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Abstract. Randomness plays a vital role in numerous applications,
including simulation, cryptography, distributed systems, and gaming.
Consequently, extensive research has been conducted to generate
randomness. One such method is to design a decentralized random
number generator (DRNG), a protocol that enables multiple participants
to collaboratively generate random outputs that must be publicly
verifiable. However, existing DRNGs are either not secure against
quantum computers or depend on the random oracle model (ROM) to
achieve security. In this paper, we design a DRNG based on lattice-based
publicly verifiable secret sharing (PVSS) that is post-quantum secure and
proven secure in the standard model. Additionally, our DRNG requires
only two rounds of communication to generate a single (pseudo)random
value and can tolerate up to any t < n/2 dishonest participants. To our
knowledge, the proposed DRNG construction is the first to achieve all
these properties.

Keywords: publicly verifiable secret sharing, decentralized random
number generator, post-quantum, standard model

1 Introduction and Related Works

A reliable source of randomness is essential in many applications, including
lotteries, gaming, e-voting, simulation, and cryptography. Due to the widespread
applications of randomness, substantial efforts have been dedicated to generating
random numbers. A natural approach is to rely on a single party, such as [26], to
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generate the entire sequence of random numbers. However, this involves the risk
that the centralized party might insert trapdoors to bias the supposed random
output or secretly sell them to outsiders. Hence, it would be preferable to design
protocols that allow multiple participants to participate together in the random
generation process to reduce the role of a trusted third party. In addition, these
protocols must be publicly verifiable by an external verifier. This protocol is
called a decentralized random number generator (DRNG) [34,49]. With the
development of decentralized applications, the number of DRNGs has begun
to rise very rapidly [41,42,24,44,38,34,17,16,40,50,20,5,18,51]. Unfortunately, the
majority of DRNGs depend on the hardness of either the discrete log (DL) or
the integer factorization problem for security. These problems can be solved
by the Shor quantum algorithm [48]. Hence, an adversary can use a quantum
computer to predict the outputs of the DRNG, compromising the security of
these protocols.

Another problem with these DRNGs is that most existing DRNGs have been
proven to secure the random oracle model (ROM) instead of the standard model.
Technically, ROM assumes that all participants have access to a public oracle
that i) returns a truly random output for each unqueried input, and ii) if the
input were queried previously, it would return the same previous output [7,15].
Such an oracle cannot be implemented in the real world [15], so assuming such
an oracle is a nonstandard assumption. The best one can do in practice is to
heuristically instantiate the oracle with a specific cryptographic hash function.
However, there have been counterexamples of protocols that are secure in the
ROM, but become insecure when the random oracle (RO) is instantiated with
any hash function, such as [25,15,29]. These counterexamples raise the concern
that most natural protocols secure in ROM could still achieve security in the
real world. Among DRNGs, except for several PVSS-based constructions such
as [42,20] (which are not post-quantum secure), existing DRNGs need to employ
ROM to achieve security. The use of ROM is due to one of the following: i) their
protocols rely on non-interactive zero-knowledge arguments (NIZK) and employ
the Fiat-Shamir paradigm (such as [30,16]), or ii) the current output is computed
as the hash digest of the partial outputs combined (such as [24,44,38,45]), and
this hash must be modeled as some RO. In either case, the use of ROM is not a
standard method to capture security in the real world.

Another desired property in any protocol is to minimize the number of rounds
(round complexity). Indeed, in a network, sending a message to others requires an
amount of time due to network latency time ∆. So if there are r communication
rounds, it takes at least r · ∆ time to complete the protocol. Also, if many
online rounds are required, participants need to be online and responsive more
frequently, and are more likely to be vulnerable to network-based attacks. Hence,
it would be essential to design protocols to minimize the number of rounds so
that i) the time wasted by network latency is reduced, ii) participants can act
more independently and are less likely to be affected by network-related attacks.
If only the standard model and post-quantum security are required, then one
might attempt to construct DRNGs from coin-flipping protocols [11,8] where,
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in each execution, the participants agree on one single random bit. However, to
generate a random number of λ bits, participants need at least Ω(λ) rounds of
communication. In addition, coin-flipping protocols allow adversaries to bias the
output to an extent, depending on the round complexity [23,19] or number of
participants [11] for generating a single bit. Hence, generating random outputs
by coin-flipping protocols will require a lot of rounds, which is not desirable.

Given the importance of the three properties above, it would be desirable
to construct a DRNG that can achieve post-quantum security in the standard
model, and the round complexity should be as small as possible.

1.1 Our Contribution

We construct a DRNG that is i) post-quantum secure, ii) requires only 2 rounds
of communication to generate a single random value, iii) achieves security in the
standard model, and finally, iv) can tolerate any t < n/2 dishonest participants
using the lattice-based PVSS of [33] (The PVSS is also post-quantum secure, and
is proven secure in the standard model. In fact, these properties in the PVSS
imply the desired properties in our DRNG). As a trade-off, our construction
requires all participants to agree on a common reference string (CRS, which can
be understood as a string drawn from a specific distribution and is broadcast
to all participants) generated by a third party. However, this is acceptable,
as we need to rely on a third party once to generate a correct CRS. Then
participants use the string to jointly generate many random numbers (without
further third-party involvement), instead of letting a third party control the
whole random generating process (so its role is greatly reduced, but not entirely
removed). In fact, having a CRS is also implicitly required for other DRNGs
as well: For example, in DRNGs rely on the DL problem, participants have to
agree on a cyclic group G with generator g where the DL problem is assumed to
be hard (the CRS). Such a group needs to be proposed by a third party (such
as the parameter of Secp256k1 was recommended in [36]). For more examples,
[18] also relies on a third party to generate the CRS for participants (but only
achieves security in ROM). Now, to sum up, assuming participants having access
to a CRS, our DRNG is the first to simultaneously satisfy all four properties: i)
secure against quantum computers, ii) require only two rounds, iii) proven secure
the standard model, and iv) can tolerate up to t < n/2 dishonest participants.

1.2 Related Works

Existing DRNGs. Various primitives can be taken to construct DRNGs as
follows: i) DRNG from hash, ii) DRNG from PVSS, iii) DRNG from verifiable
random function (VRF) [46], iv) DRNG from verifiable delay function (VDF)
[39], and v) DRNG from homomorphic encryption (HE).

Hash-based DRNGs, such as [47,4], are insecure. For example, in RANDAO
[47], each participant Pi generates a secret si and needs to provide a hash digest
of si as its commitment. After all participants have provided their digests, the
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participants Pi reveal the corresponding secret si, and the output Ω is calculated
as the XOR of all secrets si. However, the last participant can choose not to
reveal his si if Ω does not benefit him, causing the protocol to abort and restart
(also known as withholding attack). Hence, the output of these protocols can be
biased. Some VRF-based protocols, such as [24,38], also have the same issue.

DRNGs from PVSS can be divided into two approaches: With leaders and
without leaders. Those with leaders such as [44,10,51] only achieve weak security
in the sense that the unpredictability of the output is only achieved from the (t+
1)-th epoch. PVSS-based DRNGs without leaders [42,41,16] or threshold VRFs
[40,50,5] enjoy full security properties. Unfortunately, they are based on the
discrete log assumption. Hence, they are not secure against quantum computers.

For VDF-based DRNG, we first recall VDF: It is an algorithm that requires
a lot of time to compute the outputs, but it can be verified very quickly. One
idea for constructing DRNG is to combine the VDF with RANDAO: After
participants execute RANDAO in a short period of time, they receive a value Ω′,
which is the input of the VDF to generate the final output Ω. Since it takes a very
long time to compute Ω from Ω′, the adversary is not incentivized to keep his
secret, or he will be discarded without knowing whether Ω benefits him or not.
However, it does not prevent an adversary from learning the output sooner than
the participants. Adversaries with improved hardware might compute the VDF
output several times faster [12] (say, 5 times [27]). Because VDF requires a very
long time to compute (say, a day), 5 times faster means that the adversary will
know the output much sooner (several hours) and can secretly leak it for their
benefit. Another idea is to use VDF with trapdoors [45]. In trapdoor VDF-based
DRNGs such as [45,18], the idea is that each participant has a VDF with a
trapdoor, and the participants will use the trapdoor to quickly compute the
outputs. Then, other participants will compute the output of any participant
who withholds it, but they need a lot of time to do so. The problem is that if
withholding happens, honest participants must compute the VDF result without
trapdoors, and hence, they still know the output much later than dishonest ones.

The construction using HE includes [34,35] and [17]. In [34,35], the
participants collaborate with the client to generate randomness. The client
generates a pair of public-secret key pairs (pk, sk), and then the participants
use pk to encrypt their contributions. The client then aggregates the encryption
and uses sk to obtain randomness. However, the scheme requires every client
to be honest and it is pointed out that the scheme becomes insecure when any
dishonest client colludes with a dishonest participant to manipulate the output.
The scheme of [17] is based on a threshold decryption scheme and achieves full
security properties. However, it is not post-quantum secure as it relies on the
discrete log problem (and the construction also relies on the ROM to achieve
security).

To our knowledge, no work has so far constructed a post-quantum secure
DRNG with at most 2 rounds in the standard model, and our DRNG is the
first one to do so. For a comparison with selected previous works, we refer to
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Table 1.

HashRand. HashRand [6] also attempted to propose a post-quantum DRNG
from verifiable secret sharing. Compared to theirs, our protocol incurs higher
communication and computation complexities (more time incurred by the local
computation of participants). However, our protocol requires only two rounds to
generate a random output, and participants are guaranteed to agree on a random
value. HashRand, on the other hand, requires at least three rounds (using Gather
primitive in [1]), can only tolerate t < n/3 dishonest participants, and there is
a probability p that participants can disagree on the random output. As in [6,
Section 3.3], the lower p is, the more rounds HashRand requires. Also, HashRand
is hash-based and relies on ROM, while ours is based on lattice assumption in
the standard model. Hence, our construction has advantages over Hashrand in
that it requires fewer rounds (less time incurred by network latency), tolerates
more dishonest participants, and achieves security in the standard model.

Table 1: Comparison with selected DRNGs. Communication complexity refers to the
total number of bits sent by participants. For computation complexity/node, we mean
the number of computation steps by a single participant. This is one of the two factors
affecting the total time to generate an output. The other is the number of rounds,
which also affects the total time, since more rounds imply more time wasted by network
latency, as discussed earlier. In the table, we consider n as the main parameter in these
complexities, similar to other works [17]. Also, p is the probability that participants
agree on the same random output in HashRand. We use Ω for estimating the costs of
our DRNG. The reason for this is described in Section 4.3.
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RANDAO [47] ✗ X ✗ ✗ X O(n) O(n) 2 1 Com.+ Rev. Hash
Scrape [42] X X X X X O(n2) O(n2) 2 n/2 PVSS DLOG+CRS
HydRand [44] X X X X X O(n2) O(n) 2 2n/3 PVSS DLOG+CRS+ROM
Algorand [24] ✗ X ✗ X X O(n) O(n) 1 2n/3 VRF CRS+ROM
Nguyen et al.[34] ✗ X ✗ ✗ X O(n) O(n) 1 1 HE DLOG+CRS+ROM
Randrunner [45] ✗ X X X X O(n) VDF time 1 n/2 VDF Factoring+ROM

Albatross [16] X X X X X O(n2) O(n2 log2 n) 2 n/2 PVSS DLOG+CRS+ROM

drand [43] X X X X X O(n) O(n log2 n) 1 n/2 TSS. DLOG+CRS+ROM
Bicorn [18] ✗ X X X X O(n) VDF time 2 2 VDF CRS+Factoring+ROM

HashRand [6] ✗ X X X X O(n2 log2 n) O(n2 log2 n) log 1/p n/3 VSS Hash (needs ROM)
Ours X X X X X Ω(n2) Ω(n3) 2 n/2 PVSS LWE+CRS

1.3 Why from PVSS

One might ask why we use PVSS to construct the DRNG instead of a distributed
VRF such as [50,40]. The reason is that we aim to achieve post-quantum security
in the standard model. However, current techniques for lattice-based VRF, such
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as [21], require ROM to achieve security. Unfortunately, we are not aware of
any direction in which to construct lattice-based VRFs in the standard model.
Howerver, as shown by [33], it is possible to construct lattice-based PVSS in
the standard model, and as a result, the PVSS allows achieving post-quantum
DRNG in the standard model. Therefore, we decided to construct DRNG from
the lattice-based PVSS of [33] instead.

1.4 Paper Organization

The rest of the paper is organized as follows: Section 2 recalls the necessary
background. Section 3 briefly describes the PVSS of [33], which is the
lattice-based PVSS we will use in our DRNG. Section 4 describes the generic
DRNG construction from any PVSS without RO. We also provide the security
proof of the generic DRNG and analyze the complexities when instantiated with
the PVSS of [33]. Finally, Section 5 concludes our paper.

2 Preliminaries

For p ≥ 2, denote Zp to be the ring of integers mod p. For x ∈ Zv, let

ρσ(x) = e−π·||x||2/σ2

, where ||x|| is the Euclidean norm of x. We denote
DZv,σ be the discrete Gaussian distribution that assigns probability equal to
ρσ(x)/(

∑

y∈Zv ρσ(y)) for each x ∈ Zv. We denote [n] = {1, . . . , n} and negl(λ)
to denote a negligible function in λ (see [3,13] for definition). We denote x← D

to say that x is sampled from a distribution D and x
$
←− S to say that x is

uniformly sampled from a set S. We consider a synchronous network: The time
between messages is bounded within a value ∆. We assume a broadcast channel,
where everyone can see a message broadcasted by a participant. The adversaryA
is static: A corrupts a set of t < n/2 participants before the start of the protocol
and acts on their behalf. In the DRNG, we use the word epoch. The r-th epoch
is the r-th time participants execute the DRNG to generate an output. Each
epoch is divided into rounds. In each round, participants perform some local
computation and then simultaneously exchange messages (in parallel) with each
other, before going to the next round. Some protocols [44,40] call an epoch a
round, but we use the definition above to analyze the round complexity in a
single execution (similar to other works [14,28]).

2.1 Lattices

Definition 1 (LWE Assumption [37]). Let u, v, q be positive integers, and
let α be a positive real number. Let s ∈ Zv be drawn from some distribution. For
any PPT adversary A, there is a negligible function negl such that
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It is proved that when s
$
← Zq or s ← DZv,αq, then breaking LWE is known to

be hard for quantum computers as long as 1/α is sub-exponential in v.

2.2 Non-Interactive Zero-Knowledge Arguments

A non-interactive zero-knowledge argument (NIZK) allows a prover to
non-interactively prove that it knows a witness to a valid statement without
revealing any information about the witness. Here we recall the syntax of NIZK.

Definition 2 (NIZK, Adapted from [31,33]). Let L = (Lzk,Lsound) be a
gap language with corresponding relation R = (Rzk,Rsound) and let CRS be a
set of common reference string. A NIZK argument for L with a common reference
string set CRS is a tuple NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Ver) as follows:

– NIZK.Setup(1λ,L) → crs : This is an algorithm executed by a third party.
This PPT algorithm outputs a common reference string crs ∈ CRS.

– NIZK.Prove(crs, x, w) → π : This is an algorithm executed by the prover to
prove that it knows a witness w corresponding to a statement x ∈ Lzk s.t.
(x,w) ∈ Rzk. It outputs a proof π certifying (x,w) ∈ Rzk.

– NIZK.Ver(crs, x, π) → 0/1 : This is an algorithm executed by the verifier. It
outputs a bit b ∈ {0, 1} which certifies the validity of (x, π).

We require an NIZK to satisfy three properties: correctness, adaptive
soundness and multi-theorem zero-knowledge, where the language Lsound is used
in the adaptive soundness property. However, due to limited space, we do not
describe these properties here because we do not use them in this paper. The
properties are only used in [33] for the security of the PVSS there. In this paper,
we only require the syntax of the NIZK to describe the PVSS of [33] in Section
3.2. Thus, for the definition of these properties, we refer to [13,31,33].

2.3 Publicly Verifiable Secret Sharing

We recall the definition of PVSS and its security properties.

Definition 3 (PVSS, Adapted from [33]). A (n, t)-PVSS with 0 ≤ t <
n/2 is a tuple of algorithms PVSS = (PVSS.Setup, PVSS.KeyGen,PVSS.KeyVer,
PVSS.Share, PVSS.ShareVer,PVSS.DecVer, PVSS.Combine), specified as below.

– PVSS.Setup(1λ) → pp : This algorithm is run by a trusted third party. On
input the security parameter λ, it returns a public parameter pp.

– PVSS.KeyGen(pp)→ ((pk, sk), π) : This algorithm is run by each participant.
It returns a public-secret key pair (pk, sk) and a proof π of valid key
generation.

– PVSS.KeyVer(pp, pk, π)→ 0/1 : This algorithm is run by a public verifier; it
outputs a bit 0 or 1 certifying the validity of the public key pk.
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– PVSS.Share(pp, (pki)
n′

i=1, s, n
′, t) → (E = (Ei)

n′

i=1, π) : This algorithm is
executed by the dealer to share the secret s for n′ ≤ n participants. It outputs
the “encrypted shares” E = (Ei)

n′

i=1 and outputs a proof π for correct sharing.
– PVSS.ShareVer(pp, (pki)

n′

i=1, n
′, t, E, π) → 0/1 : This algorithm is run by a

verifier, it outputs a bit 0 or 1 certifying the validity of the sharing process.
– PVSS.Dec(pp, pki, ski, Ei) → (si, π) : This algorithm is executed by

participant Pi. It generates a decrypted share si and a proof π of correct
decryption.

– PVSS.DecVer(pp, (pki, Ei, si), π) : This algorithm is run by a public verifier,
it outputs a bit 0 or 1 certifying the validity of the decryption process.

– PVSS.Combine(pp, S, (si)i∈S)→ s/ ⊥: This algorithm is executed by a public
verifier. For a set S and a tuple of shares (si)i∈S, it outputs the original
share s or ⊥ if the secret cannot be reconstructed.

We require PVSS to satisfy correctness, verifiability, and IND2-privacy. For
correctness, if an honest dealer shares s, then it will output s in the
reconstruction phase. For verifiability, if the dealer and all participants have
passed verification to share a secret s, then the sharing and reconstruction
process must be done correctly. For IND2-privacy, we require that for any secrets
s0, s1, it is infeasible for an adversary to distinguish between the transcript of
sharing of s0 and s1.

Definition 4 (Correctness [33]). We says that PVSS achieves correctness if
for any PPT adversary A, the game GamePVSS−Correctness(A) in Figure 1 outputs
1 with probability 1− negl(λ) for some negligible function negl.

For verifiability, we need that i) If (E, π) is accepted by PVSS.ShareVer,
then after honestly decrypting Ei from PVSS.Dec to obtain si, it holds that
(s1, s2, . . . , sn) are valid shares of some secret s and ii) If participant Pi submits
s′i that causes PVSS.DecVer to accept, then s′i = si. In this way, from a valid
transcript (E, π), participants would agree on a unique s in the reconstruction
phase, and a verifier will be convinced that both the sharing and reconstruction
phases for s are done correctly. Due to limited space, we only recall the definition
of valid share language and verifiability. For more details, we refer to [33].

Definition 5 (Valid Share Language [33]). We say that LSharet ⊆
⋃n

i=t+1 Z
i
p

is a valid share language if: For any n′ ≤ n and (s1, s2, . . . , sn′) ∈ LSharet , there
is a value s ∈ Zp such that for any S ⊆ [n′] with |S| ≥ t + 1, it holds that
PVSS.Combine(pp, S, (si)i∈S) = s.

Definition 6 (Verifiability [33]). We say PVSS achieves (LKey,LSharet )
-verifiability if i) Each instance in LKey has a unique witness, ii) LSharet is a valid
share language and iii) if for any PPT adversary A, the game GamePVSS−Ver(A)
in Figure 2 outputs 1 with negligible probability negl(λ).

Definition 7 (IND2-Privacy [33]). We say that PVSS achieves IND2-privacy
if for any PPT adversary A, then there is a negligible function negl s.t.
AdvPVSS−IND(A) = |Pr[GamePVSS−IND

0 (A) = 1] − Pr[GamePVSS−IND
1 (A) =

1]| ≤ negl(λ), where GamePVSS−IND
b (A) is in Figure 3.
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pp← PVSS.Setup(1λ), C ← A(pp). If |C| > t return 0.

((pki, ski), π
0
i )← PVSS.KeyGen(pp) ∀ i 6∈ C, (pki, π0

i )i∈C ← A(pp, C),
Correctness of key generation.

If ∃ i 6∈ C s.t. PVSS.KeyVer(pp, pki, π
0
i ) = 0, return 0.

Let G = {i ∈ [n] | PVSS.KeyVer(pp, pki, π0
i ) = 1}. Assume that G = [n′] and [n]\C ⊆ G.

If not, we re-enumerate the participants Pi with i ∈ G with an element in [n′].

s
$← Zp, (E = (Ei)

n′

i=1, π
1)← PVSS.Share(pp, (pki)

n′

i=1, s, n
′, t).

Correctness of sharing.

If PVSS.ShareVer(pp, (pki)
n′

i=1, n
′, t,E, π1) = 0, return 0.

(si, π
2
i )← PVSS.Dec(pp, pki, ski, Ei) ∀ i 6∈ C,

(si, π
2
i )i∈[n′]∩C ← A(pp, (pki, π0

i )i∈[n′], E, π1, (si, π
2
i )i6∈C).

Correctness of share decryption.

If ∃ i 6∈ C s.t. PVSS.DecVer(pp, pki, Ei, si, π
2
i ) = 0, return 0.

Correctness of reconstruction. Any t + 1 participants who passed PVSS.DecVer must
agree on s.

Let S = {i | PVSS.DecVer(pp, Ei, si, π
2
i ) = 1}. If |S| < t + 1, return 0. If there exists

some S′ ⊆ S, |S′| ≥ t+ 1 such that PVSS.Combine(pp, S′, (si)i∈S′) 6= s, return 0.

Return 1.

Fig. 1: Game GamePVSS−Correctness(A)

pp← PVSS.Setup(1λ). Parse pp = (pp′, pp⋆). C ← A(pp). If |C| > t return 0.

((pki, ski), π
0
i )← PVSS.KeyGen(pp) ∀ i 6∈ G ∩ C, (pki, π0

i )i∈C ← A(pp, C),
Let G = {i ∈ [n] | PVSS.KeyVer(pp, pki, π0

i ) = 1}. Assume that G = [n′] and [n]\C ⊆ G.
If not, we re-enumerate the participants Pi with i ∈ G with an element in [n′].

(E = (Ei)
n′

i=1, π
1)← A(pp, (pki, π0

i )i∈G).

(si, π
2
i )← PVSS.Dec(pp, pki, ski, Ei) ∀ i 6∈ C,

(s′i, π
2
i )i∈G∩C ← A(pp, (pki, π0

i )i∈[n], E, π1, (si, π
2
i )i6∈C).

Verifiability of key generation.

If (pp′, pki) 6∈ L
Key for some i ∈ G ∩ C, return 1.

Verifiability of sharing.

At this point, consider unique (ski)i∈G∩C s.t. ((pp′, pki), ski) ∈ RKey ∀i ∈ G ∩ C.
Let (si, .) ← PVSS.Dec(pp, pki, ski, Ei) ∀ i ∈ G ∩ C. If (s1, s2, . . . , sn′) 6∈ LShare

t and

PVSS.ShareVer(pp, (pki)
n′

i=1, n
′, t, E, π1) = 1, return 1.

Verifiability of decryption.

If s′i 6= si and PVSS.DecVer(pp, pki, Ei, s
′
i, π

2
i ) = 1 for some i ∈ G ∩ C, return 1.

If PVSS.DecVer(pp, pki, Ei, si, π
2
i ) = 0 for some i ∈ G 6∈ C, return 1.

Return 0.

Fig. 2: Game GamePVSS−Ver(A)

2.4 Decentralized Random Number Generator

We recall the definition of DRNG, which is adapted from [32] with minor
modifications to capture that participants are given a common CRS.
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GamePVSS−IND
b (A):

pp← PVSS.Setup(1λ), C ← A(pp). If |C| > t return 0.

((pki, ski), π
0
i )← PVSS.KeyGen(pp) ∀ i 6∈ C, (pki, π0

i )i∈C ← A(pp, C),
Let G = {i ∈ [n] | PVSS.KeyVer(pp, pki, π0

i ) = 1}. Assume that G = [n′] and [n]\C ⊆ G.
If not, we re-enumerate the participants Pi with i ∈ G with an element in [n′].

(s0, s1)← AOPVSS,A(.)(pp, (pki, π
0
i )i∈[n′]).

Challenge phase.

(Eb, πb)← PVSS.Share(pp, sb, n′, t).

b′ ← A((pp, (pki, π0
i )i∈[n′], s

0, s1, Eb, πb).

Return b′.

Interactive oracle OPVSS,A(s) :

(E = (Ei)
n′

i=1, π
1)← PVSS.Share(pp, (pki)

n′

i=1, s, n
′, t).

(si, π
2
i )← PVSS.Dec(pp, pki, ski, Ei) ∀ i 6∈ C, (si, π2

i )i∈C ← A(pp, (pki, π0
i )i∈[n′], E, π1).

Let S2 = {i ∈ G | PVSS.DecVer(pp, Ei, si, π
2
i ) = 1}.

Return PVSS.Combine(pp, (si)i∈S).

Fig. 3: Game GamePVSS−IND
b (A) with supporting interactive oracle OPVSS,A(.)

Definition 8 (DRNG, Adapted from [32]). A (t, n)−DRNG on a set
of participants P = {P1, P2, . . . , Pn} with output space U is an epoch-based
protocol, each epoch consists an algorithm DRNG.Setup, two interactive protocols
DRNG.Init, DRNG.RandGen for participants in P, and algorithms DRNG.Ver as
follows:

1. crs ← DRNG.Setup(1λ) : On input a security parameter 1λ, this PPT
algorithms returns a common reference string crs.

2. (st,QUAL, pp, {ski}i∈QUAL)← DRNG.Init(crs) 〈{P}P∈P〉: This is an one-time
protocol run by all participants in P given a common reference string crs

to determine the list of qualified committees. At the end of the interaction,
a set QUAL of qualified participants is determined, a global state st is
initialized, and a list pp of public information is known to all participants.
Each participant Pi with i ∈ QUAL also obtains his secret key ski, only known
to him.

3. (st := st′,QUAL, Ω, π) ← DRNG.RandGen(crs, st, pp) 〈{Pi(ski)}i∈QUAL〉 :
This is an interactive protocol between participants in a set QUAL each
holding the secret key ski and common inputs st, pp. It is executed in each
epoch. In the end, all honest participants output a value Ω ∈ U and a proof
π certifying the correctness of Ω made by the interaction. In addition, the
global state st is updated into a new state st′.

4. b← DRNG.Ver(crs, st, Ω, π, pp): This algorithm is run by a verifier. On input
a common reference string crs (generated by a third party), the current state
st, a value Ω, a proof π, a public parameter pp (generated by participants),
this algorithm output a bit b ∈ {0, 1} certifying the correctness of Ω.



Post-Quantum-DRNG 11

As in [32] and previous works [44,17,40,20,9], we require a DRNG to satisfy the
four properties: pseudorandomness, Bias-resistance , liveness, public verifability.

Definition 9 (Security of DRNG, Adapted from [32]). A secure DRNG
protocol is a DRNG protocol satisfying the following properties.

– Pseudorandomness. Let Ω1, Ω2, . . . , Ωr be outputs generated so far. We
say that a (t, n)−DRNG satisfies pseudo-randomness if for any future
outputs Ωj where j > r that has not been revealed, for any PPT adversaries
A who corrupts t participants in P, there exists a negligible function negl

such that
|Pr [A(Ωj) = 1]− Pr [A(Y ) = 1]| ≤ negl(λ),

where Y
$
← U is an element chosen uniformly at random from the set U .

– Bias-resistance. For any adversary A who corrupts t participants, it cannot
affect future random outputs for his own goal.

– Liveness. For any epoch, and for any adversary A who corrupts t
participants, the DRNG.RandGen protocol is guaranteed to produce an output.

– Public Verifiability. Given crs, st′, pp, Ω∗, π∗ ∈ {0, 1}∗, an external verifier
can run DRNG.Ver(crs, st′, pp, Ω∗, π∗) to determine the correctness of Ω⋆.

Several constructions, such as [44,17], consider the weaker unpredictability
property, which only requires that A cannot correctly guess the future output.
However, as pointed out by [40], pseudorandomness implies unpredictability.
Thus, we will adapt the pseudorandomness property from [32].

3 The Underlying Lattice-Based PVSS

To construct a DRNG based on a PVSS in the standard model, we first need
a lattice-based PVSS in the standard model. Hence, we briefly recall the PVSS
construction in [33], which is our choice of PVSS for constructing the DRNG.

3.1 The PVSS Components

The PVSS in [33] requires five components: A secret sharing scheme (SSS), a
public key encryption scheme (PKE), and the NIZKs for key generation, sharing,
and decryption. We briefly recall these components. For the SSS, the construction
relies on Shamir SSS in Figure 4. For the PKE, the construction uses the ACPS
PKE of [3] in Figure 5, whose security relies on the LWE assumption in Section
2.1. In the PKE, each public key has a unique secret key, which is needed for
the verifiability property (Definition 6).

Finally, we briefly recall the necessary NIZKs (Section 2.2) in [33] to give a
high-level overview of them. We need three NIZKs in total. In the PVSS of [33],
these NIZKs are used to prove the following:
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– SSS.Share(pp, s, n, t) : Chooses a polynomla p(X) ∈ Zp[X] of degree t. Compute
si = p(i) (mod p). Return (si)

n
i=1.

– SSS.Combine(pp, S, (si)i∈S) : Compute s =
∑

i∈S
λi,S · si (mod p), where λi,S =∏

j∈S,j 6=i = j/(j − i) (mod p) are the Lagrange coefficients.

Fig. 4: Shamir Secret Sharing Scheme

– PKE.Setup(1λ) : Consider two positive integers p, q with q = p2 and p is a prime
number. Let u, v, r be positive integers and α, β be positive real numbers. Generate

A
$←− Z

v×u
q , Return (A, u, v, α, β, r, p, q).

– PKE.KeyGen(A) : Sample s ← DZv ,αq , e ← DZu,αq. Repeat until ||s|| < √v · αq,
||e|| < √u · αq. Compute b = s⊤ ·A+ e⊤ (mod q). Return (pk, sk) = (b, s).

– PKE.Enc(A,b, m) : To encrypt a message m ∈ Zp, sample r ← DZu,r, e ← DZ,βq

and compute c1 = A · r (mod q), c2 = b · r + e + p · m (mod q), where β =√
u · log u · (α+ 1

2·q
). Return (c1, c2).

– PKE.Dec(A,b, s, (c1, c2)) : Compute f = c2 − s⊤c1 (mod p) and cast f as an
integer in [−(p− 1)/2, (p− 1)/2]. Return m = (c2 − s⊤c1 − f)/p (mod p) with f
as the additional witness for decryption.

Fig. 5: The ACPS Public Key Encryption Scheme

– NIZK for correct key generation. After generating the public key b in Figure
5, the participant needs to convince the verifier that there exist secrets s, e
corresponding to it. More specifically, given a statement (A,b), it uses the
NIZK to prove that there are witnesses (s, e) s.t. b⊤ = s⊤ ·A+ e⊤ (mod q)
for some s, e having a small norm.

– NIZK for correct sharing. According to [33], given that (A,bi) are valid
public keys for all i ≤ n, when sharing a secret, the dealer must prove that i)
the ciphertexts are valid encryption and ii) the shares are valid shares of some
secret s. In [33], we see that, for Shamir secret sharing scheme, condition

ii) can be captured by using a parity check matrix Ht
n ∈ Z

n×(n−t−1)
p s.t.

m = (m1, . . . ,mn) is a valid share vector iffm⊤·Ht
n = 0 (mod p). In the best

case, the dealer, given the encryption and public keys (A, (bi, c1i, c2i)
n
i=1)

would prove the existence of witnesses (ri, ei,mi)
n
i=1 st. i) c1i = A · ri

(mod q), c2i = bi · ri + p · mi + ei (mod q), ri, ei having a small norm for
all 1 ≤ i ≤ n, and ii) m⊤ · Ht

n = 0 (mod p). In the worst case, then if a
verifier accepts, it will be convinced that the value mi obtained by honestly
decrypting (c1i, c2i) using the secret key si of bi must satisfy m⊤ ·Ht

n = 0
(mod p), meaning that they are valid shares of some secret (such as si must
exist as bi is a valid public key).

– NIZK for correct decryption. Finally, each participant decrypts the shares
and proves that the decryption result in Figure 5 is correct. More
specifically, after obtaining si from decryption, then from the statement
(A,bi, (c1i, c2i), si), participant Pi needs to prove the existence of witnesses
(si, ei, fi) s.t. bi = s⊤i ·A+ e⊤i (mod q), c2i − p · si = s⊤i · c1i + fi (mod q)
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and si, ei, fi having small norm to convince the verifier that it has decrypted
correctly.

Due to limited space, we refer the formal NIZK constructions, and the security
of the NIZKs to [33]. The special property of the NIZKs is that they are proven
secure in the standard model by combining trapdoor Σ-protocols (see [33]) and
the compiler of [31] instead of using the Fiat-Shamir paradigm. Note that the
NIZKs require a third party to generate a CRS using the setup algorithm.
However, the CRS only needs to be generated once, then it can be used by
participants to generate multiple random outputs (it remains the same even if
participants are replaced). We believe this is acceptable, as remarked in Section
1.1. Finally, the NIZK compiler in [31] has many complicated components that
would make it hard to provide an exact cost. However, we can still estimate the
cost of the NIZKs to be the cost of the trapdoor Σ-protocols, as analyzed in
[33].

3.2 The PVSS Construction

Now, we summarize the lattice-based PVSS of [33] from the components above.
It depends on the following primitives: i) the lattice-based public key encryption
scheme PKE = (PKE.Setup, PKE.KeyGen, PKE.Enc,PKE.Dec) described in
Figure 5, ii) a Shamir secret sharing scheme SSS = (SSS.Share, SSS.Combine)
described in Figure 4 and iii) the three NIZKs NIZK0,NIZK1,NIZK2 for correct
key generation, sharing, and decryption described in Section 3.1, where NIZKi =
(NIZKi.Setup, NIZKi.Prove,NIZKi.Ver) ∀ 0 ≤ i ≤ 2 (their syntax is in Section
2.2). The lattice-based PVSS construction in [33] is briefly described in Figure
6. The PVSS is proven secure in the standard model and achieves post-quantum
security.

4 Latice-Based DRNG from PVSS in the Standard

Model

We construct a DRNG from the lattice-based PVSS from the previous section.
We then sketch the security and analyze the complexity of the DRNG.

4.1 Construction

First, we describe a DRNG construction from any generic PVSS. The
construction has been briefly described in Ouroboros [30, Figure 12] and used in
[42] for their DL-based PVSS. However, Ouroboros requires an RO outside the
PVSS to generate the output. Wemodify the DRNG so that we do not need to use
any RO and can instantiate the DRNG with any lattice-based PVSS. Informally,
the DRNG is as follows (assuming all participants follow the DRNG):

– Initially, for each i, each participant Pj samples a public-s ecret key pair
(pkij , skij) for Pi to share his secret. Other participants then verify the
validity of the keys and set QUAL to be participants who passed verification.
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– PVSS.Setup(1λ) : Generate A← PKE.Setup(1λ) and common reference string crsi
for NIZKi for all i ∈ {0, 1, 2}. Return pp = (A, (crsi)

2
i=0).

– PVSS.KeyGen(pp) : Sample a public-secret key pair (b, s) ← PKE.KeyGen(A, e)
for some randomness e and provides a proof π ← NIZK0Prove(crs0, (A,b), (s, e)).
Finally, return ((b, s), π).

– PVSS.KeyVer(pp,b, π) : Return NIZK0.Ver(crs0, (A,b), π).
– PVSS.Share(pp, (bi)

n
i=1, s, n

′, t) : The dealer enumerates all participants

who passed the key verification by {1, 2 . . . , n′}. Calculate (si)
n′

i=1 ←
SSS.Share(s, n′, t). Then it computes (c1i, c2i) ← PKE.Enc(A,bi, si)
for all 1 ≤ i ≤ n and keeps (ri, ei). The proof then provides

π ← NIZK1.Prove(crs1, (A
′, n′, t, (bi, c1i, c2i)

n′

i=1), (si, ri, ei)
n′

i=1). Returns

(E = (c1i, c2i)
n′

i=1, π).

– PVSS.ShareVer(pp, (bi)
n′

i=1, n
′, t, E, π) : To check the validity of the sharing, return

NIZK1.Ver(crs1, (A
′, n′, t, (bi, c1i, c2i)

n′

i=1), π).
– PVSS.Dec(pp,bi, (c1i, c2i), si) : Compute si = PKE.Dec(A,bi, si, (c1i, c2i)) and

receive additional witness fi for decryption. Then we provide a proof πi ←
NIZK2.Prove(crs2, (A,bi, (c1i, c2i), si), (si, ei, fi)). Return (si, πi).

– PVSS.DecVer(pp,bi, c1i, c2i, si, πi) : Return NIZK2.Ver(crs2, (A,bi, c1i, c2i), si), πi).
– PVSS.Combine(pp, S, (si)i∈S) : If |S| ≤ t returns ⊥. Otherwise, return s =

SSS.Combine(S, (si)i∈S).

Fig. 6: The Lattice-based PVSS Construction in [33]

– Re-enumerate the set QUAL for participants who have passed key verification.
For example, if A,B,C have passed key verification, and initially they are
enumerated with 2, 3, 5 respectively (QUAL = {2, 3, 5}). Then they will be
re-enumerated with 1, 2, 3, and QUAL will be updated as QUAL := {1, 2, 3}.

– This is the start of an epoch. For each i ∈ QUAL, participants samples

si
$
← Zp and uses pki = (pki1, . . . , pkin) to publish his transcript (Ei, π

1
i ).

Other participants verify the validity of the transcript and denote QUAL′ as
the set of participants who published a valid sharing transcript.

– For each i ∈ QUAL′, participant Pj with j ∈ QUAL′ decrypts Eij to get the
share sij of si and reveals it with its proof π2

ij . Other participants then verify
the decrypted shares sij above.

– If there are at least t + 1 valid shares for si, it is recovered using Lagrange
interpolation. Then the value Ωr =

∑

i∈QUAL′ si (mod p) is computed. The
proof of the DRNG is all the public transcripts so far. Note that QUAL

remains the same, and in the next epoch, those in QUAL are still allowed to
share their secret (even if they are not in QUAL′).

Unlike Ouroboros, our DRNG only relies on a (n, t)-PVSS PVSS =
(PVSS.Setup,PVSS.KeyGenPVSS.KeyVer,PVSS.Share,PVSS.ShareVer,PVSS.Dec,
PVSS.DecVer,PVSS.Combine) does not require any RO. The modified generic
DRNG construction is formally described in Figure 7, assuming the existence
of any PVSS. In the description, we use crs to denote the parameter generated
by PVSS.Setup instead of pp like Figure 6, because in the DRNG syntax,
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we need pp to denote the public keys (pki)i∈QUAL generated by participants
themselves. Finally, we note that, whenever a new participant Pj would like
to join in a future epoch, then in DRNG.Init, we only need to provide a single
tuple pkj = (pkj1, . . . , pkjn) for Pj to share its secret, and the tuples pki for old
participants are the same as long as they are in QUAL.

– DRNG.Setup(1λ) : Generates crs← PVSS.Setup(1λ). Return crs.
– DRNG.Init(crs)〈{P}P∈P〉 : The participants proceed as follows:

1. For each j ∈ [n], each participant Pi generates (pkji, skji, π
0
ji) ←

PVSS.KeyGen(crs). Participant Pi then broadcasts (pkji, π
0
ji)

n
j=1.

2. Other participants Pj verify the validity of pkji by executing bji =

PVSS.KeyVer(crs, pkji, π
0
ji).

3. Let QUAL = {i ∈ [n] | bji = 1 ∀ j ∈ [n]}. WLOG, |QUAL| = n′. Re-enumerate
QUAL to be QUAL := {1, 2, . . . , n′} (i.e., each qualified remaining participant
will be re-enumerated with a value in {1, 2, . . . , n′}). Also, for each i ∈ QUAL,
let pki = (pkij)j∈QUAL and ski = (skij)j∈QUAL.

4. Return (st =⊥,QUAL, pp = (pki)i∈QUAL, (ski)i∈QUAL).
– DRNG.RandGen(crs, st, pp = (pki)i∈QUAL) 〈{Pi(ski)}i∈QUAL)〉 : To generate a random

output Ω ∈ Zp, the participants jointly proceed as follows:
1. Each participant Pi with i ∈ QUAL generates a random secret si ← Zp and

computes (Ei, π
1
i )← PVSS.Share(crs, pki, si, n

′, t) where pki = (pkij)j∈QUAL.

2. Other participants verify the validity of (Ei, π
1
i ) by executing bi =

PVSS.ShareVer(crs, pki, n
′, t, Ei, π

1
i ). Let QUAL′ := {i ∈ QUAL | bi = 1}.

3. For each i ∈ QUAL′, other participants Pj with j ∈ QUAL′ reveals the share
sij of si by computing (sij , π

2
ij)← PVSS.Dec(crs, pkij , skij , Eij).

4. Other participants verify the validity of (sij , πij) by computing bij =
PVSS.DecVer(crs, pkij , Eij , π

2
ij).

5. Let Si = {j ∈ QUAL′ | bij = 1}. As soon as |Si| ≥ t + 1, participants recover
si by computing si = PVSS.Combine(crs, Si, (sij)j∈Si

).
6. The final random output is defined to be Ω =

∑
i∈QUAL′

si (mod p). If some
si cannot be reconstructed, then Ω =⊥.

7. The proof π for the DRNG is simply the public transcript so far. Thus π =
(QUAL′, (π0

ij)i,j∈QUAL′ , (Ei, π
1
i )i∈QUAL′ , (sij , π

2
ij)i∈QUAL′,j∈Si

).
8. Return (st =⊥, Ω, π). Note that QUAL remains the same for all epochs, and

in the next epoch, all participants in QUAL (including those not in QUAL′ in
the current epoch) are still allowed to share their secret like Step 1.

– DRNG.Ver(crs, st, Ω, π,pp = (pki)i∈QUAL) : A public verifier proceeds as follows:
1. For each i ∈ QUAL, check if PVSS.KeyVer(crs, pkij , π

0
ij) = 1 for all j ∈ QUAL.

2. For each i ∈ QUAL′, check if PVSS.ShareVer(crs, pki, Ei, π
1
i ) = 1.

3. For each i ∈ QUAL′, j ∈ Si, check if PVSS.DecVer(crs, pkij , Eij , π
2
ij) = 1.

4. Compute si = PVSS.Combine(crs, Si, (sij)j∈Si
).

5. Finally, check if Ω =
∑

i∈QUAL′
si (mod p). Accept iff all checks pass.

Fig. 7: The formal DRNG construction in each epoch

Instantiation. The compiler only requires a generic PVSS. Thus, to achieve
post-quantum security and in the standard model, we propose to use the
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PVSS described in Section 3.2 instead of DL-based PVSSs such as SCRAPE
or Ouroboros. Our DRNG is proven secure in the standard model, assuming
that participants have access to a CRS generated by PVSS.Setup. However, this
CRS only needs to be generated once, as discussed earlier.

4.2 Security Proof

Here, we sketch the security proof of the DRNG. While Ouroboros provided a
DRNG compiler using a generic PVSS, their compiler requires ROM and only
proved the security when it is instantiated with a DL-based PVSS. Therefore, we
need to show that our modified DRNG achieves all the required security when
it is instantiated with a generic PVSS (consequently, we have a post-quantum
secure DRNG in the standard model using the PVSS in Section 3.2).

Theorem 1. The DRNG in Figure 7 satisfies the pseudorandomness property.

Proof. To show pseudorandomness, we need to show that, for any PPT adversary
A, before the reveal phase (Step 3 of DRNG.RandGen), then A cannot find any
pattern to distinguish between the correct DRNG output given to him and a truly
random output in Zp. To capture this setting, we consider the pseudorandomness

security game GamePsd−DRNG
b (A) for the DRNG in Figure 8.

We see that, according to Definition 9, pseudorandomnes holds if
the advantage AdvPsd−DRNG(A) = |Pr[GamePsd−DRNG

0 (A) = 1] −
Pr[GamePsd−DRNG

1 (A) = 1]| is negligible. Indeed, up to Step 4 of Figure 8, A
has received the outputs Ω1, . . . , Ωr−1 of the DRNG. In the r-th epoch (starting
from Step 5), when b = 0, A is given the correct future output Ωr =

∑

i∈QUAL′ si
(mod p) of the DRNG (except with negligible probability). Otherwise, A is given
a random output in Zp as s′ is random in Zp. Thus we just need to prove that

AdvPsd−DRNG(A) ≤ negl(λ) for some negligible function negl. Suppose otherwise,
we prove that there is an adversary A′ that uses A to break the IND2-privacy
property of the PVSS in Figure 3. The algorithm A′ is described in Figure 9.

In Figure 9, when (En′ , π1
n′) is the sharing transcript of s0n′ , then A′

interacts with GameIND−PVSS
0 (Figure 3) and has produced the transcript of

GamePsd−DRNG
0 to A. Otherwise, we have (En′ , π1

n′) is the sharing transcript
of s1n′ , in this case s0n′ plays the role of s′ in Figure 8, thus A′ interacts with
GameIND−PVSS

1 and has produced the transcript of GamePsd−DRNG
1 to A. Hence,

Pr[GamePsd−DRNG
b (A) = 1] = Pr[GameIND−PVSS

b (A′) = 1] for b ∈ {0, 1}.

Thus, AdvPsd−DRNG(A) ≤ AdvIND−PVSS(A′). So if AdvPsd−DRNG(A) is non
negligible, then AdvIND−PVSS(A′) is non-negligible, contradiction due to the
IND2-privacy of the PVSS (Definition 7), which states that AdvIND−PVSS(A′)
must be negligible. Thus, the DRNG achieves pseudorandomness. ⊓⊔

Theorem 2. The DRNG in Figure 7 satisfies the availability property.

Proof. Let QUAL′ denote the set of participants passed verification after Step 3
of DRNG.RandGen. Due to the verifiability of the PVSS, for each i ∈ QUAL′, all
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1. The challenger computes the CRS crs from PVSS.Setup and gives crs to A.
2. The adversary A chooses a set of corrupted participants C s.t. |C| ≤ t. Note that

[n] \ C ⊆ QUAL.
3. The challenger executes ((pkji, skji), π

0
ji)← PVSS.KeyGen(crs) for all i 6∈ C, j ∈ [n] ,

which represents the public keys of honest participants. The adversary A also sends
the public keys (possibly invalid or might not send at all) of corrupted participants
(pkji, π

0
ji)j∈[n],i∈C as well.

4. The challenger verifies pkij by executing PVSS.KeyVer(crs, pkji, π
0
ji) for all j ∈

[n], i ∈ C and excludes all participants in C with invalid public keys. Also, it
re-enumerates QUAL := [n′] and C after this.

5. For i = 1, 2, . . . , r−1, the challenger and A jointly executes the DRNG to generates
Ω1, Ω2, . . . , Ωr−1 using DRNG.RandGen in Figure 7.

6. Eventually, in the r-th epoch, for each honest Pi with i ∈ QUAL, the challenger

samples si
$← Zp computes (Ei, π

1
i )← PVSS.Share(crs, pki, si, n

′, t) and broadcasts
(Ei, π

1
i ). It also receives the pairs (Ei, π

1
i )i∈QUAL∩C from A.

7. The challenger verifies the validity of the transcripts (Ei, π
1
i )i∈QUAL∩C by executing

PVSS.ShareVer(crs, pki, n
′, t, Ei, π

1
i ) for all i ∈ QUAL ∩ C and determines the set

QUAL′ as in Figure 7 (which includes all honest participants due to the correctness
property of the PVSS).

8. For each i ∈ QUAL′ ∩ C, the challenger uses skij to restore the share sij by
computing (sij , .) = PVSS.Dec(crs, pkij , skij , Eij) for all j ∈ G and uses Lagrange
interpolation to recover si. Note that |G| ≥ t+ 1, thus due to the correctness and
verifiability of the PVSS, the restored result si is the same restored secret of Pi in
the real execution of the DRNG except with negligible probability.

9. Now, suppose n′ ∈ QUAL′ and n′ 6∈ C (i.e., Pn′ is honest). Then the challenger
computes A⋆ =

∑
i∈QUAL,i6=n′ si (mod p). If b = 0, then Ωr = A + sn′ (mod p),

otherwise, the challenger samples s′
$← Zp and compute Ωr = A+s′ (mod p). The

challenger then returns Ωr to A.
10. A outputs a bit b′, which is the result of the experiment.

Fig. 8: The game GamePsd−DRNG
b (A)

participants would agree on some si from (Ei, π
1
i ). It suffices to prove that all

si are reconstructed for all i ∈ QUAL′ from (Ei, π
1
i ). For each i ∈ QUAL′, the

secrets si can be recovered from t+1 correct shares sij due to the correctness and
verifiability of the PVSS (those sij that makes PVSS.DecVer returns 1). Since
there are n− t ≥ t+1 honest participants, there are at least t+1 correct shares,
so si can be reconstructed for all i ∈ QUAL′ using PVSS.Combine. ⊓⊔

Theorem 3. The DRNG in Figure 7 satisfies the bias-resistance property.

Proof. It is implied by pseudorandomness and availability. Indeed, if A wishes
to affect the output, it must do so during the sharing or reconstruction phase.
Note that due to the pseudorandomness property, during the sharing phase,
an adversary controlling t participants cannot find any pattern to distinguish
between the DRNG output Ω =

∑

i∈QUAL′ si (mod p) and a truly random

output. During the reconstruction phase, for each i ∈ QUAL′, with at least t+1
honest participants, the same result si will be restored successfully (we have
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1. First, A′ receives crs from the IND2-privacy challenger (who acts on behalf of
honest participants in the PVSS). It provides crs to A and receices the set C from
A. The adversary A′ then submits C to the IND2-privacy challenger.

2. Let G denote the set of honest participants (A′ would ”act“ on their behalf when
interacting with A) and consider an honest participant P . WLOG, initially, P is
enumerated as n. A′ honestly samples ((pkji, skji), π

0
ji)← PVSS.KeyGen(crs) for all

j ∈ [n]\{n}, i ∈ G. It also receives (pkni, π
0
ni)i∈G from the IND2-privacy challenger,

which it will use as the public key for P .
3. A′ forwards (pkji, π

0
ji)j∈[n],i∈G to A, while also receives (pkji, π

0
ji)j∈[n],i∈C from A.

A′ then just verify the keys of A and re-enumerates QUAL,G. Suppose QUAL = [n′]
and P is re-enumerated as n′.

4. For 1 ≤ i ≤ r− 1, A′ acts on the behalf of honest participants in the i-th epoch as
follows:
(a) For each k ∈ G, k 6= n′, it samples a secret s′k

$← Zp for Pk, then uses the PVSS
with public keys pkk = (pkkj)j∈QUAL to share s′k.

(b) For P , it queries random secret s′n′

$← Zp to the IND2-privacy challenger,
receives the sharing transcript (En′ , π1

n′) from OPVSS,A(s′n′) (see Figure 3),
and then forwards it to A. A′ then verify the transcript of participants in
QUAL ∩ C and determines QUAL′ for the i-th epoch.

(c) For each k ∈ G, k 6= n′, A′ simply reconstruct s′k it together with A using the
secret keys (skkj)j∈G to decrypt the shares (s′kj)j∈G .

(d) When needing to reconstruct s′n′ , it receives the honest shares (s′n′j , π
2
n′j)j∈G of

s′n′ from the IND2-privacy challenger from OPVSS,A(s′n′) and forwards them to
A. It also receives the decrypted shares and proofs (s′n′j , π

2
n′j)j∈QUAL′∩C from

A and forward this to the challenger to complete the query OPVSS,A(s′n′).
(e) Finally, with the secrets (s′k)k∈QUAL′ are revealed, the value Ωi is computed as

Ωi =
∑

i∈QUAL′
s′i (mod p).

5. In the r-th epoch, for each i ∈ G \ {n′}, A′ samples si ← Zp and computes
(Ei, π

1
i ) ← PVSS.Share(crs, pki, si, n

′, t). For n′, A′ samples s0n′ ← Zp, s
1
n′ ← Zp

and sends s0n′ , s1n′ to the challenger (it begins the challenge phase in Figure 3).
It receives (En′ , π1

n′) which is the sharing transcript of s0n′ or s1n′ . A′ forwards
(Ei, π

1
i )i∈G to A, while also receiving (Ei, π

1
i )i∈QUAL∩C from A.

6. A′ verifies all the transcripts (Ei, π
1
i )i∈C and determines the set QUAL′. For each

i ∈ QUAL′ ∩C, A′ uses skij to restore the share sij for all j ∈ G and uses Lagrange
interpolation to recover si. A′ then computes Ωr = s0n′ +

∑
i∈QUAL′,i6=n′ si (mod p)

and sends Ωr to A.
7. Finally, A′ outputs whatever A outputs.

Fig. 9: The reduction algorithm A′

proved this in the availability property). Thus, the same value Ω is restored
and cannot be changed, so A cannot affect the output in this phase. Hence, the
adversary cannot bias the output. ⊓⊔

Theorem 4. The DRNG in Figure 7 satisfies the public verifiability property.

Proof. The verifier can simply execute DRNG.Ver to check the DRNG. First,
it uses PVSS.KeyVer to check the correctness of the keys pki, then it use
PVSS.ShareVer to check the correctness of (Ei, π

1
i ) for all i ∈ QUAL′. Finally,
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it uses PVSS.DecVer to check the correctness of the decrypted shares sij for
all i ∈ QUAL′, j ∈ Si. For honest Pi, we easily see that the correctness of the
PVSS (Definition 4) implies that if the secret si is shared, it will be restored, and
the verifier accepts. Conversely, even for honest participants, then verifiability
(Definition 6) implies that if the verifier accepts, then the sharing transcript
(Ei, π

1
i ) must be valid transcript of some secret si and the decrypted shares

(sij)j∈Si
are valid shares of si. So the verifier is convinced that all participants

in QUAL′ have executed the PVSS correctly to share some secret si, which implies
the correctness of Ωr as desired. ⊓⊔

Finally, we do not have to worry about A knowing the output Ω much
sooner than honest participants like those using VDFs because the algorithms
PVSS.DecVer, PVSS.Combine only take polynomial time in n, λ (see Section 4.3)
to compute (not too long, hence honest participants can agree on the outputs
not much longer than those with improved computational power), while it takes
a lot of time (e.g., a day or several hours) to compute a VDF output.

4.3 Complexity Analysis

We analyze the complexity of our DRNG, which includes the costs of DRNG.Init
and DRNG.RandGen. We include the cost of DRNG.Init because it will be
re-executed every time a participant is replaced/changed before DRNG.RandGen.
The cost of DRNG.Ver is the same as DRNG.RandGen. Note that there are two
factors affecting the total time of an epoch: The computation complexity per
participant and the number of rounds. One is the number of required steps for
a participant to perform necessary computations (executing algorithms), while
the other is the number of times required to exchange messages online (which
is affected by the network delay). In [33], to construct the NIZK for a language,
the authors designed the trapdoor Σ-protocol for the language first, then used
the compiler of [31] to achieve the NIZK. While the NIZK compiler in the
standard model requires many complicated components, it would be hard to
give a concrete complexity. However, as in [33], it is possible to analyze the cost
of the trapdoor Σ-protocols and estimate the cost of the NIZK to be at least
the trapdoor Σ-protocols, and consequently, it is possible to estimate the cost
of the PVSSs as well. We will use the notation Ω to imply that the cost will be
more than estimated. As in [33], we denote v, u as the lattice parameters used
in the PKE and λ as the security parameter (recall Figure 5).

Communication Complexity. In DRNG.Init, each Pi has to submit his public
key pkji and proof πji using PVSS.KeyGen. Since the total n2 instance of
PVSS.KeyGen is executed, it incurs Ω(n2(u + v) log q) cost. In DRNG.RandGen,
when sharing the secret, the dominating computation complexity for each dealer
is Ω(n(u + v) log q) (analyzed in [33]). Thus, the communication complexity
in this step is Ω(n2(u + v) log q). Finally, each participant needs to broadcast
their decrypted shares for each secret using PVSS.Dec. According to [33], the
dominating cost for this is Ω(n2(u+v) log q) for verifying n2 shares. In conclusion,
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the total communication complexity is estimated to be Ω(n2(u+ v) log q).

Computation Complexity. In DRNG.Init, each participant computes his
public key pkji and proof πji for all j ∈ [n]. It then verifies the correctness
of the keys. According to [33], computing and verifying O(n2) public keys would
require Ω(n2uv) cost. In DRNG.RandGen, each participant uses PVSS.Share to
compute (Ei, π

1
i ) and then verify other transcripts. According to [33], this would

require at least Ω(λ(n3+n2uv)) complexity to compute and verify n transcripts.
Each participant then decrypts O(n) shares and verifies O(n2) decrypted shares.
The complexity for this would be Ω(n2uv). Finally, reconstructing the secret
takes O(n2 log2 n) cost. In conclusion, the computation complexity is estimated
to be Ω(λ(n3 + n2uv)). The verification cost for an external verifier is also the
same.

Round Complexity. To generate a single random value, we require two rounds
in DRNG.RandGen. The first round consists of Step 1 and Step 2, while the
second round consists of the remaining steps. In the first round, participants
only need to send (Ei, π

1
i ) in Step 1 to other participants, and they can compute

PVSS.ShareVer and determine QUAL′ by themselves. In the second round,
participant Pi only needs to send his decrypted shares (sji, π

2
ji)j∈QUAL′ in Step

3, then other participants (or anyone) can compute PVSS.DecVer, Si, Ω, π by
themselves without needing to send any more messages. Here, note that previous
works in cryptography (e.g., [40,14,2,22,28], where non-interactive means one
round) determine the number of rounds in the same way. When the information
on the broadcast channel is sufficient to publicly determine the output (Ω in our
case), then everyone (including an external verifier) can determine it without
requiring more messages from participants. In practice, to let everyone see and
agree on Ω intermediately, then even if Ω can be computed independently and
publicly, we still ask participants to broadcast their result. The result broadcast
by most participants will be Ω. However, like the work above, this broadcast
process is more of an implementation detail and thus is not treated as a round.

5 Conclusion

In this paper, we proposed the first post-quantum DRNG from a lattice-based
PVSS that can achieve security in the standard model and requires only two
rounds of communication. Although the DRNG requires that participants have
access to a CRS, this string needs to be generated once, and participants can use
this string to generate many random numbers. Hence, we only need to place trust
in a third party once. In the DRNG, we employ the technique of [33], which only
allows us to estimate the cost of the DRNG so far, rather than a more concrete
cost. Hence, it would be helpful if there were any optimization that allows us
to achieve security in the standard model with reduced and more concrete cost.
We would like to leave the above-mentioned issue for future research.
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