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Real-Time Bit-Level Encryption of Full High-Definition Video

Without Diffusion
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Abstract—Despite the widespread adoption of Shannon’s
confusion-diffusion architecture in image encryption, the imple-
mentation of diffusion to sequentially establish inter-pixel depen-
dencies for attaining plaintext sensitivity constrains algorithmic
parallelism, while the execution of multiple rounds of diffusion
operations to meet the required sensitivity metrics incurs ex-
cessive computational overhead. Consequently, the pursuit of
plaintext sensitivity through diffusion operations is the primary
factor limiting the computational efficiency and throughput of
video encryption algorithms, rendering them inadequate to meet
the demands of real-time encryption for high-resolution video. To
address the performance limitation, this paper proposes a real-
time video encryption protocol based on heterogeneous parallel
computing, which incorporates the SHA-256 hashes of original
frames as input, employs multiple CPU threads to concurrently
generate encryption-related data, and deploys numerous GPU
threads to simultaneously encrypt pixels. By leveraging the
extreme input sensitivity of the SHA hash, the proposed protocol
achieves the required plaintext sensitivity metrics with only a sin-
gle round of confusion and XOR operations, significantly reduc-
ing computational overhead. Furthermore, through eliminating
the reliance on diffusion, it realizes the allocation of a dedicated
GPU thread for encrypting each pixel within every channel,
effectively enhancing algorithm’s parallelism. The experimental
results demonstrate that our approach not only exhibits superior
statistical properties and robust security but also achieving delay-
free bit-level encryption for 1920×1080 resolution (full high
definition) video at 30 FPS, with an average encryption time of
25.84 ms on a server equipped with an Intel Xeon Gold 6226R
CPU and an NVIDIA GeForce RTX 3090 GPU. In addition, the
proposed protocol is employed to implement a real-time video
monitoring system, enabling delay-free encryption of 640×480
resolution video at 24 FPS on an NVIDIA Jetson Xavier NX
equipped with an NVIDIA Carmel ARM CPU and a Volta GPU,
thereby demonstrating its feasibility for real-world applications.

Index Terms—Real-time bit-level video encryption, diffusion-
free, full high-definition, heterogeneous parallel computing.
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I. INTRODUCTION

W ITH the rapid advancement of network and multime-

dia technologies, video has been extensively utilized

across various application scenarios, including military com-

mand, traffic monitoring, and social networking, consequently

creating an substantial demand for secure video transmission

and progressively establishing video encryption as a prominent

research hotspot [1]. To ensure that encrypted video frames

attain superior statistical properties and exhibit robust secu-

rity resilience against potential cryptographic threats, main-

stream video encryption algorithms predominantly utilize the

Shannon Confusion-Diffusion Architecture (SCDA), a well-

established paradigm that has been widely adopted in the

field of image encryption [2]. In SCDA, confusion systemati-

cally permutes pixel positions without modifying their values,

thereby disrupting the visual structure of the original frame

and reducing statistical correlations among adjacent pixels,

whereas diffusion strategically alters pixel values and dis-

tributes individual pixel influences across the entire frame, thus

encrypting the pixels and ensuring plaintext sensitivity [3].

However, these operations are inherently time-consuming and

commonly require multiple rounds of confusion and diffusion

operations to guarantee that the encrypted frames achieve a

satisfactory level of statistical properties and security [4].

The extended encryption durations, while potentially ac-

ceptable for image encryption applications, are insufficient to

satisfy the stringent real-time processing demands of video

encryption systems, as exceeding the threshold of 1000 mil-

liseconds (ms) divided by the frame rate (Frames Per Second,

FPS), potentially resulting in detrimental latency issues. There-

fore, many video encryption algorithms adopt a simplified

encryption process, implementing a single round of confu-

sion and diffusion operations for frame encryption, thereby

enhancing computational efficiency and encryption speed [5]–

[8]. Although these studies have significantly advanced video

encryption technology, their encrypting times, ranging from

hundreds to thousands of milliseconds per frame, remain

inadequate to satisfy the essential requirements for real-time

video encryption applications. To tackle this challenge, recent

works have incorporated parallel computing [9], [10] and

heterogeneous parallel computing [11] technologies into video

encryption, employing CPU thread allocation at the sub-frame

level and GPU thread assignment at the pixel level to enable

simultaneous execution of confusion and diffusion operations,

thereby significantly reducing the average encryption time to

below 40 ms, even when a total of over ten rounds of confusion

and diffusion operations are performed on each frame.

https://arxiv.org/abs/2505.07158v1
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Despite demonstrating that parallel and heterogeneous par-

allel computing techniques can effectively enhance encryption

speed, these works remain inadequate to meet the demands

for real-time encryption of High-Definition (HD) video. This

inadequacy is primarily constrained by two factors: First,

the diffusion method employed in these works, along with

many other approaches [12]–[14], necessitate the sequential

establishment of inter-pixel relationships between original and

encrypted counterparts to achieve plaintext sensitivity, thereby

ensuring resistance against differential attacks. The inherently

sequential characteristic of diffusion significantly constraints

the algorithmic parallelism, limiting the optimal utilization of

hardware resources. Second, the majority of statistical and

security metrics can be attained without performing multiple

rounds of confusion and diffusion operations. The additional

iterations primarily serve to reinforce diffusion effectiveness,

thus ensuring compliance with stringent plaintext sensitivity

metrics. The requisite multiple diffusion rounds considerably

elevates the computational overhead, compromising encryp-

tion speed. Consequently, the pursuit of plaintext sensitivity

through diffusion operations is the primary factor that limits

the throughput of video encryption algorithms.

To solve this problem, a real-time video encryption algo-

rithm based on heterogeneous parallel computing is proposed

in this paper. It utilizes the SHA-256 hash of each original

frame as input to initialize chaotic systems distributed across

multiple CPU threads, which operate in parallel to generate

the necessary data for encryption, while allocating numerous

GPU threads to concurrently perform bit-level confusion and

XOR operations on respective pixels for frame encryption.

Our method ensures that any modification to even a single

channel of any pixel in the original frame generates a dis-

tinct SHA-256 hash, leading to entirely different data from

the CPU threads and resulting in fundamentally divergent

encryption outcomes from the GPU threads, thereby achieving

plaintext sensitivity without diffusion. Thus, it can not only

allocate a dedicated GPU thread for each channel of every

pixel, significantly enhancing the algorithmic parallelism, but

also attain required plaintext sensitivity metrics with just a

single round of confusion and XOR operations, substantially

reducing the computational overhead, ultimately resulting in

accelerated encryption speed. The experimental results demon-

strate that the proposed protocol exhibits outstanding statistical

properties, provides robust resistance against different types

of attacks and channel noise, and enables delay-free full HD

(1920×1080 resolution) video encryption at 30 FPS, utilizing

a server equipped with an Intel Xeon Gold 6226R CPU and

an NVIDIA GeForce RTX 3090 GPU, achieving an average

encryption time of 25.84 ms. It is also utilized to implement a

real-time secure video monitoring system that enables delay-

free 640×480 video encryption at 24 FPS on an NVIDIA

Jetson Xavier NX featuring an NVIDIA Carmel ARM CPU

and a Volta GPU, showcasing its high feasibility. Furthermore,

by utilizing the SHA-256 hash of each original frame, our

protocol not only establishes a dynamic key space and exhibits

resistance to dynamic degradation but also demonstrates en-

hanced resilience against cropping attacks and channel noise,

owing to the absence of diffusion affecting the decryption.

II. PROTOCOL DESCRIPTION

The proposed protocol leverages heterogeneous parallel

computing, utilizing a main CPU thread to oversee the en-

cryption process, multiple worker CPU threads to concurrently

generate different types of data required for encryption, and

numerous GPU threads to simultaneously perform bit-level

confusion and XOR operations to encrypt the original frame.

It consists of three phases: initial condition reconstruction,

data generation, and frame encryption. This section elaborates

on the operational workflow of each phase, accompanied by

detailed algorithmic descriptions.

A. Initial condition reconstruction

In the proposed protocol, the Lorenz Hyper Chaotic System

(LHCS), defined as follows [15], is employed due to its

exceptional statistical properties and extensive applications in

audio [16], image [17], and video encryption [18].



















ẋ = σ(y − x) + w

ẏ = ρx− y − xz

ż = xy − βz

ẇ = −yz + γw

(1)

where σ, ρ, β, γ are constants, while x0, y0, z0, and w0

are referred to as the initial conditions, with γ serving as

the control parameter. When σ = 10, ρ = 28, β = 8
3 , and

−1.52 ≤ γ ≤ −0.06, LHCS exhibits a hyperchaotic behavior

[19]. The main thread Tm utilizes a single LHCS, denoted

as LHCSm, whereas each worker thread T i
w(i ∈ {1, 2, ..., n})

employs two LHCSs, designated as LHCSi,1
w and LHCSi,2

w ,

representing the first and second LHCSs of T i
w, respectively.

The LHCSm is utilized to generate initial conditions necessary

to initialize the LHCSws, which are responsible for producing

distinct types of data required for the frame encryption phase.

Unlike many video encryption algorithms that produce

encrypted frames by utilizing data derived from an iterative

trajectory, the proposed protocol reconstructs the initial con-

ditions for all LHCSs prior to frame encryption, ensuring that

each frame is processed using entirely distinct trajectories. The

initial condition reconstruction can be distinguished into two

cases, with the user input of x0, y0, z0, w0, and γ required

for the first original frame, followed by the reconstruction

of initial conditions using the SHA-256 hash of the frame.

However, the calculation of the SHA-256 hash for a frame

with a resolution of 1920×1080 requires approximately 17

ms, even on an Intel Xeon Gold 6226R CPU, rending it

infeasible for real-time video encryption. Thus, in the proposed

protocol, Tm partitions the original frame into multiple sub-

frames fi(i ∈ {1, 2, ..., n}), with each T i
w computing the

SHA-256 hash hi for its assigned sub-frame fi. Subsequently,

Tm calculates the SHA-256 hash H of the frame through the

bitwise XOR operation, expressed as H = h1 ⊕ h2⊕ ...⊕ hn.

The calculated SHA-256 hash is employed to reconstruct

the user-input initial conditions required for initializing the

LHCSm, with x0 serving as an example to demonstrate the

reconstruction process, as illustrated in Fig. 1 (a). The recon-

struction of x0 is achieved through a three-step process: first,
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Fig. 1. The workflow diagrams of initial condition reconstruction and shift distance generation.

generating an integer via a bitwise XOR operation between

the two least significant bytes of x0 and two bytes extracted

from H , followed by a modulo operation constrained by

the predefined upper bound ux of x0; second, producing a

decimal through a bitwise XOR operation between the six least

significant bytes of the fractional part of x0 and bytes from

H ; and finally, combining these generated integer and decimal

values. The reconstruction of an initial condition requires

eight bytes from the SHA-256 hash, with the full 32-byte

hash value enabling the reconstruction of all initial conditions

x0, y0, z0, and w0, which, in conjunction with the control

parameter γ, are utilized to initialize the LHCSm. Following

the initialization, LHCSm is iterated to produce a set of

iteration results IR = {x1, y1, z1, w1, ..., x2n, y2n, z2n, w2n},

which are subsequently utilized to initialize all LHCSws. For

each subsequent frame following the first, the iteration results

x2n, y2n, z2n, and w2n from LHCSm processing the previous

frame are reconstructed using the SHA-256 hash of the current

frame to generate x0, y0, z0, and w0, which are used to

reinitialize LHCSm, followed by reinitializing all LHCSws

using the iteration results from the reinitialized LHCSm.

B. Data generation

Since the proposed protocol employs the circular shift

method to shuffle the pixels and requires bytes for encryp-

tion, all Tws utilize their respective LHCSws to concurrently

produce both shift distances and bytes for frame encryption.

For shift distance generation, as illustrated in Fig. 1 (b),

T i
w utilizes its respective LHCSws to produce two sets of

iteration results IRi,1
w = {..., x1

j , y
1
j , z

1
j , w

1
j , ...} and IRi,2

w =
{..., x2

j , y
2
j , z

2
j , w

2
j , ...}. By extracting six bytes from the man-

tissa portion1 of each iteration result and constructing a shift

distance from every two bytes, T i
w generates two shift distance

sequences Di,1
w = {d11, d

1
2, ...} and Di,2

w = {d21, d
2
2, ...}. The

shift distance sequence Di
w for confusion operations can be

produced through bitwise XOR operations between Di,1
w and

Di,2
w , as expressed by Di

w = {d11 ⊕ d21, d
1
2 ⊕ d22, ...}. The

byte generation employs a similar methodology, with the only

distinction being that the byte sequence for frame encryption

is produced through a bitwise XOR operation applied byte-

by-byte to the bytes extracted from two iteration results.

1In IEEE 754 standard, a double-precision floating-point number consists
of three parts: a sign bit, an exponent of 11 bits, and a mantissa of 52 bits.

C. Frame encryption

In the frame encryption phase, the generated shift distances

D are utilized to perform circular shifts on the frame, thereby

shuffling the pixels, while the produced bytes B are employed

to apply bitwise XOR operations on the pixels, thus encrypting

the frame. To enhance encryption speed, a dedicated GPU

thread T c
g(i,j)(where i ∈ {1, .., h} denotes the row index,

j ∈ {1, ..., w}) represents the column index, and c ∈ {r, g, b}
indicates the channel) is assigned to each channel of every

pixel, enabling the simultaneous execution of confusion and

XOR operations. To encrypt a frame with a resolution of

w × h, each Tg initially performs bit-level decomposition of

its assigned pixel value, separating it into eight individual bits,

thereby generating an expanded bit matrix M of dimension

[8×w, h]. Subsequently, confusion operations involving bidi-

rectional bit-level circular shifting are performed on M . For

threads sharing the same row and channel, a shift distance dh
retrieved from D enables horizontal circular shifting of their

respective 8 bits according to the following equation:

M [i, (j + (dh MOD 8w)) MOD 8w] = M [i, j], (2)

For threads sharing the same column and channel, vertical

circular shifting can be applied as follows:

M [(i+ (dv MOD h) MOD h, j] = M [i, j], (3)

Finally, each Tg retrieves a byte b from the generated byte

sequence B, decomposes b into eight individual bits, and

performs bit-by-bit XOR operations on its assigned 8-bit pixel

value, thereby achieving the encryption of the pixel value.

D. Algorithmic descriptions

The workflow diagram of the proposed protocol is demon-

strated in Fig. 2, accompanied by detailed algorithmic de-

scriptions for the main and worker threads provided in Algo.

1 and 2, respectively, while the algorithms related to the

GPU threads are presented in Algo. 3 through 7. Given

that the decryption process is the inverse transformation of

the encryption procedure, its details are not included in this

paper. However, the complete implementation of the proposed

protocol is publicly available in the source code repository at:

https://github.com/jiangDongAHU/blfhdve. For further details,

please refer to the source code.
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Fig. 2. The workflow diagram of the proposed protocol(R: red, G: green, B: blue, H: horizontal, V: vertical, w: width, h: height.)

Algorithm 1 Video encryption algorithm for the main thread Tm.

Input: Number of worker threads: n; Original video: Vo; User inputs: x0,
y0, z0, w0,γ; Frame resolution: width w, height: h.

Output: Encrypted frame: Fe.
1: Create worker threads {T i

w}
n
i=1

;
2: Allocate matrices {Mc

e ,M
c
t }c∈{R,G,B} of size 8w×h in GPU memory;

3: while extract an original frame Fo from Vo do

4: Partition Fo into n sub-frames {fi}
n
i=1

;
5: Wake up all Tws to compute SHA-256 hash values {hi}

n
i=1

;
6: Compute SHA-256 hash H of Fo as H ← h1 ⊕ · · · ⊕ hn;
7: if Fo is the initial frame then

8: Reconstruct user inputs x0, y0, z0, w0 using H;
9: else

10: Reconstruct initial conditions using H and x2n, y2n, z2n, w2n;
11: end if

12: Initialize LHCSm using reconstructed x0, y0, z0, w0 along with γ;
13: Generate iteration results IR = {x1, y1, ..., z2n, w2n};
14: Wake up all Tws to generate shift distances D and byte sequence B;
15: Upload Fo, D, and B to GPU memory;
16: for k ← 3 to 7 do

17: Launch GPU threads {T c
g (i, j)}

h,w
i=1,j=1

;

18: Execute Algo. k concurrently across all GPU threads;
19: Update Mc

t ←Mc
e ;

20: end for
21: Download Fe from the GPU memory;
22: end while

23: Terminate all worker threads;

Algorithm 2 Data generation algorithm for worker thread T i
w .

Input: Thread index: i; Sub-frame: fi; Iteration results generated by
LHCSm: IR.

Output: Shift Distances: Di
w; Bytes: Bi

w .
1: while True do
2: Wait to be awakened by Tm;
3: Calculate the SHA-256 hash hi of fi;
4: Wait to be awakened by Tm;

5: Fetch iteration results from IR to initialize LHCSi,1w and LHCSi,2w ;

6: Iterate two LHCSws to generate iteration results IRi,1
w and IRi,2

w ;

7: Generate shift distances Di,1
w and Di,2

w using iteration results;

8: Calculate the final shift distances for confusion Di
w ← Di,1

w ⊕Di,2
w ;

9: Generate bytes Bi,1
w and Bi,2

w using iteration results;

10: Calculate the final bytes for XOR operations Bi
w ← Bi,1

w ⊕ Bi,2
w ;

11: end while

Algorithm 3 Bit extraction algorithm for GPU thread T c
g (i, j)

Input: Thread index: (i, j); Channel: c; Original frame: Fo; Bit matrix: Mc
t .

Output: Original bis.
1: Retrieve the pixel F c

o (i, j) at coordinate (i, j) from channel c of Fo;
2: for k ← 0 to 7 do

3: temp ← F c
o (i, j);

4: Mc
t (i, j × 8 + k) ← temp AND 0x01; ⊲ Store the bit into Mc

t
5: F c

o (i, j)← F c
o (i, j)≫ 1;

6: end for

Algorithm 4 Confusion algorithm in the horizontal direction for T c
g (i, j)

Input: Index: (i, j); Channel: c; Bit matrices: Mc
e , Mc

t ; Shift distance: dh.
1: for k ← 0 to 7 do

2: Mc
e (i, (8j + k + (dh MOD 8w)) MOD 8w) ← Mc

t (i, 8j + k);
3: end for

Algorithm 5 Confusion algorithm in the vertical direction for T c
g (i, j)

Input: Index: (i, j); Channel: c; Bit matrices: Mc
e , Mc

t ; Shift distance: dv .
Output: Shuffled bits.
1: for k ← 0 to 7 do

2: Mc
e ((i + (dv MOD h)) MOD h, 8j + k) ← Mc

t (i, 8j + k);
3: end for

Algorithm 6 XOR operation algorithm for T c
g (i, j)

Input: Index: (i, j); Channel: c; Byte extracted from B: b.
Output: Encrypted bits.
1: for k ← 0 to 7 do

2: temp← b AND 0x01;
3: Mc

e (i, 8j + k)← Mc
t (i, 8j + k)⊕ temp;

4: b← b≫ 1;
5: end for

Algorithm 7 Pixel reconstruction algorithm for GPU thread T c
g (i, j).

Input: Index: (i, j); Channel: c, Bit matrix: Mc
e .

Output: Encrypted pixel F c
e (i, j).

1: for k ← 7 to 0 do

2: F c
e (i, j)← F c

e (i, j) OR Mc
e (i, (8j + k));

3: if k 6= 0 then

4: F c
e (i, j)← F c

e (i, j)≪ 1;
5: end if

6: end for
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III. STATISTICAL EVALUATION

An ideal video encryption algorithm should ensure that the

encrypted video frames exhibit superior statistical properties,

thereby providing robust resistance against various attacks.

Consequently, this section conducts a comprehensive statistical

analysis, systematically evaluating the statistical properties of

both the original and encrypted frames across three dimen-

sions: uniformity, correlation, and randomness. To carry out

the experiments, six distinct types of original video files,

including Akiyo, Coastguard, Hall, Rhinos, Train, and Water-

fall, are employed as the experimental dataset. The proposed

protocol is implemented on a workstation equipped with an

Intel Xeon Gold 6226R CPU@2.90 GHz, 32 GB of RAM,

and an NVIDIA GeForce RTX 3090 graphics card, running

the Ubuntu 22.04 operating system with OpenCV 4.5.4 and

CUDA 12.4. For ease of computation, all original video files

are converted to MP4 format with a resolution of 512×512 and

subsequently encrypted using the implemented cryptosystem.

All original and encrypted frames are stored as images in

.tif format, with their statistical properties analyzed utilizing

MATLAB R2024b on the Windows 11 operating system.

A. Uniformity evaluation

A histogram is a graphical representation that depicts the

distribution of pixel intensities within a video frame, effec-

tively illustrating the frequency of occurrence for each distinct

pixel intensity value [20]. The implemented cryptosystem

should produce encrypted frames characterized by uniformly

distributed pixel intensities, thereby ensuring the concealment

of the information contained in the original frames. Therefore,

an original frame is selected from the Akiyo video, as shown

in Fig. 3 (a), with the histograms of its red, green, and blue

channels displayed in Fig. 3 (b), (c), (d), respectively. The

corresponding encrypted frame is presented in Fig. 3 (e),

along with the histograms of its red, green, and blue channels

illustrated in Fig. 3 (f), (g), (h), respectively.

Fig. 3. Histograms of the original and encrypted frames, (a) original frame
(Akiyo) (b) - (d) histograms of the red, green, and blue channels of the original
frame, (e) encrypted frame, (f) - (h) histograms of the red, green, and blue
channels of the encrypted frame.

The variance and χ2 value of a histogram can be employed

to quantitatively measure its uniformity. The variance of a 256-

level intensity histogram for a given frame is calculated using

the following equation [21]:

var(Z) =
1

2562

255
∑

i=0

255
∑

j=0

1

2
(zi − zj)

2, (4)

where Z = {z0, z1, ..., z255} represents the histogram value

vector, with zi denoting the frequency count of pixels at

intensity level i. χ2 value of a histogram is defined as [22]:

χ2 =

255
∑

i=0

(zi −N/256)2

N/256
, (5)

where N is the total number of pixels within the frame,

N/256 indicates the expected frequency of occurrence for

each intensity level. A statistically inverse correlation exists

between the variance and the degree of uniformity. At the

predetermined significance level α = 0.05, the critical χ2

value with 255 degrees of freedom is determined to be

χ2
0.05(255) = 293.25 [23]. This indicates that a lower variance

in an encrypted frame is preferable, and its χ2 value must be

less than 293.25. The variances and χ2 values of all frames

are calculated for each original and encrypted video, with the

minimum, maximum, and average variances presented in Tab.

I, and the corresponding χ2 values demonstrated in Tab. II.

TABLE I
VARIANCES OF THE ORIGINAL AND ENCRYPTED VIDEO FRAMES.

File Name Channel Minimum Maximum Average

Red 1549012 1588564 1569890
Vo (Akiyo) Green 1294011 1352300 1321363

Blue 1673799 1768554 1716427

Red 837.733 1368.392 1059.840
Ve (Akiyo) Green 817.749 1431.192 1052.498

Blue 757.357 1329.506 1062.486

Red 428851 1032264 716174
Vo (Coastguard) Green 436678 1068929 728323

Blue 526302 1094718 812570

Red 835.584 1343.835 1046.121
Ve (Coastguard) Green 828.541 1298.102 1051.799

Blue 734.455 1299.820 1040.726

Red 1625481 1996426 1874129
Vo (Hall) Green 1441909 1824582 1683879

Blue 1264504 1455022 1363269

Red 800.024 1359.624 1068.746
Ve (Hall) Green 801.851 1335.608 1055.489

Blue 818.525 1328.753 1043.324

Red 1832386 15586486 5159395
Vo (Rhinos) Green 1684264 14742950 4497307

Blue 2143286 16651285 6392665

Red 859.647 1491.969 1119.121
Ve (Rhinos) Green 844.314 1438.541 1120.671

Blue 933.263 1531.388 1155.267

Red 1510604 11445872 3046951
Vo (Train) Green 1369801 6385973 2196022

Blue 2297943 9479171 3729807

Red 818.165 1452.596 1096.494
Ve (Train) Green 784.729 1338.690 1068.023

Blue 856.737 1504.243 1110.727

Red 731855 790814 754425
Vo (Waterfall) Green 1278808 1436426 1347749

Blue 2509192 2672742 2582557

Red 776.361 1301.333 1055.060
Ve (Waterfall) Green 789.082 1327.341 1053.498

Blue 793.451 1360.737 1075.248

Vo: original video, Ve: encrypted video.
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TABLE II
χ2 VALUES OF THE ORIGINAL AND ENCRYPTED VIDEO FRAMES.

File Name Channel Minimum Maximum Average

Red 385740 395590 390939
Vo (Akiyo) Green 322239 336754 329050

Blue 416815 440411 427431

Red 208.615 340.762 263.925
Ve (Akiyo) Green 203.639 356.400 262.097

Blue 188.600 331.078 264.584

Red 106794 257058 178344
Vo (Coastguard) Green 108743 266188 181370

Blue 131062 272610 202349

Red 208.080 334.646 260.509
Ve (Coastguard) Green 206.326 323.258 261.923

Blue 182.896 323.686 259.165

Red 404783 497157 466702
Vo (Hall) Green 359069 454364 419325

Blue 314891 362335 339486

Red 199.225 338.578 266.143
Ve (Hall) Green 199.680 332.598 262.841

Blue 203.832 330.891 259.812

Red 456307 3881400 1284810
Vo (Rhinos) Green 419421 3671340 1119935

Blue 533728 4146560 1591924

Red 214.072 371.535 278.687
Ve (Rhinos) Green 210.254 358.230 279.073

Blue 232.404 381.352 287.688

Red 376176 2850290 758762
Vo (Train) Green 341113 1590257 546861

Blue 572242 2360536 928809

Red 203.742 361.730 273.053
Ve (Train) Green 195.416 333.365 265.963

Blue 213.348 374.592 276.597

Red 182249 196931 187870
Vo (Waterfall) Green 318453 357704 335621

Blue 624848 665575 643117

Red 193.332 324.062 262.735
Ve (Waterfall) Green 196.500 330.539 262.346

Blue 197.588 338.855 267.762

It is evident that the histograms of all channels of the

encrypted frame are smoother than those of the original frame,

with the variances and χ2 values of the encrypted video

files exhibiting a notable reduction, and all average χ2 values

remaining below 293.25, thereby demonstrating the high level

of uniformity achieved by the implemented cryptosystem.

B. Correlation evaluation

Adjacent pixels within an original frame typically exhibit

strong correlations, which must be decorrelated during the

encryption process to mitigate the risk of statistical attacks

[24]. To evaluate the decorrelation performance of the im-

plemented cryptosystem, 6000 pairs of adjacent pixels are

randomly selected from each channel of an original frame

along different directions. The original frame is illustrated in

Fig. 4 (a), while the correlation distributions of the pixel pairs

selected from red, green, and blue channels are demonstrated

in Fig. 4 (b), (c), and (d), respectively. In these figure, the

Y-axis represents the values of the selected pixels, the Z-axis

corresponds to the values of their adjacent counterparts, and H,

V, and D on the X-axis indicate that the pixel pairs are selected

along horizontal, vertical, and diagonal directions, respectively.

Similarly, 6000 pairs of adjacent pixels are randomly selected

from the encrypted frame, as illustrated in Fig. 4 (e), with their

correlation distributions for the red, green, and blue channels

presented in Fig. 4 (f), (g), and (h), respectively.

Fig. 4. Correlation distributions of adjacent pixel pairs selected from the
original and encrypted frames, (a) original frame (Coastguard), (b) - (d)
correlation distributions of adjacent pixels selected from the red, green, and
blue channels of the original frame along the horizontal, vertical and diagonal
directions, (e) encrypted frame, (f) - (h) correlation distributions of adjacent
pixels selected from the red, green, and blue channels of the encrypted frame
along the horizontal, vertical and diagonal directions.

In addition to correlation distribution, the correlation be-

tween adjacent pixel pairs can be quantitatively measured

using the correlation coefficient, which is expressed as [25]:

rx,y =
cov(x, y)

√

D(x)D(y)
, (6)

where x and y represent adjacent pixel pairs, cov(x, y) and

D(x) can be calculate using the following equations:

cov(x, y) =
1

N

N
∑

i=1

(xi − E(x))(yi − E(y)), (7)

D(x) =
1

N

N
∑

i=1

(xi − E(x))2, (8)

where N denotes the total number of pixel pairs selected from

the frame, and E(x) is defined as:

E(x) =
1

N

N
∑

i=1

xi. (9)

The correlation coefficient ranges from −1 to 1, where a

correlation coefficient close to 0 indicates negligible corre-

lation, while a value approaching ±1 demonstrates a strong

correlation. To quantitatively evaluate the decorrelation per-

formance of the implemented cryptosystem, 10,000 pairs of

adjacent pixels are randomly selected from each frame within

both the original and encrypted video files. To avoid the

cancellation effect between positive and negative correlation

coefficients, the mean of the absolute values of the correlation

coefficients is calculated for each video file, with the results

presented in Tab. III. Evidently, the correlation distributions

of all adjacent pixel pairs selected from the original frame are

aligned along the diagonal, with the mean absolute correlation
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coefficients of the original video files close to 1, indicating

a strong correlation. The correlation distributions of adjacent

pixel pairs selected from the encrypted frame are uniformly

distributed, with the mean absolute correlation coefficients of

the encrypted video files approximately 0, demonstrating a

weak correlation. This clearly highlights the high-level decor-

relation capability achieved by the implemented cryptosystem.

TABLE III
MEAN ABSOLUTE CORRELATION COEFFICIENTS OF

ADJACENT PIXEL PAIRS

File Name Channel Horizontal Vertical Diagonal

Red 0.997044 0.991953 0.988869
Vo (Akiyo) Green 0.995918 0.988545 0.984351

Blue 0.997039 0.992745 0.989967

Red 0.007976 0.008020 0.007282
Ve (Akiyo) Green 0.008356 0.007697 0.008246

Blue 0.007876 0.008046 0.008175

Red 0.967330 0.985433 0.953370
Vo (Coastguard) Green 0.969012 0.986144 0.955719

Blue 0.974722 0.988754 0.963926

Red 0.008335 0.008055 0.008123
Ve (Coastguard) Green 0.007766 0.007960 0.007950

Blue 0.008037 0.007638 0.007445

Red 0.979658 0.970518 0.951983
Vo (Hall) Green 0.980364 0.971818 0.954248

Blue 0.983515 0.977858 0.963319

Red 0.008971 0.008458 0.007930
Ve (Hall) Green 0.008037 0.007861 0.007906

Blue 0.007849 0.007739 0.008121

Red 0.994612 0.994376 0.989562
Vo (Rhinos) Green 0.994433 0.994186 0.989221

Blue 0.993951 0.993713 0.988377

Red 0.008165 0.007033 0.006445
Ve (Rhinos) Green 0.008355 0.007947 0.008863

Blue 0.007620 0.007888 0.008514

Red 0.986818 0.975006 0.962045
Vo (Train) Green 0.987740 0.976599 0.964487

Blue 0.980707 0.963346 0.944675

Red 0.008359 0.008653 0.008126
Ve (Train) Green 0.007949 0.007985 0.007579

Blue 0.009478 0.008550 0.008387

Red 0.978034 0.971186 0.954878
Vo (Waterfall) Green 0.969861 0.960521 0.938419

Blue 0.960620 0.948927 0.919444

Red 0.007521 0.007543 0.007683
Ve (Waterfall) Green 0.007925 0.008250 0.008298

Blue 0.008542 0.008350 0.008641

C. Randomness evaluation

In addition to ensuring high uniformity and low correlation,

an ideal video encryption algorithm should also guarantee

that the encrypted frames exhibit a high level of randomness

Information entropy is a fundamental metric for assessing

the level of randomness inherent in a system. For a given

information m, its information entropy, denoted as h(m), is

defined by the following mathematical expression [26]:

H(m) =

N
∑

i=1

p(mi)log
1

p(mi)
, (10)

where N denotes the total number of distinct symbols in the

system, and p(mi) represents the probability of occurrence of

the symbol mi. For a perfectly random information emitting

2n distinct symbols, its information entropy is n. Conse-

quently, the theoretical information entropy of a random frame

with 256 intensity levels is 8, indicating that an optimal en-

cryption algorithm should generate encrypted frames with an

information entropy approaching 8. The information entropy

of all frames are calculated, with the minimum, maximum, and

average information entropy for both original and encrypted

video files demonstrated in Tab. IV.

TABLE IV
INFORMATION ENTROPY OF THE ORIGINAL AND ENCRYPTED VIDEO FILES

File Name Channel Minimum Maximum Average

Red 7.159805 7.172551 7.166270
Vo (Akiyo) Green 7.237918 7.253696 7.245858

Blue 7.233799 7.247246 7.240702

Red 7.999062 7.999426 7.999274
Ve (Akiyo) Green 7.999020 7.999440 7.999279

Blue 7.999089 7.999481 7.999272

Red 7.419425 7.674670 7.550935
Vo (Coastguard) Green 7.412202 7.664400 7.546955

Blue 7.384193 7.610538 7.494974

Red 7.999081 7.999427 7.999283
Ve (Coastguard) Green 7.999109 7.999433 7.999279

Blue 7.999110 7.999496 7.999287

Red 7.209239 7.348232 7.268784
Vo (Hall) Green 7.275283 7.408671 7.321474

Blue 7.345069 7.417197 7.386182

Red 7.999070 7.999451 7.999268
Ve (Hall) Green 7.999082 7.999451 7.999277

Blue 7.999087 7.999440 7.999285

Red 5.512853 7.055801 6.366386
Vo (Rhinos) Green 5.648948 7.008508 6.488776

Blue 5.224948 6.932936 6.104077

Red 7.998978 7.999411 7.999233
Ve (Rhinos) Green 7.999014 7.999423 7.999232

Blue 7.998953 7.999360 7.999208

Red 5.815658 7.121010 6.814522
Vo (Train) Green 6.314428 7.178382 6.959167

Blue 5.744660 6.779010 6.515665

Red 7.999008 7.999440 7.999248
Ve (Train) Green 7.999083 7.999462 7.999268

Blue 7.998969 7.999414 7.999239

Red 7.399047 7.429816 7.417382
Vo (Waterfall) Green 7.004398 7.074862 7.042393

Blue 6.528259 6.604008 6.562042

Red 7.999108 7.999469 7.999277
Ve (Waterfall) Green 7.999090 7.999459 7.999278

Blue 7.999066 7.999457 7.999263

Information entropy is commonly utilized to evaluate the

overall randomness of frames, whereas local Shannon entropy

is employed to quantify the local randomness within those

frames. It can be calculated using the following equation [27]:

Hk,TB
=

k
∑

i=1

H(Mi)

k
, (11)
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where Mi(i ∈ {1, 2, ..., k}) represents the randomly se-

lected, non-overlapping sub-blocks of a frame, each block

comprising TB pixels, and H(Mi) denotes the information

entropy of block Mi. An encrypted frame is considered to

pass the local Shannon entropy test if its Hk,TB
lies within

the interval (h∗

left, h
∗

right). According to Ref. [28], k and

TB are set to 30 and 1936, respectively. For a significance

level α = 0.001, the idea H30,1936 is 7.902469317, and the

interval (h∗

left, h
∗

right) is (7.901515798, 7.903422936) [29].

Thus, thirty non-overlapping sub-blocks are randomly selected

from each frame within the original and encrypted video files,

with each sub-block comprising 44× 44 pixels, totaling 1936

pixels. The H30,1936 is calculated for each frame, with the

minimum, maximum, and average local Shannon entropy pre-

sented in Tab. V. Evidently, the average information entropy

of the encrypted video files all exceed 7.999, and their local

Shannon entropy all fall within the interval (h∗

left, h
∗

right),
demonstrating that the implemented cryptosystem achieves a

high level of both overall and local randomness.

TABLE V
LOCAL SHANNON ENTROPY H30,1936 OF THE ORIGINAL

AND ENCRYPTED VIDEO FILES

File Name Channel Minimum Maximum Average

Red 4.445855 5.373052 4.898197
Vo (Akiyo) Green 4.518183 5.459264 5.016991

Blue 4.459647 5.546943 4.970693

Red 7.898894 7.907350 7.902568
Ve (Akiyo) Green 7.898335 7.906836 7.902282

Blue 7.898398 7.905962 7.902382

Red 5.745046 6.594438 6.216418
Vo (Coastguard) Green 5.708637 6.567717 6.197019

Blue 5.702760 6.492304 6.130825

Red 7.897344 7.906669 7.902445
Ve (Coastguard) Green 7.896921 7.905945 7.902262

Blue 7.898145 7.906630 7.902502

Red 5.063316 5.893174 5.493953
Vo (Hall) Green 5.018021 5.939223 5.458028

Blue 5.257371 6.001698 5.634705

Red 7.898651 7.907805 7.902354
Ve (Hall) Green 7.897995 7.906449 7.902524

Blue 7.897795 7.907743 7.902418

Red 2.448600 4.629211 3.553431
Vo (Rhinos) Green 2.551367 4.647639 3.657591

Blue 2.339643 4.615171 3.484075

Red 7.896499 7.906353 7.902327
Ve (Rhinos) Green 7.898120 7.906477 7.902420

Blue 7.898046 7.906491 7.902306

Red 3.907096 6.165550 5.243988
Vo (Train) Green 4.034315 6.208251 5.377812

Blue 3.868422 5.979309 5.159470

Red 7.897091 7.907910 7.902349
Ve (Train) Green 7.897535 7.907964 7.902361

Blue 7.898471 7.907838 7.902540

Red 6.423344 6.783076 6.614087
Vo (Waterfall) Green 6.139504 6.483053 6.320386

Blue 5.585715 5.992534 5.796705

Red 7.897368 7.907045 7.902414
Ve (Waterfall) Green 7.897751 7.906831 7.902438

Blue 7.897386 7.906963 7.902393

IV. SECURITY ANALYSIS

A video encryption algorithm must not only generate en-

crypted frames with superior statistical properties but also ex-

hibit robust resistance against various types of attacks. There-

fore, this section analyzes the resistance of the implemented

cryptosystem against several mainstream attack strategies.

A. Resistance to brute-force attacks

The key space is a crucial metric for evaluating the security

of a cryptosystem. An insufficient key space can render the

cryptosystem vulnerable to brute-force attacks, regardless of

the robustness of its encryption algorithm [30]. Unlike many

traditional image or video encryption algorithms that employ

fixed key spaces, the proposed protocol reconstructs initial

conditions prior to encrypting each frame using the SHA2-256

hash of the original frame. Clearly, the key consists of the user-

input initial conditions x0, y0, z0, w0, control parameter γ, and

all SHA2-256 hashes. The key space of the proposed protocol,

denoted as Sk, can be defined as follows:

Sk = (5× 64) + nf × 256, (12)

where nf indicates the number of encrypted frames. The

relationship among Sk, the FPS of the video, and the total

encryption time t (in second) can be expressed as:

Sk = (5× 64) + (FPS× t)× 256. (13)

The relationship between Sk and nf is illustrated in Fig. 5 (a),

while Fig. 5 (b) depicts Sk as a function of FPS and t. It is

evident that Sk exceeds 550 when encrypting the first frame

and surpasses 6400 after one second of encryption. The key

space not only exceeds the widely recognized lower bound of

2100 [31] but also expands dynamically over time.

Fig. 5. key space of the proposed protocol, (a) relationship between the key
space Sk and number of encrypted frames nf , (b) key space Sk as a function
of FPS and total encryption time.

In addition to possessing a sufficiently large key space, a

video encryption algorithm must also demonstrate a high level

of key sensitivity [32]. This ensures that an attacker cannot

extract any meaningful information, even when attempting

to decrypt the frame using a key that closely resembles the

correct one. To assess the key sensitivity of the implemented

cryptosystem, an original frame extracted from the video Hall

is encrypted using a randomly selected key. The encrypted

frame is then decrypted using the correct key, with the result-

ing decrypted frame illustrated in Fig. 6 (a). Subsequently, the

key is subjected to minimal modification by introducing an

increment of δ = 1.0× 10−14 to the initial conditions x0, y0,

z0, and w0. The encrypted frame is then decrypted using these
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slightly altered keys, and the corresponding decrypted frames

are depicted in Fig. 6 (b) - (e), respectively. The extensive

and dynamically expanding key space, combined with a high

degree of key sensitivity, enables the proposed protocol to

provide robust resistance against brute-force attacks.

Fig. 6. Key sensitivity evaluation, (a) frame (Hall) decrypted with the correct
key, (b) frame decrypted with x0+δ (δ = 1.0×10−14), (c) frame decrypted
with y0+δ, (d) frame decrypted with z0+δ, (e) frame decrypted with w0+δ.

B. Resistance to differential attacks

Differential attacks are a category of cryptographic attacks

that systematically investigate the correlation between vari-

ations in input data and their corresponding transformations

in output data during the encryption process [33]. These

attacks leverage statistical analysis of input-output differential

patterns to extract information about the encryption key or the

internal structure of the cryptographic algorithm. To counteract

such attacks, video encryption algorithms must exhibit a high

level of sensitivity to the original frame. Specifically, even a

minimal modification of a single pixel in the original frame

should result in a completely distinct encrypted frame, despite

the use of the same encryption key. To assess the resistance

of the implemented cryptosystem against differential attacks,

an original frame from the video Rhinos, as illustrated in Fig.

7 (a), is encrypted, resulting in the encrypted frame displayed

in Fig. 7 (b). Subsequently, a pixel is randomly selected from

the original frame, followed by randomly choosing one of its

channel. The pixel value of the selected channel is perturbed

by adding a randomly generated increment, resulting in a

modified frame, which is encrypted using the implemented

cryptosystem with the same key, producing the encrypted

frame depicted in Fig. 7 (c). The difference between two

encrypted frames is illustrated in Fig. 7 (d), where pixels are

highlighted in white if any corresponding channel in the two

encrypted frames shares identical intensity values.

Fig. 7. Original frame sensitivity evaluation, (a) original frame (Rhinos), (b)
frame obtained by encrypting the original frame using a randomly selected
key, (c) frame obtained by encrypting the modified original frame with the
same key, (d) differential map of the two encrypted frames.

The differences between two encrypted frames can be quan-

titatively evaluated through the computation of two metrics:

the Number of Pixels Changing Rate (NPCR) and the Unified

Averaged Changed Intensity (UACI), defined as follows [34]:

NPCR =

w
∑

i=1

h
∑

j=1

D(i, j)

w × h
× 100, (14)

UACI =

w
∑

i=1

h
∑

j=1

|F 1
e [i, j]− F 2

e [i, j]|

w × h× 255
× 100, (15)

where F 1
e and F 2

e denote the two encrypted frames, w and h
represent frame width and height, Fe[i, j] indicates the pixel

value at position [i, j] in frame Fe, and D(i, j) is given by:

D(i, j) =

{

1, F 1
e [i, j] 6= F 2

e [i, j],
0, F 1

e [i, j] = F 2
e [i, j].

(16)

Two encrypted frames are considered to successfully pass the

NPCR and UACI tests when their NPCR exceeds the critical

threshold N∗

ρ and their UACI lies within the critical interval

(U−

ρ , U+
ρ ). Specifically, for encrypted frames with a resolution

of 512 × 512, the critical values are established as N∗

ρ =
99.5893% and (U−

ρ , U+
ρ ) = (33.3730%, 33.5541%) [35].

To quantify the resistance of the implemented cryptosys-

tem against differential attacks, all original video files are

encrypted using randomly selected keys, generating a set of

encrypted video files. Subsequently, for each original frame,

a pixel and a channel are randomly selected, and the intensity

value of the selected channel is modified by adding a randomly

generated increment. The modified original video files are then

encrypted using the identical keys, producing a new set of

encrypted video files. Finally, A frame-by-frame calculation

of the NPCR and UACI metrics is performed for each corre-

sponding frame pair between the two sets of encrypted video

files. The minimum, maximum, and average NPCR and UACI

values for all channels across all video files are presented in

Tables VI and VII, respectively. It is evident that all average

NPCR values exceed the critical threshold N∗

ρ and all UACI

values fall within the critical interval (U−

ρ , U+
ρ ), indicating

that a modification of a single intensity value in any channel

of any pixel leads to substantially distinct encrypted frames

even when the same key is applied for encryption.

TABLE VI
EXPERIMENTAL RESULTS OF NPCR TESTS

File Name Channel Minimum Maximum Average

Red 99.576569 99.644852 99.609547
Akiyo Green 99.575806 99.647522 99.609965

Blue 99.574280 99.642563 99.609051

Red 99.567413 99.648666 99.609188
Coastguard Green 99.579620 99.649048 99.609585

Blue 99.575043 99.641800 99.609861

Red 99.574280 99.643707 99.609130
Hall Green 99.583435 99.645615 99.609072

Blue 99.574280 99.646378 99.609726

Red 99.577332 99.641418 99.610258
Rhinos Green 99.570084 99.641418 99.610151

Blue 99.560547 99.644470 99.610064

Red 99.570847 99.642563 99.608733
Train Green 99.575043 99.647522 99.609879

Blue 99.565887 99.646378 99.608375

Red 99.580002 99.645233 99.609589
Waterfall Green 99.564743 99.652100 99.609184

Blue 99.569321 99.645615 99.609008
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TABLE VII
EXPERIMENTAL RESULTS OF UACI TESTS

File Name Channel Minimum Maximum Average

Red 33.188037 33.733179 33.466065
Akiyo Green 33.246472 33.702529 33.473039

Blue 33.299864 33.641972 33.467086

Red 33.162613 33.680614 33.462089
Coastguard Green 33.248179 33.686133 33.464959

Blue 33.307907 33.619923 33.468777

Red 33.039124 33.795920 33.458387
Hall Green 33.240274 33.733515 33.469430

Blue 33.179799 33.768077 33.465143

Red 33.011467 33.722690 33.448713
Rhinos Green 33.216996 33.733378 33.481384

Blue 33.144859 33.720180 33.474729

Red 33.030490 34.140190 33.475106
Train Green 33.000192 33.911989 33.457124

Blue 32.701047 34.107684 33.457344

Red 33.143939 33.751955 33.477481
Waterfall Green 33.061248 33.960244 33.457987

Blue 32.586680 34.096925 33.466246

C. Resistance to cropping attacks and channel noise

Cropping attacks are a category of cyber threats that involve

the unauthorized modification or selective removal of specific

regions within encrypted frames, thereby compromising the

integrity of these frames and preventing users from accessing

accurate information from the original frames [36]. Video

encryption algorithms must guarantee the restoration of the

original frame with superior visual quality, even when the

encrypted frame has been subjected to a cropping attack. To

assess the resilience of the implemented cryptosystem against

cropping attacks, an original frame is extracted from the

video Train and encrypted utilizing a randomly selected key.

The resulting encrypted frame is subsequently subjected to

different degrees of cropping attacks, with the cropped frame

and their corresponding decryption results illustrated in Fig.

8. Clearly, the contours of the original frame are preserved,

even when portions of varying sizes and shapes are cropped

from the encrypted frame, including instance where 37.5% of

the frame is removed, thereby highlighting the robustness of

the implemented cryptosystem against cropping attacks.

Fig. 8. Encrypted frame (Train) after undergoing different degrees of cropping
attacks along with their corresponding decryption outcomes.

During the transmission process, encrypted frames may be

susceptible to various types of noise interference. Therefore,

a robust video encryption algorithm should be capable of

reconstructing the original frame with high visual fidelity,

even in the presence of significant noise disturbances [37].

To evaluate the resilience of the implemented cryptosystem

against channel noise, an original frame is extracted from the

video Waterfall and encrypted to generate an encrypted frame.

The resulting frame is then subjected to varying degrees of

Salt-and-Pepper noise and Gaussian noise, after which the

affected frame is decrypted. The decrypted frames obtained

from the decryption of the encrypted frame containing varying

levels of Salt-and-Pepper noise are illustrated in Fig. 9 (a) -

(e), while those resulting from the decryption of the encrypted

frame with different degrees of Gaussian noise are shown in

Fig. 9 (f) - (j). It is evident that, even when the encrypted

frame is subjected to significant interference from various

types of noise, the implemented cryptosystem is still capable

of restoring the original frame with high quality.

Fig. 9. Resistance to channel noise, (a) - (d) decryption results of the
encrypted frame (Waterfall) affected by different level of salt-and-pepper
noise, (e) - (f) decryption results of the encrypted frame impacted by varying
intensities of Gaussian noise.

V. APPLICATION, ENCRYPTION SPEED EVALUATION,

AND COMPARISON

Given that video frames may be processed across diverse

computing platforms, including servers, personal computers,

and even micro-embedded systems, the proposed protocol

is employed to implement a remote real-time secure video

monitoring system, as illustrated in Fig. 10, to assess its feasi-

bility and practicality. In the deployed system, original frames

are captured and encrypted using an NVIDIA Jetson Xavier

NX, which is equipped with a 6-core NVIDIA Carmel ARM

V8.2 64-bit CPU and a 384-core NVIDIA Volta GPU. The

encrypted SHA-256 hashes of the original frames, along with

the encrypted frames, are subsequently transmitted through a

public channel to a server featuring an Intel Xeon Gold 6226R

CPU and an NVIDIA GeForce RTX 3090 GPU. The server

facilitates remote real-time video monitoring by decrypting

the received frames. The captured video is configured with

a resolution of 640 × 480, a frame rate of 24 FPS, and

the number of worker threads n for both the server and the

embedded system is set to 6 to ensure accurate decryption. The

experimental results demonstrate that the embedded system

achieves delay-free frame encryption with an average time

of 28.76 ms, while the server performs delay-free frame
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TABLE VIII
ENCRYPTION SPEED EVALUATION OF THE PROPOSED PROTOCOL WITH DIFFERENT CALCULATION PLATFORMS.

CPU GPU FPS nw Resolution AET (ms) DR(%)

Inetl Xeon Gold 6226R@2.9 Ghz NVIDIA Geforce RTX 3090 30 32

640 × 480 (VGAR) 6.36 0
720 × 480 (SD) 8.95 0
1280 × 720 (HD, 720p) 14.78 0
1920 × 1080 (FHD, 1080p) 25.84 0

Inetl Core i7-8700@3.2 GHz NVIDIA Geforce GTX 1060 30 12

640 × 480 (VGAR) 9.11 0
720 × 480 (SD) 10.36 0
1280 × 720 (HD, 720p) 27.89 0
1920 × 1080 (FHD, 1080p) 65.09 100

NVIDIA Carmel ARM CPU NVIDIA Volta GPU 24 6

320 × 240 18.48 0
360 × 240 19.48 0
640 × 360 23.62 0
640 × 480 (VGAR) 28.26 0

AET: Average Encryption Time, DR: Delay Rate, VGAR: Video Graphic Array Resolution, SD: Standard Definition, HD: High
Definition, FHD: Full High Definition.

decryption with an average time of 8.92 ms. During the

encryption and decryption process, a delay event is recorded

when the processing time for a frame exceeds the threshold

of 1000 ms divided by the frame rates, approximately 41.67

ms in this instance. The delay rate is determined by dividing

the total number of delayed frames by the overall number of

frames processed.

Fig. 10. A remote real-time secure video monitoring system deployed using
the proposed protocol, n: number of worker threads, DR: Delay Rate.

The objective of this paper is to enhance the parallelism

and reduce the computational load of video encryption while

ensuring satisfactory statistical properties and security of the

encrypted frames, thereby improving the frame processing

speed and enabling real-time video encryption and decryp-

tion of higher-resolution videos. Consequently, a performance

assessment of encryption speed is conducted across various

computing platforms. The original video, Akiyo, is converted

into different resolutions and frame rates and subsequently

encrypted. The configurations and experimental results of the

computing platforms are presented in Tab VIII. To the best

of our knowledge, this is the first experimental demonstra-

tion of real-time bit-level video encryption, with the server,

personal computer, and embedded system achieving delay-

free encryption for videos at full high definition (1920 ×

1080, commonly referred to as 1080p), high definition (1280

× 720, also known as 720p), and video graphics array (VGA)

resolution, respectively, all of which broke the speed records

of their respective platforms. The encryption speed of the

proposed protocol is also compared with several recently

published works, with the results presented in Tab. IX.

TABLE IX
COMPARISON OF THE ENCRYPTION SPEED BETWEEN THE PROPOSED PROTOCOL AND RECENTLY PUBLISHED WORKS.

Algorithm YP CA Level CPU GPU EM Resolution AET (ms) RTVE (%)

Ref. [5] 2022 SC Pixel Core i7-8750H@2.2 GHz – C:1,D:1 352 ×288 260 ×

Ref. [6] 2023 SC Block Ryzen 9 5950x@3.88 GHz – C:1,D:1 352 ×192 231 ×

Ref. [7] 2024 SC Pixel Core i5-4120U – C:1,D:1 352 ×192 2652 ×

Ref. [9] 2024 PC DNA Xeon Gold 6226R@2.9 Ghz – C:5,D:3,DNA:4 512 ×512 34.69 X

Ref. [10] 2024 PC Pixel Xeon Gold 6226R@2.9 Ghz – c:5,d:5 768 ×768
36.56 (PLCM) X

36.23 (LASM) X

Ref. [11] 2024 HPC Pixel Xeon Gold 6226R@2.9 Ghz Geforce RTX 3090 C:7,D:6 768 ×768 25.12 X

Ref. [8] 2025 SC Pixel Core i7-11390H@3.4 GHz – C:1,D:1 512 ×512 34.69 ×

Proposed – HPC Bit Xeon Gold 6226R@2.9 Ghz Geforce RTX 3090 C:1,X:1 1920×1080 25.84 X

YP: Year of Publication, CA: Computational Architecture, EM: Encryption Method, AET: Average Encryption Time, DR: Delay Rate, SC: Serial Comp-
uting, PC: Parallel Computing, HPC: Heterogeneous Parallel Computing, C: rounds of Confusion operations, D: rounds of Diffusion operations, X: roun-
ds of XOR operations, RTVE: Real-Time Video Encryption, –: not specified.
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VI. DISCUSSION

This section provides a discussion on the advantages

achieved by the proposed protocol from different perspectives.

A. High sensitivity to the original frame

Among all statistical and security metrics, sensitivity to the

original frame is one of the most challenging criteria to satisfy,

resulting in numerous image and video encryption algorithms

employing multiple rounds of confusion and diffusion opera-

tions to provide resistance against differential attacks, which

substantially increases encryption time and severely hinders

real-time encryption of high-resolution video. The proposed

protocol leverages the extreme sensitivity of the SHA-256

hash function to variations in input, reconstructing the initial

conditions using the SHA-256 value of the original frame to

ensure that even a single-pixel modification generates a distinct

SHA-256 value, resulting in entirely different initial conditions

and encryption bytes, thereby enabling the generation of com-

pletely different encrypted frames, even when using identical

encryption keys. To validate this advantage, the original video

Akiyo is employed to conduct NPCR and UACI tests using the

parallel computing-based approach proposed in Ref. [10], the

heterogeneous parallel computing-based algorithm presented

in Ref. [11], and the proposed protocol, with different rounds

of confusion, diffusion and XOR operations. The experimental

results, as illustrated in Fig. 11, demonstrate that the proposed

protocol achieves differential attacks resistance with only one

round of confusion and XOR operations, as evidenced by

its NPCR value exceeding the critical threshold N∗

ρ and its

UACI value falling within the critical interval (U+
ρ , U−

ρ ),

while the comparative algorithms fail to pass the tests even

with two rounds of confusion and diffusion operations. The

source code for the NPCR and UACI tests of the proposed

protocol is publicly accessible in the source code repository

at: https://github.com/jiangDongAHU/blfhdve.

Fig. 11. Comparison of original frame sensitivity among different protocols
with varying processing rounds (rc: rounds of confusion operations, rx:
rounds of diffusion or XOR operations).

Many image and video encryption algorithms process each

channel of the original frame, as well as each individual frame,

independently. However, as illustrated in Fig. 12 (a) - (d), not

only do the three channels contain comprehensive information

of the original frame, but subsequent frames may also hold

substantial amounts of this information. For these algorithms,

altering the value of a particular pixel within a specific channel

of the original frame exclusively influences the ciphertext

generation of the corresponding channel during the encryption

process, without impacting other channels or the encryption of

subsequent frames. In contrast, the proposed protocol ensures

that any modification to a pixel value within any channel alters

the SHA-256 hash value of the original frame, resulting in a

completely distinct encrypted frame, even when the same key

is employed. To validate this advantage, the original frame is

encrypted using the implemented cryptosystem to produce an

encrypted frame. Subsequently, a channel is randomly selected

from the original frame, a pixel within that channel is chosen

and modified by adding a randomly selected increment, after

which the modified original frame is encrypted using the same

key to generate a new encrypted frame. The differential maps

between the red, green, and blue channels of the two encrypted

frames are illustrated in Fig. 12 (e) - (g), respectively. The

modification of the original frame significantly impacts the

iterative trajectories of the LHCSs, such that while the SHA-

256 hash values of subsequent frames remain unchanged,

the altered iterative results from the preceding frame lead

to the construction of fundamentally different initial condi-

tions, consequently yielding entirely distinct encrypted outputs

for all subsequent frames during the encryption process. As

demonstrated by the differential map of the subsequent frame

illustrated in Fig. 12 (h), although the current frame remains

unmodified, its encryption output is entirely altered following

the modification of the previous frame.

Fig. 12. Evaluation of the impact of modifying the pixel value of any
channel in the original frame on the encryption results of all channels and
subsequent frames, (a) - (c) red, green, and blue channel of the original frame
(d) subsequent frame of the original frame (e) - (g) differential maps of the
red, green, and blue channels (h) differential map of the subsequent frame
(the pixel is marked in white if the pixel values of any channel in the two
encrypted frames are identical).

B. High algorithmic parallelism

The objective of this paper is not only to minimize the

computational cost associated with video encryption while en-

suring that the encrypted frames exhibit satisfactory statistical

properties and security, but also to maximize the parallelism

of each phase in the encryption process, thereby enhanc-

ing computational efficiency and encryption speed, ultimately

achieving real-time encryption of high-resolution video. As

outlined in the protocol description section, the proposed

protocol consists of phases for SHA-256 hash calculation,

shift distance and byte generation, bit-level confusion oper-

ations, and bit-level XOR operations. The first two phases
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leverage parallel computing techniques, employing multiple

CPU threads to concurrently compute the SHA-256 hash value

of the original frame and generate the shift distances and

bytes necessary for confusion and XOR operations, while

the latter two phases utilize heterogeneous parallel computing

techniques, assigning a GPU thread to each channel of every

pixel to enable concurrent execution of bit-level confusion

and XOR operations. To assess the time consumption of

each phase in the encryption process, the original video

Akiyo at a resolution of 1920×1080 is encrypted using the

implemented cryptosystem, with the average duration for each

phase measured and presented in Fig. 13. It is evident that

the optimization of each stage of encryption through parallel

and heterogeneous parallel computing techniques enables the

completion of the SHA-256 hash calculation, bit-level con-

fusion, and XOR operations within 5 ms, with the bit-level

XOR operation on the entire frame using the generated bytes

requiring only 1.67 ms, thereby highlighting the significant

speed advantage of the proposed protocol over traditional

diffusion-based algorithms. For the shift distance and byte

generation phase, two LHCSs are employed to construct the

shift distances and bytes to ensure system security, a process

that involves numerous iterations, type conversions, and XOR

operations, along with uploading the generated sequences from

memory to graphics memory, resulting in an average pro-

cessing time of 14.23 ms. However, the experimental results

demonstrate that the temporal bottleneck inherent in traditional

video encryption algorithms, predominantly attributed to the

prolonged computational duration of confusion and diffusion

operations, is successfully addressed.

Fig. 13. Time consumption of each phase of the proposed protocol, phase
A: initial condition reconstruction, phase B: data generation: phase C: bit-
level confusion operations, phase D: bit-level XOR operations, PC: Parallel
Computing, HPC: Heterogeneous Parallel Computing.

C. Mitigating the effects of dynamical degradation

When chaotic systems are implemented on finite precision

digital devices, their dynamical behaviors frequently diverge

markedly from those of the original continuous versions,

resulting in cyclic iterative trajectories and degradation of

dynamical properties [38]. In the proposed protocol, following

the encryption of each frame, the initial conditions of the

LHCS in the main thread are reconstructed using the SHA2-

256 hash of the subsequent original frame. The iteration

trajectories of LHCS generated from randomly selected initial

conditions, as well as those initiated with initial conditions

reconstructed using SHA-256 hash value of an original frame,

are presented in Fig. 14. Clearly, the iteration outcomes are

sifted to completely different trajectories following the recon-

struction of the initial conditions. The switching of LHCS iter-

ative trajectories in the main thread produces entirely different

parameters Pm, resulting the shifting of iterative trajectories of

LHCSs in the worker threads. Consequently, all LHCSs in the

main thread and the byte generation threads are reinitialized

after encrypting a frame, thereby enhancing the effectiveness

of mitigating the impact of dynamic degradation compared to

traditional methods of perturbing iterative trajectories [39].

Fig. 14. Iteration trajectories of the LHCS with the original and reconstructed
initial conditions.

To sum up, the proposed protocol achieves the following

advantages:

(1) By leveraging the extreme sensitivity of the SHA-256

hash function to input variations, the proposed protocol

establishes robust resistance against differential attacks

with reduced computational load, while ensuring that

any change in the pixel value of any channel affects

encryption results of all channels and subsequent frames,

thereby achieving high sensitivity to the original frame.

(2) By eliminating the necessity of diffusion operations to

establish the pixel-wise relationship between the original

and encrypted pixels, the proposed protocol enables the

allocation of individual GPU threads for the parallel

encryption of each pixel, simultaneously optimizing other

stages of encryption through parallel and heterogeneous

computing techniques, thereby significantly enhancing

both the algorithmic parallelism and encryption speed.

(3) By reconstructing the initial conditions using the SHA-

256 hash value of each original frame, the proposed

protocol not only shifts the iteration trajectories of LHCSs

to entirely different paths, thereby mitigating the impacts

of dynamic degradation, but also, as discussed in Section

IV-A, enables the key space to dynamically expand with

the number of processed frames, providing enhanced

resistance to brute-force attacks compared to traditional

algorithms that rely on a fixed key space.

(4) As evidenced in Sec. IV-C, the absence of diffusion oper-

ations ensures that alterations to a pixel value within the

encrypted frame, caused by cropping attacks or channel

noise, do not affect the values of other pixels during de-

cryption, thereby providing significant resistance against

both cropping attacks and channel noise.



14

VII. CONCLUSION

To mitigate the computational inefficiencies inherent in dif-

fusion operations, this paper presents a real-time video encryp-

tion protocol, leveraging heterogeneous parallel computing. It

incorporates SHA-256 hashes of the original frames as input,

utilizes multiple CPU threads to concurrently generate the data

necessary for frame encryption, and assigns a dedicated GPU

thread to each pixel within every channel to simultaneously

perform confusion and XOR operations for pixel encryption.

The statistical evaluation and security analysis demonstrate

that our approach exhibits superior statistical properties and

provides robust security against different types of attacks. By

utilizing the exceptional sensitivity of SHA hashing instead of

relying on multiple rounds of diffusion operations, it achieves

high parallelism and low computational overhead, resulting

in enhanced encryption speed. Benchmark results confirm

delay-free bit-level encryption at full HD (1080p), HD (720p)

and VGA resolutions are achieved across server, desktop,

and, embedded implementations, respectively. The proposed

protocol is also successfully implemented in a remote real-time

secure video monitoring system, thereby empirically demon-

strating both its technical viability and readiness for real-world

adoption. Furthermore, by leveraging SHA-256 hashes of the

original frames to eliminate the need for diffusion operations,

this approach mitigates the effects of dynamic degradation,

establishes a dynamic key space, and provides enhanced

resistance against cropping attacks and channel noise.
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