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Abstract. Explainable artificial intelligence (XAI) methods have be-
come increasingly important in the context of explainable intrusion de-
tection systems (X-IDSs) for improving the interpretability and trust-
worthiness of X-IDSs. However, existing evaluation approaches for XAI
focus on model-specific properties such as fidelity and simplicity, and ne-
glect whether the explanation content is meaningful or useful within the
application domain. In this paper, we introduce new evaluation metrics
measuring the quality of explanations from X-IDSs. The metrics aim at
quantifying how well explanations are aligned with predefined feature
sets that can be identified from domain-specific knowledge bases. Such
alignment with these knowledge bases enables explanations to reflect
domain knowledge and enables meaningful and actionable insights for
security analysts. In our evaluation, we demonstrate the use of the pro-
posed metrics to evaluate the quality of explanations from X-IDSs. The
experimental results show that the proposed metrics can offer meaningful
differences in explanation quality across X-IDSs and attack types, and as-
sess how well X-IDS explanations reflect known domain knowledge. The
findings of the proposed metrics provide actionable insights for security
analysts to improve the interpretability of X-IDS in practical settings.

Keywords: Explainability - XAI - Explanation Evaluation - IDS.

1 Introduction

Nowadays, cyber threats continuously increase in complexity to evade intrusion
detection systems (IDSs). This has led to the use of machine learning-based
intrusion detection systems (ML-IDSs). ML-IDSs have shown potential in im-
proving detection capabilities by analysing and adapting to complex patterns
and anomalies in network traffic [1]. Despite their advantages, ML-IDSs often
fail to provide the reasoning behind decisions (e.g., why detected activities are
suspicious). This leaves security analysts, consequently, also subsequent response
mechanisms, with insufficient information about detected suspicious activities.
This problem requires explainable IDSs (X-IDSs) utilising explainable AT (XAT)
method(s) [2], such as local interpretable model-agnostic explanations (LIME)
[25] and shapley additive explanations (SHAP) [22]. In practice, such post hoc
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XAI methods can highlight which network flow features have most influenced
the prediction of ML-IDSs.

As XAI methods are increasingly applied to X-IDSs, evaluating the quality of
explanations becomes critical, as analysts rely on clear, understandable explana-
tions to make decisions effectively [26]. There have been XAl evaluation methods
focusing on generic properties, such as how well it mimics the model’s behaviour
(fidelity) [5], or how concise it is (simplicity) [6]. However, there has been a lack
of research on developing evaluation methods focusing on the quality of expla-
nations in the domain-specific context. As a result, current evaluation methods
do not account for whether an explanation aligns with domain expectations or
highlights indicators of known attack patterns [27, 26].

To address this gap, we propose new evaluation metrics that assess the qual-
ity of explanations in the cyber security context, more specifically, X-IDSs. The
aim of the proposed metrics is to quantitatively evaluate how well explanations
capture domain-informed features that support the analyst’s understanding of
the detected attack. They are based on comparing the top-k features identified
in an explanation with a predefined set of domain-informed features that are
considered important to detect a specific type of attack. These sets are used
by our metrics to assess whether the X-IDS is highlighting the features that
matter most from a cyber security perspective. The proposed metrics are: Fea-
ture Alignment Precision (FAP), Feature Alignment Recall (FAR), and Feature
Alignment F1 (FAF1). In essence, these metrics measure the alignment between
the explanation of an X-IDS and the domain-informed features of an attack de-
rived from cybersecurity knowledge domain resources. The FAP measures the
proportion of an explanation top features that are relevant according to domain
knowledge. The FAR measures the proportion of the domain-informed features
that the explanation of an X-IDS managed to capture. The FAF1 provides a
balanced single measure of explanation quality in terms of domain alignment.

To evaluate these metrics, we applied them to explanations generated by
three X-IDSs: Random Forest (RF) [20], Deep Neural Network (DNN) [20], and
CNN-BiLSTM |[21]. All models were trained on the CICIDS2017 benchmark
intrusion detection dataset [19]. The goal of the evaluation was to determine how
well each explanation aligned with domain-informed feature sets across different
types of attacks. We assessed alignment at three levels of evaluation: instance
level (individual explanations), attack class level (aggregated by attack type),
and dataset level (overall performance across all examples). Our findings show
that explanation quality varies across models and attack types. For example,
the DNN and CNN-BiLLSTM achieved higher FAP and FAR at lower values of
k. This suggests that these X-IDSs are more effective at identifying most of the
domain-informed features earlier in the explanation process. These results show
that the proposed metrics can effectively distinguish explanation quality across
X-IDSs and assess whether an X-IDS highlights the features that matter most
for the detection.

In the remainder of this paper, we start with an overview of the related work
on explainable IDS in Section 2. In Section 3, we present our methodology, where
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each metric is introduced, together with how it is calculated and evaluated.
In Section 4, we present our experimental setup and results to illustrate how
our metrics reveal differences in explanation quality across various X-IDSs. We
conclude the paper and discuss future potential research directions in Section 5.

2 Related Work

In this section, existing research is reviewed in three areas that are foundational
to our work. First, X-IDS is examined while focusing on the nature of the expla-
nations they provide and the importance of interpretability for end-users such
as security analysts. Next, the use of domain knowledge frameworks like MITRE
ATT&CK and D3FEND to contextualise security tasks. Finally, we summarise
recent approaches for evaluating explanation quality in XAI, and highlight the
lack of metrics that explicitly consider alignment with domain-informed knowl-
edge.

2.1 Explainable Intrusion Detection Systems

Recently, a growing emphasis has been placed on the need for XAI methods to
provide explanations tailored to end-users, rather than solely interpretable by de-
velopers and researchers. In [2], authors argue that many XAI methods produce
low-level explanations, typically in the form of numerical feature importance
vectors. These low-level explanations are useful for developers and researchers
to understand the internal behaviour of models. However, they lack the con-
textual interpretation needed for end users (e.g., security analysts). In contrast,
high-level explanations aim to relate model outputs to broader security concepts,
such as known attack tactics or behaviours, making them more accessible to se-
curity analysts. Such explanations provide the contextual clarity and actionable
insights that security analysts need. For example, [16] presents Auto-Encoder
(AE)-pvalues, an explanation method for unsupervised network intrusion detec-
tion systems that identifies abnormal network traffic using autoencoder-based
anomaly scores. However, the explanations remain low-level as they highlight
numerical deviations in features without indicating their operational relevance.
The authors of [16] indicate that this limitation is derived from factors such
as high feature correlations, dataset biases, and the model’s focus on individ-
ual network connections without contextual information about expected values.
Similarly, [7] presents an explainable Deep Learning (DL)-based IDS aimed at
enhancing the transparency and robustness of DL-based IDSs. This solution ap-
plies SHAP and LIME techniques to generate low-level explanations in the form
of numerical feature importance vectors, supporting analysts in the following
steps or processes. As these studies [2,16, 7] highlight that low-level explana-
tions may not be meaningful to security analysts, this limitation highlights the
lack of alignment between explanations and the domain-specific knowledge that
analysts rely on during investigations. To address this, [7] emphasised the neces-
sity of collaborative efforts in advancing XAI to communicate results effectively
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to non-Al experts. Furthermore, incorporating domain-specific knowledge into
XATI methods is crucial for improving model interpretability and elevating ex-
planations to high-level and actionable insights [8]. Additionally, based on [8], it
is essential to go beyond mere identification of feature importance and pursue
conceptual-level explanations by incorporating domain-specific knowledge. Ex-
isting work demonstrates the need for explanations to reflect such domain knowl-
edge. Our work builds on this foundation by introducing metrics to evaluate how
well explanations, produced by SHAP, align with domain-specific knowledge.

2.2 Domain Knowledge Frameworks

As high-level explanations are needed, standardised domain-specific knowledge
bases to encode domain expertise are increasingly leveraged. For example, MITRE
ATT&CK can help to contextualise the IDS outputs. The MITRE ATT&CK
matrix serves as a repository of tactics and techniques [24,9]. Mapping the IDS
detections to these known tactics and techniques can make explanations more
actionable for security analysts. Arreche et al. [20] recently demonstrated this ap-
proach by referencing network attack classes with relevant ATT&CK tactic and
technique for IDs. For instance, Denial of Service (DoS) attack in CICIDS2017
dataset can be labelled as Network Denial of Service [MITRE ATT&CK ID:
T1498|. This alignment allows an IDS to explain alerts in terms of the exist-
ing offensive techniques in MITRE. This approach can bridge the gap between
low-level features and high-level detection explanations. Similarly, the idea of
linking IDS detections to MITRE ATT&CK is becoming popular, e.g., Daniel
et al. [11] uses automation to label network IDS signatures with the appro-
priate MITRE ATT&CK tactics and techniques. This approach ensures that
any alerts generated by these rules include an explanation of the adversarial
technique. This solution helps incident responders manage the triaging phase.
Additionally, MITRE D3FEND offers a complementary knowledge base of defen-
sive techniques and countermeasures [13]. D3FEND provides defensive actions
and links them to the ATT&CK techniques they mitigate. In practice, they
enable defining sets of domain-informed features or indicators based on known
domain-specific knowledge. Our proposed explanation evaluation metrics assess
how well the most influential features identified by an X-IDS correspond to these
domain-informed features.

2.3 Evaluation of Explanations

Evaluating the quality of explanations from XAI methods has been addressed
through qualitative approaches, typically through human-centred studies [12,
28]. However, many surveys note that formal evaluation for explanation qual-
ity is frequently assumed or judged rather than measured [12,28, 18]. Despite
the lack of generalised accepted metrics to evaluate XAl approaches, qualitative
metrics have the potential to ultimately establish a standardised and quantified
means of evaluation [14,15,12]. In [17], the authors provided a set of five distinct
properties for evaluation: faithfulness, robustness, localisation, randomisation,
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and complexity. Properties like faithfulness (e.g., how the model’s influencing
features truly affect its explanation changes) and robustness (e.g., how stable
a model’s explanation remains with minimal changes to input) focus merely on
the XAI method behaviour. In IDS context, [20] presented an end-to-end frame-
work for evaluating both global and local explanations using SHAP and LIME,
and defines six metrics for explanation quality, i.e., descriptive accuracy /fidelity,
efficiency, stability, sparsity, robustness, and completeness. The metrics used in
[10] are closer to our work as they compare the identified features of the XAI
method to a ground truth of important features. [10] provides a score similar to
precision-recall, but lacks the division between correctness and completeness.

The above metrics do not explicitly verify whether explanations align with
domain-specific knowledge, particularly in the IDS context. To address this gap,
we introduce formally defined metrics, namely FAP, FAR, and FAF1. In our
related experiments, we compare outputs of the explanation method using these
metrics and analyse the alignment at various levels (per instance, per attack
class, and across the entire dataset).

3 Methodology

This section introduces the proposed evaluation metrics that assess the quality
of explanations produced by X-IDSs. These X-IDSs utilise ML /DL-based IDS
models with post hoc explanation techniques, such as LIME and SHAP, which
identify the reasoning behind a model’s predictions by highlighting the most
influential features, as illustrated in Figure 1. We check how well the most in-
fluential features align with domain-specific knowledge. Our proposed metrics
evaluate this alignment by comparing the explanations of the model against
predefined sets of domain-informed features for specific attack classes.
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Fig. 1: High-level overview of the explanation evaluation process. The top-k fea-
tures from the XAI model are evaluated against domain-informed feature sets.
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To use our evaluation metrics, we require predefined sets of domain-informed
features for each attack class. These feature sets capture domain knowledge
and can be derived from domain-specific knowledge bases, expert knowledge, or
security frameworks. In this work, we use feature sets derived from the MITRE
ATT&CK and D3FEND frameworks as a representative example. The procedure
used to construct these sets is described in the experimental setup (Section 4.1).

3.1 System Model

This section formalises the structure of an X-IDS used in our work by defining
the components involved in generating and evaluating explanations, including
the dataset, prediction model, explanation method, and the reference feature
sets used to assess explanation relevance.

Let D denote the dataset used for training an ML-IDS. Each instance d € D
is defined as d = {f1, fa,..., fn,c} where fi1, fo,..., fn are the features of the
instance (e.g., the characteristics of a network traffic record), and ¢ is the class
assigned to the instance (e.g., a specific attack type or benign). Here, we denote
the feature vector of an instance d as = {f1, fa,..., fn}, and let X’ be the set
of all feature vectors in the dataset and let C be the set of all corresponding
classes. For training and evaluation, let X'*#™ C X and X** C X denote the
disjoint training and testing sets, respectively. The corresponding classes denoted
as Ctrain C C and Ctest C C.

A classifier f learns a mapping from feature vectors to corresponding classes,
denoted as f : X — C. A classifier f is trained on the feature vectors in X" and
corresponding classes in C*™", Once trained, the classifier produces predictions
f(x) = ¢ for the feature vector of an instance z € X', where ¢ is the predicted
class. Also, let Ca'*ack C C denote the set of all attack classes considered for
evaluation, excluding the benign class.

To make the prediction ¢ interpretable, an XAI method is applied. An XAI
method ¢(f,z) = E, takes a trained classifier f and a feature vector of an in-
stance x € X and returns an ordered set of features E, that most influenced the
classifier’s prediction for instance x. The features in E, are ordered by their im-
portance scores, which reflect how much each feature contributed to the model’s
decision. An X-IDS often select the top-k features from E, denoted as E. (k)
where E,(k) C E,.

3.2 Explanation Evaluation Metrics

This section introduces our evaluation metrics used to evaluate the quality of the
explanations produced by X-IDSs. The evaluation metrics are: Feature Align-
ment Precision (FAP), Feature Alignment Recall (FAR), and Feature Alignment
F1 (FAF1). They quantify how well explanations of an X-IDS correspond to
the domain-informed feature sets defined by security domain knowledge. The
FAP metric measures the fraction of the top-k most influential features that
are relevant to the sets of domain-informed features defined by security domain
knowledge. In other words, it counts how many of the top-k features from the
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explanation are present in predefined sets of domain-informed features. The FAR
metric measures the fraction of the domain-informed features that are present in
the top-k features produced by the X-IDS. It measures how well the explanation
covers the critical indicators identified by security domain knowledge. The FAF1
metric offers a balanced overall score that captures both the correctness and the
completeness of the explanations.

In evaluating the quality of the explanations, the set of top-k features E, (k)
is compared against a set of domain-informed features associated with the pre-
dicted class. Let F. denote the set of domain-informed features that are asso-
ciated with a class ¢ € C*"*ak These feature sets need to be predefined and
can be derived from structured cyber security knowledge bases, expert input, or
other relevant examples. These predefined sets are used as a reference to assess
how well the explanation F, (k) aligns with domain knowledge. The compari-
son between F, (k) and F. enables the computation of our proposed evaluation
metrics.

Each metric can be evaluated at three different levels: dataset, class, and
instance levels. First is the dataset level, which uses all instances in the test
set, denoted by X', Second is the class level, which considers subsets of test
instances that share the same label ¢, denoted as X!t C X't Lastly, the
instance level evaluation focuses on a single instance x.

Our methodology evaluates the quality of E,(k), the explanation for instance
x, by computing against F, the set of domain-informed features for the true class
c. This comparison enables us to assess how well the model’s explanation aligns
with domain-informed indicators. Below, we formally define the key concepts
and present how each of our evaluation metrics is calculated.

Feature Alignment Precision

Feature Alignment Precision (FAP) measures the correctness of the explanation
of an X-IDS according to a set of domain-informed features. It quantifies how
many of the top-k features selected by the explanation method are also present
in the reference set of domain-informed features for a given attack class. We
define this metric at the instance, class, and dataset levels.

The instance-level FAP captures how well the explanation for an individual
feature vector of an instance x aligns with the domain-informed features expected
for its true class c. It is defined as:

| Ea(k) N Fe|
where E, (k) is the set of top-k features produced by the explanation method
for the feature vector of an instance x, and F, is the set of domain-informed
features corresponding to class ¢. A higher FAP(z, k) value indicates that a
greater proportion of the selected features are relevant, which suggest better
explanation quality for that instance.
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The class-level FAP evaluates explanation correctness within a specific class
label for more detailed scores. It is computed as the average instance-level FAP
across all test samples belonging to a class c:

1
= W Z FAP(z, k) (2)

test
TEXE

FAPG(c, k)

where k is the specified number of top features, X** denotes the set of test in-
stances that are correctly predicted as the class ¢, and FAP(x, k) is the instance-
level FAP.

The dataset-level FAP provides a high-level overview of the explanation qual-
ity across all attack classes for the evaluated X-IDS. This FAP value provides a
single overall number across the entire dataset’s performance, excluding benign
traffic. It is computed as the average of class-level FAP scores over all classes
used in the evaluation:

1

FAPp (k) = o] > FAPc(c,k) (3)

ceCattack

where k is the specified number of top features, C***2°¢ denotes the set of classes
considered for evaluation. Each FAPx(c, k) is the average precision for class c.

Feature Alignment Recall

Feature Alignment Recall (FAR) measures how many of a set of domain-informed
features are captured in the produced explanations. It reflects the completeness
of the produced top-k in covering the set of domain-informed features. Similarly
to FAP, FAR is computed at the instance, class, and dataset levels.

The instance-level FAR for the feature vector of an instance z with the cor-
rectly predicted as the class ¢ is computed as:

FAR;(z, k) = 22K O Fel (4)
| Fl
where FE, (k) is the set of top-k features produced by the XAI method for the
feature vector of the instance z, and F, is the set of domain-informed features
for true class c. A higher FAR;(z, k) value indicates better completeness of the
explanation for that instance.
The class-level FAR is calculated by averaging the instance-level FAR;(x, k)
over all test instances that belong to a specific class c:

FARc(c, k) = L > FAR;(z,k) (5)

|X£est ‘ ey

where X" is the subset of test instances that are correctly predicted as the
class c.
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The dataset-level FAR provides a high-level overview of how well explanations
cover the domain-informed feature sets across all attack classes. It is computed
as the average of class-level FAR scores as follows:

1

FARp (k) = o] > FARc(c k) (6)

Cecattack
where k is the specified number of top features, and C***°k is the set of classes
included in the evaluation.

Feature Alignment F1

Similar to the traditional Fl-score in classification, the Feature Alignment F1
(FAF1) reflects a harmonic mean of FAP and FAR into a single score. FAF1
provides a balanced measure that captures both the correctness and the com-
pleteness of the top-k explanations. We define this metric at the instance, class,
and dataset levels.

The instance-level FAF1 is computed as the harmonic mean of instance-level
FAP and FAR for each feature vector of instance x:

|E. (k)| + |Fe|

where E, (k) is the set of top-k features produced by the XAI method for the
feature vector of instance x, and F, is the domain-informed feature set for its class
c. A high FAF1;(x, k) score indicates that the explanation captures a greater
proportion of the domain-informed feature set while minimising the inclusion of
irrelevant ones.

The class-level FAF1 is defined as the average instance-level FAF1 across all
test instances with class ¢ defined below.

FAF1;(z, k) =

1
FAFlC(c,k):W > FAF1(x,k) (8)

test
reX!

The dataset-level FAF1 aggregates the class-level FAF1 scores over all attack
classes as follows:

1
FAF1p(k) = et > FAFlc(c k) (9)

cecattack
where k is the specified number of top features, C2'*2°k denotes the set of evalu-
ated classes, and FAF1¢(y, k) is the class-level FAF1 for class c.

3.3 Perspectives of our Explanation Evaluation Metrics

Although we use the terms “precision”, “recall” and “F1” in our metrics (e.g.,
Equations 1-9), their interpretation differs from the conventional precision, re-
call, and F1 that are used in standard classification tasks. In standard classifica-
tion, precision measures the proportion of correctly classified instances among all
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predicted positives, while recall measures the proportion of correctly classified
instances among all true positives. In contrast, our explanation evaluation met-
rics assess the quality of explanations by comparing the top-k most influential
features F, produced by an XAI method to a set of domain-informed features
F.. Rather than evaluating correctness at the instance level, our metrics evaluate
correctness and completeness at the feature level. In other words, our metrics
focus on whether the explanation highlights features that align with the domain-
informed feature set. A high FAP means that most of the features selected by
the model belong to the set of domain-informed features F,, while a high FAR
means we are capturing most of the domain-informed features that matter.

4 Evaluation

The evaluation aims to measure how well explanations generated by X-IDSs
align with domain-specific knowledge bases in the intrusion detection context.
In this section, we present the details of our evaluation process and results. In the
experimental setup, we introduce the derivation of the domain-informed feature
sets using the MITRE ATT&CK and D3FEND frameworks [9, 13]. We continue
by explaining the dataset, ML-IDS, and XAI method used in the evaluation.
Finally, we analyse the experimental results from comparing the most influen-
tial features of each model against the domain-informed features sets using our
evaluation metrics at different levels.

4.1 Experimental Setup

Our evaluation includes two key components: (1) generating domain-informed
feature sets that reflect what should be relevant for each attack type, and (2)
extracting the top-k features from the explanations that was generated by X-IDS
to compare and assess them against the domain-informed feature sets.

To construct the domain-informed feature sets, we mapped each attack class
in the dataset to its corresponding offensive techniques in the MITRE ATT&CK
framework. The identified techniques were linked to defensive tactics in MITRE
D3FEND to derive domain-informed feature sets. In particular, we focused on
the detect tactics, which outline specific indicators that security analysts can use
to identify malicious behaviour. Also, we further enriched these sets by consulting
contextual ATT&CK resources, such as detection recommendations, mitigation
strategies, and real-world examples, to enhance the feature extraction of each
attack. The derived feature sets were used as the domain-specific knowledge to
evaluate the quality of the explanations generated by the X-IDS. It is important
to note that while we rely on this process to produce domain-informed feature
sets, the primary aim of this study is not to propose a new derivation method,
but rather to evaluate the effectiveness of our explanation metrics using these
sets as a baseline.

To evaluate the metrics, our experiments are based on the CICIDS2017
benchmark intrusion detection dataset [19]. A balanced subset was extracted
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using undersampling [23]| to mitigate the impact of class imbalance. This pre-
processed dataset was used to train three ML/DL-IDSs: a Random Forest (RF)
and a Deep Neural Network (DNN), both adapted from [20], and a hybrid CNN-
BiLSTM architecture [21]. RF was selected as a traditional, interpretable model
that performs robustly and can be easily explained using feature-based meth-
ods, while DNN was chosen as a strong deep learning baseline that offers higher
detection accuracy but requires post hoc explanation due to its complexity. The
CNN-BIiLSTM model was included as it combines convolutional and bidirec-
tional LSTM layers to capture both spatial and temporal patterns in network
traffic. These models demonstrated robust and consistent detection capabilities
across attack classes in their original studies |20, 21].

All three used ML/DL-IDS are followed by an XAI method, SHAP, for the
explainability part [20]. SHAP is a post hoc model-agnostic ML explainability
approach that can be used after the AI models and assigns to each feature a
score that represents the feature contribution to the reached prediction [22]. We
used the generated explanations against the domain-informed feature sets using
the proposed explanation evaluation metrics presented in Section 3.2.

4.2 Experimental Results

The performance of the explanation evaluation metrics is evaluated on three
X-IDS (RF and DNN [20], and CNN-BiLSTM [21]). We assess how well their
explanations align with domain-informed features derived from MITRE frame-
works. In particular, we generated SHAP explanations for each model’s predic-
tion on the test set and compared the top-k features of the explanations to the
MITRE-based feature sets for the corresponding attack class. The evaluation is
performed at multiple levels (instance level, class level, and dataset level) to pro-
vide a comprehensive view of the explanations’ quality. We introduce in Table 1
and Figure 2 each model’s overall alignment performance on the full dataset.
The results provide a direct comparison of how well explanations aligned with
domain-informed feature sets. We provide FAP, FAR, and FAF1 values for each
model under varying k-values (number of top influential features considered).
Different values of k allow us to examine the model’s explanation alignment
when considering concise or extensive feature sets from the XAI method.

Dataset level explanation evaluation results: We compute the dataset-
level evaluation metrics: FAP, FAR, and FAF1, by averaging across all attack
classes in the evaluation in order to provide a single overall measure. This mea-
sure represents the quality of the explanation for each X-IDS at each k. As shown
in Table 1, the DNN and CNN-BiLSTM X-IDSs have consistently higher align-
ment scores across k values compared to the RF X-IDS. This indicates that the
explanations of the deep learning X-IDS (DNN and CNN-BIiLSTM) are more
aligned with the domain-informed features than the RF X-IDS. For example,
at a small cutoff number of features k= 5, the DNN reaches a FAP of 0.30,
where RF is 0.09. This means that 30% of the top features in DNN are rele-
vant to the attack according to the set of domain-informed features, while only
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Table 1: The dataset level explanation evaluation metrics (FAP, FAR, FAF1) for
RF, DNN, and CNN-BiLSTM X-IDSs, evaluated across varying top-k values to
assess the alignment of their explanations with domain-informed features.

Top-k RF [20] DNN [20) CNN-BiLSTM [21]
FAP FAR FAF1 FAP FAR FAF1 FAP FAR FAF1
5 0.09 0.04 006 030 0.18 023 0.17 0.09 0.12

10 0.07 0.06 0.07 0.23 0.25 0.24 0.16 0.16 0.16
20 0.09 0.25 0.13 0.21 0.44 0.28 0.18 0.35 0.24
40 0.11 0.63 0.19 0.17 0.70 0.27 0.20 0.82 0.32

9% for the RF features. Similarly, FAR at k= 5 shows that DNN is quicker in
covering more of the domain-informed features (0.18) compared to RF, which
covers 0.04 of the expected features. The CNN-BiLSTM also outperforms RF
at k=5 (FAP 0.17, FAR 0.09), but not to the extent of DNN. Furthermore, we
notice that the DNN X-IDS provides the highest alignment at smaller k, while
the CNN-BIiLSTM reaches DNN when £ grows larger, as illustrated in Figure 2.
The DNN achieves the highest FAF1 score at &k = 5 and 10 (0.23 and 0.24), com-
pared to CNN (0.12 and 0.16) and RF (0.06 and 0.07). This indicates that with
fewer top influential features from the XAI method, the DNN X-IDS can identify
critical domain-informed features that provide a more balanced combination of
correctness (FAP) and completeness (FAR). This can provide a practical value
as security analysts can utilise quick and accurate insights based on the most
influential features in a model prediction.

—— DNN

—— RF
—— CNNBILSTM —— CNN BILSTM

0 10 20 60 70 80 o 10 20 0 0 60 70 80

30 40 50 3 40 s
Number of Top Features (k) Number of Top Features (k)

(a) Dataset level FAR (b) Dataset level FAP

Fig.2: (a) FAR and (b) FAP at various top-k cutoffs for DNN, RF, and CNN-
BiLSTM X-IDSs. These metrics show how well each X-IDS’s top-k features align
with the set of domain-informed features across the entire dataset.

Class level explanation evaluation results: We also compute the class level
FAP, and FAR by averaging the instance-level scores for each attack class. This
provides a detailed view of how well each of the explanations of the model aligns
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with the domain-informed feature sets for individual attack types at different
k values. To better understand how explanation alignment varies across differ-
ent types of attacks, we visualise class level FAR and FAP with respect to k
across multiple attack classes in the dataset, as illustrated in Figure 3. Each
curve corresponds to a different attack class. In Figure 3a, attack classes such
as DDoS/DoS, Brute Force, and Web Attack show improvement in FAR as k
increases. For these attacks, a larger portion of the domain-informed features
is captured in the explanation gradually through k. We see that certain at-
tacks reach high FAR with smaller k. For example, the PortScan attack class
can capture more domain-informed features at k = 4 with higher FAR. This
indicates that the FAR curve rises quickly for attack classes with a small set
of domain-informed features, compared to attack classes with a richer set of
domain-informed features, such as DDoD/DoS. In contrast, infiltration and bot
attack classes consistently show zero FAR as the predefined domain-informed
feature set indicates no features to compare against. In Figure 3b, we observe
that FAP generally decreases as k increases, which is an expected trend since the
comparison of top influential features of explanation at certain k against the pre-
defined domain-informed feature set will decrease (after exceeding the maximum
number of the existing predefined features in the corresponding set). For Web
Attack and Brute Force, FAP starts high and drops gradually, which indicate
strong alignment at the lower k values. These trends of different attack classes
confirm that our explanation metrics are affected by the specific number of each
domain-informed feature per attack type. This variation of alignment scores al-
lows the security analysts to examine which attack classes are well-explained by
a model.

Class FAR vs. Top Features (All Attack Type) Class FAP vs. Top Features (All Attack Type)
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Fig. 3: Class level explanation evaluation metrics across attack types for the DNN
model. (a) FAR trends showing how many of the domain-informed features are
captured as k increases. (b) FAP trends showing how many of domain-informed
features are captured by the explanations at each k.

Alignment Trends and Trade-Off Analysis: To further examine how well
the top-k features produced by each X-IDS align with the domain-informed
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feature sets, we further analyse two aspects: (1) the overall balance of explanation
correctness and completeness using the FAF1 metric, and the trade-off between
FAP and FAR using a precision—recall style curve. These plots allow us to visually
compare how each model performs across different values of k. For clarity, we
focus on the DDoS/DoS class as a representative example, since it has one of the
largest domain-informed feature sets (10 expected features), and the class level
view makes it easier to observe how models behave around a known threshold
(i.e., number of expected features), especially when visualising FAP and FAR
together where k is implicit.

FAF1 trend analysis: Figure 4a shows the FAF1 curves for the DDoS/DoS class.
This plot provides an overall view of alignment quality as k increases. We observe
that the DNN model maintains higher FAF1 values for small k where it peaks at
k=15. This indicates an optimal balance of correctness and completeness at that
point. The FAF1 curve of DNN starts to decline gradually as more irrelevant
features are introduced. On the other hand, the CNN-BiLSTM curve for FAF1
gradually exceeds DNN, however, this happens slowly at a larger number of k.
The RF curve for FAF1 reflects poor balance as it remains the lowest across
all k£ values. This indicates that it does not capture the MITRE-based features
effectively at any point. Overall, FAF1 plot offers a holistic view that helps to
illustrate the balance of both completeness (FAR) and correctness (FAP) and
highlight the overall quality of alignment for each model.

Class f1 Metrics vs. Top Features (Attack Type: Ddos/Dos) Precision Recall Curve (Attack Type: Ddos/Dos)
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Fig.4: (a) Class Level FAF1 curve illustrating how each model’s top-k features
balance correctness (FAP) and completeness (FAR) with respect to the MITRE-
based features. (b) Class Level Feature alignment Precision—Recall (FPR) curve,
showing how FAP varies with FAR for different k& values.

FAP-FAR trade-Off analysis: Figure 4b shows another perspective that repre-
sents a FAP against FAR for each model. It provides a precision-recall style view
of the alignment by directly plotting FAP (precision) against FAR (recall) for
the DDoS/DoS class. Each curve represents the values of FAP and FAR values
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at each k that is implicitly shown by the number of points. The FAP-FAR com-
parison curve highlights how each model balances FAP and FAR across various
values of k, with vertical lines highlight particular cuttoffs at & = 10, which
corresponds to the number of domain-informed features for the evaluated attack
class. The DNN model, for example, begins with a high FAP at a modest FAR.
This indicates that more expected features are retrieved and covered in the early
top features generated by the most influential features. The FAP-FAR compari-
son curve is important because it highlights the potential trade-off between FAP
and FAR for each model in a single view. Compared to the separated plots of
FAP and FAR over k, the combined curve allows us to assess how the model
is efficiently retrieving domain-informed features with merely the values of FAP
and FAR. As k values are not explicitly shown, vertical reference lines can help
indicate key cutoff points for comparing model behaviour at meaningful thresh-
olds. This curve offers an intuitive view of the trade-off between FAP and FAR
to identify how well a model retrieves domain-informed features.

4.3 Key insights and implications

The above results demonstrate that explanations for X-IDSs can be quanti-
tatively evaluated against domain knowledge using our evaluation metrics. The
DNN and CNN-BIiLSTM X-IDSs show a better alignment with MITRE-informed
features than the RF. This indicates that the ability of an X-IDS to produce ex-
planations aligned with domain knowledge is a critical aspect of explanation
quality, and it is not equal between models. For security analysts, this means
that an X-IDS with higher alignment can produce more useful and interpretable
alerts. This alignment can speed up the understanding of an alert, in order to
quickly respond to it.

An important factor influencing explanation quality is the value to consider
for the top-k features. Our evaluation across multiple & shows how the quality
of each explanation differs. The patterns of different models suggest that ex-
planations can offer meaningful insight with relatively few features when those
features are highly aligned with domain knowledge. At lower k, a higher FAP
indicates that the most influential features included are highly relevant. Simi-
larly, a higher FAR value shows more complete coverage of the expected feature
set. In particular, this perspective is best observed through the FAF1 curve,
which reveals the effectiveness of explanation’s quality across different cutoffs
to determine the most appropriate k value. This has a practical use when de-
ciding whether we aim to show analysts a very concise explanation, or we can
afford more features to be shown. Thus, we can choose k based on the trade-off
presented in FAF1 and the FAP-FAR comparison curve.

In addition to FAF1, we plot FAP-FAR comparison curves across different &
to show the trade-off between explanation correctness (FAP) and completeness
(FAR). Unlike the standard Precision-Recall (PR) curve that relies on a contin-
uous probability threshold, our version depends on discrete k to calculate FAR
and FAP values. Consequently, when we plot multiple models together, the pro-
gression along k may differ in how quickly or gradually models retrieve relevant
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features. As a result, the comparison can be visually misleading if one model
adds relevant features earlier than another. Although both axes still run from 0
to 1 for FAP and FAR in the PR-curve, the stepwise progression of each model
can be visually confusing. To address this challenge, we mark key k values, such
as when k equals the number of expected features for a specific attack label (e.g.,
k equals 10 for DDos/Dos), so the relative performance of different models at
meaningful thresholds becomes easier to interpret.

Another insight relates to the quality of the domain-informed feature sets
themselves. It is important to evaluate the results in the context of the quality
and completeness of the predefined domain-informed feature sets. However, in
cases such as the infiltration and bot attacks curves, we observed low alignment
scores. Such low alignment scores suggest that the domain-informed features
derived from expert knowledge may not fully capture relevant indicators or may
not generalise well to the dataset used. Due to this mismatch, we find that
the predefined domain-informed feature sets may require additional fine-tuning
to align with features in the selected dataset. Consequently, the score of the
alignment metrics can be affected. Therefore, it needs to include a user feedback
loop in order to adjust the feature sets when necessary.

Finally, our current evaluation metrics aggregate FAP and FAR using the
arithmetic mean. Consequently, averaging the values provides a single and in-
tuitive number that shows how well the performance is across all instances.
Although the arithmetic mean is straightforward and easy to interpret, it does
treat each instance as equally important. This makes it vulnerable to outliers in
a skewed distribution. In such cases, alternative aggregation techniques, such as
median, weighted, or trimmed averages, can offer more robust and reliable eval-
uation, especially when the class or dataset level distributions contain outliers.

Overall, our findings show that the proposed explanation evaluation metrics
(FAP, FAR, FAF1) can serve in several purposes. First, they effectively differ-
entiate between X-IDSs based on how well their explanations align with domain
knowledge. This differentiation makes it easier to identify which X-IDS produce
more meaningful outputs. Second, by analysing how the explanations quality are
changing across k, the metrics offer insights on how many top-k features should
be shown to analysts. Finally, when the metrics scores are constantly low for
certain attack classes, these scores can indicate that the domain-informed fea-
ture sets might need to be revisited or refined. Therefore, these metrics can be
valuable in assessing the explanations’ quality when developing X-IDSs, as well
as, improving how explanations are presented to security analysts when deployed
in practical settings.

5 Conclusion

In this paper, we present three novel metrics to evaluate the explanations gen-
erated by X-IDSs with domain-specific knowledge in the context of intrusion
detection systems. We analyse our three explanation evaluation metrics for a
popular XAT technique (i.e., SHAP). These three evaluation metrics are Feature
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Alignment Precision (FAP), which quantifies the correctness of the output of the
XATI method based on defined indicators from domain-specific knowledge, Fea-
ture Alignment Recall (FAR), which quantifies how well the most important fea-
tures capture all defined domain knowledge, and Feature Alignment F1 (FAF1),
which quantifies the harmonic means between FAP and FAR. Our metrics enable
the explanation evaluation at three different levels: instance, class, and dataset
levels in order to capture the quality of the explanation, respectively, for indi-
vidual predictions, across specific attack types, and obtain an overall measure of
interpretability.

We applied our metrics to explanations generated for three X-IDS (Random
Forest, DNN, CNN-BiLSTM) trained on a balanced subset of the CICIDS2017
dataset. The experimental results demonstrated how our metrics provide a richer
and more actionable view of explanation quality. Specifically, our findings high-
light that X-IDS can offer higher alignment with expected features at lower
values of k, which makes their explanations more suitable for operational use.

As future work, we plan to investigate alternative aggregation strategies, such
as weighted averages, as we recognise that our approach assumes every instance
contributes equally and could be heavily influenced by outliers. Additionally,
we aim to apply the proposed evaluation metrics across various machine learn-
ing models and explanation methods to better understand their alignment with
domain knowledge.
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