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Abstract—iPhone portrait-mode images contain a distinctive
pattern in out-of-focus regions simulating the bokeh effect, which
we term Apple’s Synthetic Defocus Noise Pattern (SDNP). If
overlooked, this pattern can interfere with blind forensic analyses,
especially PRNU-based camera source verification, as noted in
earlier works. Since Apple’s SDNP remains underexplored, we
provide a detailed characterization, proposing a method for its
precise estimation, modeling its dependence on scene brightness,
ISO settings, and other factors. Leveraging this characterization,
we explore forensic applications of the SDNP, including trace-
ability of portrait-mode images across iPhone models and iOS
versions in open-set scenarios, assessing its robustness under post-
processing. Furthermore, we show that masking SDNP-affected
regions in PRNU-based camera source verification significantly
reduces false positives, overcoming a critical limitation in camera
attribution, and improving state-of-the-art techniques.

Index Terms—Image forensics, source camera verification,
PRNU, portrait mode, depth, computational imaging, Apple.

I. INTRODUCTION

THE widespread adoption of computational photography
in modern smartphones, especially with the integration

of Artificial Intelligence (AI) algorithms, poses considerable
challenges for classic methods in multimedia forensics, par-
ticularly in the area of image forensics. Examples of compu-
tational imaging techniques include image stitching to create
panoramic photos, High Dynamic Range (HDR) imaging to
extend the camera’s native luminosity range in a single shot,
“night mode” to enhance low-light imaging, and “portrait
mode” for simulating a shallow depth of field and mimic
a realistic bokeh. Digital images produced through any of
these computational imaging modes undergo complex process-
ing chains, some involving black-box systems. These chains
deviate significantly from well-established image acquisition
models that enable source camera verification (also known as
attribution) using Photo Response Non-Uniformity (PRNU),
detect image manipulations by analyzing demosaicing patterns
and/or JPEG compression traces, and more.

Although computational imaging modes are not inherently
malicious, Iuliani et al. [1] showed that Apple’s portrait
mode can mislead forensic analysis, causing false positives in
camera source attribution. Baracchi et al. [2] previously found
traditional PRNU-based methods [3] ineffective for iPhone X
portrait images and proposed using depth maps to remove the
so-called Non-Unique Artifacts (NUAs). Similar issues were
later observed in Samsung and Huawei devices in [4], with
partial mitigation via a SPAM classifier [5]. More recently,
misattributions in other devices were further studied in [6].

Both [4] and [5] recommend isolating images generated
with computational imaging modes, which can be done using

McCloskey’s method [7] to detect focus manipulations like
portrait mode. However, forensic practitioners may still face
cases where only portrait images are available. As explored
in this paper, forensic identification and characterization of
computational imaging patterns can help not only recognize
processed images, but also isolate affected regions within an
image to mitigate errors in camera source attribution and detect
inconsistencies where known patterns have been embedded.

Inspired by the call to action in [1], we have chosen to
thoroughly investigate Apple’s portrait mode. This mirrors the
approach taken by Butora and Bas in [8], who examined the
pattern introduced by Adobe in the development of raw or
16-bit images, which resulted in PRNU collisions. By mod-
eling the so-called Adobe pattern, they significantly reduced
collisions and later proposed a method to locally detect the
presence of this pattern (at a resolution of 128 × 128 pixels)
across an entire image in [9]. Our focus on Apple’s portrait
mode is motivated by Apple’s position as a leading smartphone
manufacturer, consistently ranking among the top sellers since
2022 [10] and leading smartphone sales with the iPhone 15
(released in September 2023) since Q4 2023 [11].

Our work provides an in-depth characterization of the
pattern embedded by Apple in portrait-mode images, first
exposed in [2], which we term the Synthetic Defocus Noise
Pattern (SDNP), offering tools and insights to effectively
handle portrait images in forensic applications. Specifically,
our contributions include:

• Methods for SDNP extraction using two lighting modes.
• Characterization of SDNP’s dependence on scene lumi-

nance and ISO settings.
• Tracking of SDNP variations across different image res-

olutions, iPhone models, and iOS versions.
• Leveraging extracted SDNPs to reduce the PRNU colli-

sions noted in [1] and improve state-of-the-art tools [2].
• Assessing SDNP detection robustness under complex

post-processing conditions, such as image sharing via
WhatsApp.

The paper is organized as follows: Sect. I-A introduces
the notation, followed by a review of PRNU-based source
verification and Apple’s portrait mode in Sect. II. SDNP
extraction and characterization are covered in Sects. III and IV,
with pattern variations discussed in Sect. V. Sect. VI presents
forensic applications, and experimental results are reported in
Sect. VII. Conclusions are drawn in Sect. VIII.

A. Notation
Matrices are denoted by bold uppercase letters, while regu-

lar (non-bold) letters are used for scalars. Unless otherwise
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stated, matrices are real-valued with dimensions H × W .
The (i, j)th element of a matrix A is written as Ai,j , where
0 ≤ i ≤ H − 1 and 0 ≤ j ≤ W − 1. The total number of
elements of A is N ≜ H · W . The Frobenius inner product
of matrices A and B is ⟨A,B⟩F ≜

∑H−1
i=0

∑W−1
j=0 Ai,jBi,j ,

and the Frobenius norm of A is ∥A∥F ≜
√
⟨A,A⟩F. The

Hadamard product (i.e., element-wise product) of A and B,
denoted A ◦ B, results in a matrix of the same dimension
as the operands, with elements (A ◦B)i,j = Ai,j · Bi,j . The
Hadamard inverse of A, denoted A◦−1, is defined element-
wise as

(
A◦−1

)
i,j

= A−1
i,j . Scalar-valued functions are de-

noted by lowercase letters, e.g., f(·), while uppercase letters,
e.g., F (·), are used for matrix-valued functions. The sample
mean of A is defined as µ(A) ≜ ⟨A,1⟩F/N , where 1 is an
H×W matrix of ones. The sample standard deviation of A is
defined as σ (A) ≜ ∥A−µ (A) ∥F/

√
N − 1. Along the paper,

we use the Normalized Cross-Correlation (NCC) between two
matrices A and B, defined as:

ρ (A,B) ≜
⟨A− µ(A),B− µ(B)⟩F

∥A− µ(A)∥F∥B− µ(B)∥F
. (1)

II. PRELIMINARIES

This section outlines the key operations involved in PRNU-
based camera source verification and explains Apple’s portrait
shooting mode, highlighting its impact on the PRNU.

A. PRNU-based Camera Source Verification

Lukáš et al. [12] pioneered the use of camera sensor noise
patterns, particularly the PRNU, to identify the specific camera
that captured an image. To understand how the PRNU, which
arises from tiny imperfections in the camera sensor, is used
for camera source verification, we first consider the assumed
sensor output model. For a single-channel image, denoted by
a matrix Y, the sensor output model can be approximated by
the first two terms of its Taylor series [13], as

Y = (1+K) ◦X+Θ, (2)

where K is the PRNU signal, X is the incident light intensity
and Θ represents other noise sources.

1) Baseline PRNU fingerprint extraction: Based on the
model in (2), which links the sensor output to the PRNU,
a standard procedure has been established to estimate the
PRNU of a given camera. This involves capturing a set of
L native-resolution images, i.e., {Yl}Ll=1. Since the incident
light intensity X in (2) is unknown, it is approximated via a
denoising operation F (·) (here, we use the filter from [14]),
yielding X̂ = F (Y). The resulting residue Wl = Yl−F (Yl)
for each image Yl is used to estimate the PRNU through the
Maximum Likelihood Estimator (MLE) from [13]:

K̂ =

(
L∑

l=1

Wl ◦Yl

)
◦

(
L∑

l=1

Yl ◦Yl

)◦−1

. (3)

This procedure assumes all images Yl are spatially aligned,
with no geometric transformations and with their underlying
PRNU patterns consistent pixel by pixel. Use of flat-field
images is recommended to minimize content leakage [15].
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Fig. 1. Values of η for the 3 iPhone 11 Pro users with PRNU collisions
in [1]. From left to right, each user’s PRNU fingerprint is tested against the
other two. The upper pie charts show the distribution of Reference and Test
images per user, indicating the proportion of Portrait and Photo images.

2) Baseline PRNU detection: Given a test image Yt with
residue Wt = Yt − F (Yt) and a PRNU estimate K̂, the
following hypothesis testing problem is formulated:

H0 : Wt does not contain the PRNU K,
H1 : Wt contains the PRNU K.

If H1 holds, the test image Yt likely originates from the
camera with PRNU K. In image forensics, this decision is
typically made using the Peak-to-Correlation Energy (PCE)
statistic, which was validated in [16] on a dataset of over a
million images from 6,896 cameras (150 models). A threshold
of 60 yielded a false alarm rate of 10−5 and a detection rate of
97.62%. The PCE is calculated over multiple shifts to account
for potential sensor misalignment. However, assuming spatial
alignment and no cropping, we adopt a less computationally
intensive alternative: the similarity measure η inspired by the
one proposed in [17], defined in terms of the NCC in (1) as:

η ≜ N · ssq
(
ρ(Wt, K̂ ◦Yt)

)
, (4)

where the signed-squared function ssq(·) is defined as
ssq(x) ≜ sgn(x) ·x2, and sgn(·) is a sign function that returns
−1, +1, or 0 depending on whether the input is negative,
positive, or zero, respectively. Using this similarity measure,
the hypothesis test can be performed by evaluating:

η
H1

≷
H0

τ,

where τ is a fixed threshold determined by the desired false
positive probability. While η differs from the PCE, its values
are generally comparable, with the added advantage of being
computationally more efficient.

Our baseline PRNU matching approach, while using a
slightly different PCE metric than Iuliani et al. in [1], success-
fully reproduces their results for the 3 iPhone 11 Pro users
that yield PRNU collisions, as presented in Fig. 1.1 Iuliani
et al. suggest that images captured in Apple’s portrait mode

1To display both positive and negative values on a logarithmic scale, we use
a symmetric logarithmic representation (concretely, symlog from matplotlib).
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might contribute to user/device mismatches, consistent with
findings from prior studies [2] and [4]. To further investigate
this hypothesis, we analyze the η values obtained for images
taken in Portrait and Photo shooting modes, which are
depicted in Fig. 1 using blue and yellow colors, respectively.

Recall first that in the dataset from [1], each user/device
has “Reference” and “Test” image sets, with PRNU finger-
prints extracted solely from the Reference set and positive
samples taken from the corresponding Test set. For cross-
user tests, all images from both sets are used. Notably,
user 102027268@N08 has only portrait images, and false
positives for this user occur exclusively in that mode (see
middle plot of Fig. 1). This suggests that Apple’s portrait
mode embeds a distinct pattern (here referred to as SDNP)
that correlates more strongly than the PRNU, consistent with
prior findings [2]. As all Reference sets contain portrait im-
ages, PRNU fingerprints are influenced by the SDNP, leading
to false positives when testing portrait images. Conversely,
correct rejections occur only in standard Photo mode, where
the SDNP is absent. A detailed analysis of the other two
users is provided in the technical report [18, Sect. 1]. These
results demonstrate that adjusting the detection threshold alone
cannot resolve PRNU-based verification issues introduced by
computational imaging techniques like the portrait mode.

In Sect. VII-B, these baseline results will be revisited after
fully characterizing Apple’s SDNP, beginning with the next
section, which clarifies its origin.

B. Apple Portrait Mode Description

Standard smartphone cameras, due to their short focal
lengths and small apertures, naturally produce images with
a large depth of field, keeping most elements in focus.
This limits their ability to achieve the aesthetically pleasing
background blur, or bokeh, seen in professional photography.
However, advances in computational photography have en-
abled software-based solutions that simulate a shallow depth
of field. HTC pioneered this approach in 2014 with their
“Portrait Mode,” and Apple popularized it two years later in
the iPhone 7 Plus. Google also contributed by introducing
innovative software-based depth sensing techniques rather than
dual-camera hardware [19]. Today, most smartphone manu-
facturers offer a portrait mode, which introduces new forensic
challenges for camera source attribution, as discussed in [4].

Apple’s portrait mode implementation remains proprietary,
but previous research by Baracchi et al. [2] has shed light on
its behavior. Since then, the technology has evolved, prompting
us to update the current understanding based on the latest iOS
17.5.1, focusing on iPhone models we tested directly (iPhone
15 and iPhone 12 mini).2 Initially introduced with the iPhone
7 Plus, portrait mode is now available on models from the
iPhone 8 Plus and iPhone SE (2nd generation) onward, as
well as the iPhone X and later. With the iPhone 15, Apple in-
troduced the ability to capture a regular photo and later convert
it into a portrait in the Photos app if a person, dog, or cat
is detected. Some iPhone models offer multiple zoom options

2This study excludes iPad devices, though recent models support front-
camera portrait mode. Future work will explore this, expecting similar results.
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Fig. 2. Apple’s portrait mode block diagram highlighting the 3 main stages.

(e.g., 1x and 2x), while older models like the iPhone XR and
iPhone SE (2nd generation) require face detection to enable
portrait mode with the rear camera. On the iPhone 15, users
can also adjust zoom by pinching the screen. The standard
resolution for portrait mode photos is 12MP (4032×3024) for
rear cameras and 7MP (3088×2316) for front cameras,3 while
the iPhone 15 introduces a new maximum resolution of 24MP
(5712 × 4284). Since iOS 11 (2017), Apple has supported
saving images in the High Efficiency Image File (HEIF) format
[20], with JPEG remaining an option for broader compatibility.

To gain a general understanding of how software-based
portrait modes function, the reader is referred to [19]. Based
on our analysis of Apple’s implementation, we identified three
main stages, as depicted in the block diagram in Fig. 2:

1) Original Capture and Depth Map Generation: Apple’s
portrait mode first captures an unmodified image, denoted as
Y, which corresponds to the model in (2). This original image
can be retrieved from iCloud Photos or by disabling the
portrait effect in the Photos app. Simultaneously, a depth map
is generated using one of three methods [21]: (1) analyze dis-
parities between multiple cameras (e.g., wide and telephoto);
(2) apply machine learning to a single camera, particularly
for human faces on select iPhone models; or (3) leverage
specialized depth sensors like TrueDepth or LiDAR. However,
these depth maps are lower resolution than the original image
(see [18, Tab. 1]), limiting the precision of depth-based effects.

To enhance depth accuracy, iOS 12 introduced the depth-
guided Portrait Effects Matte [22], a segmentation mask
specifically designed for human subjects using a proprietary
neural network. This matte refines subject-background sepa-
ration, improving depth effects. In iOS 13, Apple extended
semantic mattes to include details like hair, skin, teeth, and
glasses (as shown in Fig. 2).4 These mattes, along with the
depth map, are embedded in the image file and can be accessed
using the open-source libheif library [23]. To the best
of our knowledge, Apple employs a proprietary algorithm to

3Some older models have a slightly different resolution: 3088× 2320.
4While Fig. 2 includes an HDR gain map for reference, we found no direct

connection to portrait mode and do not discuss it further in this paper.
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integrate the depth map with auxiliary mattes, determining
which areas will be blurred in the subsequent stage.

2) Blur Rendering: Apple patents, such as [24], describe
potential methods for generating images with varying back-
ground blur levels, as documented in [2]. Using the depth data
from the previous stage, the original image Y is re-rendered
with different degrees of blur applied based on pixel depth, the
simulated aperture, and the relative position to the focal plane.
The focal plane, which determines which pixels remain sharp,
can be selected in the viewfinder, while the simulated aperture
is adjustable via the Depth Control button, ranging from
f/1.4 to f/16. The resulting composite image, denoted as Ycomp,
is expressed as:

Ycomp = M′
(blur) ◦Y +M(blur) ◦Y′, (5)

where M(blur) is a binary mask with 1’s in pixel positions
where the blur has been applied and 0 elsewhere, M′

(blur) is its
logical negation, and Y′ ≜ F f-stop

blur (Y) represents the blurred
version of Y based on the simulated aperture defined by the f-
stop number. While the specifics of the blur rendering process
are beyond the scope of this paper, different smartphone
manufacturers define the shape of defocused areas at this
stage (with some, like Samsung, allowing post-capture shape
adjustments). Apple appears to use a circular bokeh effect.

At this stage, the composite image Ycomp may exhibit incon-
sistencies in noise levels, as applying algorithmic blur reduces
natural noise in defocused regions compared to sharp areas. To
achieve a more realistic depth-of-field effect, synthetic noise
must be added, as discussed in the next section.

3) Synthetic Noise Addition: The final step in generating
the portrait image involves adding synthetic noise to the
blurred regions of Ycomp (i.e., Y′) to create a realistic optical
blur and minimize artifacts at the transitions between sharp
and blurred areas (cf. [19, Sect. 5.3]). For iPhone devices, we
model the final portrait image Z as:

Z = Ycomp +M(blur) ◦ (γISO ·G (Y′) ◦P+Φ)

= M′
(blur)◦Y+M(blur)◦(Y′+γISO ·G (Y′)◦P+Φ) , (6)

where (5) is applied in the second equality. This model
implies that unblurred regions of Z retain the sensor output
characteristics defined in (2), preserving the PRNU, while
blurred regions do not reliably exhibit PRNU traces due to
low-pass filtering and the addition of Apple’s SDNP. The term
Φ is used to model various sources of noise resulting from
full-frame processes in blurred areas such as compression,
clipping, and other operations (including remaining traces of
the original PRNU).

The added SDNP, modeled as N ≜ γISO ·G (Y′) ◦P, is a
content-dependent pattern derived from a Base Pattern (BP)
P. Although this BP is fixed for a given iPhone and iOS
version (see Sect. V for details), we assume it can be modeled
as a realization of a wide-sense stationary random process
with mean µP = 0 (as empirically confirmed in Sect. III-B)
and standard deviation (std) σP = 1. This unit-std assumption
is made for convenience as any scaling of the std could be
absorbed into either γISO or G (Y′).
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Fig. 3. Block diagram of the extraction process for the averaged residual
matrix in each portrait lighting mode under study: W̄NL (a) and W̄SLM (b).

This normalized BP is then adapted to the content of the
captured scene by two scaling operations: 1) multiplication
by an ISO-dependent scaling factor, γISO (further character-
ized in Sect. IV-A); and 2) element-wise multiplication by
a brightness-dependent matrix G (Y′) with the same dimen-
sions as Y′. We model the (i, j)th element of this matrix
as [G (Y′)]i,j = g (Di,j (Y

′)), where g : R → R is a
function that will be determined in Sect. IV-B, and we assume
that operator Di,j(Y

′) computes a local (possibly weighted)
average of pixels of Y′ in a local neighborhood around (i, j).

The base pattern P, extracted as detailed in Sect. III, is the
core component of the SDNP, acting as a fingerprint of Apple
portrait images. Its presence not only explains the PRNU
collisions observed in Apple portrait images (see Fig. 1), but
also provides a basis for developing new forensic applications,
as further detailed in Sect. VI. The next two sections validate
this model and describe procedures for estimating P.

III. BP EXTRACTION FROM APPLE PORTRAIT IMAGES

Following a PRNU-like approach, we outline a procedure
to extract the BP fingerprint P from Apple portrait images.
Unlike PRNU estimation, flat-field images are unsuitable here,
since a foreground subject is always required. Instead, we
use “flat-background” images with a uniform background to
ensure a consistent BP application. Because a foreground
subject is required, extracting the full-resolution BP involves
capturing two scenes with alternating foreground and back-
ground regions: in the first scene, the subject is positioned in
the lower third of the frame, ensuring a uniform background in
the upper half; in the second scene, the subject is placed in the
upper third, ensuring a uniform background in the lower half.
Fig. 3 illustrates this process for the two extraction methods
discussed below.

A. BP extraction with Portrait Lighting: Natural Light

For a given iPhone under investigation, this extraction
process involves selecting the default Natural Light (NL)
portrait effect and capturing 2L portrait images across the
previously described scenes. This includes L “top” images
with a uniform background in the upper half and L “bottom”
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images with a uniform background in the lower half. Each set
is processed separately, and the results are aggregated to form
an averaged residual matrix, W̄NL, which serves as the basis
for estimating the BP.

We first describe how to obtain the “top” half of W̄NL, i.e.,(
W̄NL

)
i,j

for 0 ≤ i ≤ H/2 − 1 and 0 ≤ j ≤ W − 1. For
each of the L “top” images, denoted as Zl with l = 1, . . . , L,
a denoising filter is applied to the luminance component5 to
extract the noise residuals:

Wl = Zl −HK (Zl) , (7)

where HK(·) represents the denoising operation. Unlike the
denoising method used for PRNU extraction (i.e., [14]), we
employ a simple linear filter that convolves Zl with a nor-
malized K × K box kernel, due to the uniform background
in the region of interest of the captured images. The choice
of K for BP extraction from these “flat-background” images
is discussed in the technical report [18, Sect. 2.1]. The top
half of W̄NL is then obtained by averaging the corresponding
portions of the residuals as follows:

W̄NL ≜
1

L

L∑
l=1

Wl. (8)

Similarly, after denoising the L “bottom” images as in (7), the
“bottom” half of W̄NL, specifically the elements

(
W̄NL

)
i,j

for
H/2 ≤ i ≤ H−1 and 0 ≤ j ≤ W−1, is obtained by averaging
the corresponding bottom portions of the residuals, using the
same averaging process as in (8).

The preceding procedure for obtaining W̄NL (illustrated
in Fig. 3a) does not directly estimate P in (6) due to the
scaling operators γISO and G (Y′). However, the uniform
nature of the blurred “flat-background” regions enables two
key approximations, allowing us to estimate P up to a
constant scaling factor. First, assuming both a zero-mean BP
(discussed further below) and a zero-mean noise component
Φ in (6), we can approximate HK (Zl) ≈ Y′

l in these smooth
regions. Second, the scaling function can be approximated as
G (Y′

l) ≈ G (µ (Y′
l) · 1), i.e., [G (Y′

l)]i,j = g (Di,j (Y
′)) ≈

g (µ (Y′
l)) ,∀i, j. This approximation is a direct consequence

of the assumed nature of operator Di,j(·) and the fact that Y′
l

is approximately constant. Notice that for clarity and brevity,
we will adopt the shorthand notation y′ ≜ µ (Y′) (or similarly,
y′l ≜ µ (Y′

l)), especially when µ(·) is an argument of the
function g(·). Consequently, for this scenario, (7) simplifies
to:

Wl = γISO · g(y′l) ·P+Ψl, (9)

where Ψl comprises Φl and errors from the denoising process.
Provided that the same ISO value is used for all 2L captured
images (i.e., γISO is constant), it follows from (8) and (9) that:

W̄NL = γISO · λ̄NL ·P+ Ψ̄NL, (10)

where λ̄NL ≜ 1
L

∑L
l=1 g(y

′
l) represents the average value of

the scaling function across the set of images and Ψ̄NL ≜
1
L

∑L
l=1 Ψl is the estimation noise. To simplify the analysis,

we will assume that the noise components Ψl correspond

5The rationale for using the luminance component is detailed in Sect. IV.
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Fig. 4. Upper-left 128×128 patch of P̂NL estimated from 12MP HEIF images
on the iPhone 15 (a). Autocorrelation of P̂NL limited to k, l ∈ [−5, 5] (b).

to independent realizations of a wide-sense stationary and
ergodic process. One consequence of this assumption is that
limL→∞ ∥Ψ̄NL∥F = 0. Notice that in (9) and (10) we should
write (P− µ (P)) instead of P, because the denoising process
we use (i.e., HK(·)) removes the mean of P. However, as we
will confirm in Sect. III-B, µ (P) ≈ 0, so it is reasonable
and notationally simpler to keep (9) and (10) unchanged.
From (10) and the assumption that P is a realization of a
stochastic process with zero mean and unit std, it follows
that the normalized averaged residual W̄NL yields an estimate
of P, that is, P̂NL = W̄NL/σ

(
W̄NL

)
. Since the quality of

P̂NL depends on a well-curated W̄NL, we offer guidelines on
background selection and capture settings in [18, Sect. 2.2].

As an illustrative example, the upper-left 128×128 patch
of P̂NL is shown in Fig. 4a. Analyzing its properties further,
the autocorrelation of P̂NL (plotted in Fig. 4b for lags k, l ∈
[−5, 5]) indicates a colored, rather than white, noise process.
This observation points towards underlying low-pass filtering,
consistent with the analysis in [18, Sect. 3.2]. For additional
details on BP characteristics, see [18, Sect. 4.2]. Finally,
note that although a Minimum Mean Square Error (MMSE)
estimate of P is conceivable, it would require knowledge
of the second-order statistics of Ψ̄NL, while offering only a
performance gain that vanishes as L increases. Its computation
and analysis are left for future work.

B. BP extraction with Portrait Lighting: Stage Light Mono

The Stage Light Mono (SLM) portrait effect offers
a convenient alternative for estimating Apple’s BP from an
iPhone under study. This effect simulates black-and-white
stage lighting by isolating the subject in focus against a
uniformly black background (see Fig. 3b). Its key advantage is
that it removes the need for a physically uniform background,
as depth information ensures a constant background luminance
of 4 (i.e., Y′ = 4 · 1 in (6)) before adding the SDNP
(an observation empirically validated in the technical report
[18, Sect. 3.1]). However, this low luminance level causes
values below zero being clipped, leading to saturation and thus
information loss in the estimation of P.

Using a methodology analogous to the NL-based BP ex-
traction in Sect. III-A, we capture 2L SLM portrait images,
comprising L “top” images with a black upper background
and L “bottom” images with a black lower background. Unlike
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Fig. 5. Pixel value distribution in ZSLM for different ISO values.

the NL case, no filtering is needed to compute residuals, as
Y′ is already known. The “top” half of the basis W̄SLM to
estimate the BP, i.e.,

(
W̄SLM

)
i,j

for 0 ≤ i ≤ H/2 − 1 and
0 ≤ j ≤ W − 1, is obtained by subtracting the constant
luminance matrix 4 · 1 from each of the L “top” images, Zl,
and averaging the resulting matrices:

W̄SLM ≜
1

L

L∑
l=1

(Zl − 4 · 1) . (11)

The “bottom” half of W̄SLM, corresponding to elements(
W̄SLM

)
i,j

for H/2 ≤ i ≤ H − 1 and 0 ≤ j ≤ W − 1,
is computed similarly by averaging the corresponding portions
of the L “bottom” images, using the same approach as in (11).

In this scenario, since Y′ is constant, the scaling function
G (Y′) in (6) also yields a constant matrix. Thus, assuming a
fixed ISO value is used across all 2L captured portrait images,
our basis for estimating P is given, according to (11), by:

W̄SLM = γISO · λSLM ·P+ Ψ̄SLM, (12)

where λSLM ≜ g(4) is a constant factor and Ψ̄SLM ≜
1
L

∑L
l=1 Φl represents the average noise component, including

clipping effects from pixels saturated below 0. Unlike in the
NL case, the noise components Φl can no longer be assumed
independent, as they originate from a constant scene in Y′

and the same ISO setting. Consequently, in the SLM case,
∥Ψ̄SLM∥F does not tend to zero as L → ∞.

While, in principle, one could consider estimating P by
normalizing W̄SLM as was done in the NL case (i.e., by
computing W̄SLM/σ(W̄SLM)), the fact that Ψ̄SLM does not
vanish (and is significant relative to the term containing P)
would result in a considerably biased estimate. Instead, in the
SLM case, it is preferable to estimate P by simply dividing
W̄SLM in (12) by γISO · λSLM, where λSLM = g(4). The next
section discusses the estimation of γISO and g(·).

IV. ESTIMATION OF BP’S SCALING FACTORS

We now focus on the scaling operators γISO and G (·) within
the Apple portrait image model in (6), which modulate the
base pattern P according to scene characteristics (as detailed
in Sect. II-B3). Since G (·) yields a constant matrix under the
SLM lighting effect, we use SLM portrait images to determine
γISO (Sect. IV-A). On the other hand, to determine G (·), which
requires capturing a full range of luminance values, we rely
on NL portrait images (Sect. IV-B).

A. Estimation of the ISO-Dependent Scaling Factor

As noted in Sect. III-B, the SLM-based BP extraction
ensures a constant brightness-dependent scaling factor, i.e.,

G (Y′) = g(4)·1. Since any gain can be absorbed into γISO, we
arbitrarily set g(4) = 1, making λSLM = 1 in (12). The effect
of γISO can be noticed in Fig. 5, which illustrates the empirical
probability mass function (pmf) of ZSLM (a submatrix of the
background region of an SLM portrait image containing the
SDNP) for ISO values of 50, 200, 640, and 5000. As ISO
increases, so does the scaling factor γISO, resulting in a higher
occurrence of saturated pixels.

The empirical pmfs in Fig. 5 show that the right tail of
the distribution, less affected by saturation, closely follows
a Gaussian distribution. This approximation is confirmed by
a Kolmogorov-Smirnov test (see [18, Sect. 3.2]). To exploit
this observation, we conduct an exhaustive search to match
the observed data distribution (i.e., the empirical pmf of
ZSLM for a given ISO) with synthetic Gaussian distributions.
These distributions are generated using candidate mean and
standard deviation values, simulating the effects of µ (P)
and γISO, respectively. Specifically, we compare the observed
pmf of ZSLM for a given ISO value with the distribution
(parameterized by µZ , σZ) of the following random variable:

Z = max {0, round (µZ + σZP )} (13)

where P is a unit-variance Gaussian random variable, and
round(·) represents rounding to the nearest integer, mimicking
the 8-bit depth of SLM portrait images. We do not explicitly
model the compression that occurs in practice to avoid increas-
ing model complexity and complicating the exhaustive search,
which is already performed over two parameters.

To find estimates for parameters µZ , σZ we minimize the
Kullback-Leibler Divergence (KLD)6 between the empirical
pmf hSLM of the observations ZSLM (for a given ISO value),
and the empirical pmf hZ of i.i.d. samples of Z. In our exper-
iments, the estimation process involves exploring a predefined
grid of candidate pairs (µZ , σZ) that minimize the KLD, i.e.,

(µ̂Z , σ̂Z) ≜ arg min
(µZ ,σZ)∈M×S

KLD (hSLM,hZ) ,

where each candidate pair (µZ , σZ) ∈ M×S is obtained by
sampling the intervals M ≜ [µ (ZSLM)− 1, µ (ZSLM) + 1] and
S ≜ [σ (ZSLM)− 1, σ (ZSLM) + 1] uniformly, with a step size
of 0.1. Following (6) for the particular case Y′ = 4 ·1 and the
assumption g(4) = 1, we can model the blurred samples of the
SLM image prior to quantization and clipping as 4·1+γISO ·P.
On the other hand, we have just shown that these samples are
well modeled by a Gaussian distribution with mean µ̂Z and
std σ̂Z . Therefore, by simple identification, we can infer that
γ̂ISO = σ̂Z/σP = σ̂Z (given our assumption that σP = 1) and
µ̂P = (µ̂Z − 4)/γ̂ISO.

Lacking a suitable model for the compression operation,
our initial estimate was biased by the peak at Z = 0 due
to clipping, as shown in Fig. 6a for the particular case of
ISO 500. Compression would typically spread these values
across neighboring bins. To reduce this bias, we excluded
zero-valued pixels from both ZSLM and the synthetic variable
Z when computing the KLD. This adjustment, illustrated in
Fig. 6b, significantly improved the alignment of empirical

6We also tested the chi-square distance and obtained similar results.
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Fig. 6. First two panels compare the empirical pmfs hSLM and hZ at ISO
500, for Z ≥ 0 (a) and Z > 0 (b). The right panel (c) illustrates the estimated
values of µ̂P and γ̂ISO across different ISO settings.

pmfs and yielded more reliable estimates. Additional details
on the exhaustive search using KLD and Chi-square distance
are in [18, Sect. 3.3].

Processing images at different ISO values yielded the results
in Fig. 6c, showing that the mean of P remains close to zero
regardless of ISO. On the other hand, the scaling factor γISO
increases with ISO but remains asymptotically bounded. A
table listing the estimated γ̂ISO values for various ISO settings
is available in [18, Tab. 3]. With the knowledge of γ̂ISO,
obtained under the assumption that λSLM = 1, we can now
estimate the BP from SLM portrait images as described at the
end of Sect. III-B, resulting in P̂SLM = 1

γ̂ISO
W̄SLM.

B. Estimation of the Brightness-Dependent Scaling Function

With the ISO-dependent scaling factor γISO characterized,
we now turn to the brightness-dependent scaling function
G (Y′). As mentioned previously, to capture the full lumi-
nance range (0 to 255 for 8-bit depth), we use NL portrait
images with uniform patches. This allows us to approximate
the scaling function as G (Y′) ≈ G (µ (Y′) · 1), where
[G (Y′)]i,j ≈ g(y′),∀i, j (recall that y′ ≜ µ(Y′)). Thus, we
characterize G (Y′) through its element-wise form g(y′).

To estimate g(·), we collect M flat-background patches of
size B × B containing the SDNP from each of T images
captured at the same ISO, yielding a total of M · T patches.
These patches are non-overlapping within each image, co-
located across different images (i.e., they share the same coor-
dinates across the T images), and span different background
luminance levels (illustrated in Fig. 7). Let Zm,t represent the
mth patch from the tth image, with Y′

m,t and Wm,t similarly
defined. Pm denotes the mth patch of the BP, which is co-
located with Zm,t and of the same size. Since zm,t ≜ µ(Zm,t)
serves as an estimate of y′m,t ≜ µ(Y′

m,t), our goal is to
obtain pairs

(
zm,t, ĝ(y

′
m,t)

)
as estimates of

(
y′m,t, g(y

′
m,t)

)
.

By carefully selecting the background levels zm,t, we ensure
that the entire range [0, 255] is well represented.

Given Zm,t we select a co-located block Zm,u from a
different image, i.e., u ̸= t, and work with the corresponding
residuals Wm,t, Wm,u. First, we characterize their theoretical
cross-correlation:

E [⟨Wm,t,Wm,u, ⟩F]/B
2 = γ2

ISO g
(
y′m,t

)
g
(
y′m,u

)
∥Pm∥2F/B2

≈ γ2
ISO g

(
y′m,t

)
g
(
y′m,u

)
, (14)

where we apply our assumption that the noise components Ψt

and Ψu are mutually uncorrelated and uncorrelated with P.
The approximation in (14), which is asymptotically tight as the
block size goes to infinity, comes from the assumption that

(a) ISO 400 (b) ISO 125

Fig. 7. Examples of portrait images of the ColorChecker scene captured at
full resolution (24MP). The left panel (a) displays two samples from a set
of T = 86 images taken at ISO 400, while the right panel (b) shows two
samples from a set of T = 64 images taken at ISO 125. The processed B×B
blocks (B = 512) are highlighted in red in the rightmost image of each case.

P can be modeled by a zero-mean, unit-variance stationary
process, and the law of large numbers, which imply that
limB→∞ ∥Pm∥2F/B2 = 1. Next, we compute the square root
of the theoretical second moment of Wm,u:(

E
[
∥Wm,u∥2F/B2

])1/2
=
(
E
[
γ2

ISO g2
(
y′m,u

)
∥Pm∥2F/B2

+ ∥Ψm,u∥2F/B2
])1/2

≈ γISO g
(
y′m,u

)
, (15)

where the approximation is based on limB→∞ ∥Pm∥2F/B2 =
1, as discussed above, and the assumption that the term due to
Ψm,u is relatively small with respect to the SDNP. Combining
(14) and (15), we obtain:

g
(
y′m,t

)
≈ E [⟨Wm,t,Wm,u⟩F]

γISO B (E [∥Wm,u∥2F])
1/2

. (16)

Now we can leverage (16) to obtain an estimate ĝ(·) of g(·):
we replace the expectations by their sample estimates, and
substitute γISO by its estimate γ̂ISO obtained as in Sect. IV-A
for the ISO value used to capture the images. Recalling that
zm,t is an estimate of y′m,t, and repeating the process for all
m ∈ {1, . . . ,M} and t, u ∈ {1, . . . , T}, t ̸= u, we obtain
M · T · (T − 1) pairs (zm,t, ĝ(y

′
m,t)).

We implemented this procedure by capturing NL portrait
images of a ColorChecker-like board displayed on a screen
behind the subject, creating uniform gray patches with the
SDNP present in the background (see Fig. 7). A total of
T = 86 images (captured at ISO 400) were taken using the
iPhone 15 at 24MP resolution. From each image, we processed
M = 12 co-located B × B patches, with B = 512 pixels
(highlighted in red in the rightmost image of Fig. 7a), resulting
in M · T = 1032 distinct patches in total. The resulting
empirical pairs (zm,t, ĝ(y

′
m,t)) are plotted separately for the

three RGB channels and the luminance component of the YUV
color space in Fig. 8. For better visualization, we display the
range of values as a shaded region, and plot for each zm,t the
average value of the T − 1 estimates ĝ(y′m,t) obtained for all
u = 1, . . . , T , u ̸= t, using (16). This smoothed average curve
(using a 5-point moving average) serves as an estimate of g(·).

The estimated scaling function behaves similarly across all
four components, with the red and blue channels showing
the most variability and luminance the least. Since RGB
channels follow comparable trends, the BP is likely embedded
primarily in the luminance component. Supporting this, the
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Fig. 8. Evolution of the estimated brightness-dependent scaling function ĝ(y′m,t) as a function of zm,t, based on co-located uniform patches captured at
ISO 400. Results are presented for the R (a), G (b), and B (c) channels of the RGB colorspace, and the luminance component (d) of the YUV colorspace.
Shaded regions indicate the range of estimated values, while the solid curve represents the smoothed average (5-point moving average) for each zm,t.
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ĝ
! y

0 m
;t

"

ISO 400

ISO 125

(a)

0 50 100 150 200 250
ŷ0
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Fig. 9. Estimated pairs (ŷ′m,t, ĝ(y
′
m,t)) using the LS approach. Panel (a)

compares results for P̂SLM at ISO 400 and 125. Panel (b) contrasts P̂SLM and
P̂NL at ISO 400. All curves are smoothed using a 5-point moving average.

NCC between P̂NL (extracted from luminance) and each color
channel was nearly 1: 0.990 (R), 0.995 (G), and 0.991 (B).
While not conclusive, this justifies assuming that the BP is
embedded in the luminance. Thus, we heretofore focus solely
on the luminance component. If BP estimates are available,
such as P̂NL or P̂SLM, an alternative estimate of g(·) can be
derived using a Least Squares (LS) approach. As detailed in
Appendix A, the resulting estimate is:

ĝ
(
y′m,t

)
=

1

γ̂ISO

〈
Zm,t, P̂m

〉
F
−B2zm,t · µ(P̂m)

∥P̂m∥2F −B2
(
µ(P̂m)

)2 , (17)

where P̂m represents the mth B × B block of any available
estimate of P (spatially aligned with Zm,t), and γ̂ISO is the
estimated scaling factor corresponding to the ISO value used to
capture the observed blocks. Note that while we assume µP =
0, this does not hold for certain BP estimates, such as P̂SLM,
where µ(P̂SLM) ̸= 0 due to saturation effects. In Appendix A
we also derive the following estimate ŷ′m,t = zm,t − γ̂ISO ·
ĝ(y′m,t) · µ(P̂m), which becomes zm,t when µ(P̂m) = 0.

We plot the pairs
(
ŷ′m,t, ĝ

(
y′m,t

))
for m = 1, . . . ,M and

t = 1, . . . , T smoothed with a 5-point moving average as the
final LS estimate. Fig. 9a shows the resulting curves obtained
using P̂SLM as estimator of P for two different ISO values.
For ISO 400, we use the aforementioned 1032 distinct blocks
from M = 12 co-located blocks across T = 86 ColorChecker
portrait images. Similarly, for ISO 125, we use 1072 blocks
captured from T = 67 images and M = 16 co-located
blocks (highlighted in red in the rightmost image of Fig. 7b).

Although the obtained curves are not identical, their alignment
after applying the corresponding γ̂ISO values for ISO 125 and
ISO 400 supports the consistency of the model assumed in (6).
To compare the estimated scaling functions ĝ (·) derived from
different BP estimates, we compute (17) using P̂SLM and P̂NL
for the ISO 400 case. Fig. 9b shows that the resulting curves
match almost perfectly. Finally, the near-identical curves in
Figs. 8 and 9 (from various estimation methods and ISO
values) demonstrate the convergence of different approaches
and data to very similar brightness-dependent scaling function
estimates, providing strong evidence for the model’s validity.

Although not explored here, the estimated function ĝ(·)
could be used to emphasize the extracted BP, as proposed
in [25] for the PRNU, but this is left for future work.
Meanwhile, after characterizing Apple’s SDNP by estimating
its scaling parameters and underlying BP, we analyzed key
factors affecting BP estimate quality, including the number of
images L, scene brightness, portrait lighting modes, and ISO
settings. Details of this analysis are provided in [18, Sect. 4].

V. ANALYSIS OF APPLE’S BP VARIATIONS

Apple’s BP in portrait images varies with resolution, iPhone
model, and iOS version. While a detailed analysis of different
resolutions, aspect ratios, and other BP characteristics is
provided in [18, Sect. 4.1], here we focus on how the BP
changes over time for specific iPhone/iOS combinations. As
an example, although the BPs from the iPhones 15 and 12
mini (running the same iOS) share statistical properties, their
patterns differ. The NCC map between their SLM-based BPs
(computed as described below in Sect. VI-B, treating one BP
as a residue) shows poor correlation in the right half (Fig.10a),
except for a small patch in the upper-right corner. The presence
of arc patterns suggests an algorithmic BP generation process
with model-specific variations. Interestingly, like the iPhone 15
(cf. [18, Sect. 4.1]), the iPhone 12 mini exhibits no correlation
between its 12MP and 7MP BPs. However, the NCC map
between the BPs P̂SLM of the iPhone 15 and iPhone 12 mini at
7MP resolution (see Fig. 10b) closely resembles that obtained
at 12MP (Fig. 10a). This observation indicates that Apple
may use a distinct BP algorithm for front (7MP) and rear
(24/12MP) cameras, likely in a seed/model-dependent manner.

The evolving BP generation process is also evident in
iPhone 11 Pro (iOS 13) portrait images from [1]. The extracted



THIS PAPER WAS SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY ON MAY, 2025 9

TABLE I
BP COMPATIBILITY ACROSS DIFFERENT IPHONE MODELS AT 12MP RESOLUTION.

iPhone 7 Plus† 8 Plus† X† XR† 11† 11 Pro† SE (2) X 11 11 Pro 11 ProMax 12 12 mini 12 Pro 13 13 Pro 13 ProMax 14 14 ProMax 15
iPhone (Release)\(iOS) (10.3.2) (11.3.1) (1.0.1)∗ (12.3.1) (13.2) (13.3.1) (16.1.2) (16.6) (17.1.1) (17.6.1) (16.7.2) (17.1.2) (16.6.1) (17.1.1) (17.1.1) (16.6) (16.5) (17.1.2) (17.0.5) (17.5.1)

7 Plus† (2016) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

8 Plus† (2017) ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

X† (2017) ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

XR† (2018) ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔)

11† (2019) ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔)

11 Pro† (2019) ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔)

SE (2) (2020) ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔)

X (2017) ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔)

11 (2019) ✗ ✗ ✗ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

11 Pro (2019) ✗ ✗ ✗ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

11 Pro Max (2019) ✗ ✗ ✗ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

12 (2020) ✗ ✗ ✗ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

12 mini (2020) ✗ ✗ ✗ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

12 Pro (2020) ✗ ✗ ✗ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

13 (2021) ✗ ✗ ✗ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

13 Pro (2021) ✗ ✗ ✗ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

13 Pro Max (2021) ✗ ✗ ✗ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

14 (2022) ✗ ✗ ✗ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

14 Pro Max (2022) ✗ ✗ ✗ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

15 (2023) ✗ ✗ ✗ ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓(↔) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

†Images collected from the dataset used in [1]. ∗Version of the Photos app.
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Fig. 10. NCC maps between different BPs: iPhone 15 (P̂SLM) x iPhone 12
mini (P̂SLM) for 12MP (a); iPhone 15 (P̂SLM) x iPhone 12 mini (P̂SLM) for
7MP (b); and iPhone 15 (P̂SLM) x iPhone 11 Pro (P̂(↔)

NL ) (c).

BP, P̂NL, does not match that of the iPhone 15 (iOS 17)
but aligns partially when flipped horizontally (i.e., P̂

(↔)
NL ),

as seen in Fig. 10c. Correlation degradation and arc patterns
suggest again an algorithmic BP generation. Intrigued by these
findings, we tracked software-driven BP changes by analyzing
portrait images from various iPhone models, leveraging the
database from [1] and supplementing it with images from a
contest organized locally [26] and through Flickr.7

Tab. I summarizes BP compatibility at 12MP resolution
across the iPhone models we examined. In this table, the
symbol ✗ indicates no match between extracted BPs for a
given pair of models. Positive matches are categorized into
three classes: ✓ denotes a perfect match; ✓ indicates a
partial match, consistent with the NCC map in Fig. 10a; and
✓ represents another partial match compatible with Fig. 10c.
The symbol (↔) denotes that one of the two BPs must be
horizontally flipped to match. Note that images from the first
six iPhone models come from the database in [1], which
includes devices running iOS up to version 13.3.1, while the
remaining devices have iOS 16.1.2 or higher. This explains
why different iOS versions for the same models (e.g., iPhone
X, iPhone 11, and iPhone 11 Pro) result in different BP

7We identified Apple portrait images by checking the EXIF tag
CustomRendered for the values Portrait and Portrait HDR.

outcomes. While early models (e.g., iPhones 7 Plus and 8
Plus) have incompatible BPs, consistency improves from the
iPhone XR onward, though some versions require flipping.
Starting with the iPhone 11, BP variations emerge, aligning
with the iPhone 12 mini. From the iPhone 13 onward, BP
remains stable, matching the iPhone 15. As BP appears to be
iOS-dependent, these patterns may evolve over time.

VI. BP-BASED FORENSIC APPLICATIONS

In this section, we propose BP-enabled forensic applica-
tions, including BP detection, identification, and localization
methods, and a BP-aware approach for PRNU-based camera
source verification. A proof-of-concept for forgery localization
using BP-aware PRNU analysis is presented in [18, Sect. 5.1].

A. Apple’s BP Detection and Identification

Detecting Apple’s BP in an image is valuable for labeling
or isolating images generated by computational imaging (e.g.,
portrait mode, as proposed in [4], [7]) and for curating machine
learning datasets. Identifying the specific BP also enables
tracing the iPhone model and iOS version, aiding forensic
investigations.

A simple detection method computes the noise residue W
from the image under analysis via (7) with K = 5 (higher K
only benefits uniform regions), followed by the NCC in (1)
between W and a given BP estimate P̂. If image orientation is
unknown, all 90◦ rotations must be tested. Images sharing the
same (spatially aligned) BP should yield a high NCC; thus,
those with ρ(W, P̂) > β, where β is a predefined threshold,
are flagged as Apple portrait images.

Given multiple BP versions (see Sect. V) and potentially
missing EXIF metadata, the NCC must be computed across
all BP estimates and 90◦ rotation variants. The BP yielding
the highest NCC above β is selected; if none exceed β, no BP
match is detected.
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Fig. 11. Portrait images and their relative BP-driven NCC maps: iPhone 11
Pro Max (iOS 13.4) [4, C22] (a) and iPhone 15 (iOS 17.5.1) (b). In both
cases, P̂SLM from the iPhone 15 is used, with a horizontal flip in (a).

B. BP-aware PRNU-based Camera Source Verification
To address the bias that Apple’s SDNP induces in PRNU-

based source verification (cf. Fig. 1 in Sect. II-A), we exploit
the fact that regions containing the SDNP can be localized
using a matching BP estimate. In particular, a BP-driven NCC
map is computed between a given image residue W (obtained
through (7)) and a BP estimate P̂, with local NCC values
evaluated over 16×16 blocks using (1). For blocks near image
boundaries, missing samples are padded by mirror reflection.
The resulting map is then smoothed with a box filter (K = 5)
and resized via nearest-neighbor interpolation to match the
dimensions of W, yielding the final BP-driven NCC map R.
For illustration, we used the BP estimate from 12MP SLM
portrait images of the iPhone 15, P̂SLM, to generate the NCC
map R for two portrait images: one from device C22 in the
dataset from [4] (where P̂

(↔)
SLM is used) and another from the

same iPhone 15 device. The overlaid maps (Figs. 11a and
11b) reveal regions where the SDNP is present, as indicated
by higher NCC values.

Leveraging this map, we propose filtering out SDNP-
affected regions during PRNU extraction and detection. When
a matching BP estimate is available, it is used directly;
otherwise, the method in Sect. VI-A is used to identify the
best-matching BP (even if the highest NCC value falls below
the threshold β). From this, we compute the BP-driven NCC
map R between the image residue W and the BP estimate
P̂, applying a predefined threshold α to create a binary
mask M(PRNU). This mask excludes regions where the BP is
likely present by setting M (PRNU)

i,j = 1 where Ri,j ≤ α, and
M (PRNU)

i,j = 0 otherwise. Applying this mask in (3) yields a
BP-aware PRNU estimate:

K̂′ =

(
L∑

l=1

W′
l ◦ Z′

l

)
◦

(
L∑

l=1

Z′
l ◦ Z′

l

)◦−1

, (18)

where W′
l = M(PRNU)

l ◦ Wl and Z′
l = M(PRNU)

l ◦ Zl repre-
sent the lth masked residue and masked image, respectively,
excluding regions where the BP under analysis is detected.
Note the slight abuse of notation here: in this context, Zl can
represent either a portrait or a non-portrait image. If non-
portrait images are processed, we expect M(PRNU)

l to be a
matrix entirely composed of ones. Given the BP-aware PRNU
estimate K̂′, we modify the similarity measure defined in (4)
to incorporate the SDNP masking. The test for checking the
PRNU presence in a test image Zt becomes:

η′ ≜ N · ssq
(
ρ
(
W′

t, K̂
′ ◦ Z′

t

)) H1

≷
H0

τ ′, (19)

where W′
t = Wt◦M(PRNU)

t and Z′
t = Zt◦M(PRNU)

t . Similarly
to BP alignment, when the image orientation is unknown, we
evaluate all possible 90◦ rotations of K̂′ and select the highest
resulting η′ value to ensure proper alignment with the PRNU.

VII. EXPERIMENTAL RESULTS

We conducted several experiments to validate our BP-
enabled forensic applications, covering BP detection and
identification, PRNU collision mitigation, comparison with
Baracchi et al. [2], and robustness against post-processing.8

A. Performance of Apple’s BP Detection and Identification

To validate our method for Apple’s BP detection and
identification (Sect. VI-A), we first tested it in a controlled
scenario with a labeled dataset of 10,079 images (12MP).
The negative set comprises 9,677 non-Apple portrait images
from [1], including images from various iPhone models and
Samsung devices. The positive set contains 402 Apple portrait
images: 151 and 109 captured by us with the iPhone 15
and iPhone 12 mini (iOS 16/17), and 142 sourced from [1],
including 119 from the iPhone 11 Pro, 14 from the iPhone 11,
and 9 from the iPhone XR (iOS 12/13). For this experiment,
we used P̂SLM, extracted from the iPhone 15 and 12 mini (both
at ISO 125), and P̂NL (no SLM images available), derived
from 40 images of devices C19–C22 in [4]. These devices run
a similar iOS version to iPhones 11 Pro, 11, and XR from [1],
sharing the same BP. Note that we excluded portrait images
from iPhones 7 Plus, 8 Plus, and X in [1] because their BPs,
which differ from the 3 considered here (see Tab. I), were
already estimated using these same images in [1]. Still, these
BP estimates will be used in the next experiment.

Using the threshold β = 0.01 for our detector, all non-Apple
portrait images were correctly classified as negatives. Among
the positive samples, only one iPhone 11 portrait image was
misclassified as a negative due to the small region within the
image where the SDNP was present. The identification of
the specific BP used was perfectly accurate for all correctly
detected Apple portrait images.

Our approach was also tested on the FFHQ (in-the-wild-
images) dataset [27] to evaluate its performance in an uncon-
trolled, open-set scenario. Results showed that approximately
18% of 12MP images contained Apple’s BP, with only one
false positive from a DSLR camera. Some misdetections
occurred due to lower-quality BP estimates for older iPhone
models and potential post-processing artifacts. Despite this, BP
attribution remained highly accurate, with only a few misclas-
sifications, highlighting the method’s robustness in real-world
conditions. A comprehensive analysis of the obtained results
is conducted in the technical report [18, Sect. 5.2].

B. Tackling PRNU Collisions with BP-aware PRNU Matching

Using the BP-aware PRNU-based camera source verifica-
tion approach from Sect. VI-B (with K = 5 and α = 0.07), we
repeat the experiments from Sect. II-A, excluding 5 misaligned

8Code and estimated BPs will be released upon acceptance; meanwhile,
they are available on request from the corresponding authors.
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Fig. 12. Results achieved using our BP-aware PRNU matching approach on
the dataset employed in [1].

or different-sensor images from user 101543825@N07 (see
[18, Sect. 1]). The updated results in Fig. 12 show a signifi-
cant reduction in the similarity measure η′ for portrait-mode
images compared to the original η (Fig. 1). Using the original
threshold (i.e., τ ′ = 60) yields few classification errors,
while raising it to τ ′ = 160 eliminates most errors, leaving
only one misdetection. These findings confirm that properly
accounting for Apple’s SDNP enables reliable PRNU-based
source camera verification, regardless of portrait mode.

It is important to note that further adjusting the threshold
α, which defines the regions where the SDNP is present,
could improve both these and subsequent results. We believe
that developing a strategy to determine the optimal threshold
α for each image would significantly enhance the overall
performance of our approach, but we leave the development
of this strategy for future work.

C. Comparative Results of BP-aware PRNU Matching

Baracchi et al. in [2] were the first to address NUAs
in Apple portrait images in a PRNU-based camera source
verification context, showing that such NUAs correlated more
strongly than the PRNU. After our analysis, however, we
understand that the underlying BP of Apple’s SDNP is not
strictly an artifact but rather a synthetic pattern intentionally
embedded by Apple. Baracchi et al. proposed two distinct
techniques, the “weighted” and “binary” methods, which use
depth map information to either weigh or exclude regions in
the PRNU estimate K̂ (computed using the baseline PRNU
method from Sect. II-A), resulting in K̂w and K̂b, respec-
tively. For both methods, we employ the same test statistic
as in (4), substituting K̂ by K̂w and K̂b accordingly. In our
approach (detailed in Sect. VI-B), the image residue W and
the binary mask M(PRNU) are computed using K = 5 and
α = 0.07, respectively, applying the test statistic from (19).
In the following, we compare Baracchi et al.’s methods and
the baseline PRNU approach with our BP-aware solution by
conducting three experiments, each evaluating different BPs.

1) Comparative Analysis on the Dataset from [1]: The tests
are conducted on images from the 3 iPhone 11 Pro users iden-
tified with PRNU collisions in [1]. PRNU extraction uses the

35 images of the Reference set from user 102027268@N08.
The positive class consists of 27 test images from the same
user, while the negative class includes 86 images from the
other two users: 101543825@N07 (41 images, excluding 2
taken with digital zoom) and 102054399@N08 (45 images).
Our approach employs the BP estimate P̂NL extracted from
40 portrait images taken by devices C19, C20, C21, and C22
in [4], whose BP matches that of the iPhone 11 Pro in [1].

The ROC curves obtained for each detector are shown in
Fig. 13a. Note that the binary method from [2] is absent,
because the exclusion of regions from the images captured
by user 102027268@N08 results in a PRNU estimate K̂b

consisting entirely of zeros. Interestingly enough, the weighted
method performs worse than the baseline approach (as also
observed during our attempt to replicate the original results
in [18, Sect. 5.1]), suggesting that its effectiveness is highly
dependent on the specific scene captured and the correspond-
ing depth map. In contrast, our approach, which focuses on
localizing the presence of the BP, proves to be very effec-
tive, achieving perfect detection, as previously highlighted in
Fig. 12. We believe that the primary reason for the lower per-
formance of Baracchi et al.’s method is its exclusive reliance
on depth map information. As discussed in Sect. II-B2, the
exact algorithm Apple uses to determine which regions will
have the SDNP added remains unknown and may have evolved
over time. In fact, all images in our comparative analysis were
captured with newer iOS versions (i.e., iOS 13.3.1 or later)
than those analyzed by Baracchi et al. (i.e., iOS 12.1.4), which
may explain why we are unable to replicate their results in [2].

Observations from the portrait images used in this experi-
ment suggest that Apple’s algorithm incorporates more than
just the depth map, likely leveraging additional information
(such as the auxiliary mattes mentioned in Sect. II-B) to
decide which region in the image is finally blurred. This is
evident in the example (taken from the reference set) shown
in Fig. 14a, where its depth map (Fig. 14b) does not capture
details of the girl’s eyes, yet Apple’s algorithm keeps only the
eye region unblurred. The binary mask produced by Baracchi
et al.’s method, obtained via Otsu thresholding (Fig. 14c),
fails to exclude many SDNP-containing regions during PRNU
extraction, leading to performance degradation. In contrast,
our approach produces a binary mask M(PRNU) (Fig. 14d) that
effectively minimizes the BP leakage into the PRNU estimate
K̂. The NCC values computed between the residues and the
BP after applying the respective masks are 0.3156 for the
weighted approach and 0.0201 for ours.

Another example of depth map-related issues comes from
the negative class of the test set (Fig. 14e) and its corre-
sponding depth map (Fig. 14f). Otsu thresholding produces
a binary mask (Fig. 14g) that fails to segment the in-focus
region, instead isolating an area composed almost entirely
of the SDNP. This results in a false positive, with a test
statistic of η = 1.71 × 106. In contrast, our BP-driven mask
(Fig. 14h) yields η′ = 4.62, which aligns with the expected
value for a negative sample. These findings highlight that
minimizing BP leakage during both PRNU extraction and
subsequent detection steps is crucial for improving source
camera verification performance when dealing with Apple
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Fig. 13. ROC curves comparing PRNU-based source camera verification performance across different methods: baseline PRNU, the two approaches from
[2], and our BP-aware solution. The plots correspond to Sect. VII-C1 (a), Sect. VII-C2 (b), Sect. VII-C3 (c). Panel (d) presents ROC curves from Sect. VII-D,
illustrating the impact of post-processing on Apple portrait image detection.
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Fig. 14. Example portrait images with overlaid BP-driven NCC maps (a, e),
relative depth maps (b, f) and Otsu thresholding masks (c, g) from [2]. Binary
masks M(PRNU) (d, h) are obtained after thresholding NCC maps in (a, e).

portrait images.
2) Impact of BP Quality on Detection Performance: We

evaluate the impact of BP estimation quality using three
estimates from the iPhone 15: P̂NL (Hi) with L = 110, P̂SLM
(Lo) with L = 10, and P̂NL (Misc) with L = 158, following
the capture conditions in [18, Sect. 4]. The PRNU is estimated
using 10 reference portrait images from the same device. The
test set consists of 100 portrait images from the iPhone 15
(positive class) and 100 from an iPhone 13 (negative class),
sourced from Flickr. Both devices share the same BP (Tab. I).

In this experiment, we ensured that the images used for
PRNU extraction produced a PRNU estimate K̂b with non-
null support, making it suitable for use with the binary method
from [2]. Under these conditions, the binary method outper-
forms both the weighted and baseline approaches in AUC,
whereas our approach achieves the best performance, with
minimal variation across the three BP estimates. Among them,
P̂NL (Hi) achieves the highest AUC, followed by P̂NL (Misc)
and P̂SLM (Lo). Notably, P̂NL (Misc) is preferable in low False
Positive Rate (FPR) scenarios, maintaining the highest partial
AUC for FPR ≤ 0.05 (0.0373), closely followed by P̂NL
(Hi) (0.0372). While P̂SLM (Lo) consistently underperforms,
its ease of extraction makes it a practical alternative.

Based on [18, Fig. 8] and [18, Sect. 4], larger differences in
detection performance across BP estimates might be expected.
However, while those results were obtained using uniform
image blocks in controlled conditions, this experiment pro-
cesses real-world scenes. Here, applying a fixed threshold of

α = 0.07 across all BP estimates produced highly similar
binary masks M(PRNU), resulting in nearly identical PRNU
estimates K′ and comparable residue masking in (19), ulti-
mately yielding similar detection performance. Future work
could explore adaptive thresholds tailored to each BP estimate
to better capture variations in BP quality.

3) Comparative Analysis with iPhone 12 mini and Multiple
Users: In this experiment, we use the BP estimate P̂NL (L =
50) from the iPhone 12 mini and extract the PRNU from 50
reference portrait images of the same device. The positive class
consists of 60 portrait images from the same iPhone 12 mini,
while the negative class includes 60 images from Flickr: 37
and 5 from two iPhone 12, and 10 and 8 from two other iPhone
12 mini. These models share the same BP (Tab. I).

The results in Fig. 13c follow the same trend as those
in Fig. 13b for the iPhone 15. However, unlike the first
experiment with iPhone 11 Pro images from [1] (Fig. 13a),
perfect detection is not achieved by our approach for newer
devices (iPhone 12 mini and iPhone 15). A key factor is the
iOS version: the iPhone 11 Pro images were captured with iOS
13, whereas the newer devices use iOS 17. This suggests that
Apple has refined SDNP embedding over time, making it more
selective (particularly by omitting certain areas like edges).
This is evident in the NCC maps in Fig. 11, where the iPhone
11 Pro Max image (iOS 13, Fig. 11a) shows less correlation
loss at the edges compared to the iPhone 15 image (iOS 17,
Fig. 11b). In the latter case, correlation loss is pronounced in
the brightness transitions on the ColorChecker, affecting scene
segmentation for PRNU matching. These areas, still blurred,
likely retain fewer PRNU traces, reducing detection accuracy.

D. Robustness of BP Detection under Post-Processing

To assess the robustness of our BP detection approach under
post-processing, we tested image sharing via WhatsApp. We
sent 48 portrait images from an iPhone 12 mini using two
modes: the default mode, which reduces resolution (12MP to
2MP) and applies compression, and the HD mode, which pre-
serves resolution with moderate compression. These formed
the positive classes, while the negative classes included 46
non-portrait images shared under the same conditions. As
shown in Fig. 13d, both modes had no impact on BP de-
tection, achieving perfect results comparable to cases without
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post-processing. To illustrate a more challenging case where
detection performance starts to drop, we also included ROC
curves for images downscaled to a Scaling Factor (SF) of
0.25 and JPEG compressed with a Quality Factor (QF) of
80, as well as for extreme image downscaling by SF = 0.1
without additional compression. Further details on the effects
of scaling and compression can be found in [18, Sect. 5.3].

VIII. CONCLUSIONS

The distinctive Apple’s SDNP and its underlying BP have
been comprehensively analyzed in this paper, characterizing
their role in iPhone portrait images and their forensic implica-
tions. We first proposed BP extraction methods under different
lighting conditions and then examined its dependencies on
luminance, ISO settings, and software variations. Our findings
show that SDNP knowledge enhances forensic tasks, including
portrait-mode image traceability and improved PRNU-based
source verification in realistic forensic scenarios.

Future work will extend this analysis to other Apple devices
not covered here (e.g., iPads and other iPhones) and refine
forensic applications, such as forgery localization using BP-
aware PRNU analysis. We aim to improve BP extraction
and detection using ĝ(·), and develop adaptive thresholding
for SDNP localization, optimizing performance across diverse
images and BP quality variations. While this work focuses on
Apple devices, an important open question is whether similar
methods can generalize to other smartphone brands. We hope
this work inspires further forensic research in this area.

APPENDIX A
DERIVATION OF THE LS ESTIMATE OF ĝ(·)

In this appendix we derive the estimate of the brightness-
dependent scaling function ĝ(·) following an LS approach.
Let T and tr denote respectively the transpose and trace
matrix operators. Given two matrices A,B and a scalar c, let
E ≜ (A− cB)

T
(A− cB). Notice that ∥A− cB∥2F = tr(E).

Taking the derivative of E w.r.t. c, we have dE
dc = 2cBTB−

BTA − ATB. Noticing that tr(ATB) = ⟨A,B⟩F and that
the trace operator commutes with the derivative, we have that
d tr(E)

dc = 2c∥B∥2F − 2⟨A,B⟩F.
Assuming that block Zm,t contains the base pattern Pm

everywhere, i.e. M(blur) = 1 and M′
(blur) = 0, and that it has

a flat background, Eq. (6) becomes Zm,t = Y′
m,t + γISO ·

g(y′m,t)Pm + Φm,t. Here we make no assumptions on the
mean and std of P, as some estimates of P (e.g., P̂SLM)
may not share its second order statistics. We are interested
in finding y′m,t ≜ µ(Y′

m,t) and g(y′m,t) minimizing

∥Zm,t −Y′
m,t − γISO · g(y′m,t)Pm∥2F. (20)

First, notice that this norm is minimized when
µ
(
Zm,t −Y′

m,t − γISO · g(y′m,t)Pm

)
= 0, leading to

ŷ′m,t = zm,t − γISO · g(y′m,t) · µ(Pm), (21)

where zm,t ≜ µ(Zm,t). Now we use the algebraic result at the
beginning of this Appendix to compute the derivative of (20)
with respect to g(y′m,t). Equating to zero, we obtain

⟨Zm,t,Pm⟩F−⟨Y′
m,t,Pm⟩F−γISO·g(y′m,t)·∥Pm∥2F = 0 (22)

Since the block is assumed to have flat background, we
can approximate ⟨Y′

m,t,Pm⟩F ≈ y′m,t · µ(Pm)B2 ≈ zm,t ·
µ(Pm)B2 − γISO · g(y′m,t) · (µ(Pm))

2
B2, where the second

approximation follows from substituting y′m,t in the first by
its estimate in (21). Replacing ⟨Y′

m,t,Pm⟩F in (22) by this
approximation, substituting Pm and γISO by their respective
estimates, and solving for g(y′m,t), we obtain (17).
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ding Light on some Leaks in PRNU-based Source Attribution,” in ACM
IH&MMSec, 2024, p. 137–142.

[7] S. McCloskey, Computational Imaging. Springer, 2022, pp. 41–62.
[8] J. Butora and P. Bas, “The Adobe Hidden Feature and its Impact on

Sensor Attribution,” in ACM IH&MMSec, 2024, p. 143–148.
[9] ——, “Detection of the Adobe Pattern,” in 32nd European Signal

Processing Conference, Lyon, France, Aug. 2024.
[10] [Online]. Available: https://www.counterpointresearch.com/insights/

global-smartphone-share/
[11] [Online]. Available: https://www.counterpointresearch.com/insights/

global-smartphone-sales-top10-best-sellers/
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