or error codes can distinguish open vs. closed ports in many cases.

For scanning other internal IPs (e.g., 192.168.X.X), we can use similar techniques. We might use fetch()
or Image() objects to try loading from common URLs (like http://192.168.0.1:80/favicon.ico or an
enterprise-specified list of internal hosts). The results (success, error, timeout) inform reachability. We
ensure these scans are done carefully to avoid overwhelming any network.

In our implementation, we also take care not to trigger protective countermeasures: a flurry of port
scans could itself be detected by endpoint security. We throttle the scan or target only high-value ports.
By default, we focus on a subset of important ports (for example, RDP 3389, VNC 5900, common proxy or
database ports, etc.) rather than every possible port, to keep the test quick and less noisy.

After scanning, the framework compiles a list of any detected open ports or responsive services. For exam-
ple, it might report: “Port 5900 on localhost responded (VNC service possibly running)” or “192.168.0.100:80
is reachable.” These findings can be significant. If our framework can detect open internal services, so can
malicious sites using similar techniques. Therefore, these results highlight potential risks: e.g., “Browser
can reach http://localhost:5900 (VNC) – this might be a security risk if malware in the browser can
exploit a vulnerable VNC service.” Enterprises might use this information to harden the host (close those
ports or ensure host-based firewalls block them from browser access). Notably, some modern browsers (like
Brave) have started blocking or prompting for attempts to access certain localhost ports by web pages. If
our framework is run on Brave and finds that scanning is blocked (no responses at all even if a service is
up), it would note that as “Browser blocked internal scan attempt – protective feature detected,” which can
be considered a positive hardening from a posture perspective.

We also compare our approach to prior work: for instance, the BeEF security framework includes a
module for client-side port scanning via the browser, and there have been real-world instances (as reported by
security researchers) of websites scanning visitors’ machines for open ports (e.g., a report of eBay scanning for
remote desktop ports)[8]. Our module is careful not to be too noisy; it could scan a subset of important ports
rather than all 65k (which would be slow and noticeable). It’s configurable to balance comprehensiveness
and stealth.

In summary, this module effectively “red teams” the browser from inside, observing what internal network
endpoints the browser can access. The experimental results in Section 5 will illustrate an example scenario,
including a table of open ports found in a test network setup.
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4.10 Password Manager Autofill Checks
Most modern browsers have built-in password managers that can autofill login forms. While convenient,
this feature could pose risks if, for example, the browser autofills credentials into invisible or unintended
form fields injected by a malicious script. Our framework includes checks to ensure that password autofill
behavior is safe.

We create a dummy login form in the page (with username and password fields) but we style it to be
off-screen or hidden (e.g., using CSS to position it out of viewport or set it invisible). We then trigger a
scenario where the browser might attempt autofill (for instance, if test credentials are stored for the site). We
observe whether any autofill occurs. Modern browsers have defenses against autofilling invisible forms (to
prevent malicious harvesting), so we expect that no credentials will be filled into our hidden form. Indeed,
in our evaluation the password fields remain empty unless visibly interacted with by a user.

We also check that scripts cannot directly access any autofilled data. For security, browsers often prevent
JavaScript from reading the value of an autofilled password field until the user interacts (to mitigate certain
attacks). To test this, if we cause an autofill (or simulate one), we then immediately try to read the
input.value via script. All tested browsers in our evaluation prevented script access to autofilled passwords
without user action.

The results of these checks provide assurance that the built-in password manager isn’t silently giving
away credentials to the page without user action. If any browser had eagerly autofilled hidden fields or
allowed script access to the autofilled value, our framework would flag that as a serious vulnerability. In
practice, we did not encounter such behavior in current browser versions.

4.11 Exposed PAC File
Many organizations use Proxy Auto-Config (PAC) files, often retrieved via Web Proxy Auto-Discovery
(WPAD), to configure browser proxy settings.
A PAC file (typically hosted at a URL like http://wpad/wpad.dat) can contain sensitive network information
(internal proxy addresses, bypass rules, etc.). We test whether such PAC files could be accessed by web
content and whether the browser appropriately restricts them. Our framework attempts to fetch a wpad.dat
file from what appears to be the default WPAD host (e.g., http://wpad/wpad.dat or a network-specific
variant) using a cross-origin request. We anticipate that if a PAC server exists but does not explicitly allow
cross-origin access via CORS headers, the browser will block our attempt (even if the network request itself
might succeed, the response should be inaccessible to our script due to SOP/CORS).

In our tests, when a WPAD host exists, the fetch is indeed blocked by the browser’s same-origin policy,
since such internal endpoints typically do not set CORS headers. This means our script cannot read the PAC
contents – which is the secure outcome. If we were able to retrieve PAC file content from a web script, that
would indicate a potential information exposure vulnerability (likely the PAC server misconfigured CORS
to allow it). Additionally, we monitor whether the act of requesting the PAC file triggers any browser proxy
logic; we take care to use a direct connection for the test (bypassing the proxy for that request, if possible)
to avoid side effects (we don’t actually want to alter the browser’s proxy usage during the test).

The typical result of this check is “PAC file not accessible to web scripts” for a properly configured
environment. If otherwise, the framework would warn that internal proxy settings could be exposed to web
pages, advising a fix on the PAC server’s configuration (or browser policy adjustments).

4.12 Virtual Machine & Sandbox Fingerprints
Beyond headless clues, the browser itself can act as a sensor to detect if it’s running in a virtual machine
(VM) or sandboxed environment, which is often a red flag in enterprise threat contexts. JavaScript’s
access to low-level details enables several VM detection tricks. One technique leverages WebGL finger-
printing: using the WEBGL_debug_renderer_info extension, a script can query the GPU vendor and ren-
derer strings. Unusual values like Microsoft Basic Render Driver or SwiftShader (a software renderer) in
Chrome’s output often indicate a virtualized or headless GPU with no real graphics card. Likewise, certain
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VMware or VirtualBox drivers expose distinctive renderer names. Another clue is system resources ac-
cessible via the browser: navigator.deviceMemory reports an approximate RAM quota (in GB). A very
low value (e.g. 0.25 or 0.5 GB) is unlikely on a modern physical machine and suggests a VM or container
with minimal allocated RAM. The same goes for CPU cores – navigator.hardwareConcurrency – which
VMs often cap to 1 or 2. Even more telling is an active timing test: by spawning parallel web workers and
timing operations, one can estimate the true number of CPU cores. Timing side-channels can fingerprint
virtualization at an even deeper level: the browser’s high-resolution timer (Performance API) can betray
the underlying hypervisor’s clock. Research has shown that certain hypervisors use fixed-frequency clocks
(e.g. 10 MHz or 3.579545 MHz) that can be identified by analyzing performance.now() results. Such
frequencies are rare on bare-metal hardware, so their detection signals a virtualized browser environment.
All these indicators – from graphics and screen attributes to CPU timing – form a fingerprint of the client
machine. In an enterprise scenario, a security system could deploy a script to gather these signals and flag
sessions coming from VMs or sandbox environments (often used by malware or evasive attackers).
This helps distinguish a risky automated test environment from a legitimate user’s workstation.

4.13 Command-Line Artifact Detection
Modern browsers can reveal clues of how they were started. Certain command-line flags leave detectable
artifacts in the JavaScript environment. For example, Chrome’s V8 engine has hidden debug functions
(like %DebugPrint) normally disallowed – if these can be invoked, it implies the browser was launched with
debugging flags (e.g. --allow-natives-syntax). Unusual globals may also appear; a page might unexpect-
edly find an object like window.Mojo (part of Chrome’s internal Mojo IPC interface) which is not present
in normal browsing. Such artifacts often signal a non-standard launch, unsafe configuration, or instru-
mentation. As a concrete example, a headless Chrome started without the proper stealth flags will include
HeadlessChrome in its user agent string (and even in low-level Client Hints headers like Sec-CH-UA), imme-
diately identifying an automated session. Security policies can also monitor browser process arguments
at launch – for instance, flags like --no-sandbox or --remote-debugging-port are rarely used in regular
enterprise use and may indicate malware launching a browser subprocess. In an enterprise setting, EDR
tools or in-browser scripts can leverage these signals to flag browsers running with potentially dangerous
options.

4.14 CPU Pressure Detection
High CPU utilization in the browser can indicate the presence of heavy scripts, such as cryptocurrency
mining malware or infinite loops. This module detects if the browser is under unusual CPU pressure, which
could suggest unwanted activity.

We leverage the emerging Compute Pressure API (via the PressureObserver interface) if available[5][10,
9]. The Compute Pressure API provides a way to observe the system’s CPU load/pressure from web con-
tent. If supported, we register a PressureObserver for "cpu" and monitor the reported pressure level.
For example:

Listing 4: Using the Compute Pressure API to monitor CPU load.
i f ( ’ PressureObserver ’ in window) {

const obse rve r = new PressureObserver ( l i s t => {
f o r ( const read ing o f l i s t ) {

conso l e . l og ( ’CPU pre s su r e l e v e l : ’ , r ead ing . l e v e l ) ;
i f ( r ead ing . l e v e l === ’ c r i t i c a l ’ ) {

r epor t ("CPU Pressure : CRITICAL − heavy load detec ted " ) ;
}

}
} , { sampleRate : 1 } ) ;
obse rver . observe ( ’ cpu ’ ) ;
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}

In this snippet, if the CPU pressure level reaches "critical" (meaning the system is under sustained
high CPU usage), we flag it. A constantly high pressure reading while running our tests (which themselves
are not CPU-intensive) might indicate another tab or extension is consuming CPU (possibly cryptomining
or stuck in a loop).

For browsers that do not support PressureObserver, we use a fallback: the requestIdleCallback API.
We repeatedly request idle callbacks and measure how much idle time is available. If the browser rarely calls
our idle callback or always indicates near-zero idle time remaining, it implies the event loop is busy (little
idle time). For example:

Listing 5: Measuring idle time as a proxy for CPU usage.
l e t id leTimeTotal = 0 ;
l e t s l o t s = 0 ;
func t i on id l eMoni tor ( dead l ine ) {

i f ( dead l ine . timeRemaining ( ) > 0) {
id leTimeTotal += dead l ine . timeRemaining ( ) ;

}
s l o t s++;
i f ( performance . now( ) < t e s t S t a r t + 5000) {

r eque s t Id l eCa l l ba ck ( id l eMoni tor ) ;
} e l s e {

const avg Id l e = idleTimeTotal / s l o t s ;
i f ( avg Id l e < 10) {

r epor t ("High CPU usage detec ted ( low i d l e time ) " ) ;
}

}
}
r eque s t Id l eCa l l ba ck ( id l eMoni tor ) ;

In this code, we monitor idle time over a 5-second window. If the average idle time per callback is very
low (indicating the CPU was mostly busy doing other tasks), we report high CPU usage. A normal browser
with nothing else going on should have plenty of idle time when our test page is the only active workload.
If we detect significantly reduced idle time (or few callbacks), it suggests the CPU is busy (perhaps due to
background scripts or heavy computation).

This module helps identify if, for instance, a cryptojacking script is running. In an enterprise setting,
if the browser fails this test (indicating constant high CPU), it could prompt further investigation: e.g.,
checking for malicious extensions or tabs.

4.15 Content Filtering Detection (Network-Level)
Some enterprises deploy content filtering solutions or browser extensions (like ad-blockers or security filters)
that block certain URLs from loading. This module detects if such filtering is present by attempting to load
a known-blocked resource and seeing if it succeeds or fails in a controlled manner.

We use an <iframe> (or alternatively an <img> or fetch) to load a URL that we expect to be blocked
by common filters. For example, we might use a URL of a known advertising domain or a dummy URL that
the enterprise firewall is configured to block. To get a clear signal, we host a small test page on that domain
which will notify us if it loads.

Our test sets up a message listener on the parent page:

window . addEventListener ("message " , event => {
i f ( event . data === "IFRAME_LOADED") {

repor t (" Blocked content was a l lowed ( f i l t e r not pre sent ) " ) ;
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}
} ) ;

Then we create the iframe pointing to the test URL, and include in the URL a script that sends
postMessage("IFRAME_LOADED", "*") to the parent upon load. If the iframe loads and executes, the
parent will receive the message and conclude that the supposedly blocked content actually loaded (meaning
no filter blocked it). If no message is received within a timeout, we assume the content was blocked (or failed
to load).

Additionally, we attach an onerror handler to the iframe or image element. If it triggers, that also
indicates blocking. We differentiate network errors (DNS failure or connection refused, which might indicate
blocking) from load success.

For example:

Listing 6: HTML snippet for content filtering test.
<iframe id=" f i l t e rTes tFrame "

src="http :// ads . example . com/ te s tpage . html"
onload=" iframeLoaded ( ) "
oner ro r=" i f r ameFa i l ed ( ) "
style=" d i sp l ay : none"></ iframe>

<script>
l e t f i l t e rT ime r = setTimeout ( ( ) => {

repor t ( "Content␣ l i k e l y ␣ blocked ␣ ( no␣ response ) " ) ;
} , 5000 ) ;
f unc t i on iframeLoaded ( ) {

clearTimeout ( f i l t e rT ime r ) ;
// I f loaded but our message didn ’ t a r r i v e , s t i l l s u s p i c i o u s
conso l e . l og ( " I frame ␣ loaded ␣ event ␣ f i r e d " ) ;

}
func t i on i f r ameFa i l ed ( ) {

clearTimeout ( f i l t e rT ime r ) ;
r epor t ( "Content␣ blocked ␣ ( e r r o r ␣ event ) " ) ;

}
</ script>

In practice, if an enterprise DNS sinkhole or proxy blocks the domain, the onerror will fire, or the iframe
will never finish loading (triggering our timeout). If an extension like uBlock Origin blocks the request, often
the iframe will either be canceled or removed. We might also directly check the DOM after a moment to see
if the iframe element’s contentDocument exists. If it remains null, likely it didn’t load.

By using a controlled known URL, this module can confirm the presence of content filtering. The result
is reported as, e.g., “Content Filtering: DETECTED (test URL was blocked)” or “Content Filtering: NOT
detected (test content loaded successfully)”. This helps an enterprise verify that their filtering is active in
the browser environment. Conversely, if they expect certain content to be blocked and our test loads it, that
would highlight a gap (e.g., maybe the filtering extension isn’t installed or the policy isn’t applied in that
browser).

4.16 DOM-Based Content Filtering
Beyond network-level blocking, many content filters (like ad blockers or script blockers) work by removing or
hiding DOM elements that match certain patterns (e.g., elements with IDs like “ads-banner” or third-party
iframe tags). We include a test that creates bait elements in the DOM to see if they get removed or altered,
indicating an active content blocking agent in the page.

For example, we might create a <div> element with an ID or class name that is commonly targeted by
filters (such as “bannerAd” or “trackingPixel”). We immediately observe it with a MutationObserver for
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removal or attribute changes. Additionally, after a short delay, we check if it still exists in the DOM.
Example test code:

Listing 7: DOM content filtering detection via mutation observer.
const adDiv = document . createElement ( ’ div ’ ) ;
adDiv . id = "ads−banner " ;
adDiv . innerText = "Advertisement " ;
document . body . appendChild ( adDiv ) ;

// Set up mutation obse rve r on the parent
const obse rve r = new MutationObserver ( mutations => {

f o r ( const mut o f mutations ) {
f o r ( const node o f mut . removedNodes ) {

i f ( node === adDiv ) {
r epor t ("DOM content f i l t e r : removed t e s t element " ) ;

}
}
i f (mut . type === ’ a t t r i bu t e s ’ && mut . t a r g e t === adDiv ) {

r epor t ("DOM content f i l t e r : modi f i ed a t t r i b u t e s o f t e s t element " ) ;
}

}
} ) ;
obse rve r . observe ( document . body , { c h i l d L i s t : true , a t t r i b u t e s : true , subt ree : t rue } ) ;

// Check a f t e r a shor t de lay
setTimeout ( ( ) => {

i f ( document . body . conta in s ( adDiv ) ) {
r epor t ("No DOM f i l t e r i n g detec ted ( t e s t element s t i l l p r e sent ) " ) ;
adDiv . remove ( ) ; // cleanup

} e l s e {
r epor t ("DOM f i l t e r i n g detec ted ( t e s t element miss ing ) " ) ;

}
obse rver . d i s connec t ( ) ;

} , 3000 ) ;

In this snippet, we add a dummy “ads-banner” division. If an extension like Adblock Plus is active, it
might remove this element almost immediately (since it matches a filter rule). Our mutation observer would
catch the removal and we log that a DOM content filter is present. If by the time of the timeout the element
is gone (and we didn’t remove it ourselves yet), we also conclude it was filtered out. We also look for attribute
modifications because some filters might not remove an element but instead set its CSS to display:none.
For instance, if the style attribute gets modified to hide it, our observer would detect an attribute change
on that element.

By planting multiple bait elements (for ads, popups, trackers,malware, etc.), we can detect a variety of
content-blocking behaviors. The outcome might be reported like “DOM-based Content Filtering: Active
(ad-blocker or similar extension detected)” vs “None detected”.

This test helps enterprises see if users have unapproved content blockers active (which might interfere
with business apps or security monitoring). It also reveals if any enterprise security software is dynamically
modifying the DOM (some DLP or SSO injectors do that). All such modifications would show up here.
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4.17 Deterministic Garbage Collection Detection
JavaScript’s garbage collection is nondeterministic by design – developers cannot normally predict exactly
when an object will be collected. If we observe a browsing environment where garbage collection happens
in a very deterministic or regular pattern, it could imply an unusual environment, such as a headless or
instrumented browser where a custom GC schedule is in effect (or even a side-channel attempt to modulate
timing).

Our framework leverages WeakRef and FinalizationRegistry (as described earlier) to monitor garbage
collection timing. In the WeakRef DOM test, we primarily cared whether an object gets collected at all.
Here, we focus on the timing of collections.

We create a number of short-lived objects and register them with a FinalizationRegistry. Then we
drop all references and record timestamps whenever the finalizer callback runs (meaning a batch of objects
was collected). For example:

const gcTimes = [ ] ;
const r e g i s t r y = new F ina l i z a t i o nReg i s t r y ( token => {

gcTimes . push ( performance . now ( ) ) ;
} ) ;
f o r ( l e t i = 0 ; i < 1000 ; i++) {

l e t obj = {data : i } ;
r e g i s t r y . r e g i s t e r ( obj , " obj " ) ;
// not keeping ’ obj ’ r e f e r en c e , e l i g i b l e f o r GC

}

After allocating these objects, we perform some operations to encourage GC (like allocating and discard-
ing a large array, or simply waiting with await new Promise(r=>setTimeout(r,100)) to give the browser
some idle time). We record the timestamps in the gcTimes array each time the registry’s callback fires (each
callback corresponds to one or more objects being collected, depending on the engine’s grouping).

By analyzing these timestamps, we can deduce how many GC cycles occurred and at what intervals.
For instance, in one run on Chrome, we might find that a batch of objects were collected typically within
1-6 seconds, often in groups, indicating the GC ran a couple of times in that period. Firefox might show a
slightly different pattern (perhaps a single GC run that cleans up most of them after a delay, depending on
memory usage). We are not measuring exact microsecond timing but rather the general cadence.

This is not a strict pass/fail security test per se, but a measurement that the framework reports (e.g.,
“Garbage Collection behavior: Observed 2 cycles over 1.5s, roughly 500ms apart”). If an enterprise wanted
to ensure no abnormal GC behavior (for example, some malware forcing constant GC to create a covert
timing channel), this test could catch that as it would show an unusually high frequency of collections or a
periodic pattern.

We note that forcing or inducing GC on demand is tricky in standard web pages (there is no standard
API to trigger GC). We rely on natural GC triggers and memory pressure. We do not use any non-standard
hacks (some JS engines have an exposed gc() function in debugging modes, but not in normal web pages).

**Findings:** In normal usage, GC timing is somewhat unpredictable but falls within an expected range.
If we allocate lots of objects, we observe the engine recovering them within a few seconds. If we allocate
minimal objects, sometimes our finalization callback might not fire during the short test because there was no
need for GC. Our framework accounts for that by possibly extending the test duration if needed, or reporting
“GC not observed (no pressure)” in such cases. In one scenario, we artificially created heavy memory usage
to see if GC would trigger more aggressively; as expected, it did, and our logs showed multiple callbacks in
quick succession.

From a security viewpoint, this module mainly provides diagnostic info. However, it indirectly helps
ensure our WeakRef-based tests (like the DOM reference test above) are functioning, because it confirms
that GC did run. If GC did not run and our WeakRef test found the object still alive, we might be unsure
if it’s due to no GC or a held reference. By correlating with this GC timing test, we can clarify that (e.g.,
if we see GC happened but the object remained, it confirms a leak).
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Additionally, if we ever encountered an environment where GC happened at perfectly regular intervals
(say every X ms exactly, which would be odd), we’d flag that as potentially indicative of an instrumented
environment (some automated frameworks or headless modes might do that to reduce nondeterminism). In
our tests on real browsers, we did not see any such deterministic pattern—timing had some variability, as
expected.
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Summary of Test Modules
Table 1 provides a summary of the key test modules, their security focus, and any noteworthy browser
compatibility points.

Test Module Detection Goal Technique Browser
Compatibili-
ty/Notes

Same-Origin Policy
(SOP)

Ensure no cross-origin data
access

Attempt cross-origin DOM access
and cookie reads

All modern
browsers enforce
SOP; any failure
is critical.

CORS Enforcement Verify cross-origin requests
are properly restricted

Fetch/XHR to resources with and
without proper CORS headers

All modern
browsers support
CORS.

Content Security Pol-
icy (CSP)

Enforce script and resource
loading restrictions

Inject inline script, load disal-
lowed resource under CSP

Requires CSP
support.

XSS Auditor/Filter Detect built-in XSS protec-
tion

Reflect script in URL, observe ex-
ecution or filtering

Chrome/Firefox:
no auditor (ex-
pected).

Sandbox Escape Verify <iframe sandbox>
restrictions

Run script in sandboxed iframe,
attempt parent access

All tested
browsers hon-
ored sandbox
flags.

External Interference
(WeakRef DOM
Leak)

Detect unauthorized DOM
access (e.g., extension)

Insert element, remove it, use
WeakRef + GC to see if it remains

Requires WeakRe-
f/Finalization-
Registry.

Permissions Audit Enumerate camera/mic/ge-
olocation permissions sta-
tus

Use navigator.permissions.query()
for various permissions

All browsers sup-
port most queries
(Safari partial).

Cert Validation Ensure invalid TLS certs
are blocked

Load images/fetch from
badssl.com domains (expired,
self-signed, etc.)

All modern
browsers block
invalid certs by
default; enterprise
MITM proxies
may affect results.

Web Crypto API Verify availability of cryp-
tographic primitives

Call crypto.subtle functions
(AES key gen, encrypt/decrypt,
hash)

All modern
browsers (HTTPS
context) pass.

Crypto RNG Quality Ensure getRandomValues
is unpredictable

Generate multiple random byte
arrays, check for anomalies

All browsers
provided non-
repeating se-
quences; flagged
only catastrophic
failure.

SharedArrayBuffer
(SAB)

Check Spectre mitigations Try to use SAB without
cross-origin isolation, check
crossOriginIsolated

All browsers pass

Internal Network Ac-
cess

Identify accessible internal
services

Attempt connections (WebSock-
et/fetch) to localhost and intranet
IPs

No special API
needed.
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Password Manager
Autofill

Ensure no unsafe autofill Hidden form fields and script
value access checks

All modern
browsers pre-
vented hidden
autofill and script
access (expected).

PAC File Access
(WPAD)

Prevent PAC file leakage Fetch wpad.dat and check SOP/-
CORS protection

All browsers
blocked cross-
origin PAC fetch
(unless misconfig-
ured server).

CPU Pressure Detect heavy CPU usage
(cryptomining)

Compute Pressure API (if avail-
able) or measure idle callback
times

PressureObserver
supported in
Chrome (under
experiment); fall-
back works in
all.

Content Filtering
(Network)

Detect network/extension
blocking of URLs

Load known-blocked iframe re-
source, await message or error

Requires external
test URL; works
with extension or
proxy blocking.

DOM Filtering (Ad-
block)

Detect DOM element re-
moval/hiding by filters

Insert bait elements (e.g., ad
ids) and observe removal or CSS
change

Adblock ex-
tensions on
Chrome/Firefox
remove/hide ele-
ments (detected);
no effect in
browsers without
such extensions.

GC Determinism Observe garbage collection
patterns

Use WeakRefs to record GC tim-
ing intervals

Requires WeakRef
support; purely
observational
(no fail unless
pattern is highly
abnormal).

Table 1: Summary of selected Browser Security Posture[1] test modules, their purposes, and notes on browser
support or expected variations.

5 Experimental Evaluation
We conducted an experimental evaluation of Browser Security Posture[1] across multiple browsers and sce-
narios to demonstrate its utility. The evaluation comprised two main components: (a) cross-browser testing
on the latest versions of major browsers (Chrome, Firefox, Edge, Safari) to observe inherent differences in
security posture; and (b) scenario-based tests simulating enterprise configurations, including the introduc-
tion of suspicious extensions and specific local services running. All tests were performed in a controlled
environment, with results systematically collected for comprehensive analysis.

Cross-Browser Results: Table 2 summarizes key findings for each browser based on a comprehensive
set of enterprise-focused tests. All modern browsers (Chrome 136, Firefox 138, Edge 136, Safari 18) ex-
hibited robust foundational security, successfully passing critical security enforcement tests such as Same
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Figure 3: Number of successful tests per browser out of a distilled subset of 25 test cases. These represent
a selected portion of the full test suite. The chart compares browser performance by showing how many of
these selected tests each browser passed successfully.

Origin Policy (SOP), Cross-Origin Resource Sharing (CORS), Content Security Policy (CSP), certificate
validation, cryptographic checks, and permission defaults. However, the evaluation highlighted substantial
vulnerabilities present in unmanaged consumer browsers, specifically relating to enterprise-focused risks.

Detailed analysis revealed several deficiencies across all tested browsers:

• Extension Enumeration: Chrome and Edge failed to adequately secure against unauthorized ex-
tension enumeration, potentially exposing sensitive extension information.

• Browser Exploitation Protection: All browsers failed this test, indicating vulnerabilities to known
exploitation techniques without enterprise-level runtime protections.

• LAN Scanning Protection: All browsers lacked adequate safeguards against browser-based local
network scanning, leaving internal network resources exposed to potential threats.

• XSS Protection: All browsers failed to sufficiently protect against cross-site scripting attacks in the
absence of enforced enterprise configurations.

• Malicious JavaScript Payloads: Tests showed all browsers vulnerable to execution of malicious
JavaScript payloads, underlining significant security risks.

• Content Filtering Policies and DOM-Based Content Filtering: All browsers consistently failed
to enforce effective content filtering and DOM-based content filtering without explicit policy-driven
controls.

• Application Enumeration Protection and Shellcode Decoding: All browsers were vulnerable to
unauthorized application enumeration and shellcode decoding attacks, highlighting significant security
gaps.

24



The browsers demonstrated secure behavior in deterministic garbage collection, Spectre/Meltdown miti-
gation, WebAssembly malicious payload detection, cryptographic protections, and API restrictions. Notably,
critical shortcomings identified in several categories underscore that without enforced enterprise controls,
consumer-grade browsers pose significant risks to organizational security.

Regarding performance, the full suite of over 120 security posture tests completed in under five min-
utes sequentially and less than 30 seconds when executed concurrently on modern hardware, underscoring
practical feasibility for regular assessments (daily or weekly) in enterprise environments.

In summary, the experimental evaluation underscores the critical finding that unmanaged consumer
browsers, despite inherent security measures, present substantial security risks without appropriate enterprise
management and policy enforcement. Our results advocate explicitly for the adoption of robust browser
security controls and policies as integral components of an enterprise’s cybersecurity strategy.

Test Chrome 136 Firefox 138 Edge 136 Safari 18
Extension Enumeration Fail Pass Fail Pass
Running Latest Version Pass Pass Pass Pass
Browser Exploitation Fail Fail Fail Fail
Deterministic GC Pass Pass Pass Pass
Spectre/Meltdown Mitigation Test Pass Pass Pass Pass
Malicious WebAssembly Detection Test Pass Pass Pass Pass
LAN Scanning Protection Fail Fail Fail Fail
XSS Protection Fail Fail Fail Fail
Malicious JS Payload Fail Fail Fail Fail
Content Filtering Policy Fail Fail Fail Fail
DOM Based Content Filtering Fail Fail Fail Fail
Subresource Integrity Pass Pass Pass Pass
Insecure Resource Loading Check Pass Pass Pass Pass
Extensive CSP Validation Pass Pass Pass Pass
Same Origin Policy Test Pass Pass Pass Pass
JavaScript Execution Environment Security Pass Pass Pass Pass
Default Permissions Check Pass Pass Pass Pass
Restricted APIs Protection Pass Pass Pass Pass
Cryptographic Random Number Generator Test Pass Pass Pass Pass
Key Storage Security Test Pass Pass Pass Pass
Cryptographic Algorithm Test Pass Pass Pass Pass
Application Enumeration Protection Fail Fail Fail Fail
Shellcode Decoding Fail Fail Fail Fail
High CPU Load Detection Pass Pass Pass Pass
Long Tasks Monitoring Test Pass Pass Pass Pass

Table 2: Excerpt of evaluation results for key tests across browsers. “Pass” means the browser exhibited the
secure behavior. N/A indicates the test is not applicable due to lack of feature or different model.

6 AI-Based Analysis of Test Results
In addition to executing and reporting a comprehensive suite of browser security tests, our framework
integrates an advanced, in-browser Large Language Model (LLM) to automatically analyze the test results,
interpret their security implications, and generate tailored recommendations for administrators. This novel,
state-of-the-art approach leverages client-side AI inference to provide real-time, contextual insights directly
within the browser, enhancing decision-making and response capabilities.
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6.1 In-Browser Large Language Model (LLM)
Our implementation utilizes an optimized, lightweight LLM specifically tailored for execution within browser
environments via WebAssembly. This model interpret technical test results with high accuracy and relevance.
By operating entirely client-side, the model maintains user privacy and reduces reliance on external cloud
services. Our approach builds upon and extends the capabilities demonstrated by projects such as Web-LLM
[2].

6.2 Automated Interpretation of Security Posture
Upon completion of the security test suite, detailed JSON-formatted results are fed into the LLM. The AI
model then evaluates these results against a knowledge base of known vulnerabilities, common misconfigu-
rations, and best practices. For instance, if the framework detects deterministic garbage collection behavior
indicative of potential tampering or covert monitoring, the LLM explicitly notes this anomaly, explains its
security implications, and suggests appropriate investigative actions.

6.3 Contextual Recommendations
One key strength of the AI-based analysis is its ability to provide actionable, context-aware recommendations.
For example, if elevated CPU pressure indicative of potential cryptomining is detected, the LLM generates
a detailed recommendation such as:

"High CPU load detected consistently during browser idle time. This may indicate cryptomining
malware or resource-intensive scripts. Recommend reviewing browser extensions, checking for
unknown scripts or tabs consuming high resources, and conducting malware scans to ensure system
integrity."

Similarly, if the framework discovers network-level content filtering is not operating as intended, the LLM
may advise:

"Expected content filtering mechanisms appear inactive or misconfigured, potentially exposing
users to unwanted or malicious content. Verify firewall and proxy configurations, confirm enter-
prise browser policies are correctly deployed, and re-run tests post-remediation."

6.4 Enhanced Reporting and Dashboard Integration
The insights generated by the in-browser LLM are seamlessly integrated into the reporting module of the
framework, providing administrators with concise, easily digestible summaries alongside detailed technical
logs. These AI-enhanced reports can also be forwarded to centralized dashboards or SIEM solutions, ensuring
timely visibility and enabling proactive security management at scale.

Through this innovative use of client-side AI, our framework not only identifies security issues but also
translates technical findings into clear, actionable intelligence, significantly streamlining the security man-
agement workflow within modern enterprise environments.

7 Security and Privacy Implications

7.1 Surfacing Hidden Vulnerabilities
Even when all network-facing defenses are green, a browser might have internal weaknesses – for example, a
malicious extension that can exfiltrate data or a misconfiguration that allows dangerous APIs. Our frame-
work’s in-browser tests surface those issues. The scenario of detecting an extension holding DOM references
is a case in point: without an in-browser audit, an organization might never know an employee installed a
particular extension that, say, monitors form inputs. With our tool, such activity triggers a red flag. This
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enables security teams to address risks proactively (either by policy action – e.g., remotely disable that
extension via enterprise policies – or by alerting and educating the user).

Similarly, the internal network scan revealing an open service (like VNC) on the machine is something a
network scanner might not see (since it’s not a network request leaving the host). But a malicious webpage
could find it. By mimicking that, our framework alerts IT to host-level exposures that should be closed.

Overall, the framework acts as a “canary in the coal mine” for browser-specific threats: it uncovers issues
such as unsafe settings, vulnerable behaviors, or potential malware that are not visible externally. This closes
the gap between network security and actual browser security posture[1].

7.2 Enterprise Policy Verification
Enterprises often roll out policies via Group Policy or mobile device management (MDM) to configure
browsers (disabling certain features, enforcing certain preferences). However, verifying compliance on each
endpoint is non-trivial. The Browser Security Posture[1] results can confirm if policies are effective. For
example, if an enterprise policy is supposed to block access to the microphone, our permissions audit should
show microphone: "denied". If instead it’s “prompt” or “granted”, that indicates a policy failure or
override.

Similarly, if corporate policy installs a TLS interception root CA for traffic inspection, our certificate tests
might behave differently; we can detect if the browser trusts a cert it normally wouldn’t (like the badssl.com
expired cert) and thereby inform the admin that a man-in-the-middle proxy is present (or that the browser’s
trust store has been modified accordingly). In our tests, we observed such behavior: on a system with a
proxy, the expired cert test unexpectedly succeeded (the proxy replaced the cert), which our framework
flagged and then double-checked by trying a WebSocket (which the proxy didn’t intercept, causing a failure,
confirming the presence of interception).

In short, the framework provides immediate feedback on whether intended security policies are actually
being enforced inside the browser. It helps validate configuration management: a high overall score and no
warnings indicates that the browser is locked down as expected by policy. If an enterprise has a baseline
configuration (hardened browser settings), running these tests on clients can ensure they haven’t drifted.

We found in our evaluation that enterprise-configured Chrome (with several GPO settings) scored slightly
higher on relevant tests than a default Chrome. For example, when we disabled ambient authentication via
policy, our internal network test noted that certain intranet calls required credentials (which is secure by
design). The framework can thus be used as a regression test suite for browser hardening.

7.3 Privacy Considerations
Because our framework runs entirely client-side, it does not need to send sensitive data outside the user’s
machine unless explicitly configured to do so. The tests are designed to evaluate security posture without
collecting personal browsing information. In an enterprise deployment, any results reporting can be directed
to internal servers under corporate control (for instance, posting results to an internal dashboard). Thus,
deploying Browser Security Posture[1] does not inherently introduce new privacy risks for the user; it operates
within the confines of the browser and reports on security settings and behaviors rather than user data or
visited content.

In our prototype, the default is to log test results to the console. In an interactive use, a user (or IT
helpdesk) can run it and review the results locally. For automated fleet monitoring, integration with endpoint
management can collect the results in aggregate.

Another aspect: running these tests does touch some external URLs (e.g., badssl.com, possibly some
dummy ad domain). This could be seen as generating network traffic that might include test signatures. We
mitigate this by using well-known innocuous domains and by making those URLs configurable (enterprises
can host equivalents internally or allow-list them).

Finally, we considered that malicious actors could potentially detect our framework’s presence (since it is
essentially a script running in the browser). We don’t advertise its presence beyond normal script behavior,
but a sophisticated malware might notice that certain actions (like WeakRef usage or port scanning attempts)
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are happening and try to hide. This cat-and-mouse is mostly theoretical; in practice, an extension would
have to specifically watch for our script’s behavior. We chose not to obfuscate the script as security through
obscurity is not reliable, but in future an enterprise might deploy it under different random names to avoid
targeted evasion.

In summary, the framework is designed with privacy in mind and can be deployed in a way that respects
user data protections while still providing valuable security posture information.

8 Related Work
Research and tooling in browser security span multiple domains. Unlike other frameworks and studies,
our Browser Security Posture[1] framework uniquely provides a comprehensive evaluation covering both
browser-internal security features and enterprise-specific risks, leveraging novel detection techniques.

Automated Browser Security Testing: Existing tools, such as BrowserAudit [3], primarily focus
on testing browser adherence to web standards like SOP, CSP, and HSTS. While BrowserAudit effectively
assesses standards compliance, it does not evaluate broader browser environment risks, such as extension
enumeration, LAN scanning, or malicious payload protection. In contrast, our framework introduces novel
tests utilizing cutting-edge browser APIs like WeakRef [4] and PressureObserver [5, 9] to detect subtle and
complex risks such as unauthorized DOM manipulations and covert cryptomining scripts.

Similarly, academic research by Lekies et al. and Dahse et al. [6, 7] centers narrowly on particular aspects
such as cross-site scripting (XSS) vulnerabilities and JavaScript injection defenses. These studies investigate
specific browser vulnerabilities but lack comprehensive assessments of broader enterprise security contexts
and do not utilize innovative techniques available in modern browsers.

Further, studies focusing on timing attacks via JavaScript typically investigate covert channel detection
and fingerprinting methods. Our approach uniquely adapts and extends these methodologies into practical,
enterprise-focused detection mechanisms, providing actionable insights and robust defense recommendations
against realistic security threats.

In summary, while existing research and tools address specific browser security features, our Browser
Security Posture[1] framework distinguishes itself through its comprehensive enterprise-oriented assessment
and innovative application of modern browser APIs, thereby delivering unparalleled insights into browser
security posture and risks.

Enterprise Browser and Isolation Solutions: A recent trend is the rise of Enterprise Browsers –
custom Chromium-based browsers built with security and manageability in mind. These typically integrate
policy enforcement directly (like preventing copy-paste to unmanaged applications, controlling file downloads,
integrating with authentication flows, etc.). They often aim to eliminate the need for separate secure gateways
or VDI by securing the browser itself. While these are new products promising improved security, they require
organizations to adopt an entirely new browser. In contrast, Browser Security Posture[1] works with existing
browsers, aiming to assess and improve their posture. It could even be used to verify the claims of these
enterprise browsers (we could run our suite on them to see how they score).

Another related approach is Remote Browser Isolation (RBI) – solutions where the browsing is done on
a server and only a visual stream is sent to the user, as a way to shield the endpoint. RBI provides strong
security but can be costly and impact user experience. Our framework addresses a different need: when an
enterprise is still using local browsers (which is the common case), how to ensure they are hardened. It can
be an additional layer even in an environment that uses RBI for some high-risk browsing — for instance, for
internal apps that are not routed through RBI, the local browser still matters.

Endpoint Posture Agents: Our work can be compared to endpoint security agents (like EDRs) that
report on device posture. However, those agents usually operate at the OS level and may not have fine-
grained visibility into browser state. For example, an EDR might tell you what processes are running and
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maybe that Chrome is running with certain flags, but it might not know that Chrome’s SharedArrayBuffer
is or isn’t usable at runtime (since that depends on page context). By living in the browser, our framework
can see the things only a web page could see.

One could also compare to configuration scanners like CIS benchmarks for browsers. Those typically check
registry or policy settings. Our approach actually validates the outcome of those settings. For instance, a
policy might say “block popups”, but we would actually try to open a popup in a non-user-initiated way to
see if it gets blocked.

In summary, while there are various tools and research efforts focusing on browser security, our framework
is unique in its breadth of coverage within the browser’s own context and its focus on enterprise policy
enforcement and sophisticated threats and risks . We also provide an open testing harness that others can
extend (e.g., adding new tests for new APIs or threats as they emerge).

9 Conclusion and Future Work
We presented Browser Security Posture[1], a client-side framework that comprehensively evaluates a
browser’s security posture through over 120 in-browser tests spanning configuration, policy enforcement,
and runtime behavior. Our work is novel in treating the browser itself as an object of security assessment,
analogous to how one would assess an OS or server, but using purely web-level mechanisms. The framework is
robust and enterprise-focused: it not only tests for standards compliance but also validates enterprise security
policy settings (like blocked permissions or disabled features) and detects risky conditions (extensions, local
services, etc.) that network-based tools might miss. In an enterprise deployment, we envision this framework
being used to regularly baseline browsers’ security and ensure they meet the organization’s expectations.

The experimental results show that modern browsers generally have strong security postures by default,
but enterprise configuration and oversight remain crucial — especially to catch things like unsafe user-
installed extensions or policy misapplications. We demonstrated that when enterprise hardening policies are
in place, browsers score higher on our tests, reinforcing the notion that proactive management leads to a
more secure baseline.

Future Work: We plan to extend Browser Security Posture[1] in several directions. One important en-
hancement is real-time posture monitoring: instead of a one-time test, a lightweight version of the framework
could run continuously or periodically in the background, alerting when something changes (e.g., an exten-
sion gets installed or a new risky API becomes enabled). This could feed into a SOC (Security Operations
Center) as ongoing telemetry.

Integration with SIEM (Security Information and Event Management) and IT management platforms is
another avenue. The data collected by our tests (especially when aggregated across an organization) can
highlight systemic issues (e.g., “10% of our browsers have an extension that violates policy” or “Browser
version X is missing a certain feature enforcement”). Feeding this into SIEM would allow correlation with
other events (like network alerts).

We also intend to add more test modules as the web platform evolves. For example, upcoming privacy
features (like the Privacy Sandbox proposals in Chrome) could be tested for correct behavior. Another
area is performance and security trade-offs: detecting if any performance settings that reduce security (like
disabling site isolation) have been toggled.

In terms of coverage, one could incorporate tests for browser UI security (like warning indicators). For
instance, a test might check if a known deceptive URL triggers Chrome’s deceptive site warning. Automating
UI interactions is challenging from within a page, but it might be feasible with WebDriver integration.

Finally, while our framework currently focuses on desktop-class browsers, a variant could be developed for
mobile browsers (running as a mobile web app) to perform similar checks on mobile browser environments.

In conclusion, we have demonstrated that a self-contained web application can serve as a powerful auditor
of browser security posture. This approach empowers enterprises to “trust, but verify” their browsers. Rather
than assuming that policy settings and patches have the intended effect, Browser Security Posture[1] provides
concrete evidence of the browser’s runtime security characteristics. We believe this framework can fill an
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important gap in enterprise security toolkits, complementing traditional network and endpoint solutions by
shining a light on the last mile of security where users actually interact with web content.
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